ON PROJECTIVE HJELMSLEV PLANES OF LEVEL n by G. HANSSENS[†] and H. VAN MALDEGHEM[†]

(Received 28 March, 1988)

In this paper, we establish a new (but equivalent) definition of projective Hjelmslev planes of level n. This shows that the nth floor of a triangle building is a projective Hjelmslev plane of level n (a result already announced in [9], but left unproved). This will allow us to characterize Artmann-sequences by means of their inverse limits and to construct new ones. We also deduce a new existence theorem for level n projective Hjelmslev planes. All results hold in the finite as well as in the infinite case.

1. Preliminaries.

DEFINITION 1. An incidence structure H = (P(H), L(H), I) is called a projective Hjelmslev plane (or briefly a PH-plane) if it satisfies (H.1), (H.2) and (H.3):

- (H.1) there is at least one line joining any two points;
- (H.2) there is at least one point on any two lines;
- (H.3) there is a canonical epimorphism $\alpha_H: H \to \mathscr{P}_H$ with \mathscr{P}_H a non-degenerate projective plane, such that $\alpha_H(X) = \alpha_H(Y)$ if and only if either $X, Y \in L(H)$ and X and Y join more than one point, or X, $Y \in P(H)$ and X and Y are on more than one common line, for all $X, Y \in P(H) \cup L(H)$.

DEFINITION 2 (Definition by induction on n). A PH-plane of level n is a structure $\mathcal{H}_n = (H_n, H_{n-1}, \ldots, H_1, \alpha_{n-1}^n, \ldots, \alpha_1^2)$ such that

- (i) H_1 is a non-degenerate projective plane and H_n is a PH-plane;
- (ii) $(H_{n-1}, \ldots, H_1, \alpha_{n-2}^{n-1}, \ldots, \alpha_1^2)$ is a PH-plane of level n-1;
- (iii) $\alpha_{n-1}^n: H_n \to H_{n-1}$ is an epimorphism of PH-planes;
- (iv) the following conditions (V), (Ma), (Mb), (Mc) and (N) are satisfied.

 - (V) $\mathscr{P}_{H_n} = \mathscr{P}_{H_{n-1}}$ and $\alpha_{H_{n-1}} \circ \alpha_{n-1}^n = \alpha_{H_n}$. (Ma) If $P, Q \in P(H_n), L, M \in L(H_n), QILIPIM, \alpha_{n-1}^n(P) = \alpha_{n-1}^n(Q)$ and $\alpha_{H_{r}}(L) = \alpha_{H_{r}}(M)$, then QIM.
 - (Mb) The dual statement of (Ma).
 - (Mc) There exist distinct points $P, Q \in P(H_n)$ such that $\alpha_{n-1}^n(P) = \alpha_{n-1}^n(Q)$ and dually.

The epimorphism $\alpha_j^n: H_n \to H_j$ is defined by $\alpha_j^n = \alpha_j^{j+1} \circ \alpha_{j+1}^{j+2} \circ \ldots \circ \alpha_{n-1}^n$ for $1 \le j < n$, and α_n^n is the identity on H_n . Note that $\alpha_{H_n} = \alpha_1^n$.

We define an equivalence relation $(\sim j)$ by $P(\sim j)Q$ if $\alpha_i^n(P) = \alpha_i^n(Q)$, for all $P, Q \in P(H_n), j < n$ and by definition $P(\sim 0)Q$ always. Similarly for lines.

(N) For all $L, M \in L(H_n)$, we have $L(\sim j)M$ if and only if QIM for all $Q \in P(H_n)$ such that QIL and $P(\sim n-i)Q$ for some $P \in P(H_n)$ with LIPIM.

[†]This research was supported by the National Fund for Scientific Research (N.F.W.O.) of Belgium.

Glasgow Math. J. 31 (1989) 257-261.

Definitions 1 and 2 are taken from Artmann [1] and [2].

DEFINITION 3. An Artmann-sequence $(H_n, \alpha_n^{n+1})_{n \in \mathbb{N}^*}$ is an infinite sequence of PH-planes together with epimorphisms $\alpha_n^{n+1}: H_{n+1} \to H_n$ such that $(H_n, H_{n-1}, \ldots, H_1, \alpha_{n-1}^n, \ldots, \alpha_1^2)$ is a PH-plane of level *n* for each *n*.

B. Artmann showed in [2] that there exists an Artmann-sequence $(H_n, \alpha_n^{n+1})_{n \in \mathbb{N}^*}$ for every projective plane H_1 .

Besides the notions of projective plane, affine plane and dual affine plane, the following notion will be useful (see [8]).

