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Abstract
We study simple Lie algebras generated by extremal elements, over arbitrary fields of arbitrary characteristic. We
show the following: (1) If the extremal geometry contains lines, then the Lie algebra admits a 5 × 5-grading that
can be parametrized by a cubic norm structure; (2) If there exists a field extension of degree at most 2 such that the
extremal geometry over that field extension contains lines, and in addition, there exist symplectic pairs of extremal
elements, then the Lie algebra admits a 5 × 5-grading that can be parametrized by a quadrangular algebra.

One of our key tools is a new definition of exponential maps that makes sense even over fields of characteristic
2 and 3, which ought to be interesting in its own right.

Not only was Jacques Tits a constant source of inspiration through
his work, he also had a direct personal influence, notably through his
threat to speak evil of our work if it did not include the characteristic 2
case.

—The Book of Involutions [KMRT98, p. xv]
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2 T. De Medts and J. Meulewaeter

Introduction

The classification of simple Lie algebras over algebraically closed fields is a classical subject, and the
situation is, in many aspects, well understood. That is not the case at all over arbitrary fields. Typically,
this situation is studied by first extending to a splitting field (e.g., the algebraic closure) and then
performing Galois descent, using tools such as Galois cohomology.

This is not the only possible approach, however. Inspired by the successful applications (e.g., by
Efim Zel’manov and Alekseı̆ Kostrikin [ZK90]) of sandwich elements (i.e., nonzero elements x in a Lie
algebra L such that ad2

𝑥 = 0), various people have studied simple Lie algebras through the concept of
extremal elements. A nonzero element 𝑥 ∈ 𝐿 is called extremal if [𝑥, [𝑥, 𝐿]] ≤ 𝑘𝑥 (together with an
additional axiom that is relevant only in characteristic 2); notice that this implies ad3

𝑥 = 0. A typical
example of an extremal element is a long root element in a classical Lie algebra. In fact, these extremal
elements span a one-dimensional inner ideal of the Lie algebra, a notion going back to John Faulkner
[Fau73] and Georgia Benkart [Ben74]. The first paper explicitly underlying the importance of one-
dimensional inner ideals, that we are aware of, is Alexander Premet’s paper [Pre86] from 1986; see,
in particular, its main result stating that any finite-dimensional Lie algebra over an algebraically closed
field of characteristic 𝑝 > 5 contains a one-dimensional inner ideal (Theorem 1). The idea of extremal
elements has also famously been used by Vladimir Chernousov in his proof of the Hasse principle for
algebraic groups of type 𝐸8 [Che89]. (He called the extremal elements root elements because in his
situation, they belong to root groups. A detailed exposition can be found in [PR94, Chapter 6, Section 8];
see, in particular, the discussion about root elements starting on p. 387.)

Around the turn of the century, Arjeh Cohen and his collaborators (Anja Steinbach, Rosane Ushi-
robira, David Wales, Gábor Ivanyos, Dan Roozemond) obtained the clever insight that the extremal
elements have a geometric interpretation, and the corresponding one-dimensional inner ideals can serve
as the point set of a so-called shadow space of a building [CSUW01, CI06, CI07, CIR08]. That idea
led them to the notion of a root filtration space and makes it possible to visualize the different rela-
tions between extremal elements. In particular, distinct extremal points can be in four possible relations:
collinear, symplectic, special or hyperbolic. These notions will play an important role in Sections 2
and 3 of our paper. In particular, a crucial ingredient will be the result by Cohen and Ivanyos that each
hyperbolic pair of extremal points gives rise to a 5-grading of the Lie algebra.

Since then, extremal elements in Lie algebras, and the corresponding extremal geometry, have been
studied by various people; see, for instance, [Ditp08, itpPR09, Roo11, Coh12, CRS15, FL16, CF18,
CM21, CF23] and [FL19, Chapter 6]. The origin of the terminology ‘extremal elements’ remains slightly
mysterious. We have learned from Arjeh Cohen that he believes that he picked it up from Jean-Pierre
Serre and consequently used it in their paper [CSUW01], but neither Cohen nor we have been able to
find a written source confirming this origin, and in fact, Serre informed us that he does not think that he
is responsible for this terminology, but ‘that it is possible that [he] used it once in a discussion’.

In our paper, we will adopt a different point of view on extremal elements and relate the Lie algebras
to two types of exceptional algebraic structures: cubic norm structures and quadrangular algebras.

Cubic norm structures are well known: The Book of Involutions [KMRT98] spends a whole Chapter
IX on them. In particular, §38 and the Notes at the end of Chapter IX contain a lot of additional
information and (historical) background. The key players in this theory are Hans Freudenthal [Fre54],
Tonny Springer [Spr62], Kevin McCrimmon [McC69], Holger Petersson and Michel Racine [PR84,
PR86a, PR86b]. We will also encounter ‘twin cubic norm structures’ (or ‘cubic norm pairs’), a notion
that seems to have appeared only once before in the literature in a paper by John Faulkner [Fau01].

Quadrangular algebras are certainly not so well known. They first appeared implicitly in the work
of Jacques Tits and Richard Weiss on the classification of Moufang polygons, which are geometric
structures (spherical buildings of rank 2) associated to simple linear algebraic groups of relative rank
2 [TW02]. The first explicit definition of these algebras, in the anisotropic case, appeared in Weiss’
monograph [Wei06]. The general definition of arbitrary quadrangular algebras is even more recent
and is due to Bernhard Mühlherr and Richard Weiss [MW19]. The definition looks rather daunting
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(see Definition 1.17 below) mostly because of technicalities in characteristic 2, although the definition
itself is characteristic-free.

It is worth pointing out that the anisotropic quadrangular algebras are precisely the parametrizing
structures for Moufang quadrangles and that the anisotropic cubic norm structures are precisely the
parametrizing structures for Moufang hexagons. More generally, arbitrary quadrangular algebras and
arbitrary cubic norm structures (which might or might not be anisotropic) have been used in the theory of
Tits quadrangles and Tits hexagons, respectively [MW22]. See, in particular, the appendix of [MW19]
for the connection between quadrangular algebras and Tits quadrangles, and [MW22, Chapter 2] for the
connection between cubic norm structures and Tits hexagons. Notice that Moufang quadrangles are, in
fact, buildings of type 𝐵2 or 𝐵𝐶2, and that Moufang hexagons are buildings of type𝐺2. (In the language
of linear algebraic groups, this is the type of the relative root system.)

In our approach, we will start from a simple Lie algebra admitting extremal elements satisfying two
possible sets of assumptions (see Theorems B and C below). In each of these two cases, we will use two
different hyperbolic pairs of extremal points, giving rise to two different 5-gradings on the Lie algebra,
so we obtain a 5 × 5-graded Lie algebra. Depending on which of the two cases we are considering, this
5×5-grading takes a different shape. For the reader’s convenience, we have reproduced smaller versions
of Figures 1 and 2 of these gradings below, that can be found in full size on pages 32 and 42, respectively.

A closer look at these gradings reveals that, in fact, the 5 × 5-grading in Figure 1 is a 𝐺2-grading,
and the 5 × 5-grading in Figure 2 is a 𝐵𝐶2-grading. We will show that in the first case, the Lie algebra
is parametrized by a cubic norm pair, in the sense that each of the pieces arising in the decomposition
as well as the explicit formulas describing their Lie brackets, are determined by the structure of this
cubic norm pair (Theorem B). In the second case, it turns out that the Lie algebra is parametrized by a
quadrangular algebra (Theorem C).

The study of Lie algebras graded by root systems is not new, and we refer, for instance, to the work
of Bruce Allison, Georgia Benkart, Yun Gao and Efim Zel’manov [ABG02, BZ96]. However, their
goals have been rather different from ours. Whereas earlier research has focused on classifying all Lie
algebras graded by certain root systems in terms of central extensions of TKK-constructions, we focus
on simple Lie algebras, but we have as goal to understand the internal structure of the Lie algebra, via
the different pieces of the grading, directly in terms of an algebraic structure.1 In addition, we do not
assume the existence of a 𝐵𝐶2-or 𝐺2-grading, but it is a consequence of some natural conditions on the
extremal elements of the Lie algebra. These conditions are satisfied very often, and in fact, there are
many Lie algebras for which both sets of conditions are satisfied, and hence admit both a 𝐵𝐶2-and a
𝐺2-grading, and hence, they can be parametrized both by a cubic norm structure and by a quadrangular

1Our description of the resulting internal structure of the Lie algebra is perhaps more in line with Seligman’s approach from
[Sel76]. For the case of a 𝐺2-grading, Seligman’s Theorem III.6 somewhat resembles our description in terms of a cubic norm
pair, but his Theorem III.10 for the 𝐵𝐶2-case clearly illustrates our point that the connection with quadrangular algebras reveals
what is really going on internally.
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4 T. De Medts and J. Meulewaeter

algebra! It is our hope that this observation will lead to a deeper understanding of connections between
different forms of exceptional Lie algebras (and exceptional algebraic groups, as well as their geometric
counterparts – namely, the corresponding Moufang polygons and Tits polygons mentioned above). We
have indicated a first impression in this direction in Remark 1.2 in the appendix.

We formulate our main results. We emphasize that k is an arbitrary field of arbitrary characteristic.
Theorem A. Let L be a simple Lie algebra. Assume that for some Galois extension 𝑘 ′/𝑘 with 𝑘 ′ ≠ F2,
𝐿𝑘′ := 𝐿 ⊗𝑘 𝑘

′ is a simple Lie algebra generated by its pure extremal elements such that the extremal
geometry contains lines.

Consider a hyperbolic pair (𝑥, 𝑦) of extremal elements and let 𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2 be the
associated 5-grading.

Then for each 𝑙 ∈ 𝐿1, we can define an ‘l-exponential automorphism’

𝛼 : 𝐿 → 𝐿 : 𝑚 ↦→ 𝑚 + [𝑙, 𝑚] + 𝑞𝛼 (𝑚) + 𝑛𝛼 (𝑚) + 𝑣𝛼 (𝑚),

where 𝑞𝛼, 𝑛𝛼, 𝑣𝛼 : 𝐿 → 𝐿 are maps with

𝑞𝛼 (𝐿𝑖) ⊆ 𝐿𝑖+2, 𝑛𝛼 (𝐿𝑖) ⊆ 𝐿𝑖+3, 𝑣𝛼 (𝐿𝑖) ⊆ 𝐿𝑖+4

for all 𝑖 ∈ [−2, 2].
This is shown in Theorem 3.16 below, with the essential part being obtained by Theorem 3.13, along

with uniqueness results and other auxiliary results. (Notice that 𝛼 is not unique: there is a one-parameter
family of such automorphisms.)

In particular, when char(𝑘) ≠ 2, we can always choose 𝑞𝛼 (𝑚) = 1
2 [𝑙, [𝑙, 𝑚]], and if, in ad-

dition, char(𝑘) ≠ 3, then it is a consequence that 𝑛𝛼 (𝑚) = 1
6 [𝑙, [𝑙, [𝑙, 𝑚]]] and that 𝑣𝛼 (𝑚) =

1
24 [𝑙, [𝑙, [𝑙, [𝑙, 𝑚]]]], so our l-exponential automorphism really are a generalization of the usual ex-
ponential automorphisms.

It is worth mentioning that the condition ‘being generated by pure extremal elements’ is easily
fulfilled. For instance, the main result of [CIR08] shows that as soon as char(𝑘) > 5, each simple Lie
algebra admitting a single pure extremal element is, in fact, generated by its extremal elements. (See
also [FL19, Chapter 6].) However, there exist interesting simple Lie algebras not admitting any extremal
element, and in that case, studying the minimal inner ideals instead is an interesting approach. We refer,
for instance, to our earlier work [DMM24] for examples of this situation.

In addition, notice that the existence of a Galois extension 𝑘 ′/𝑘 such that the extremal geometry of
the Lie algebra over 𝑘 ′ contains lines, is also easily fulfilled. Indeed, if char(𝑘) ≠ 2, then it follows from
[CF23, Theorem 1.1], and the paragraph following this result that unless the Lie algebra is a symplectic
Lie algebra (i.e., of the form 𝔣𝔰𝔭(𝑉, 𝑓 ) for some nondegenerate symplectic space (𝑉, 𝑓 )), there always
even exists an extension 𝑘 ′/𝑘 of degree at most 2 fulfilling the requirement that the extremal geometry
contains lines. (It is a more subtle fact that the simplicity of the Lie algebra is preserved after such a
base extension, but we deal with this in Lemma 5.2.)

Our Theorems B and C are very similar in structure. Notice the difference between the conditions
between the two results. In Theorem B, the main condition is the fact that we require the existence of
lines already over the base field k. In Theorem C, the main condition is the existence of a symplectic
pair of extremal elements. (Notice that by the preceding discussion, condition (i) in the statement of
Theorem C essentially only excludes symplectic Lie algebras.)
Theorem B. Let L be a simple Lie algebra defined over a field k with |𝑘 | ≥ 4. Assume that L is generated
by its pure extremal elements and that the extremal geometry contains lines.

Then we can find two hyperbolic pairs (𝑥, 𝑦) and (𝑝, 𝑞) of extremal elements, with corresponding
5-gradings

𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2,

𝐿 = 𝐿 ′
−2 ⊕ 𝐿

′
−1 ⊕ 𝐿

′
0 ⊕ 𝐿

′
1 ⊕ 𝐿

′
2,
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such that the gradings intersect as in Figure 1. Moreover, the structure of the Lie algebra induces various
maps between the different components of this 5 × 5-grading, resulting in a ‘twin cubic norm structure’
on the pair

𝐽 = 𝐿−1 ∩ 𝐿
′
−1, 𝐽 ′ = 𝐿−1 ∩ 𝐿

′
0.

