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MAXIMIZING THE SIZE OF THE GIANT
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Abstract

Consider a random graph where the mean degree is given and fixed. In this paper we
derive the maximal size of the largest connected component in the graph. We also
study the related question of the largest possible outbreak size of an epidemic occurring
‘on’ the random graph (the graph describing the social structure in the community).
More precisely, we look at two different classes of random graphs. First, the Poissonian
random graph in which each node i is given an independent and identically distributed
(i.i.d.) random weight Xi with E(Xi) = µ, and where there is an edge between i and j

with probability 1− e−XiXj /(µn), independently of other edges. The second model is the
thinned configuration model in which the n vertices of the ground graph have i.i.d. ground
degrees, distributed as D, with E(D) = µ. The graph of interest is obtained by deleting
edges independently with probability 1 − p. In both models the fraction of vertices in
the largest connected component converges in probability to a constant 1 − q, where q

depends on X or D and p. We investigate for which distributions X and D with given
µ and p, 1 − q is maximized. We show that in the class of Poissonian random graphs,
X should have all its mass at 0 and one other real, which can be explicitly determined.
For the thinned configuration model, D should have all its mass at 0 and two subsequent
positive integers.
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1. Introduction

In this paper we study asymptotic properties of some random graphs as n, the number
of nodes/vertices, tends to ∞. More specifically, we study the size of the largest connected
component, within two classes of random graphs. If this largest connected component is of the
same order as the number of nodes, then it is called the giant. We find the random graph that
has the largest giant among all random graphs in the class having a pre-defined mean degree.

We consider two types of network in this paper. Both types of random graph are frequently
used extensions of the classical Erdös–Rényi graph [3], [6].

Poissonian random graphs. Poissonian random graphs were introduced in [10] and are a main
example of inhomogeneous random graphs [4]. Our model is slightly different from the
model introduced in [10], but, asymptotically (for n → ∞), the fraction of vertices in
the largest connected component of the graph will be the same.

We construct the random graph of n vertices as follows. First, we assign independent
and identically distributed (i.i.d.) weights to the vertices distributed as the nonnegative
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Maximizing the size of the giant 1157

random variable X, with finite mean µX := E(X). A pair of vertices with weights x and
y share an edge with probability 1 − exp[−xy/(nµX)], independent of other edges in
the graph. In [10] this probability is 1 − exp[−xy/Ln], where Ln is the sum of the n

vertex weights.
We note that creating the graph and after that removing edges independently with

probability 1 − p is asymptotically in distribution the same as immediately creating a
Poissonian random graph with weight distribution pX. Later we will be interested in
properties of thinned versions of Poissonian random graphs, but this observation implies
that these fall under the same model and, hence, need no additional analysis.

Thinned configuration model. The configuration model [6], [8] is obtained by assigning i.i.d.
numbers (distributed as the nonnegative integer-valued random variable D) of half-edges
to the n vertices in the graph. We assume that µD = E(D) < ∞. If the total number
of half-edges is odd then we add one half-edge to the final vertex. Then, we pair the
vertices uniformly at random. The probability that a specific graph is created is the same
for all graphs with a given degree sequence. Parallel edges (edges with the same end
vertices) and self-loops (an edge which connects a vertex to itself) might occur, but they
will not influence the asymptotic fraction of vertices in the largest connected component
(when µD < ∞ as we have assumed) [6]. We clean the graph by removing all self-
loops and merging all parallel edges. It is easy to check that this will not influence the
asymptotic degree distribution for µD < ∞. After this, edges are deleted independently
with probability 1 − p.

Within both of the two random graph models we identify the distribution, X and D, respec-
tively, which maximizes the size of the giant among all distributions having some fixed mean
µX in the first model and fixed mean µD and parameter p in the second model. The problem of
identifying which (random) graph has the maximal giant among all graphs with a fixed mean
degree µD is less interesting in that the giant can make up the whole population whenever
µD ≥ 2, while, for µD < 2, the maximum is obtained in any graph, which is a tree. Similarly,
the problem of minimizing the size of the giant among Poissonian random graphs and thinned
configuration models is achieved by choosing P(X = 0) (respectively P(D = 0)) arbitrary
close to 1 (and the remaining small probability at a very large value giving the correct mean),
which has the effect that the relative size of the giant goes to 0.