DEFINITION 4. Suppose \mathcal{P} is a projective plane and (P, L) is an incident point-line pair of \mathcal{P} . The incidence structure \mathcal{H} obtained from \mathcal{P} by deleting all lines incident with P and all points incident with L is called a *helicopter plane*.

Suppose $\mathcal{H}_n = (H_n, \ldots, H_1, \alpha_{n-1}^n, \ldots, \alpha_1^2)$ is a PH-plane of level *n*. We remark that (N) implies that every line of H_n is completely determined by the set of points incident with it. Hence we can identify every line with that set. Now let $P \in P(H_n)$; we denote by \bar{P}^i , $0 \le i \le n$, the set $\{Q \in P(H_n) \mid P(\sim n-i)Q\}$. We define $\bar{B}_n^i = \{L \cap \bar{P}^i \mid L \in L(H_n), P \in P(H_n), PIL\}$ for $0 \le i \le n$. Now fix i, $0 \le i \le n-1$, and $b \in \bar{B}_{n-1}^i$. We define an incidence structure $S_b = (P(S_b), L(S_b), I)$ as follows.

$$L(S_b) = \{c \in \bar{B}_n^{i+1} \mid \alpha_{n-1}^n(c) = b\},\$$

$$P(S_b) = \{c \cap \bar{P}^i \mid c \in L(S_b), P \in c\},\$$

$$cIc' \text{ if and only if } c' \subseteq c, \text{ for all } c \in L(S_b) \text{ and } c' \in P(S_b).$$

From Artmann [1, Satz 1], it follows that S_b is an affine plane if $b \in \tilde{B}_{n-1}^{0}$ and a dual affine plane if $b \in \tilde{B}_{n-1}^{n-1}$.

2. Main Results.

THEOREM. A series of PH-planes $H_n, H_{n-1}, \ldots, H_1$ together with epimorphisms $\alpha_j^{j+1}: H_{j+1} \rightarrow H_j$ for $j = 1, \ldots, n-1$ form a PH-plane of level $n, (H_n, H_{n-1}, \ldots, H_1, \alpha_{n-1}^n, \ldots, \alpha_1^n)$, if and only if they satisfy $(G.1)_n, (G.2)_n$ and $(G.3)_n$ below.

 $(G.1)_n |(\alpha_i^{j+1})^{-1}(X)| > 1$ for all points and lines X in H_i and all j with $1 \le j < n$.

Suppose X, $Y \in P(H_n)$ or X, $Y \in L(H_n)$ and let $\alpha_j^n = \alpha_j^{j+1} \circ \alpha_{j+1}^{j+2} \circ \ldots \circ \alpha_{n-1}^n$, j < n and α_n^n be the identity map in H_n . We write u(X, Y) = j if $\alpha_j^n(X) = \alpha_j^n(Y)$ and $\alpha_{j+1}^n(X) \neq \alpha_{j+1}^n(Y)$. Also, u(X, Y) = n if X = Y. If $P \in P(H_n)$ and $L \in L(H_n)$, then we write u(P, L) = j if $\alpha_j^n(P)I\alpha_j^n(L)$ and $\alpha_{j+1}^n(P)I\alpha_j^{n+1}(L)$; u(P, L) = n if PIL.

- $(G.2)_n$ If P, $Q \in P(H_n)$, L, $M \in L(H_n)$ and $0 \le k \le \inf\{u(Q, L), u(P, L), u(P, M)\}$, then
 - (i) there is at least one line joining P and Q and there is at least one point on both L and M,
 - (ii) $u(Q, M) \ge k$ if and only if $u(Q, P) + u(L, M) \ge k$.

 $(G.3)_n$ H_1 is a non-degenerate projective plane.

258

COROLLARY 1. Suppose \mathcal{H}_n is a PH-plane of level n. If $b \in \overline{B}_{n-1}^i$, 0 < i < n-1, then S_b as defined at the end of Section 1 is a helicopter plane.

COROLLARY 2. Suppose $(H_n, \alpha_n^{n+1})_{n \in \mathbb{N}^*}$ is an Artmann-sequence with inverse limit H_{∞} . Then H_{∞} is a projective plane. Let (R, T) be any coordinatizing PTR of H_{∞} (see [5] for the definition); then there exists a surjective map $v: \mathbb{R}^2 \to \mathbb{Z} \cup \{+\infty\}$ satisfying

- (v.1) $v(a, b) = +\infty$ if and only if a = b, for all $a, b \in R$,
- (v.2) $v(a, c) \ge \inf\{v(a, b), v(b, c)\}$ and if $v(a, b) \ne v(b, c)$, equality holds, for all $a, b, c \in R$,
- (v.3) if $T(a_1, b_1, c_1) = T(a_1, b_2, c_2)$ and $T(a_2, b_1, c_1) = T(a_2, b_2, c_3)$, then $v(a_1, a_2) + v(b_1, b_2) = v(c_2, c_3)$.