If the norm of this structure is not identically zero, then this results in a genuine cubic norm structure.

Theorem C. Let L be a simple Lie algebra defined over a field k with |𝑘 | ≥ 3. Assume that L is generated
by its pure extremal elements and that

(i) there exists a Galois extension 𝑘 ′/𝑘 of degree at most 2 such that the extremal geometry of 𝐿 ⊗ 𝑘 ′

contains lines;
(ii) there exist symplectic pairs of extremal elements.

Then we can find two hyperbolic pairs (𝑥, 𝑦) and (𝑝, 𝑞) of extremal elements, with corresponding 5-
gradings

𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2,

𝐿 = 𝐿 ′
−2 ⊕ 𝐿

′
−1 ⊕ 𝐿

′
0 ⊕ 𝐿

′
1 ⊕ 𝐿

′
2,

such that the gradings intersect as in Figure 2. Moreover, the structure of the Lie algebra induces various
maps between the different components of this 5 × 5-grading, resulting in a quadrangular algebra on
the pair

𝑉 = 𝐿−1 ∩ 𝐿
′
−1, 𝑋 = 𝐿−1 ∩ 𝐿

′
0.

Theorem B is shown in Section 4 culminating in Theorem 4.23, and Theorem C is shown in
Section 5 culminating in Theorem 5.56. For both results, we rely in a crucial way on Theorem A. For
Theorem B, we use this result to define the norm N and the adjoint ♯ of the cubic norm structure in
Definition 4.12, relying on Proposition 4.11. For Theorem C, we use it to define the quadratic form Q
on V in Definition 5.10 (relying on Lemma 5.9) and to define the map 𝜃 : 𝑋 ×𝑉 → 𝑉 in Definition 5.29.
Not surprisingly, the corresponding Theorem 3.13 is used in many places of our proof.

1. Preliminaries

Throughout, k is an arbitrary commutative field of arbitrary characteristic. All algebras occurring in
this paper are assumed to be k-algebras. This preliminary section consists of three parts. Section 1.1
deals with Lie algebras and introduces the basic theory of extremal elements and the extremal geometry.
Most of this material is taken from [CI06]. We then introduce cubic norm structures in Section 1.2 and
quadrangular algebras in Section 1.3.

1.1. Lie algebras

Definition 1.1. A Z-grading of a Lie algebra L is a vector space decomposition 𝐿 =
⊕

𝑖∈Z 𝐿𝑖 such
that [𝐿𝑖 , 𝐿 𝑗 ] ≤ 𝐿𝑖+ 𝑗 for all 𝑖, 𝑗 ∈ Z. If n is a natural number such that 𝐿𝑖 = 0 for all 𝑖 ∈ Z such that
|𝑖 | > 𝑛 while 𝐿−𝑛 ⊕ 𝐿𝑛 ≠ 0, then we call this grading a (2𝑛 + 1)-grading. We call 𝐿−𝑛 and 𝐿𝑛 the
ends of this grading. The i-component of 𝑥 ∈ 𝐿 is the image of the projection of x onto 𝐿𝑖 . We also set
𝐿≤𝑖 =

⊕
𝑗≤𝑖 𝐿 𝑗 and 𝐿≥𝑖 =

⊕
𝑗≥𝑖 𝐿 𝑗 .

Definition 1.2 [CI06, Definition 14]. Let L be a Lie algebra over k.
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(i) A nonzero element 𝑥 ∈ 𝐿 is called extremal if there is a map 𝑔𝑥 : 𝐿 → 𝑘 , called the extremal form
on x, such that for all 𝑦, 𝑧 ∈ 𝐿, we have

[
𝑥, [𝑥, 𝑦]

]
= 2𝑔𝑥 (𝑦)𝑥, (1)

[
[𝑥, 𝑦], [𝑥, 𝑧]

]
= 𝑔𝑥

(
[𝑦, 𝑧]

)
𝑥 + 𝑔𝑥 (𝑧) [𝑥, 𝑦] − 𝑔𝑥 (𝑦) [𝑥, 𝑧], (2)

[
𝑥, [𝑦, [𝑥, 𝑧]]

]
= 𝑔𝑥

(
[𝑦, 𝑧]

)
𝑥 − 𝑔𝑥 (𝑧) [𝑥, 𝑦] − 𝑔𝑥 (𝑦) [𝑥, 𝑧] . (3)

The last two identities are called the Premet identities. If the characteristic of k is not 2, then the
Premet identities (2) and (3) follow from (1); see [CI06, Definition 14]. Moreover, using the Jacobi
identity, (2) and (3) are equivalent if (1) holds.

Note that the extremal form 𝑔𝑥 might not be unique if char(𝑘) = 2.
(ii) We call 𝑥 ∈ 𝐿 a sandwich or an absolute zero divisor if [𝑥, [𝑥, 𝑦]] = 0 and [𝑥, [𝑦, [𝑥, 𝑧]]] = 0 for

all 𝑦, 𝑧 ∈ 𝐿. An extremal element is called pure if it is not a sandwich.
(iii) The Lie algebra L is nondegenerate if it has no nontrivial sandwiches.
(iv) We denote the set of extremal elements of a Lie algebra L by 𝐸 (𝐿) or, if L is clear from the context,

by E. Accordingly, we denote the set {𝑘𝑥 | 𝑥 ∈ 𝐸 (𝐿)} of extremal points in the projective space on
L by E (𝐿) or E .

Remark 1.3.

(i) If 𝑥 ∈ 𝐿 is a sandwich, then the extremal form 𝑔𝑥 can be chosen to be identically zero; we adopt
the convention from [CI06] that 𝑔𝑥 is identically zero whenever x is a sandwich in L.

(ii) By [CI06, Lemma 16], the existence of two distinct functions 𝑔𝑥 and 𝑔′𝑥 satisfying the identities (1)
to (3) implies that char(𝑘) = 2 and that x is a sandwich. Combined with our convention in (i), this
means that 𝑔𝑥 is always uniquely determined.

Definition 1.4. Let L be a Lie algebra. An inner ideal of L is a subspace I of L satisfying [𝐼, [𝐼, 𝐿]] ≤ 𝐼.
If char(𝑘) ≠ 2, then the 1-dimensional inner ideals of L are precisely the subspaces spanned by

an extremal element. We will need inner ideals of dimension > 1 only once, namely in the proof of
Theorem 3.8.

Recall that if D is a linear map from a Lie algebra L to itself such that 𝐷𝑛 = 0 for some 𝑛 ∈ N and
(𝑛 − 1)! ∈ 𝑘×, then exp(𝐷) =

∑𝑛−1
𝑖=0

1
𝑖!𝐷

𝑖 . A crucial aspect of extremal elements is that they allow for
exponential maps in any characteristic.

Definition 1.5 [CI06, p. 444]. Let 𝑥 ∈ 𝐸 be an extremal element, with extremal form 𝑔𝑥 . Then we define

exp(𝑥) : 𝐿 → 𝐿 : 𝑦 ↦→ 𝑦 + [𝑥, 𝑦] + 𝑔𝑥 (𝑦)𝑥.

We also write Exp(𝑥) := {exp(𝜆𝑥) | 𝜆 ∈ 𝑘}.

Lemma 1.6 [CI06, Lemma 15]. For each 𝑥 ∈ 𝐸 , we have exp(𝑥) ∈ Aut(𝐿). Moreover,
exp(𝜆𝑥) exp(𝜇𝑥) = exp((𝜆 + 𝜇)𝑥) for all 𝜆, 𝜇 ∈ 𝑘 , so Exp(𝑥) is a subgroup of Aut(𝐿).

Notice that for an extremal element 𝑥 ∈ 𝐸 , we always have ad3
𝑥 = 0. In particular, if char(𝑘) ≠ 2,

then 𝑔𝑥 (𝑦)𝑥 = 1
2 [𝑥, [𝑥, 𝑦]], and we recover the usual exponential map exp(𝑥) = exp(ad𝑥).

In this paper, we will always assume that our Lie algebra L is generated by its extremal elements.
This has some powerful consequences.

Proposition 1.7 [CI06, Proposition 20]. Suppose that L is generated by E. Then

(i) L is linearly spanned by E.
(ii) There is a unique bilinear form 𝑔 : 𝐿 × 𝐿 → 𝑘 such that 𝑔𝑥 (𝑦) = 𝑔(𝑥, 𝑦) for all 𝑥 ∈ 𝐸 and all

𝑦 ∈ 𝐿. The form g is symmetric.
(iii) The form g associates with the Lie bracket (i.e., 𝑔([𝑥, 𝑦], 𝑧) = 𝑔(𝑥, [𝑦, 𝑧]) for all 𝑥, 𝑦, 𝑧 ∈ 𝐿).
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Proposition 1.8 [CI06, Lemmas 21, 24, 25 and 27]. Suppose that L is generated by E. Let 𝑥, 𝑦 ∈ 𝐸 be
pure extremal elements. Then exactly one of the following holds:

(a) 𝑘𝑥 = 𝑘𝑦;
(b) 𝑘𝑥 ≠ 𝑘𝑦, [𝑥, 𝑦] = 0, and 𝜆𝑥 + 𝜇𝑦 ∈ 𝐸 ∪ {0} for all 𝜆, 𝜇 ∈ 𝑘 (we write 𝑥 ∼ 𝑦);
(c) 𝑘𝑥 ≠ 𝑘𝑦, [𝑥, 𝑦] = 0, and 𝜆𝑥 + 𝜇𝑦 ∈ 𝐸 ∪ {0} if and only if 𝜆 = 0 or 𝜇 = 0;
(d) [𝑥, 𝑦] ≠ 0 and 𝑔(𝑥, 𝑦) = 0, in which case [𝑥, 𝑦] ∈ 𝐸 and 𝑥 ∼ [𝑥, 𝑦] ∼ 𝑦;
(e) [𝑥, 𝑦] ≠ 0 and 𝑔(𝑥, 𝑦) ≠ 0, in which case x and y generate an 𝔰𝔩2(𝑘)-subalgebra.

Moreover, we have 𝑔(𝑥, 𝑦) = 0 in all four cases (a)–(d).

This gives rise to the following definitions.
Definition 1.9.
(i) Let 〈𝑥〉, 〈𝑦〉 ∈ E (𝐿) be two distinct pure extremal points. Then depending on whether the corre-

sponding elements 𝑥, 𝑦 are in case (b), (c), (d) or (e) of Proposition 1.8, we call the pair 〈𝑥〉, 〈𝑦〉
collinear, symplectic, special or hyperbolic, respectively. Following the notation from [CI06], we
denote the five possible relations between points of E by E−2 (equal), E−1 (collinear), E0 (symplectic),
E1 (special), E2 (hyperbolic), respectively. We also use 𝐸−2, 𝐸−1, 𝐸0, 𝐸1, 𝐸2 for the corresponding
relations between elements of E. Moreover, we write 𝐸𝑖 (𝑥) for the set of elements of E in relation
𝐸𝑖 with x, and similarly for E𝑖 (〈𝑥〉).

We refer the reader to Proposition 2.5 for the motivation for this notation.
(ii) The extremal geometry associated with L is the point-line geometry with point set E (𝐿) and line set

F (𝐿) := {〈𝑥, 𝑦〉 | 〈𝑥〉 and 〈𝑦〉 are collinear}.

It is a partial linear space (i.e., any two distinct points lie on at most one line).
A crucial ingredient for us will be the fact that each hyperbolic pair of extremal elements gives rise

to a 5-grading of the Lie algebra; see Proposition 2.4 below.
We finish this section with a subtle but important fact about exponential maps arising from a 5-

grading.
Definition 1.10. Assume that char(𝑘) ≠ 2, 3 and let L be a 5-graded finite-dimensional Lie algebra over
k. We say that L is algebraic if for any (𝑥, 𝑠) ∈ 𝐿𝜎1 ⊕ 𝐿𝜎2 (with 𝜎 ∈ {+,−}), the linear endomorphism

exp(ad(𝑥 + 𝑠)) =
4∑
𝑖=0

1
𝑖!

ad(𝑥 + 𝑠)𝑖

of L is a Lie algebra automorphism.
It is not difficult to see that when char(𝑘) ≠ 2, 3, 5, then any 5-graded Lie algebra is algebraic; see

[BDMS19, Lemma 3.1.7]. If char(𝑘) = 5, this is much more delicate; see [BDMS19, §4.2] and [Sta22,
Theorem 2.10].

One of our key tools will precisely be an extension of the existence of such automorphisms to the
case where char(𝑘) is arbitrary, including characteristic 2 and 3; see Definitions 3.12 and 3.13 and
Theorems 3.15 and 3.16 below.