Random graphs are interesting in their own right but also have numerous applications. One
such application, which has been the inspiration to many scientists, is that of modeling the spread
of an infectious disease in a socially organized human community, where the social structure
of the community is described by a random graph [1], [2], [5], [9]. The degree D then signifies
how many other individuals a given individual is socially connected to, a number which could
be 0 or some small or large positive integer. The interpretation of thinning the random network
when considering the spread of SIR (susceptible → infectious → recovered) epidemics with
nonrandom infectious periods on networks is that transmission will take place (if one of the
nodes gets infected) exactly along those edges that are kept, and transmission between one
infected node and a susceptible neighbor is modeled to have probability p and be independent
of other transmission links. In epidemic terminology our aim is hence to identify the degree
distribution with given mean for which the asymptotic fraction of individuals infected, in the
case of a major epidemic outbreak, is maximal. We are hence searching for the worst-case
scenario if all that is known about the underlying social network is the mean degree µ.
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2. Notation and some basic results

Throughout, we will use N for the strictly positive integers and N0 = N∪0 for the nonnegative
integers. Unless specified otherwise, we will use D for a random variable taking values in N0
and X for a nonnegative real-valued random variable. The mean of X is denoted by µX. A bar
above a random variable denotes the size-biased variant of the random variable, i.e.

P(D̄ = k) = k P(D = k)

µD

,

or in the case of a general positive random variable

P(X̄ ≤ x) =
∫ x

0 y dP(X ≤ y)

µX

= E(X 1[X ≤ x])
µX

.

The (probability) generating function of an N0-valued random variable is defined by fD(s) :=
E(sD) = ∑∞

k=0 sk P(D = k) for s ∈ [0, 1]. We sometimes use the notation f̄D(s) = fD̄−1(s).
The smallest root of s = f̄D(s) is denoted by zD , and qD is defined by qD = fD(zD). Some
well-known facts about generating functions that we will use (and which are easy to check) are
the following.

1. fD(s) is analytic on (0, 1) and all derivatives of fD(s) are nonnegative.

2. fD(1) = 1.

3. dfD(s)/ds = µDf̄D(s); in particular, dfD(s)/ds|s=1 = µD . Or, equivalently,

fD(s) = 1 − µD

∫ 1

s

f̄D(x) dx (1)

for s ∈ [0, 1].
4. zD is the extinction probability of a Galton–Watson branching process [7] with offspring

distribution D̄ − 1 and one ancestor; qD is the extinction probability of a branching
process for which the number of children of the ancestor is distributed as D and all other
individuals have offspring distribution D̄ − 1.

5. Assuming that P(D = 0) + P(D = 2) < 1, qD and zD are strictly less than 1 if and only
if E(D̄ − 1) > 1.

For a nonnegative real-valued random variable X, the distribution of a mixed Poisson(X)
random variable D is given by P(D = k) = E(Xke−X/k!). The generating function of this
random variable D is given by fD(s) = E(e−(1−s)X). Furthermore, f̄D(s) = E(e−(1−s)X̄).
So the generating function of D̄ − 1 is given by the generating function of a mixed Poisson
distribution based on the size-biased variant of X. We note that µD = µX.

In this paper we consider undirected simple graphs. A simple graph is a graph with no
parallel edges (two or more edges with the same end vertices) or self-loops (edges connecting
a vertex to itself). The degree of a vertex is the number of edges a vertex is adjacent to.

A connected component in a graph is a set of vertices for which there is a path between every
pair of vertices in this set. Let Ci (n) be the ith largest connected component (in the case of a
tie, the order of the tied components is uniform at random). The number of vertices in a set S
is denoted by |S|.
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We consider two types of random graph (as defined in the introduction).

Poissonian random graphs. For this model, there is, for n → ∞, with high probability, at most
one giant component [4], i.e. for every ε > 0, we have

lim
n→∞ P(|C2(n)| < εn) = 1.

Let D be mixed Poisson(X). The fraction of vertices in the giant component is, for
large n, with high probability, close to 1 − qD . More precisely, for every ε > 0, we have

lim
n→∞ P(|n−1|C1(n)| − (1 − qD)| < ε) = 1.