Conversely, if \mathcal{P} is a projective plane coordinatized by a PTR(R, T) admitting a surjective map v as above, then \mathcal{P} is isomorphic to the inverse limit of some Artmann-sequence.

COROLLARY 3. Let q be the order of a projective plane, possibly infinite. Let Γ be the set of all projective planes of order q. Then an Artmann-sequence $(H_n, \alpha_n^{n+1})_{n \in \mathbb{N}^*}$ can be constructed step by step which satisfies the following conditions.

- (i) H_1 is any element of Γ , chosen in advance.
- (ii) If the level n PH-plane (H_n,..., H₁, αⁿ_{n-1},..., α²₁) has already been constructed, then H_{n+1} and the epimorphism αⁿ⁺¹_n can be constructed in such a way that (H_{n+1}, H_n,..., H₁, αⁿ⁺¹, αⁿ_{n-1},..., α²₁) becomes a PH-plane of level n + 1 and the following conditions are satisfied. For each i = 0, 1, ..., n, and each b ∈ Bⁱ_n, let P_b be any prescribed element of Γ. Then S_b is any prescribed helicopter plane, affine plane or dual affine plane arising from P_b according to whether 0 < i < n, i = n or i = 0.

3. Proofs.

Proof of the theorem. We proceed by induction on $n \in \mathbb{N}^*$. The statement is trivial for n = 1. So suppose n > 1. We remark that $(G.1)_n$, $(G.2)_n$ and $(G.3)_n$ imply $(G.1)_{n-1}$, $(G.2)_{n-1}$ and $(G.3)_{n-1}$ for H_{n-1}, \ldots, H_1 with the epimorphisms α_j^{j+1} .

(I) Assume $H_n, \ldots, H_1, \alpha_j^{i+1}$ $(1 \le j \le n-1)$ are given satisfying $(G.1)_n, (G.2)_n$ and $(G.3)_n$. The conditions (H.1) and (H.2) follow directly from $(G.2)_n(i)$. We now show (H.3). Suppose $L, M \in L(H_n)$ and let $\mathcal{P}_{H_n} = H_1$ and $\alpha_{H_n} = \alpha_1^n$. Suppose first $\alpha_{H_n}(L) = \alpha_{H_n}(M)$, so $u(L, M) \ge 1$. Let $P \in P(H_n)$ be incident with both L and M. Let $Q \in P(H_n)$ be such that u(P, Q) = n - 1 (hence $P \ne Q$) and QIP (Q exists by [8, §6.1.1]). Applying $(G.2)_n(ii)$ for k = n, we obtain $u(Q, M) \ge n$, hence QIM. Suppose now $\alpha_{H_n}(L) \ne \alpha_{H_n}(M)$, so u(L, M) = 0. If $P, Q \in P(H_n)$ are incident with both L and M, then applying $(G.2)_n(ii)$ for k = n, we obtain $u(P, Q) \ge n$, hence P = Q. Similarly, one shows the dual. This proves (H.3).

When one remarks that $P(\sim j)Q$ if and only if $u(P, Q) \ge j$ for $P, Q \in P(H_n)$ and similarly for lines, the axioms (V), (Ma), (Mb) and (Mc) become trivial to verify. We now check (N). The "if"-part follows from $(G.2)_n(ii)$ for k = n. We now show the "only if"-part. Suppose $L, M \in L(H_n), P \in P(H_n)$ with LIPIM. Let $P^* \in P(H_n)$ be such that $u(P, P^*) = n - j$ (P^* exists by $(G.1)_n$). Suppose first $u(P^*, L) > n - j$. Let Q^* be a point such that $u(Q^*, L) = 0$ (Q^* is any element in the inverse image under α_{H_n} of any point of H_1 not incident with $\alpha_{H_n}(L)$). Consider any line $L^* \in L(H_n)$ incident with both P^* and Q^* . Since Q^*IL^* , $u(L, L^*) = 0$. Consider the unique point $Q \in P(H_n)$ incident with both L and L^* . Applying $(G.2)_n(ii)$ on P^*IL^*IQIL , we obtain $u(P^*, Q) = u(P^*, L) > n - j$. Hence u(P, Q) = n - j and so QIM. By $(G.2)_n(ii)$ again, $L(\sim j)M$. Suppose now $u(P^*, L) = n - j$ (it cannot be smaller!). Consider any line M^* incident with both P and P^* . By $(G.2)_n(ii)$, $u(L, M^*) = 0$. Let Q^* by any point such that $u(Q^*, L) = u(Q^*, M^*) = 0$ (similar construction to the one above). Choose any line L^* incident with both P^* and Q^* . Let $Q \in P(H_n)$ be incident with both L and L^* . In the same way as before, we obtain $n - j = u(P^*, L) = u(P^*, Q) = u(Q, M^*) = u(Q, P)$ and $u(L, M) \ge j$, hence $L(\sim j)M$ again.