1.2. Cubic norm structures

Cubic norm structures have been introduced by Kevin McCrimmon in [McC69]. We follow the approach
from [TW02, Chapter 15], which is equivalent but is more practical for our purposes.
Definition 1.11. A cubic norm structure is a tuple

(𝐽, 𝑘, 𝑁, ♯, 𝑇,×, 1),
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where k is a field, J is a vector space over k, 𝑁 : 𝐽 → 𝑘 is a map called the norm, ♯ : 𝐽 → 𝐽 is a map
called the adjoint, 𝑇 : 𝐽 × 𝐽 → 𝑘 is a symmetric bilinear form called the trace, × : 𝐽 × 𝐽 → 𝐽 is a
symmetric bilinear map called the Freudenthal cross product, and 1 is a nonzero element of J called
the identity such that for all 𝜆 ∈ 𝑘 , and all 𝑎, 𝑏, 𝑐 ∈ 𝐽, we have

(i) (𝜆𝑎)♯ = 𝜆2𝑎♯;
(ii) 𝑁 (𝜆𝑎) = 𝜆3𝑁 (𝑎);

(iii) 𝑇 (𝑎, 𝑏 × 𝑐) = 𝑇 (𝑎 × 𝑏, 𝑐);
(iv) (𝑎 + 𝑏)♯ = 𝑎♯ + 𝑎 × 𝑏 + 𝑏♯;
(v) 𝑁 (𝑎 + 𝑏) = 𝑁 (𝑎) + 𝑇 (𝑎♯, 𝑏) + 𝑇 (𝑎, 𝑏♯) + 𝑁 (𝑏);

(vi) 𝑇 (𝑎, 𝑎♯) = 3𝑁 (𝑎);
(vii) (𝑎♯)♯ = 𝑁 (𝑎)𝑎;

(viii) 𝑎♯ × (𝑎 × 𝑏) = 𝑁 (𝑎)𝑏 + 𝑇 (𝑎♯, 𝑏)𝑎;
(ix) 𝑎♯ × 𝑏♯ + (𝑎 × 𝑏)♯ = 𝑇 (𝑎♯, 𝑏)𝑏 + 𝑇 (𝑎, 𝑏♯)𝑎;
(x) 1♯ = 1;

(xi) 𝑎 = 𝑇 (𝑎, 1)1 − 1 × 𝑎.
We call this cubic norm structure nondegenerate if {𝑎 ∈ 𝐽 | 𝑁 (𝑎) = 0 = 𝑇 (𝑎, 𝐽) = 𝑇 (𝑎♯, 𝐽)} = 0.
Definition 1.12. We call 𝑎 ∈ 𝐽 invertible if 𝑁 (𝑎) ≠ 0. We denote the set of all invertible elements of J
by 𝐽×. If all nonzero elements of J are invertible, we call J anisotropic; otherwise, we call it isotropic.
Lemma 1.13 [TW02, (15.18)]. In Definition 1.11, condition (iii) is a consequence of (iv) and (v). If
|𝑘 | > 3, then conditions (vi), (viii) and (ix) are a consequence of (i), (ii), (iv), (v) and (vii).
Remark 1.14. Every cubic norm structure can be made into a (quadratic) Jordan algebra, where the
U-operator of the Jordan algebra is given by

𝑈𝑥 (𝑦) = 𝑇 (𝑦, 𝑥)𝑥 − 𝑦 × 𝑥
♯

for all 𝑥, 𝑦 ∈ 𝐽.
Definition 1.15.
(i) Let (𝐽, 𝑘, 𝑁, ♯, 𝑇,×, 1) and (𝐽 ′, 𝑘, 𝑁 ′, ♯′, 𝑇 ′,×′, 1′) be two cubic norm structures. A vector space

isomorphism 𝜑 : 𝐽 → 𝐽 ′ is an isomorphism from (𝐽, 𝑘, 𝑁, ♯, 𝑇,×, 1) to (𝐽 ′, 𝑘, 𝑁 ′, ♯′, 𝑇 ′,×′, 1′) if
𝜑 ◦ ♯ = ♯′ ◦ 𝜑 and 𝜑(1) = 1′.

(ii) Let (𝐽, 𝑘, 𝑁, ♯, 𝑇,×, 1) be a cubic norm structure and let 𝑑 ∈ 𝐽×. We define new maps 𝑁𝑑 , ♯𝑑 , 𝑇𝑑 ,
×𝑑 and 1𝑑 by

𝑁𝑑 (𝑎) := 𝑁 (𝑑)−1𝑁 (𝑎),

𝑎♯𝑑 := 𝑁 (𝑑)−1𝑈𝑑 (𝑎
♯),

𝑇𝑑 (𝑎, 𝑏) := 𝑇
(
𝑈𝑁 (𝑑)−1𝑑♯ (𝑎), 𝑏

)
,

𝑎 ×𝑑 𝑏 := 𝑁 (𝑑)−1𝑈𝑑 (𝑎 × 𝑏),

1𝑑 := 𝑑,

for all 𝑎, 𝑏 ∈ 𝐽. Then (𝐽, 𝑘, 𝑁𝑑 , ♯𝑑 , 𝑇𝑑 ,×𝑑 , 1𝑑) is again a cubic norm structure; see [TW02, (29.36)].
Two cubic norm structures (𝐽, 𝑘, 𝑁, ♯, 𝑇,×, 1) and (𝐽 ′, 𝑘, 𝑁 ′, ♯′, 𝑇 ′,×′, 1′) are called isotopic if

there exists an isomorphism from (𝐽 ′, 𝑘, 𝑁 ′, ♯′, 𝑇 ′,×′, 1′) to (𝐽, 𝑘, 𝑁𝑑 , ♯𝑑 , 𝑇𝑑 ,×𝑑 , 1𝑑) for a certain
𝑑 ∈ 𝐽×.

1.3. Quadrangular algebras

Quadrangular algebras have been introduced by Richard Weiss in [Wei06] in the anisotropic case,
and have been generalized to allow isotropic quadrangular algebras in [MW19]. Our notation follows
[MW19], except that we use different letters for some of our spaces and maps.
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Definition 1.16. Let V be a vector space over the field k. A quadratic form Q on V is a map 𝑄 : 𝑉 → 𝑘
such that

◦ 𝑄(𝜆𝑣) = 𝜆2𝑄(𝑣) for all 𝜆 ∈ 𝑘 and 𝑣 ∈ 𝑉 ;
◦ the map 𝑇 : 𝑉 ×𝑉 → 𝑘 defined by

𝑇 (𝑢, 𝑣) = 𝑄(𝑢 + 𝑣) −𝑄(𝑢) −𝑄(𝑣)

for all 𝑢, 𝑣 ∈ 𝑉 is bilinear.

We call Q

◦ anisotropic if 𝑄(𝑣) = 0 implies 𝑣 = 0;
◦ nondegenerate if 𝑉⊥ := {𝑣 ∈ 𝑉 | 𝑇 (𝑣,𝑉) = 0} = 0;
◦ non-singular if it is either nondegenerate or dim(𝑉⊥) = 1 and 𝑄(𝑉⊥) ≠ 0;
◦ regular if {𝑣 ∈ 𝑉 | 𝑄(𝑣) = 0 = 𝑇 (𝑣,𝑉)} = 0.

A base point for Q is an element 𝑒 ∈ 𝑉 such that 𝑄(𝑒) = 1. Using this base point, we can define an
involution 𝜎 : 𝑉 → 𝑉 by

𝑣𝜎 = 𝑇 (𝑣, 𝑒)𝑒 − 𝑣, (4)

for all 𝑣 ∈ 𝑉 .

Definition 1.17 [MW19, Definition 2.1]. A quadrangular algebra is a tuple

(𝑘,𝑉, 𝑄, 𝑇, 𝑒, 𝑋, ·, ℎ, 𝜃),

where

◦ k is a field;
◦ V is a vector space over k;
◦ 𝑄 : 𝑉 → 𝑘 is a regular quadratic form, with associated bilinear form T;
◦ 𝑒 ∈ 𝑉 is a base point for Q;
◦ X is a vector space over k;
◦ · : 𝑋 ×𝑉 → 𝑋 : (𝑎, 𝑣) ↦→ 𝑎 · 𝑣 is a bilinear map;
◦ ℎ : 𝑋 × 𝑋 → 𝑉 is a bilinear map;
◦ 𝜃 : 𝑋 ×𝑉 → 𝑉 is a map;

such that

(i) 𝑎 · 𝑒 = 𝑎 for all 𝑎 ∈ 𝑋;
(ii) (𝑎 · 𝑣) · 𝑣𝜎 = 𝑄(𝑣)𝑎 for all 𝑎 ∈ 𝑋 and all 𝑣 ∈ 𝑉 ;

(iii) ℎ(𝑎, 𝑏 · 𝑣) = ℎ(𝑏, 𝑎 · 𝑣) + 𝑇 (ℎ(𝑎, 𝑏), 𝑒)𝑣 for all 𝑎, 𝑏 ∈ 𝑋 and all 𝑣 ∈ 𝑉 ;
(iv) 𝑇 (ℎ(𝑎 · 𝑣, 𝑏), 𝑒) = 𝑇 (ℎ(𝑎, 𝑏), 𝑣) for all 𝑎, 𝑏 ∈ 𝑋 and all 𝑣 ∈ 𝑉 ;
(v) For each 𝑎 ∈ 𝑋 , the map 𝑣 ↦→ 𝜃 (𝑎, 𝑣) is linear;

(vi) 𝜃 (𝜆𝑎, 𝑣) = 𝜆2𝜃 (𝑎, 𝑣) for all 𝑎 ∈ 𝑋 , 𝑣 ∈ 𝑉 and 𝜆 ∈ 𝑘;
(vii) There exists a function 𝛾 : 𝑋 × 𝑋 → 𝑘 such that

𝜃 (𝑎 + 𝑏, 𝑣) = 𝜃 (𝑎, 𝑣) + 𝜃 (𝑏, 𝑣) + ℎ(𝑎, 𝑏 · 𝑣) − 𝛾(𝑎, 𝑏)𝑣

for all 𝑎, 𝑏 ∈ 𝑋 and all 𝑣 ∈ 𝑉 ;
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(viii) There exists a function 𝜙 : 𝑋 ×𝑉 → 𝑘 such that

𝜃 (𝑎 · 𝑣, 𝑤) = 𝜃 (𝑎, 𝑤𝜎)𝜎𝑄(𝑣) − 𝑇 (𝑤, 𝑣𝜎)𝜃 (𝑎, 𝑣)𝜎 + 𝑇 (𝜃 (𝑎, 𝑣), 𝑤𝜎)𝑣𝜎 + 𝜙(𝑎, 𝑣)𝑤

for all 𝑎 ∈ 𝑋 and all 𝑣, 𝑤 ∈ 𝑉 ;
(ix) 𝑎 · 𝜃 (𝑎, 𝑣) = (𝑎 · 𝜃 (𝑎, 𝑒)) · 𝑣 for all 𝑎 ∈ 𝑋 and all 𝑣 ∈ 𝑉 .

Notation 1.18. We set 𝜋(𝑎) = 𝜃 (𝑎, 𝑒) for all 𝑎 ∈ 𝑋 .

Definition 1.19 [MW19, Definition 2.3]. We call a quadrangular algebra anisotropic if Q is anisotropic
and 𝜋(𝑎) is a multiple of e if and only if 𝑎 = 0.

Remark 1.20. The existence of 𝑒 ∈ 𝑉 implies 𝑉 ≠ 0. However, contrary to the common convention, we
allow 𝑋 = 0. In other words, we view quadratic spaces as special (degenerate) examples of quadrangular
algebras.

2. Gradings from extremal elements

In this section, we describe the 5-grading associated with any pair of hyperbolic extremal elements, and
we collect several properties about this grading that we will need later. We emphasize again that we do
not make any assumptions on the field k, so in particular, we allow char(𝑘) = 2 or 3.

Notation 2.1. We will assume from now on that L is a Lie algebra over k generated by its pure extremal
elements. As in Definition 1.2, we will write E for the set of extremal elements of L and E for the set of
extremal points of L. We let g be the symmetric bilinear form from Proposition 1.7. If V is any subspace
of L, we write

𝑉⊥ := {𝑢 ∈ 𝐿 | 𝑔(𝑢, 𝑣) = 0 for all 𝑣 ∈ 𝑉}.

Remark 2.2. If, in addition, L is simple, then our assumptions imply that L does not contain sandwich
elements. Indeed, the sandwich elements are contained in the radical of the form g, which is an ideal
of L. Since L is generated by its pure extremal elements, the form g cannot be identically zero, so the
radical of g must be trivial.

In this section, we do not assume that L is simple (except in Lemma 2.11 and Propositions 2.13
and 2.16), but we will make this important assumption in the next sections.

Definition 2.3. We define the normalizer of x as

𝑁𝐿 (𝑥) :=
{
𝑙 ∈ 𝐿 | [𝑥, 𝑙] ∈ 〈𝑥〉

}
.

Proposition 2.4 [CI06, Proposition 22 and Corollary 23]. Let 𝑥, 𝑦 ∈ 𝐸 such that 𝑔(𝑥, 𝑦) = 1. Then

(i) L has a Z-grading

𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2,

with 𝐿−2 = 〈𝑥〉, 𝐿−1 = [𝑥,𝑈], 𝐿0 = 𝑁𝐿 (𝑥) ∩ 𝑁𝐿 (𝑦), 𝐿1 = [𝑦,𝑈] and 𝐿2 = 〈𝑦〉, where

𝑈 =
〈
𝑥, 𝑦, [𝑥, 𝑦]

〉⊥
.