Thinned configuration model. Let D be the degree distribution of the ground graph, and let
p be the thinning parameter. For technical reasons (see the remark below), we exclude
the (trivial) model in which both p = 1 and P(D = 0) + P(D = 2) = 1. For the
thinned configuration model, it also holds that the probability that there is more than
one giant component converges to 0 as n → ∞. In this class of random graphs, the
generating function of the degree distribution of the thinned graph is given by gD,p(s) =
fD(1−p+ps) and ḡD,p(s) = f̄D(1−p+ps). The mean degree of a randomly chosen
vertex is pµD .

Let zD,p be the smallest root of s = ḡD,p(s), and define qD,p = gD,p(zD,p). The
fraction of vertices in the giant component is, for large n, with high probability, close to
1 − qD,p. More precisely, for every ε > 0, we have

lim
n→∞ P(|n−1|C1(n)| − (1 − qD,p)| < ε) = 1.

Remark. If p = 1 and P(D = 0) + P(D = 2) = 1, then there exists ε > 0 such that
limn→∞ P(|C2(n)| < εn) < 1. In the thinned configuration model the fraction of the vertices
in a component of size at least k converges to P(D = 2) for every k ∈ N. However, the fraction
of vertices in the largest component does not converge to qD,p = P(D = 2).

We will show that, for the Poissonian random graphs with given µX, the limiting size of the
giant component is maximized if all vertices have weight µX if µX is larger than µc ≈ 1.756.
If µX < µc then X should have mass only on µc and 0. Again, we note that thinning with a
factor p is equivalent to replacing X by pX.

For the thinned configuration model with given µD and p, the maximal giant size is obtained
if D has all mass on 0 and two subsequent positive integers k and k + 1. We were not able to
identify a closed formula for k, and the exact mass distribution on the three possible atoms.

3. Poissonian random graph

Define µc as the largest root of 2x = ex−1/2. The numerical value of µc is approximated
by µc ≈ 1.756.

Let |C1
X(n)| be the size of the giant in the Poissonian random graph with weight distribution

X and n vertices. Again, D is mixed Poisson(X). Furthermore, let qD and zD be as before.
Let Dµ be the collection of mixed Poisson random variables with E(D) = µ.

Theorem 1. Let D∗ be mixed Poisson(X∗) and

P(X∗ = max(µ, µc)) = 1 − P(X∗ = 0) = min

(
1,

µ

µc

)
.
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Then
min

D∈Dµ

qD = qD∗ .

This theorem may be interpreted as follows. If µ < µc then D ∈ Dµ defined via

P(X = µc) = 1 − P(X = 0) = µ

µc

leads to the Poissonian graph, for which the fraction of vertices in the giant converges in
probability (as n → ∞) to the largest limit. If µ ≥ µc then P(X = µ) = 1 (i.e. the Erdös–
Rényi graph [3] with mean degree µ) leads to the largest giant in this class.

We first show by a series of three lemmas that the maximal giant is obtained for a weight
distribution with mass only at 0 and one other real number. After that we show that in this class,
X∗ leads to the largest giant component, which will complete the proof.

Lemma 1. If A and B are positive real-valued random variables, then

E(AkB) ≥ E(B)

(
E(AB)

E(B)

)k

.

Proof. Use Hölders inequality, E(XY) ≤ E((Xa))1/a E((Y b))1/b for nonnegative random
variables X and Y and a, b > 0 such that a−1 + b−1 = 1. Letting a = k, X = AB1/k , and
Y = B(k−1)/k gives the desired result.

Lemma 2. Let X be a general nonnegative random variable, and let D be mixed Poisson(X).
If, for some s∗ ∈ (0, 1),

fD(s∗) := E(e−X(1−s∗)) = e−λ(1−s∗),

then E(e−X(1−s)) ≤ e−λ(1−s) for s ∈ [s∗, 1].
Proof. If fD(s) crosses e−λ(1−s) from below in s∗ then we know that

d

ds
fD(s)

∣∣∣∣
s=s∗

≥ λe−λ(1−s∗). (2)

Furthermore, for k ∈ N, we have

dk

dsk
fD(s)

∣∣∣∣
s=s∗

= E(Xke−X(1−s∗)) ≥ λke−λ(1−s∗) = dk

dsk
e−λ(1−s)

∣∣∣∣
s=s∗

.