(II) Assume, conversely, $(H_n, \ldots, H_1, \alpha_{n-1}^n, \ldots, \alpha_1^2)$ is a level *n* PH-plane. We show $(G.1)_n$. The existence of the sequence follows from (V) and (Mc). By Artmann [1, Satz 1.a], $|(\alpha_j^{j+1})^{-1}(X)| > 1$ if j = n - 1, and by the induction hypothesis, this is also true for j < n - 1. This shows $(G.1)_n$. The condition $(G.2)_n(i)$ is equivalent to (H.1) and (H.2). And $(G.2)_n(ii)$ is an immediate consequence of (N) if k = n, and projecting onto h_k , k < n, $(G.2)_n(ii)$ follows for all k < n. Finally, $(G.3)_n$ follows from (H.3). This completes the proof of the theorem.

By [8], this theorem forges a quite unexpected link between two different worlds: the world of affine buildings and the world of PH-planes. It can give a new impulse to the study of the latter. Corollaries 1, 2 and 3 are three first examples of how properties of affine buildings may be translated to properties of level n PH-planes.

Proof of Corollary 1. The axioms $(G.1)_n$, $(G.2)_n$ and $(G.3)_n$ are respectively equivalent to (PS), (RP) and (ND) of [8] and [9]. The result follows from [8, Proposition 6.1.10].

Proof of Corollary 2. The inverse limit H_{∞} is a projective plane by Artmann [2, Satz über den projektiven Limes]. By [9, Theorem (4.4.1)], H_{∞} is isomorphic to the geometry at infinity of some triangle building endowed with a maximal set of apartments (see Tits [7] for definitions). The result follows from [9, Theorem I]. The converse is a direct consequence of [9, Main Theorem and §4.4] and the construction of triangle buildings in [8].

Proof of Corollary 3. This is a consequence of Ronan's beautiful construction of buildings in [6].

REMARK. Corollary 3 shows that the structure of level *n* PH-planes is very "disconnected", in contrast to the impression one might have by considering the constructions of Artmann [2], Drake [4] and Cronheim [3]. In these constructions, wide classes of subgeometries of H_n had to be chosen isomorphic. Note that Corollary 3 generalizes the constructions of Artmann [2] and Cronheim [3], but not Drake [4].

ACKNOWLEDGEMENT. We are very grateful to the referee for some very helpful remarks and suggestions regarding Sections 1 and 2.

REFERENCES

1. B. Artmann, Hjelmslev-Ebenen mit verfeinerten Nachbarschaftrelationen, Math. Z. 112 (1969), 163-180.

2. B. Artmann, Existenz und projektive Limiten von Hjelmslev-Ebenen n-ter Stufe, in Atti del Convegno di Geometria Combinatoria e sue Applicazioni, Perugia (1971), 27-41.

3. A Cronheim, Cartesian groups, formal power series and Hjelmslev-planes, Arch. Math. (Basel) 27 (1976), 209-220.

4. D. A. Drake, Construction of Hjelmslev planes, J. Geom. 10 (1977), 179-193.

5. D. R. Hughes and F. C. Piper, Projective planes (Springer-Verlag, 1972).

6. M. A. Ronan, A universal construction of buildings with no rank 3 residue of spherical type, in L. A. Rosati, ed., *Buildings and the geometry of diagrams Proceedings Como 1984*, Lecture Notes in Mathematics 1181, (Springer-Verlag, 1986), 242–248.

7. J. Tits, Immeubles de type affine, in L. A. Rosati, ed. Buildings and the geometry of diagrams Proceedings Como 1984, Lecture Notes in Mathematics 1181 (Springer-Verlag, 1986), 157-190.

8. H. Van Maldeghem, Non-classical triangle buildings, Geom. Dedicata 24 (1987), 123-206.

9. H. Van Maldeghem, Valuations on PTRs induced by triangle buildings, Geom. Dedicata 26 (1988), 29-84.

Seminarie voor Meetkunde en Kombinatoriek Rijksuniversiteit van Gent Krijgslaan 281

B-9000 Gent

Belgium