(ii) Each 𝐿𝑖 is contained in the i-eigenspace of ad[𝑥,𝑦 ] .
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(iii) ad𝑥 defines a linear isomorphism from 𝐿1 to 𝐿−1 with inverse − ad𝑦 .
(iv) The filtration 𝐿−2 ≤ 𝐿≤−1 ≤ 𝐿≤0 ≤ 𝐿≤1 ≤ 𝐿 only depends on x and not on y. More precisely, we

have

𝐿≤1 = 𝑥⊥,

𝐿≤0 = 𝑁𝐿 (𝑥),

𝐿≤−1 = 𝑘𝑥 + [𝑥, 𝑥⊥],

𝐿−2 = 𝑘𝑥.

(v) In particular, 𝑔𝑥 (𝐿≤1) = 0 and 𝑔𝑦 (𝐿≥−1) = 0.

These gradings are closely related to the five different relations 𝐸𝑖 that we have introduced in
Definition 1.9:

Proposition 2.5. Let x, y and 𝐿𝑖 be as in Proposition 2.4. For each 𝑖 ∈ [−2, 2], we have

𝐸𝑖 (𝑥) = (𝐸 ∩ 𝐿≤𝑖) \ 𝐿≤𝑖−1.

Proof. This is shown in the proof of [CI06, Theorem 28]. �

Corollary 2.6. Let x, y and 𝐿𝑖 be as in Proposition 2.4. Then

𝐸−1 (𝑥) = {𝜆𝑥 + 𝑒 | 𝜆 ∈ 𝑘, 𝑒 ∈ 𝐸 ∩ 𝐿−1}.

Proof. By Proposition 2.5, 𝐸−1(𝑥) = 𝐸 ∩ (𝑘𝑥 + 𝐿−1) \ 𝑘𝑥. Now observe that an element 𝜆𝑥 + 𝑒 (with
𝑒 ∈ 𝐿−1) is extremal if and only if e is extremal, because if one of them is extremal, it is collinear with
x, and hence, all points on the line through x are extremal points. �

Lemma 2.7. Let x, y and 𝐿𝑖 be as in Proposition 2.4. Let 𝑎 ∈ 𝐿1 and 𝑏 ∈ 𝐿−1. Then [𝑎, [𝑦, 𝑏]] =
𝑔(𝑎, 𝑏)𝑦.

Proof. By Proposition 2.4(iii), we can write 𝑎 = [𝑦, 𝑐] for some 𝑐 ∈ 𝐿−1. By the Premet identity (2)
and Proposition 2.4(v), we then get

[𝑎, [𝑦, 𝑏]] = [[𝑦, 𝑐], [𝑦, 𝑏]]

= 𝑔𝑦 ([𝑐, 𝑏])𝑦 + 𝑔𝑦 (𝑏) [𝑦, 𝑐] − 𝑔𝑦 (𝑐) [𝑦, 𝑏]

= 𝑔(𝑦, [𝑐, 𝑏])𝑦 = 𝑔([𝑦, 𝑐], 𝑏)𝑦 = 𝑔(𝑎, 𝑏)𝑦. �

The following lemma describes an automorphism that reverses the grading.

Lemma 2.8. Let x, y and 𝐿𝑖 be as in Proposition 2.4. Consider the automorphism 𝜑 =
exp(𝑦) exp(𝑥) exp(𝑦). Then

𝜑(𝑥) = 𝑦,

𝜑(𝑙−1) = [𝑦, 𝑙−1],

𝜑(𝑙0) = 𝑙0 + [𝑥, [𝑦, 𝑙0]],

𝜑(𝑙1) = [𝑥, 𝑙1],

𝜑(𝑦) = 𝑥,

for all 𝑙−1 ∈ 𝐿−1, 𝑙0 ∈ 𝐿0, 𝑙1 ∈ 𝐿1.
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Proof. Since 𝑔𝑥 (𝑦) = 𝑔𝑦 (𝑥) = 1, we get exp(𝑥) (𝑦) = 𝑦 + [𝑥, 𝑦] + 𝑥 and exp(𝑦) (𝑥) = 𝑥 − [𝑥, 𝑦] + 𝑦.
Since 𝑔𝑥 ([𝑥, 𝑦]) = 0 and 𝑔𝑦 ([𝑥, 𝑦]) = 0, it now follows that 𝜑(𝑥) = 𝑦 and 𝜑(𝑦) = 𝑥.

Next, let 𝑙1 ∈ 𝐿1. Then exp(𝑦) (𝑙1) = 𝑙1 and exp(𝑥) (𝑙1) = 𝑙1 + [𝑥, 𝑙1] because 𝑔𝑥 (𝐿1) = 0 (by
Proposition 2.4(v)). By the same Proposition 2.4(v), we also have 𝑔𝑦 (𝐿−1) = 0, and hence,

𝜑(𝑙1) = exp(𝑦) ( [𝑥, 𝑙1] + 𝑙1) = [𝑥, 𝑙1] +
(
𝑙1 + [𝑦, [𝑥, 𝑙1]]

)
= [𝑥, 𝑙1],

by Proposition 2.4(iii). Similarly, 𝜑(𝑙−1) = [𝑦, 𝑙−1] for all 𝑙−1 ∈ 𝐿−1.
Finally, let 𝑙0 ∈ 𝐿0. Let 𝜆, 𝜇 ∈ 𝑘 be such that [𝑥, 𝑙0] = 𝜆𝑥 and [𝑦, 𝑙0] = 𝜇𝑦. Then by the fact that g

associates with the Lie bracket, we have

𝜇 = 𝑔𝑥 (𝜇𝑦) = 𝑔𝑥 ([𝑦, 𝑙0]) = −𝑔𝑦 ([𝑥, 𝑙0]) = −𝑔𝑦 (𝜆𝑥) = −𝜆.

Hence,

𝜑(𝑙0) = exp(𝑦) exp(𝑥) (𝑙0 − 𝜆𝑦)
= exp(𝑦) (𝑙0 + 𝜆𝑥) − 𝜆𝜑(𝑦)
= (𝑙0 − 𝜆𝑦) + 𝜆(𝑥 − [𝑥, 𝑦] + 𝑦) − 𝜆𝑥

= 𝑙0 − 𝜆[𝑥, 𝑦] = 𝑙0 + [𝑥, [𝑦, 𝑙0]] . �

Remark 2.9. Because of Lemma 2.8, many results involving the 5-grading can be ‘swapped around’.
We will often do this without explicitly mentioning.

The automorphism group Aut(𝐿) contains a torus preserving the grading. (This easy fact is, of
course, true for any Z-graded algebra.)

Lemma 2.10. Let x, y and 𝐿𝑖 be as in Proposition 2.4. Let 𝜆 ∈ 𝑘× be arbitrary. Consider the map
𝜑𝜆 : 𝐿 → 𝐿 defined by 𝜑𝜆 (𝑙𝑖) = 𝜆𝑖𝑙𝑖 for all 𝑙𝑖 ∈ 𝐿𝑖 , with 𝑖 ∈ [−2, 2]. Then 𝜑𝜆 ∈ Aut(𝐿).

Proof. Clearly, 𝜑𝜆 is bijective. Consider 𝑙𝑖 ∈ 𝐿𝑖 and 𝑙 𝑗 ∈ 𝐿 𝑗 arbitrary, with 𝑖, 𝑗 ∈ [−2, 2]. Then

𝜑𝜆 ([𝑙𝑖 , 𝑙 𝑗 ]) = 𝜆
𝑖+ 𝑗 [𝑙𝑖 , 𝑙 𝑗 ] = [𝜆𝑖𝑙𝑖 , 𝜆

𝑗 𝑙 𝑗 ] = [𝜑𝜆 (𝑙𝑖), 𝜑𝜆(𝑙 𝑗 )] . �

The following lemma will ensure the nondegeneracy of certain maps later on.

Lemma 2.11. Assume that L is simple, and let x, y and 𝐿𝑖 be as in Proposition 2.4. Let 𝑍𝑖 = {𝑧 ∈ 𝐿𝑖 |
[𝑧, 𝐿𝑖] = 0} for 𝑖 = −1 and 𝑖 = 1. Then 𝑍−1 = 𝑍1 = 0.

Proof. Let 𝑧 ∈ 𝑍−1 and 𝑎 ∈ 𝐿−1. Then [𝑎, 𝑧] = 0 by definition of 𝑍−1, and 𝑔𝑦 (𝑧) = 𝑔𝑦 (𝑎) = 0 by
Proposition 2.4(v). By the Premet identities, we then have

[[𝑦, 𝑎], [𝑦, 𝑧]] = 𝑔𝑦 ([𝑎, 𝑧]) + 𝑔𝑦 (𝑧) [𝑦, 𝑎] − 𝑔𝑦 (𝑎) [𝑦, 𝑧] = 0.

Since [𝑦, 𝐿−1] = 𝐿1 by Proposition 2.4(iii), this shows that [𝑦, 𝑍−1] ≤ 𝑍1. Similarly, [𝑥, 𝑍1] ≤ 𝑍−1, but
then 𝑍−1 = [𝑥, [𝑦, 𝑍−1]] ≤ [𝑥, 𝑍1] ≤ 𝑍−1, so in fact,

[𝑦, 𝑍−1] = 𝑍1 and [𝑥, 𝑍1] = 𝑍−1.

Observe now that by the Jacobi identity, [[𝐿0, 𝑍−1], 𝐿−1] ≤ [𝐿0, [𝑍−1, 𝐿−1]] + [𝑍−1, [𝐿0, 𝐿−1]] = 0,
and thus, [𝐿0, 𝑍−1] ≤ 𝑍−1; similarly, we have [𝐿0, 𝑍1] ≤ 𝑍1. Moreover,

[𝑦, [𝑍−1, 𝐿1]] = [[𝑦, 𝑍−1], 𝐿1] = [𝑍1, 𝐿1] = 0,
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and hence, the map 𝜑 from Lemma 2.8 fixes [𝑍−1, 𝐿1]. However, 𝜑(𝑍−1) = [𝑦, 𝑍−1] = 𝑍1 and
𝜑(𝐿1) = [𝑥, 𝐿1] = 𝐿−1, and therefore, [𝑍−1, 𝐿1] = [𝑍1, 𝐿−1]. We can now see that

𝑍−1 ⊕ [𝑍−1, 𝐿1] ⊕ 𝑍1

is an ideal of L. Because L is simple, we conclude that 𝑍−1 = 0 and 𝑍1 = 0. �

The idea of looking at two different 5-gradings obtained from hyperbolic pairs is a key ingredient for
our results. The following lemma is a very first (easy) instance of this.

Lemma 2.12. Consider 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝐸 such that 𝑔𝑥 (𝑦) = 1 = 𝑔𝑎 (𝑏). Let

𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2 and
𝐿 = 𝐿 ′

−2 ⊕ 𝐿
′
−1 ⊕ 𝐿

′
0 ⊕ 𝐿

′
1 ⊕ 𝐿

′
2

be the 5-gradings corresponding to the hyperbolic pairs (𝑥, 𝑦) and (𝑎, 𝑏), respectively, as in Proposi-
tion 2.4.

If 𝜑 ∈ Aut(𝐿) maps 𝐿−2 to 𝐿 ′
−2 and 𝐿2 to 𝐿 ′

2, then 𝜑(𝐿𝑖) = 𝐿 ′
𝑖 for all 𝑖 ∈ [−2, 2].

Proof. By assumption, there exist 𝜆, 𝜇 ∈ 𝑘× such that 𝜑(𝑥) = 𝜆𝑎 and 𝜑(𝑦) = 𝜇𝑏. We have 𝐿0 =
𝑁𝐿 (𝑥) ∩ 𝑁𝐿 (𝑦) and 𝐿 ′

0 = 𝑁𝐿 (𝑎) ∩ 𝑁𝐿 (𝑏) by Proposition 2.4, so 𝐿0 is mapped to 𝐿 ′
0 by 𝜑.

Next, let 𝑈 = 〈𝑥, 𝑦, [𝑥, 𝑦]〉⊥ and 𝑈 ′ = 〈𝑎, 𝑏, [𝑎, 𝑏]〉⊥. By Remark 1.3 and Proposition 1.7(ii), the
form g is uniquely determined by the Lie algebra L, so 𝜑(𝑈) = 𝑈 ′. (Recall that ‘⊥’ is with respect to
g.) It follows that 𝜑 maps 𝐿−1 = [𝑥,𝑈] to 𝐿 ′

−1 = [𝑎,𝑈 ′] and 𝐿1 = [𝑦,𝑈] to 𝐿 ′
1 = [𝑏,𝑈 ′]. �

In Proposition 2.16, we will show that if L is simple and the extremal geometry has lines, we can
write x and y as the Lie bracket of two extremal elements in 𝐿−1 and 𝐿1, respectively. We first recall
some geometric facts from [CI06].

Proposition 2.13. Assume that L is simple and that the extremal geometry contains lines (i.e.,F (𝐿) ≠ ∅).
Let 𝑥, 𝑦 ∈ E . Then

(i) If (𝑥, 𝑦) ∈ 𝐸−1, then 𝐸−1 (𝑥) ∩ 𝐸1 (𝑦) ≠ ∅.
(ii) If (𝑥, 𝑦) ∈ 𝐸0, then 𝐸0 (𝑥) ∩ 𝐸2 (𝑦) ≠ ∅.

(iii) If (𝑥, 𝑦) ∈ 𝐸1, then 𝐸−1 (𝑥) ∩ 𝐸2 (𝑦) ≠ ∅.
(iv) If (𝑥, 𝑦) ∈ 𝐸2, then 𝐸−1 (𝑥) ∩ 𝐸1 (𝑦) ≠ ∅, while 𝐸−1 (𝑥) ∩ 𝐸≤0 (𝑦) = ∅.