Here the inequality follows by (2) and Lemma 1 with A = X and B = e−X(1−s∗). Since
fD(1) = 1 and fD(s) is analytic on (0, 1), it follows from a Taylor expansion in s = s∗ that
fD(s) cannot cross e−λ(1−s) from below in s ∈ (0, 1).

Let D := D(λ) be mixed Poisson(X), where the random variable X = X(λ) is defined by
P(X = λ) = 1 − P(X = 0) = µ/λ. Let

f (s; λ) := fD(s) = 1 − µ

λ
+ µ

λ
e−λ(1−s).

Note that f̄D(s) = e−λ(1−s) is the generating function of a Poisson λ distribution. Let q(λ) :=
qD(λ) and z(λ) := zD(λ).
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Lemma 3. Let X be a general nonnegative random variable with expectation µ := µX, and
let D be mixed Poisson(X). Let q(λ) be defined as above.

(a) If zD > z(µ) = q(µ) then qD > q(µ).

(b) If zD ≤ z(µ) = q(µ) then qD ≥ q(λ), where λ = − log[zD]/(1 − zD).

Proof. Part (a) follows from qD = E(e−X(1−zD)), Jensen’s inequality, and the fact that
fD(s) is increasing. For (b), we use the fact that f̄D(s) equals e−λ(1−s) = f̄ (s, λ) in s = zD

and s = 1. In particular, z(λ) = zD . By (1) and Lemma 2, we obtain

qD = fD(zD) = 1 − µ

∫ 1

zD

f̄D(x) dx ≥ 1 − µ

∫ 1

zD

e−λ(1−x) dx = q(λ).

This completes the proof.

We now show that among the distributions (D(λ); λ > 0), the fraction of vertices in the
giant component will converge in probability to the largest limit for D∗.

Lemma 4. Let D ′
µ be the class of mixed Poisson random variables, where D is mixed

Poisson(X) and P(X = λ) = 1 − P(X = 0) = µ/λ, with λ ≥ µ. For D ∈ D ′
µ, qD is

minimized for λ = max(µ, µc).

Proof. We first note that we might assume that λ > 1; otherwise, qD = 1 anyway. In
what follows we require that z(λ) is differentiable on (1, ∞). We prove this by analyzing the
derivative of its inverse z−1(x), and show that it is nonzero on this domain. From the definition
of z(λ), we deduce that z−1(x) = − log[x]/(1 − x). Then

d

dx
z−1(x) = −1 − x + x log[x]

x(1 − x)2 .

For x ∈ (0, 1), this derivative is strictly negative and finite, by

d

dx
[−(1 − x + x log[x])] = − log[x] > 0

and [1 − x + x log[x]]x=1 = 0. This implies that z(λ) is differentiable on the domain where it
takes values in (0, 1), that is, on (1, ∞).

Since f̄ (z(λ); λ) − z(λ) = 0, we obtain, by applying the chain rule,

0 = d

dλ
[f̄ (z(λ); λ) − z(λ)] =

[
d

dλ
f̄ (s; λ) + d

ds
f̄ (s; λ)

d

dλ
z(λ) − d

dλ
z(λ)

]
s=z(λ)

.

This gives
d

dλ
z(λ) =

[
df̄ (s; λ)/dλ

1 − df̄ (s; λ)/ds

]
s=z(λ)

.

Furthermore,

d

dλ
q(λ) = d

dλ
f (z(λ), λ) =

[
d

dλ
f (s; λ) + d

ds
f (s; λ)

d

dλ
z(λ)

]
s=z(λ)

.

Noting that
d

ds
f (s; λ)

∣∣∣∣
s=z(λ)

= µf̄ (z(λ); λ) = µz(λ),
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we obtain
d

dλ
q(λ) =

[
µz(λ)df̄ (s; λ)/dλ

1 − df̄ (s; λ)/ds
+ d

dλ
f (s; λ)

]
s=z(λ)

.

Equating this derivative to 0 and using f (s; λ) = 1 − µ/λ + (µ/λ)e−λ(1−s) and f̄ (s; λ) =
e−λ(1−s) gives

0 = −µ[z(λ)]2[1 − z(λ)]
1 − λz(λ)

+ µ

λ2 [1 − z(λ)] − µ

λ
[1 − z(λ)]z(λ).