Proof. By Remark 2.2, L does not contain sandwich elements. By [CI06, Theorem 28], (E ,F) is a
so-called root filtration space, which is either nondegenerate or has an empty set of lines. By our
assumption, the latter case does not occur.

In particular, the statements of [CI06, Lemmas 1 and 4] and [CI07, Lemma 8] hold. Now claim (i)
is [CI06, Lemma 4(ii)] and claim (ii) is [CI07, Lemma 8(ii)]. To show claim (iii), let 𝑧 := [𝑥, 𝑦], so
(𝑧, 𝑥) ∈ 𝐸−1. By (i), we can find some 𝑢 ∈ 𝐸−1 (𝑥) ∩ 𝐸1 (𝑢). We can now invoke [CI06, Lemma 1(v)] on
the pairs (𝑦, 𝑥) and (𝑧, 𝑢) to conclude that 𝑢 ∈ 𝐸−1(𝑥) ∩ 𝐸2(𝑦).

Finally, to show (iv), we first observe that the nondegeneracy of the root filtration space implies that
𝐸−1 (𝑥) ≠ ∅ (this is condition (H) on [CI06, p. 439]) and hence, there exists a line ℓ through 〈𝑥〉. We
now use the defining properties (D) and (F) of a root filtration space (see [CI06, p. 435]) to see that
E1 (𝑦) has nonempty intersection with ℓ, as required. The final statement 𝐸−1(𝑥) ∩ 𝐸≤0(𝑦) = ∅ is just
the defining property (D) itself. �

Lemma 2.14. Let x, y and 𝐿𝑖 be as in Proposition 2.4. Then 𝐸−1(𝑥) ∩ 𝐸1 (𝑦) = 𝐸 ∩ 𝐿−1.

Proof. By Proposition 2.5, we have 𝐸−1(𝑥) = (𝐸∩𝐿≤−1) \𝐿−2. Similarly (e.g., by applying Lemma 2.8;
see Remark 2.9), we have 𝐸1(𝑦) = (𝐸 ∩ 𝐿≥−1) \ 𝐿≥0. We conclude that 𝐸−1(𝑥) ∩ 𝐸1(𝑦) = 𝐸 ∩ 𝐿−1. �

Lemma 2.15. Let x, y and 𝐿𝑖 be as in Proposition 2.4. Consider 𝑒 ∈ 𝐸 ∩ 𝐿1. Then 𝑔𝑒 (𝑥) = 0 for all
𝑥 ∈ 𝐿𝑖 with 𝑖 ≠ −1.
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Proof. By Proposition 2.4(v), we have 𝑔𝑒 (𝑥) = 0 and 𝑔𝑒 (𝑦) = 0. Moreover, for any 𝑙 ∈ 𝐿1, there exists
𝑙 ′ ∈ 𝐿−1 such that 𝑙 = [𝑦, 𝑙 ′] by Proposition 2.4. Since g associates with the Lie bracket, we have

𝑔𝑒 (𝑙) = 𝑔𝑒 ([𝑦, 𝑙
′]) = 𝑔([𝑒, 𝑦], 𝑙 ′) = 0.

Finally, let 𝑙 ∈ 𝐿0. By Proposition 2.4 again, there exist 𝑒′ ∈ 𝐿−1 such that 𝑒 = [𝑦, 𝑒′]. Let 𝜆 ∈ 𝑘 such
that [𝑦, 𝑙] = 𝜆𝑦. Then

𝑔𝑒 (𝑙) = 𝑔([𝑦, 𝑒
′], 𝑙) = −𝑔(𝑒′, [𝑦, 𝑙]) = 𝜆𝑔𝑦 (𝑒

′) = 0. �

Proposition 2.16. Assume that L is simple and that the extremal geometry of L contains lines. Let 𝑥, 𝑦
and 𝐿𝑖 be as in Proposition 2.4. Then there exist 𝑐, 𝑑 ∈ 𝐸 ∩ 𝐿−1 such that [𝑐, 𝑑] = 𝑥. Moreover,

[𝑥, 𝑦] = [𝑐 + 𝑑,−[𝑐, 𝑦] + [𝑑, 𝑦]] ∈ [𝐼−1, 𝐼1],

where 𝐼𝑖 is the subspace of 𝐿𝑖 spanned by 𝐸 ∩ 𝐿𝑖 , for 𝑖 = ±1.

Proof. By Proposition 2.13(iv), there exists an 𝑎 ∈ 𝐸−1(𝑥) ∩ 𝐸1(𝑦). By Lemma 2.14, 𝑎 ∈ 𝐸 ∩ 𝐿−1.
Now, by Proposition 2.13(i), we can find some 𝑏 ∈ 𝐸−1 (𝑥) ∩ 𝐸1(𝑎). By Corollary 2.6, we can write

𝑏 = 𝜆𝑥 + 𝑑 with 𝑑 ∈ 𝐸 ∩ 𝐿−1. Moreover, [𝑎, 𝑑] = [𝑎, 𝑏], and since the pair (𝑎, 𝑏) is special and both a
and b are collinear with x, we must have [𝑎, 𝑏] = 𝜆𝑥 for some 𝜆 ∈ 𝑘×. Now write 𝑐 = 𝜆−1𝑎, and we get
[𝑐, 𝑑] = 𝑥, as required.

Next, observe that 𝑔(𝑐, 𝑦) = 0 and 𝑔(𝑑, 𝑦) = 0 because these pairs are special. Using the Jacobi
identity, we get

[𝑐 + 𝑑,−[𝑐, 𝑦] + [𝑑, 𝑦]] = −2𝑔𝑐 (𝑦)𝑐 + 2𝑔𝑑 (𝑦)𝑑 + [𝑐, [𝑑, 𝑦]] − [𝑑, [𝑐, 𝑦]]

= [𝑐, [𝑑, 𝑦]] + [𝑑, [𝑦, 𝑐]] = −[𝑦, [𝑐, 𝑑]]

= −[𝑦, 𝑥] = [𝑥, 𝑦],

as claimed. �

3. l-exponential automorphisms

In this section, we consider a simple Lie algebra over the field 𝑘 ≠ F2 which is generated by its
pure extremal elements. Such a Lie algebra admits hyperbolic pairs of extremal elements, and by
Proposition 2.4, each such pair gives rise to a 5-grading 𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2. The main goal
of this section is to define automorphisms that behave like exponential automorphisms, with respect
to elements of 𝐿1 (or 𝐿−1). If 𝑙 ∈ 𝐿1, then we call the corresponding automorphisms l-exponential.
We introduce these in Definition 3.12 and prove their existence and uniqueness (up to a one-parameter
choice) in Theorems 3.13 and 3.16.

We first need an auxiliary result; namely, we show in Theorem 3.8 that if the extremal geometry of
L contains lines, then 𝐿1 is spanned by the extremal elements contained in 𝐿1 (and similarly for 𝐿−1).
We will need this condition on the existence of lines in Theorem 3.13, but in Theorem 3.16, we will use
a Galois descent technique that will allow us to get the same existence and uniqueness results under a
much weaker condition – namely, the existence of lines after extending the scalars by a Galois extension.

The existence and uniqueness of these automorphisms will play a key role in Sections 4 and 5.

Assumption 3.1. We assume in this section that L is a simple Lie algebra generated by its set E of
pure extremal elements. We also assume that 𝑘 ≠ F2. Notice that this implies that L does not contain
sandwich elements, and by [CI06, Theorem 28], the graph (E , E2) is connected, so L contains many
hyperbolic pairs.
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Notation 3.2. Let (𝑥, 𝑦) ∈ 𝐸2 be a hyperbolic pair and scale x and y so that 𝑔(𝑥, 𝑦) = 1. Let 𝐿 =
𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2 be the corresponding 5-grading as in Proposition 2.4, with 𝐿−2 = 〈𝑥〉 and
𝐿2 = 〈𝑦〉.

Let 𝐼−1 be the subspace of 𝐿−1 spanned by 𝐸∩𝐿−1 and let 𝐼1 be the subspace of 𝐿1 spanned by 𝐸∩𝐿1.
Notice that the extremal geometry has no lines if and only if 𝐸−1 and 𝐸1 are empty or, equivalently, if
and only if 𝐼−1 = 𝐼1 = 0.

We begin with a lemma that provides us with a rather ‘small’ generating set for L whenever the
extremal geometry has lines.

Lemma 3.3. If 𝐼−1 ≠ ∅, then L is generated by y and 𝐼−1.

Proof. Denote the subalgebra generated by y and 𝐼−1 by I. Since 𝐼−1 ≠ ∅, there are lines in the extremal
geometry. By Proposition 2.16, 𝑥 ∈ [𝐼−1, 𝐼−1] ≤ 𝐼. By Corollary 2.6, all elements in 𝐸−1(𝑥) are
contained in I.

Now observe that if 𝑎, 𝑏 ∈ 𝐼, then also exp(𝑎) (𝑏) = 𝑏 + [𝑎, 𝑏] + 𝑔(𝑎, 𝑏)𝑎 ∈ 𝐼. In particular, the
automorphism 𝜑 introduced in Lemma 2.8 maps I to itself. This implies that also 𝐼1 ∈ 𝐼 and all elements
of 𝐸−1 (𝑦) belong to I.

We can now replace y by any 𝑦′ ∈ 𝐸2 (𝑥) ∩ 𝐸−1 (𝑦); observe that both 𝑦′ and the ‘new’ 𝐼−1 w.r.t. 𝑦′
are contained in I. By repeating this procedure, we see that

all elements of 𝐸2 (𝑥) connected to 𝑦 are contained in 𝐼 . (5)

If the relation 𝐸0 is nonempty, then we can invoke [CM21, Lemma 2.20]. It tells us that E2 (𝑥) is
connected, and we conclude that 𝐸2(𝑥) ⊆ 𝐼. If 𝑧 ∈ 𝐸1 (𝑥), then by Proposition 2.13(iii), we can find an
element 𝑦′ ∈ 𝐸−1 (𝑧) ∩ 𝐸2(𝑥). Again, 𝑦′ ∈ 𝐼, and we can replace y by 𝑦′ to see that also the collinear
point z is contained in I. Thus, 𝐸1 (𝑥) ⊆ 𝐼. Applying 𝜑, we also get 𝐸1 (𝑦) ⊆ 𝐼. The only extremal
elements not considered yet are those in𝐶 := 𝐸0(𝑥) ∩𝐸0(𝑦); notice that𝐶 = 𝐸 ∩ 𝐿0 by Proposition 2.5.
So let 𝑧 ∈ 𝐶 and let ℓ be any line through z not completely contained in C. Now observe that C is a
subspace of the extremal geometry (i.e., if two collinear elements are contained in C, then the whole line
through these elements lies in C). (This follows, for instance, from the fact that 𝐿0 = 𝑁𝐿 (𝑥) ∩ 𝑁𝐿 (𝑦) by
Proposition 2.4). Hence, z is the unique point of ℓ in C. Since we assume |𝑘 | ≥ 3 (see Assumption 3.1),
ℓ contains at least 2 other points, which we already know are contained in I, and we conclude that also
𝑧 ∈ 𝐼. Since L is generated by E, this shows that indeed 𝐼 = 𝐿 in this case.

Assume from now on E0 = ∅. In this case, the extremal geometry is a generalized hexagon, and
the relations E−1, E1 and E2 coincide with the relations ‘distance 1’, ‘distance 2’, and ‘distance 3’,
respectively, in the collinearity graph. (Indeed, we have observed in the proof of Proposition 2.13 that
(E ,F) is a nondegenerate root filtration space, and it has been observed in [Coh12, Example 3.5] that
a nondegenerate root filtration space with E0 = ∅ is necessarily a generalized hexagon.) Recall that in a
generalized hexagon, for any point p and any line ℓ, there is a unique point on ℓ closest to p, called the
projection of p on ℓ.

Let 𝑧 ∈ 𝐸2 (𝑥) be arbitrary; our goal is to show that 𝑧 ∈ 𝐼. If (𝑦, 𝑧) ∈ 𝐸≤−1, then it follows from (5) that
𝑧 ∈ 𝐼. Next, assume that (𝑦, 𝑧) ∈ 𝐸1, so 〈𝑦〉 and 〈𝑧〉 are at distance 2. Recall that the common neighbor
of 〈𝑦〉 and 〈𝑧〉 is 〈[𝑦, 𝑧]〉. By (5), we are done if [𝑦, 𝑧] ∈ 𝐸2(𝑥), so we may assume that [𝑦, 𝑧] ∈ 𝐸1 (𝑥).
Now consider any line through 〈𝑧〉 not containing 〈[𝑦, 𝑧]〉, and let 〈𝑝〉 be the projection of 〈𝑥〉 on that
line, so dist(〈𝑥〉, 〈𝑝〉) = 2; let 𝑞 := [𝑝, 𝑥]. Observe now that

〈𝑥〉, 〈[𝑥, [𝑦, 𝑧]]〉, 〈[𝑦, 𝑧]〉, 〈𝑧〉, 〈𝑝〉, 〈𝑞〉, 〈𝑥〉

forms an ordinary hexagon. Next, let 〈𝑏〉 the projection of 〈𝑦〉 on the line 〈𝑝, 𝑞〉. Notice that 〈𝑏〉 is
different from 〈𝑝〉 and dist(〈𝑦〉, 〈𝑏〉) = 2. If 〈𝑏〉 = 〈𝑞〉, we replace y by another 𝑦′ collinear with y and
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[𝑦, 𝑧], which will then have a different projection on the line 〈𝑝, 𝑞〉, so we may assume without loss of
generality that 〈𝑏〉 ≠ 〈𝑞〉. Let 𝑎 := [𝑏, 𝑦].

〈𝑥〉

〈[𝑥, [𝑦, 𝑧]]〉 〈[𝑦, 𝑧]〉

〈𝑧〉

〈𝑝〉〈𝑞〉

〈𝑦〉

〈𝑎〉
〈𝑏〉

Since all neighbors of 〈𝑥〉 and 〈𝑦〉 are contained in I, we see that 𝑞 ∈ 𝐼 and 𝑎 ∈ 𝐼, and hence also their
common neighbor 〈𝑏〉 belongs to I. Now the line 〈𝑝, 𝑞〉 already contains two points in I (namely 〈𝑏〉
and 〈𝑞〉), and hence also 𝑝 ∈ 𝐼. Finally, since 〈𝑝〉 and 〈[𝑦, 𝑧]〉 belong to I, their common neighbor 〈𝑧〉
belongs to I.

Finally, assume that (𝑦, 𝑧) ∈ 𝐸2, so 𝑧 ∈ 𝐸2(𝑥) ∩ 𝐸2(𝑦). Let 〈𝑦〉, 〈𝑎〉, 〈𝑏〉, 〈𝑧〉 be a path of length 3. If
〈𝑎, 𝑏〉 is not completely contained in 𝐸≤1(𝑥), we can apply the previous paragraph twice to obtain 𝑧 ∈ 𝐼.
So assume2 𝑎, 𝑏 ∈ 𝐸1 (𝑥) (i.e., both a and b are at distance 2 from x). Since a generalized hexagon does
not contain cycles of length ≤ 5, this can only happen if the line 〈𝑎, 𝑏〉 contains a point 〈𝑐〉 collinear
with 〈𝑥〉.

〈𝑥〉 〈𝑐〉

〈𝑏〉

〈𝑎〉

〈𝑧〉

〈𝑦〉

Since Exp(𝑥) acts sharply transitively on the set of points of the line 〈𝑎, 𝑏〉 without 〈𝑐〉 (see Defini-
tion 1.5), we find a unique 𝜓 ∈ Exp(𝑥) such that 𝜓(𝑎) ∈ 〈𝑏〉. Let 𝑧′ := 𝜓(𝑦), and notice that 𝜓 fixes x.
Since 𝑥, 𝑦 ∈ 𝐼, also 𝑧′ ∈ 𝐼. Since 𝜓 fixes x, we get 𝑧′ ∈ 𝐸2(𝑥). Now 〈𝑏〉 = 𝜓(〈𝑎〉) is a neighbor of both
〈𝑧〉 and of 〈𝑧′〉, and thus, 𝑧′ ∈ 𝐸≤1 (𝑧). Since 𝑧′ ∈ 𝐼, the previous paragraph now implies 𝑧 ∈ 𝐼.

We have now shown that 𝐸2 (𝑥) ⊆ 𝐼, and just as in the case where E0 ≠ ∅, we conclude that 𝐼 = 𝐿. �

Corollary 3.4. Suppose 𝐼−1 ≠ ∅. If a nontrivial subspace 𝐼 ≤ 𝐿 satisfies [𝐼, 𝑦] ≤ 𝐼 and [𝐼, 𝐼−1] ≤ 𝐼,
then 𝐼 = 𝐿.

Proof. By Lemma 3.3 and the Jacobi identity, I is an ideal of L. Since L is simple, this implies 𝐼 = 𝐿. �

Another ingredient that we will need is the fact from [CI07] that if E0 ≠ ∅, then each symplectic pair
of points induces a subgeometry of the extremal geometry, known as a symplecton. We state the version
from [CM21, Proposition 2.12]. Recall that a polar space is a partial linear space such that for each
point p and each line ℓ, the point p is collinear with either one or all points of ℓ. A polar space is called
nondegenerate if none of its points is collinear with all other points.

Proposition 3.5 [CM21, Proposition 2.12 and Lemma 2.18]. Assume that the extremal geometry con-
tains lines and that E0 ≠ ∅. Then the extremal geometry contains a collection S of subspaces such that
every pair of points 𝑥, 𝑦 with (𝑥, 𝑦) ∈ E0 is contained in a unique element 𝑆 ∈ S .

Moreover, for each 𝑆 ∈ S we have

(i) S is a nondegenerate polar space (of rank ≥ 2, i.e., containing lines).
(ii) For all points 𝑥, 𝑦 ∈ 𝑆, we have (𝑥, 𝑦) ∈ E≤0.

2In fact, we may assume that this is true for all possible paths of length 3 from 〈𝑦〉 to 〈𝑧 〉, but this does not seem to lead to a
simpler argument.
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(iii) If a point x is collinear to two non-collinear points of S, then 𝑥 ∈ 𝑆.
(iv) For each point x, the set of points in E≤−1(𝑥) ∩ 𝑆 is either empty or contains a line.
(v) If x is a point with E2(𝑥) ∩ 𝑆 ≠ ∅, then 𝑆 ∩ E0 (𝑥) contains a unique point.

The elements of S are called symplecta.

We will need the following property of polar spaces.

Lemma 3.6. Let S be a nondegenerate polar space. Let x and y be non-collinear points of S. Then S is
generated (as a point-line geometry) by x, y and 𝑥⊥ ∩ 𝑦⊥, where 𝑥⊥ denotes the set of points collinear
with x.

Proof. Let X be the subspace generated by x, y and 𝑥⊥ ∩ 𝑦⊥. Since every line through x contains a point
collinear to y, we have 𝑥⊥ ⊆ 𝑋 , and similarly 𝑦⊥ ⊆ 𝑋 . Consider 𝑧 ∈ 𝑋 arbitrary. Let ℓ be any line through
x. If 𝑥⊥ ∩ ℓ ≠ 𝑦⊥ ∩ ℓ, then ℓ ⊆ 𝑋 . So we may assume that ℓ contains a unique point 𝑎 ∈ 𝑥⊥ ∩ 𝑦⊥. By
the nondegeneracy, we find 𝑏 ∈ 𝑥⊥ ∩ 𝑦⊥ such that a and b are not collinear. Now ℓ and 𝑏𝑦 are opposite
lines, and hence, there exists a point c on ℓ distinct from a which is collinear to a point of 𝑏𝑦 distinct
from y and b. Hence, c lies on a line m such that 𝑚 ∩ 𝑦⊥ ∈ 𝑏𝑦 \ {𝑏, 𝑦} and thus, 𝑚 ∩ 𝑦⊥ ≠ 𝑚 ∩ 𝑥⊥. As
before, 𝑚 ⊆ 𝑋 . In particular, 𝑐 ∈ 𝑋 , so together with 𝑎 ∈ 𝑋 we obtain 𝑧 ∈ 𝑋 . �

The next lemma gives a more precise description of the subspace 𝐿𝑆 of L spanned by the elements
in S.

Lemma 3.7. Let S be a symplecton containing x. Then

𝐿𝑆 = 〈𝑥〉 ⊕ 〈{〈𝑧〉 ∈ 𝑆 | 𝑧 ∈ 𝐿−1}〉 ⊕ 〈{〈𝑧〉 ∈ 𝑆 | 𝑧 ∈ 𝐿0}〉.

Moreover, 〈{〈𝑧〉 ∈ 𝑆 | 𝑧 ∈ 𝐿0}〉 is 1-dimensional.

Proof. By Proposition 3.5(v), 𝑆∩E0 (𝑦) consists of a single point 〈𝑧〉, and since 𝑆 ⊆ E≤0 (𝑥), this implies
𝑧 ∈ 𝐿0. By Lemma 3.6, 𝐿𝑆 is spanned by x, z, and all points 〈𝑎〉 collinear to both 〈𝑥〉 and 〈𝑧〉. For such
a point 〈𝑎〉, we have of course 𝑎 ∈ 𝐸−1(𝑥). Now 𝑧 ∈ 𝐸−1(𝑎) ∩ 𝐸0 (𝑦), so by Proposition 2.13(iv), we
have (𝑎, 𝑦) ∉ 𝐸2. Hence, 𝑎 ∈ 𝐸−1(𝑥) ∩ 𝐸≤1 (𝑦) = 𝐿−1 by Lemma 2.14. �

We are now ready to prove the first theorem of this section.

Theorem 3.8. Assume that L is a simple Lie algebra over 𝑘 ≠ F2 generated by its pure extremal
elements, and assume that the set of lines F is nonempty. Consider 𝑥, 𝑦 ∈ 𝐸 with 𝑔(𝑥, 𝑦) = 1 and let
𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2 be the associated 5-grading. Then both 𝐿−1 and 𝐿1 are linearly spanned
by the extremal elements contained in it.

Proof. As before, let 𝐼−1 and 𝐼1 be the subspaces of L linearly spanned by the extremal elements
contained in 𝐿−1 and 𝐿1, respectively. Let

𝐼 = 〈𝑥〉 ⊕ 𝐼−1 ⊕ [𝐼−1, 𝐼1] ⊕ 𝐼1 ⊕ 〈𝑦〉.

We will use Corollary 3.4 to show that 𝐼 = 𝐿.
We first show that [𝐼, 𝑦] ≤ 𝐼. By Proposition 2.16, we know that [𝑥, 𝑦] ∈ [𝐼−1, 𝐼1]. Next, if

𝑎 ∈ 𝐸 ∩ 𝐿−1, then 𝑎 ∈ 𝐸1 (𝑦), and hence, [𝑎, 𝑦] ∈ 𝐼1. Since [𝐿≥0, 𝑦] ≤ 𝐿2 = 〈𝑦〉, the claim [𝐼, 𝑦] ≤ 𝐼
is now clear.

It remains to show that [𝐼, 𝐼−1] ≤ 𝐼. Obviously, [〈𝑥〉 ⊕ 𝐼−1 ⊕ 𝐼1, 𝐼−1] ≤ 𝐼. Similarly as before,
[〈𝑦〉, 𝐼−1] ≤ 𝐼1 ≤ 𝐼, so the only case left to prove is

[[𝐼−1, 𝐼1], 𝐼−1] ≤ 𝐼−1.

So consider arbitrary extremal elements 𝑎, 𝑏 ∈ 𝐸 ∩ 𝐿−1 and 𝑐 ∈ 𝐸 ∩ 𝐿1; our goal is to show that

[[𝑎, 𝑐], 𝑏] ∈ 𝐼−1. (6)
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Observe that [𝑎, 𝑏] ∈ 𝐿−2 = 〈𝑥〉, so by the Jacobi identity and the fact that [𝑥, 𝑐] is contained in 𝐸∩𝐿−1,
we have

[[𝑎, 𝑐], 𝑏] ∈ 𝐼−1 ⇐⇒ [[𝑏, 𝑐], 𝑎] ∈ 𝐼−1.

Also observe that 𝑐 ∈ 𝐸≤0(𝑎) implies [𝑎, 𝑐] = 0 and that 𝑐 ∈ 𝐸≤0(𝑏) implies [𝑏, 𝑐] = 0. Hence, we
may assume from now on that 𝑐 ∈ 𝐸≥1 (𝑎) ∩ 𝐸≥1(𝑏).

Since a is extremal, [[𝑎, 𝑐], 𝑎] ∈ 〈𝑎〉 is again extremal, so (6) obviously holds if (𝑎, 𝑏) ∈ 𝐸−2. If
(𝑎, 𝑏) ∈ 𝐸−1, then by [CM21, Lemma 6.3], 𝐽 := 〈𝑎, 𝑏〉 is an inner ideal (i.e., [𝐽, [𝐽, 𝐿]] ≤ 𝐽); in
particular, [𝑏, [𝑎, 𝑐]] ∈ 𝐽 ≤ 𝐼−1. Next, if (𝑎, 𝑏) ∈ 𝐸0, then a and b are contained in a symplecton S.
The subspace 𝐿𝑆 spanned by all elements of S is an inner ideal by [CM21, Lemma 6.5], and hence,
[𝑏, [𝑎, 𝑐]] ∈ 𝐿𝑆 . Since [𝑏, [𝑎, 𝑐]] ∈ 𝐿−1, Lemma 3.7 now implies that [𝑏, [𝑎, 𝑐]] ∈ 〈{〈𝑧〉 ∈ 𝑆 | 𝑧 ∈

𝐿−1}〉 ≤ 𝐼−1.
Now notice that (𝑎, 𝑏) ∈ 𝐸2 cannot occur because both a and b are collinear to x, so we can assume

from now on that (𝑎, 𝑏) ∈ 𝐸1. In particular, [𝑎, 𝑏] ∈ 〈𝑥〉 \ {0}.
If 𝑐 ∈ 𝐸1(𝑎), then [𝑎, 𝑐] ∈ 𝐸 , and since the extremal form g is associative, we have 𝑔(𝑏, [𝑎, 𝑐]) =

𝑔([𝑏, 𝑎], 𝑐) = 0, since 𝑐 ∈ 𝐸1(𝑥). Hence, [𝑎, 𝑐] ∈ 𝐸≤1(𝑏), so either [[𝑎, 𝑐], 𝑏] ∈ 𝐸 or [[𝑎, 𝑐], 𝑏] = 0.
In either case, we obtain [[𝑎, 𝑐], 𝑏] ∈ 𝐼−1. The case 𝑐 ∈ 𝐸1(𝑏) is similar.