The solutions of this equation are z(λ) = 1 and z(λ) = (2λ)−1. The first solution is of
no use because if z(λ) = 1 then q(λ) = 1 as well. Substituting the second solution into
z(λ) = e−λ(1−z(λ)) gives 2λ = eλ−1/2. Because the root of this equality is strictly larger than 1
and because limλ→∞ q(λ) = 1, q(λ) takes its minimum on (1, ∞) in this largest root. The
lemma follows by observing that λ ≥ µ.

Proof of Theorem 1. From Lemma 3, it follows that, for any mixed Poisson distribution
D ∈ Dµ, there is a distribution D′ ∈ D ′

µ such that qD′ ≤ qD . The theorem now follows from
Lemma 4.

4. Thinned configuration model

Let Bµ be the collection of all N0-valued random variables D with E(D) = µ. Let zD,p be
the smallest root of the equation s = ḡD,p(s), and let qD,p = gD,p(zD,p).

Theorem 2. Let q∗ = infD∈Bµ qD,p. Then there exist k ∈ N and a degree distribution
D∗ ∈ B(µ), which satisfies

P(D∗ = 0) + P(D∗ = k) + P(D∗ = k + 1) = 1,

such that qD∗,p = q∗.

Proof. Let q := qD,p and z := zD,p. First we show that we can always find a distribution
D′ with mass only at 0 and two subsequent integers, such that the associated q ′ = qD′,p satisfies
q ≥ q ′.

Let q ′′ = qD′′,p and z′′ = zD′′,p, where the degree distribution D′′ is defined by

P(D′′ = 
µ�) = 1 − µ + 
µ� = 1 − P(D′′ = 
µ� + 1).

Here we use the notation 
x� := max{y ∈ N0 : y ≤ x} for the floor of x. The generating
functions associated with the model before thinning are f ′′(s) and f̄ ′′(s). We now distinguish
two cases.

Case 1: z > z′′. Let k = 
µ� and β = µ − k. We rewrite D as a mixture of two distributions
D1 and D2, with E(D1) = k and E(D2) = k + 1. So D is D1 with probability 1 −β and
D2 with probability β. Then

q = f (1 − p + pz)

= E((1 − p + pz)D)

= (1 − β) E((1 − p + pz)D1) + β E((1 − p + pz)D2)

≥ (1 − β)(1 − p + pz)k + β(1 − p + pz)k+1

= fD′′(1 − p + pz),
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where the inequality is obtained by Jensen’s inequality. As z > z′′, and by the observation
that fD′′(s) is increasing, we note that

q ≥ fD′′(1 − p + pz′′) = q ′′,

and the statement holds for z > z′′.

Case 2: z ≤ z′′. In this case we may choose an integer k and a random variable D† with mass
only at 0, k, and k + 1, such that E(D) = µ and zD†,p =: z† = z. Let f †(s) := fD†(s)

be its generating function, and let f̄ †(s) := f̄D†(s). Let α := P(D̄† − 1 = k). As in the
previous section, we use the fact that, by (1),

f (1 − p + pz) = 1 − µ

∫ 1

1−p+pz

f̄ (s) ds. (3)

We note that

d2

ds2

f̄ (s) − f̄ †(s)

sk−1 = d2

ds2

[( ∞∑
m=0

P(D̄ − 1 = m)sm−k+1
)

− (1 − α) + αs

]

=
∞∑

m=0

P(D̄ − 1 = m)(m − k + 1)(m − k)sm−k−1.

Since m − k + 1 and m − k cannot have opposite signs, all summands are nonnegative.
Now if, for some s ∈ (0, 1), it holds that

f̄ (s) − f̄ †(s) = 0 and
d

ds
((f̄ (s) − f̄ †(s))s−k+1) ≥ 0,

then it is impossible that
(f̄ (1) − f̄ †(1))s−k+1 = 0,

which leads to a contradiction. So f̄ †(s) ≥ f̄ (s) on s ∈ [z, 1] and, by (3), the statement
of the theorem follows for z ≤ z′′.

An additional question to consider for the thinned configuration model is the following. Let
B̄c be the class of all p ∈ (0, 1] and distributions D with E[D] = c/p. For which p and
distribution of D in B̄c is the (in probability as n → ∞) limit of n−1|C1(n)| maximized? Note
that in these models the expected number of edges in the thinned graph is kept constant.