The only case left to consider is 𝑎 ∈ 𝐸1(𝑏) and 𝑐 ∈ 𝐸2 (𝑎) ∩𝐸2 (𝑏), and this case requires some more
effort. We have 𝑔(𝑎, 𝑏) = 0, and by rescaling, we may assume that 𝑔(𝑎, 𝑐) = 𝑔(𝑏, 𝑐) = 1, and we also
have 𝑔(𝑏, [𝑎, 𝑐]) = 0 as before.

Let 𝜆, 𝜇 ∈ 𝑘 be arbitrary nonzero elements such that

𝜇(𝜆 − 1) = 1, (7)

which exist because 𝑘 ≠ F2, and consider the extremal element

𝑑 := exp(𝜇𝑐) exp(𝜆𝑏) exp(𝑐) (𝑎).

Then

𝑑 = exp(𝜇𝑐) exp(𝜆𝑏)
(
𝑎 + [𝑐, 𝑎] + 𝑐

)
= exp(𝜇𝑐)

(
𝜆[𝑏, 𝑎]︸��︷︷��︸
∈𝐿−2

+ 𝑎 + 𝜆[𝑏, [𝑐, 𝑎]] + 𝜆2𝑏︸����������������������︷︷����������������������︸
∈𝐿−1

+ [𝑐, 𝑎] + 𝜆[𝑏, 𝑐]︸�������������︷︷�������������︸
∈𝐿0

+ 𝑐︸︷︷︸
∈𝐿1

)
.

We claim that 𝑑 ∈ 𝐿≤−1. This could be checked by a direct computation, but it is easier to reverse the
process, by starting from an arbitrary extremal element of the form

𝑒 := 𝜆[𝑏, 𝑎] + 𝑧 ∈ 〈𝑥〉 + 𝐿−1,

compute exp(−𝜇𝑐) (𝑒), and verify that with the correct choice of z, this is equal to exp(−𝜇𝑐) (𝑑). We get

exp(−𝜇𝑐) (𝑒) = 𝜆[𝑏, 𝑎]︸��︷︷��︸
∈𝐿−2

+ 𝑧 − 𝜆𝜇[𝑐, [𝑏, 𝑎]]︸���������������︷︷���������������︸
∈𝐿−1

− 𝜇[𝑐, 𝑧]︸�︷︷�︸
∈𝐿0

+ 𝜇2𝑔(𝑐, 𝑧)𝑐︸������︷︷������︸
∈𝐿1

.

Comparing the 𝐿−1-components, we have no other choice than setting

𝑧 := 𝑎 + 𝜆2𝑏 + 𝜆[𝑏, [𝑐, 𝑎]] + 𝜆𝜇[𝑐, [𝑏, 𝑎]] . (8)
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Now, using the Premet identity (3) (see Definition 1.2) and the fact that 𝑔(𝑐, [𝑏, 𝑎]) = 0, we get

[𝑐, 𝑧] = [𝑐, 𝑎] + 𝜆2 [𝑐, 𝑏] + 𝜆[𝑐, [𝑏, [𝑐, 𝑎]]] + 𝜆𝜇[𝑐, [𝑐, [𝑏, 𝑎]]]

= [𝑐, 𝑎] + 𝜆2 [𝑐, 𝑏] − 𝜆([𝑐, 𝑏] + [𝑐, 𝑎])

= (1 − 𝜆) [𝑐, 𝑎] + 𝜆(𝜆 − 1) [𝑐, 𝑏],

and hence by (7), −𝜇[𝑐, 𝑧] = [𝑐, 𝑎] − 𝜆[𝑐, 𝑏], so the 𝐿0-components coincide. Finally,

𝑔(𝑐, 𝑧) = 𝑔(𝑐, 𝑎) + 𝜆2𝑔(𝑐, 𝑏) + 𝜆𝑔(𝑐, [𝑏, [𝑐, 𝑎]]) + 𝜆𝜇𝑔(𝑐, [𝑐, [𝑏, 𝑎]])

= 1 + 𝜆2 − 𝜆𝑔([𝑐, [𝑐, 𝑎]], 𝑏)

= 1 + 𝜆2 − 2𝜆𝑔(𝑐, 𝑎)𝑔(𝑐, 𝑏) = 1 + 𝜆2 − 2𝜆 = (1 − 𝜆)2,

so again by (7), 𝜇2𝑔(𝑐, 𝑧) = 1, and hence also the 𝐿1-components coincide. Therefore, 𝑒 = 𝑑, and we
conclude that the element 𝑒 = 𝜆[𝑏, 𝑎] + 𝑧 ∈ 〈𝑥〉 + 𝐿−1 is an extremal element.

If 𝑧 = 0, then by (8), [𝑏, [𝑐, 𝑎]] can be written as the sum of 3 extremal elements contained in 𝐿−1.
Indeed, obviously 𝑎, 𝑏 ∈ 𝐸 , but also [𝑐, [𝑏, 𝑎]] ∈ 𝐸 since 〈𝑐〉 and 〈𝑥〉 = 〈[𝑏, 𝑎]〉 form a special pair.

If 𝑧 ≠ 0, then 〈𝑒, 𝑥〉 is a line of the extremal geometry. Since 𝑧 ∈ 〈𝑒, 𝑥〉, it is contained in E. So by
(8) again, the element [𝑏, [𝑐, 𝑎]] can be written as the sum of 4 extremal elements contained in 𝐿−1.

This shows that [𝑏, [𝑐, 𝑎]] ∈ 𝐼−1 in all possible cases. �

Now we will work toward showing the so-called algebraicity of the Lie algebra, using the previous
theorem. We will give a precise definition of this property in Definition 3.15 below, but loosely speaking,
it means that for any element in 𝐿−1, there exist automorphisms depending on this element which behave
nicely with respect to the 5-grading. Actually, if the characteristic is not 2, 3 or 5, this property is easily
shown (recall the discussion following Definition 1.10), so it is not surprising that we sometimes have
to handle the small characteristic cases a bit more carefully.

In the next two lemmas, we show that as soon as an extremal element has a certain form, it is
contained in the image of a specific element under Exp(𝑥). We will use this later to show the uniqueness
of certain automorphisms.

Lemma 3.9. Assume char(𝑘) ≠ 3. Let 𝑙 = 𝑙−2 + 𝑙−1 + 𝑒 be an extremal element, with 𝑙𝑖 ∈ 𝐿𝑖 and
𝑒 ∈ 𝐸 ∩ 𝐿1. Then 𝑙−2 = 0 and 𝑙−1 ∈ 〈[𝑥, 𝑒]〉. In particular, 𝑙 = exp(𝜆𝑥) (𝑒) = 𝑒 +𝜆[𝑥, 𝑒] for some 𝜆 ∈ 𝑘 .

Proof. By Proposition 2.4(ii), we have

[𝑙, [𝑙, [𝑥, 𝑦]]] = [𝑙, 2𝑙−2 + 𝑙−1 − 𝑒] = −3[𝑙−2, 𝑒] − 2[𝑙−1, 𝑒] ∈ 𝐿−1 + 𝐿0.

However, since l is extremal, we have [𝑙, [𝑙, [𝑥, 𝑦]]] ∈ 〈𝑙〉. By the previous identity, this element must
have trivial 𝐿1-component, but since 𝑒 ≠ 0 by assumption, this implies that [𝑙, [𝑙, [𝑥, 𝑦]]] = 0, so

3[𝑙−2, 𝑒] = 2[𝑙−1, 𝑒] = 0.

Since char(𝑘) ≠ 3, this implies [𝑙−2, 𝑒] = 0, and hence, 𝑙−2 = 0 by Proposition 2.4(iii). If 𝑙−1 = 0, then
there is nothing to show, so assume 𝑙−1 ≠ 0. Then

𝑙 = 𝑙−1 + 𝑒 ∈ 𝐿−1 + 𝐿1, 𝑙−1 ≠ 0, 𝑒 ≠ 0.

By Proposition 2.5, we have 𝑙 ∈ 𝐸1(𝑦), and thus, [𝑙−1, 𝑦] = [𝑙, 𝑦] ∈ 𝐸 . By Proposition 2.5 again,
[𝑙−1, 𝑦] ∈ 𝐸1(𝑥), and thus, 𝑙−1 = [𝑥, [𝑙−1, 𝑦]] ∈ 𝐸 . Since 𝑙−1, e and 𝑙 = 𝑙−1 + 𝑒 are contained in E,
Proposition 1.8 implies that (𝑙−1, 𝑒) ∈ 𝐸−1. Hence, 〈𝑙−1〉 is the common neighbor of the special pair
(〈𝑥〉, 〈𝑒〉), and thus, 𝑙−1 ∈ 〈[𝑥, 𝑒]〉. �
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Lemma 3.10. Let 𝑙 = 𝑙−2 + 𝑙−1 + 𝑙0 + 𝑦 ∈ 𝐸 be an extremal element, with 𝑙𝑖 ∈ 𝐿𝑖 . Then 𝑙−1 = 0 and
𝑙 = exp(𝜆𝑥) (𝑦) for some 𝜆 ∈ 𝑘 .

Proof. Let 𝜆, 𝜇 ∈ 𝑘 be such that 𝑙−2 = 𝜆𝑥 and [𝑙0, 𝑥] = 𝜇𝑥. By Proposition 2.4(ii), we have

[𝑙, [𝑙, 𝑥]] = [𝑙, 𝜇𝑥 + [𝑦, 𝑥]]

= 𝜇[𝑙, 𝑥] +
[
𝜆𝑥 + 𝑙−1 + 𝑙0 + 𝑦, [𝑦, 𝑥]

]
= (𝜇2𝑥 + 𝜇[𝑦, 𝑥]) + (−2𝜆𝑥 − 𝑙−1 + 2𝑦).

Since l is extremal and 𝑔(𝑙, 𝑥) = 𝑔(𝑦, 𝑥) = 1 by Proposition 2.4(v), we get

𝜇2 = 4𝜆, 3𝑙−1 = 0, 𝜇[𝑦, 𝑥] = 2𝑙0. (9)

If char(𝑘) is not 2 or 3, then this already implies that 𝑙 = exp(− 1
2 𝜇𝑥) (𝑦).

Assume now char(𝑘) = 3. We claim that also in this case, 𝑙−1 = 0; it then follows again that
𝑙 = exp(− 1

2 𝜇𝑥) (𝑦). To show the claim, suppose that 𝑙−1 ≠ 0 and let 𝑧 := exp( 1
2 𝜇𝑥) (𝑙). Then z is

an extremal element, and we compute that 𝑧 = 𝑙−1 + 𝑦. We apply the same technique as in the last
paragraph of the proof of Lemma 3.9: By Proposition 2.5, 𝑧 ∈ 𝐸1(𝑦), and thus, [𝑙−1, 𝑦] = [𝑧, 𝑦] ∈ 𝐸 .
By Proposition 2.5 again, [𝑙−1, 𝑦] ∈ 𝐸1(𝑥), and thus, 𝑙−1 = [𝑥, [𝑙−1, 𝑦]] ∈ 𝐸 . Since 𝑙−1, y and 𝑧 = 𝑙−1 + 𝑦
are contained in E, Proposition 1.8 implies that (𝑙−1, 𝑦) ∈ 𝐸−1, contradicting Proposition 2.5.

Assume, finally, that char(𝑘) = 2. By (9), we have 𝑙−1 = 0, so 𝑙 ∈ 𝐿−2 + 𝐿0 + 𝐿2. By Proposition 2.16,
there exist 𝑐, 𝑑 ∈ 𝐸 ∩ 𝐿−1 such that [𝑐, 𝑑] = 𝑥. By Lemma 2.15, we get for any 𝑒 ∈ 𝐸 ∩ 𝐿−1 that
𝑔(𝑙, 𝑒) = 0, and since [𝑦, 𝑒] ≠ 0, this implies that the pair (𝑙, 𝑒) is special; in particular, [𝑙, 𝑒] =
[𝑙0, 𝑒] + [𝑦, 𝑒] ∈ 𝐿−1 + 𝐿1 is extremal. By Lemma 3.9 applied on [𝑙, 𝑐] and [𝑙, 𝑑], we find 𝜆, 𝜇 ∈ 𝑘 such
that [𝑙0, 𝑐] = 𝜆[𝑥, [𝑦, 𝑐]] = 𝜆𝑐 and [𝑙0, 𝑑] = 𝜇[𝑥, [𝑦, 𝑑]] = 𝜇𝑑. Let 𝛼 := exp(𝜆𝑥). Then

𝛼([𝑙, 𝑐]) = [𝑦, 𝑐], 𝛼([𝑙, 𝑑]) = [𝑦, 𝑑] + (𝜆 + 𝜇)𝑑.

By the Premet identity (2), we have

[[𝑙, 𝑐], [𝑙, 𝑑]] = 𝑔𝑙 ([𝑐, 𝑑])𝑙 + 𝑔𝑙 (𝑑) [𝑙, 𝑐] + 𝑔𝑙 (𝑐) [𝑙, 𝑑] = 𝑙 and
[[𝑦, 𝑐], [𝑦, 𝑑]] = 𝑔𝑦 ([𝑐, 𝑑])𝑦 + 𝑔𝑦 (𝑑) [𝑙, 𝑐] + 𝑔𝑦 (𝑐) [𝑙, 𝑑] = 𝑦.