If c > 2 then p = 1 and P(D = 
c� + 1) = 1 − P(D = 
c�) = c − 
c� give qD,p = 0, so
the (in probability as n → ∞) limit of n−1|C1(n)| is maximized.

For c ≤ 2, we first consider the assymptotic branching process and minimize qD,p over B̄c.
The following heuristic argument shows that qD,p is maximized if p = 1 and P(D = 0) +
P(D = 2) = 1. Assume that either p = 1 or P(D = 0) + P(D = 2) = 1 does not hold.
Then n−1|C1(n)| converges in probability to 1 − qD,p. The limit of n−1|C1(n)| is at most c/2,
because the number of edges in the thinned graph is roughly cn/2 and the number of vertices
in the giant component of a graph is at most 1 higher than the number of edges. Note that,
for p = 1 and P(D = 0) + P(D = 2) = 1, qD,p = 1 − c/2. However, if p = 1 and
P(D = 0) + P(D = 2) = 1, n−1|C1(n)| does not converge to c/2 in probability. Still, the (in
probability) limit of n−1|C1(n)| can be made arbitrary close to c/2 by chosing ε > 0 arbitrarily
small and taking P(D = 2) = c/2 − 3ε, P(D = 3) = 2ε, and P(D = 0) = 1 − c/2 + ε.

https://doi.org/10.1239/jap/1354716664 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716664


1164 T. BRITTON AND P. TRAPMAN

Formally, we can minimize qD,p by applying the change of variable s = 1 − pt to the
right-hand side of (3) to obtain

1 − qD,p = c

∫ 1−zD,p

0
f̄D(1 − pt) dt.

Assume that zD,p < 1; otherwise, there will be no giant component. Furthermore, assume that
P(D̄ = 1) < 1. We note that f̄D(1 − pt) = 1 − t has roots in t = 0 and t = zD,p. By the
convexity of f̄D(1−pt) in t , those are the only roots and f̄D(1−pt) < 1− t for 0 < t < zD,p.
This implies that

1 − qD,p ≤ c

∫ 1−zD,p

0
(1 − t) dt ≤ c

∫ 1

0
(1 − t) dt ≤ c

2
.

So, if c ≤ 2, 1−qD,p < c/2. On the other hand, the (in probability) limit of the size of the giant,
n−1|C1(n)|, can be taken arbitrarily close to c/2 by taking p = 1 and P(D = 2) = c/2 − 3ε,
P(D = 3) = 2ε, and P(D = 0) = 1 − c/2 + ε for arbitrarily small ε > 0. This answers the
question posed.

5. Discussion

The main conclusion of the current paper is that, for both random graph models, the degree
should be ‘homogenized’ in order to maximize the size of the giant component if the given mean
degree µ is larger than some critical value. On the other hand, if µ is smaller than this critical
value, certain nodes should be given degree 0 and the remaining nodes should be homogenized,
with the effect that these later nodes have large enough degree to result in a large enough giant
component.

In terms of epidemics, we found the maximal possible outbreak size for a given mean
degree µ and transmission parameter p. If the epidemic is initiated by one randomly selected
index case, the outbreak size is equivalent to the probability of a major outbreak. As a
consequence, the construction mentioned above not only maximizes the size of an outbreak,
but it also maximizes the probability of having a major outbreak.

It might at a first glance seem unnatural to allow for individuals to have degree 0. However, in
many applications, e.g. sexual networks, the fraction of individuals having degree 0 is distinctly
different from 0. Besides, it is not obvious that giving a fraction of the community degree 0
(and the rest being ‘homogenized’) may in some cases (i.e. when µ is small) make the size of
the giant maximal.

It was mentioned in the introduction that the relative size of the minimal giant can be
made arbitrarily close to 0. An interesting problem would be to investigate if there is a natural
definition of the size of a random giant, where the randomness is taken over some set of random
graphs. Similarly, it would be interesting to derive maximal and minimal sizes of the giant for
different classes of random graphs and/or if other local properties of the network, beside the
mean degree, are given and fixed. This could, for example, be the degree distribution, the
clustering index, and/or the degree correlation.
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