Hence,

𝛼(𝑙) = [𝛼([𝑙, 𝑐]), 𝛼([𝑙, 𝑑])] = [[𝑦, 𝑐], [𝑦, 𝑑] + (𝜆 + 𝜇)𝑑]

= 𝑦 + (𝜆 + 𝜇) [[𝑦, 𝑐], 𝑑] .

Now note that by the Premet identity (3), we have

[𝑦, [𝑑, [𝑦, 𝑐]]] = 𝑔𝑦 ([𝑑, 𝑐])𝑦 + 𝑔𝑦 (𝑐) [𝑦, 𝑑] + 𝑔𝑦 (𝑑) [𝑦, 𝑐] = 𝑦,

and hence,

[𝛼(𝑙), 𝑦] = (𝜆 + 𝜇)𝑦,

but then since char(𝑘) = 2 and 𝛼(𝑙) is an extremal element, we get

0 = [𝛼(𝑙), [𝛼(𝑙), 𝑦]] = (𝜆 + 𝜇)2𝑦,

so 𝜆 = 𝜇 and therefore 𝛼(𝑙) = 𝑦 and so 𝑙 = 𝛼(𝑦) (since 𝛼2 = 1). �
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Definition 3.11. Assume that the extremal geometry of L has lines. We set

𝐸+(𝑥, 𝑦) = 〈exp(𝑒) | 𝑒 ∈ 𝐸 ∩ 𝐿≥1〉 ≤ Aut(𝐿),
𝐸−(𝑥, 𝑦) = 〈exp(𝑒) | 𝑒 ∈ 𝐸 ∩ 𝐿≤−1〉 ≤ Aut(𝐿).

It is important to point out that these groups are generated by elements of the form exp(𝑒) and that
an arbitrary element of 𝐸±(𝑥, 𝑦) cannot be written as a single exp(𝑒) in general. In Definition 3.15
below, we will give a different definition of the groups 𝐸±(𝑥, 𝑦) that also makes sense when the extremal
geometry has no lines.

The following theorem is the key tool in our paper. It allows us to deal with exponential maps even
in characteristic 2 and 3.

Definition 3.12. Let 𝛼 ∈ Aut(𝐿) and 𝑙 ∈ 𝐿1. We say that 𝛼 is an l-exponential automorphism if there
exist (necessarily unique) maps 𝑞𝛼, 𝑛𝛼, 𝑣𝛼 : 𝐿 → 𝐿 with

𝑞𝛼 (𝐿𝑖) ⊆ 𝐿𝑖+2, 𝑛𝛼 (𝐿𝑖) ⊆ 𝐿𝑖+3, 𝑣𝛼 (𝐿𝑖) ⊆ 𝐿𝑖+4, (10)

for all 𝑖 ∈ [−2, 2], such that

𝛼(𝑚) = 𝑚 + [𝑙, 𝑚] + 𝑞𝛼 (𝑚) + 𝑛𝛼 (𝑚) + 𝑣𝛼 (𝑚) (11)

for all 𝑚 ∈ 𝐿.

Theorem 3.13. Assume that L is a simple Lie algebra over 𝑘 ≠ F2 generated by its pure extremal
elements, and assume that F ≠ ∅. Consider a hyperbolic pair 𝑥, 𝑦 ∈ 𝐸 with 𝑔(𝑥, 𝑦) = 1 and let
𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2 be the associated 5-grading. Then

(i) exp(𝑎) exp(𝑏) = exp([𝑎, 𝑏]) exp(𝑏) exp(𝑎) for all 𝑎, 𝑏 ∈ 𝐸 ∩ 𝐿≥1.
(ii) exp(𝑎) exp(𝑏) = exp(𝑎 + 𝑏) for all 𝑎 ∈ 𝐸 ∩ 𝐿≥1 and 𝑏 ∈ 𝐿2.

(iii) [𝐸+(𝑥, 𝑦), 𝐸+(𝑥, 𝑦)] = Exp(𝑦) and [𝐸+(𝑥, 𝑦),Exp(𝑦)] = 1.

Assume now that 𝑙 ∈ 𝐿1.

(iv) Write 𝑙 = 𝑒1 + · · · + 𝑒𝑛 with 𝑒𝑖 ∈ 𝐸 ∩ 𝐿1. Then

𝛼 := exp(𝑒1) · · · exp(𝑒𝑛) ∈ 𝐸+(𝑥, 𝑦)

is an l-exponential automorphism.
(v) If 𝛼 is as in (iv) and 𝛽 is another l-exponential automorphism, then 𝛽 = exp(𝑧)𝛼 for a unique

𝑧 ∈ 𝐿2. In particular, 𝛽 ∈ 𝐸+(𝑥, 𝑦).
(vi) Let 𝛼 be any l-exponential automorphism. Then there exist 𝑒1, . . . , 𝑒𝑛 ∈ 𝐸 ∩ 𝐿1 such that 𝑙 =

𝑒1 + · · · + 𝑒𝑛 and 𝛼 = exp(𝑒1) · · · exp(𝑒𝑛). Moreover,

𝐸+(𝑥, 𝑦) =
{
𝛼 ∈ Aut(𝐿) | 𝛼 is 𝑚-exponential for some 𝑚 ∈ 𝐿1

}
.

(vii) Let 𝛼 be an l-exponential automorphism, with maps 𝑞𝛼, 𝑛𝛼, 𝑣𝛼 : 𝐿 → 𝐿. Then for each 𝜆 ∈ 𝑘 , the
map 𝛼𝜆 defined by

𝛼𝜆 (𝑚) = 𝑚 + 𝜆[𝑙, 𝑚] + 𝜆2𝑞𝛼 (𝑚) + 𝜆
3𝑛𝛼 (𝑚) + 𝜆

4𝑣𝛼 (𝑚)

for all 𝑚 ∈ 𝐿, is a (𝜆𝑙)-exponential automorphism. In particular, 𝛼𝜆 ∈ 𝐸+(𝑥, 𝑦).
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(viii) If 𝛼 is an l-exponential automorphism and 𝛽 is an 𝑙 ′-exponential automorphism, then 𝛼𝛽 is an
(𝑙 + 𝑙 ′)-exponential automorphism.

(ix) If char(𝑘) ≠ 2, then there is a unique l-exponential automorphism 𝛼 with 𝑞𝛼 (𝑚) = 1
2 [𝑙, [𝑙, 𝑚]] for

all 𝑚 ∈ 𝐿. We denote this automorphism by 𝑒+(𝑙). Its inverse is 𝑒+(−𝑙).

Proof.

(i) Let 𝑎, 𝑏 ∈ 𝐸 ∩ 𝐿≥1; notice that 𝑔(𝑎, 𝑏) = 0. Since L is generated by 𝐿≥−1, it suffices to check that
both sides coincide when applied on an element 𝑙 ∈ 𝐿≥−1. We have

exp(𝑎) exp(𝑏) (𝑙) = exp(𝑎)
(
𝑙 + [𝑏, 𝑙] + 𝑔(𝑏, 𝑙)𝑏

)
= 𝑙 + [𝑎 + 𝑏, 𝑙] + [𝑎, [𝑏, 𝑙]]

+ 𝑔([𝑎, 𝑏], 𝑙)𝑎 + 𝑔(𝑏, 𝑙) [𝑎, 𝑏] + 𝑔(𝑎, 𝑙)𝑎 + 𝑔(𝑏, 𝑙)𝑏. (12)

Using the Premet identity (3), we have

[[𝑎, 𝑏], [𝑎 + 𝑏, 𝑙]] = [[𝑎, 𝑏], [𝑎, 𝑙]] − [[𝑏, 𝑎], [𝑏, 𝑙]]

= 𝑔𝑎 ([𝑏, 𝑙])𝑎 + 𝑔𝑎 (𝑙) [𝑎, 𝑏] − 𝑔𝑎 (𝑏) [𝑎, 𝑙]

− 𝑔𝑏 ([𝑎, 𝑙])𝑏 − 𝑔𝑏 (𝑙) [𝑏, 𝑎] + 𝑔𝑏 (𝑎) [𝑏, 𝑙]

= 𝑔([𝑎, 𝑏], 𝑙)𝑎 + 𝑔([𝑎, 𝑏], 𝑙)𝑏 + (𝑔(𝑎, 𝑙) + 𝑔(𝑏, 𝑙)) [𝑎, 𝑏] . (13)

Since [𝑎, 𝑏] ∈ 𝐿2, the automorphism exp([𝑎, 𝑏]) fixes all elements of 𝐿≥1. Hence, by (12) with
the roles of a and b reversed, (13) and the Jacobi identity, we see that

exp(𝑎) exp(𝑏) (𝑙) = exp([𝑎, 𝑏]) exp(𝑏) exp(𝑎) (𝑙),

as claimed.
(ii) We again check that both sides coincide when applied on an element 𝑙 ∈ 𝐿≥−1. Comparing (12)

with the expression for exp(𝑎 + 𝑏) (𝑙) and using the fact that [𝑎, 𝑏] = 0 and that b is a multiple of y,
we see that this is equivalent with

[𝑎, [𝑦, 𝑙]] = 𝑔(𝑎, 𝑙)𝑦 + 𝑔(𝑦, 𝑙)𝑎.

Now both sides are equal to 0 if 𝑙 ∈ 𝐿≥0. Furthermore, if 𝑙 ∈ 𝐿−2, then we can write 𝑙 = 𝜆𝑥
with 𝜆 ∈ 𝑘 to see that both sides are equal to 𝜆𝑎, and if 𝑙 ∈ 𝐿−1, then the equality follows from
Lemma 2.7.

(iii) By (i), we already know that [𝐸+(𝑥, 𝑦), 𝐸+(𝑥, 𝑦)] ≤ Exp(𝑦). By Proposition 2.16, the element y
can be written as 𝑦 = [𝑐, 𝑑] for certain 𝑐, 𝑑 ∈ 𝐸 ∩ 𝐿1. By (i) again, we see that exp([𝑐, 𝑑]) ∈

[𝐸+(𝑥, 𝑦), 𝐸+(𝑥, 𝑦)], and by rescaling, we get Exp(𝑦) ≤ [𝐸+(𝑥, 𝑦), 𝐸+(𝑥, 𝑦)], as required. The
second statement follows immediately from (i) since [𝑎, 𝑏] = 0 if 𝑏 ∈ 𝐿2.

(iv) Let 𝑙 ∈ 𝐿1. By Theorem 3.8, we can write l as the sum of a finite number of extremal elements in 𝐿1:

𝑙 = 𝑒1 + · · · + 𝑒𝑛 with 𝑒𝑖 ∈ 𝐸 ∩ 𝐿1.

We will prove, by induction on n, that the automorphism

𝛼 := exp(𝑒1) · · · exp(𝑒𝑛) ∈ 𝐸+(𝑥, 𝑦)

satisfies (10) and (11) for the appropriate choices of maps 𝑞𝛼, 𝑛𝛼 and 𝑣𝛼. (Notice that 𝛼 depends
on the choice of the elements 𝑒1, . . . , 𝑒𝑛 as well as on their ordering.)
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If 𝑛 = 1, then we set

𝑞𝛼 (𝑚) := 𝑔𝑙 (𝑚)𝑙, 𝑛𝛼 (𝑚) := 0, 𝑣𝛼 (𝑚) := 0,

for all 𝑚 ∈ 𝐿. By Definition 1.5, we see that (11) is satisfied. By Lemma 2.15, 𝑞𝛼 (𝐿𝑖) = 0 unless
𝑖 = −1, so (10) holds as well.

Now assume 𝑛 > 1, let 𝑒 := 𝑒1 and let 𝑙 ′ = 𝑒2+· · ·+𝑒𝑛, so 𝑙 = 𝑒+𝑙 ′. Let𝛼′ := exp(𝑒2) · · · exp(𝑒𝑛),
so 𝛼 := exp(𝑒)𝛼′. By the induction hypothesis, there exist maps 𝑞𝛼′ , 𝑛𝛼′ and 𝑣𝛼′ satisfying (10)
and (11). We set

𝑒𝑞𝛼 (𝑚) := 𝑞𝛼′ (𝑚) + 𝑔𝑒 (𝑚)𝑒 + [𝑒, [𝑙 ′, 𝑚]], (14)
𝑛𝛼 (𝑚) := 𝑛𝛼′ (𝑚) + 𝑔𝑒 ([𝑙

′, 𝑚])𝑒 + [𝑒, 𝑞𝛼′ (𝑚)], (15)
𝑣𝛼 (𝑚) := 𝑣𝛼′ (𝑚) + [𝑒, 𝑛𝛼′ (𝑚)], (16)

for all 𝑚 ∈ 𝐿. By Lemma 2.15 and the fact that (10) holds for 𝛼′, we get

[𝑒, 𝑣𝛼′ (𝑚)] ∈ 𝐿≥(1+4−2) = 𝐿≥3 = 0 and
𝑔𝑒 (𝑞𝛼′ (𝑚)) = 𝑔𝑒 (𝑛𝛼′ (𝑚)) = 𝑔𝑒 (𝑣𝛼′ (𝑚)) = 0

for all 𝑚 ∈ 𝐿, and by expanding

𝛼(𝑚) = exp(𝑒) (𝛼′(𝑚)) = 𝛼′(𝑚) + [𝑒, 𝛼′(𝑚)] + 𝑔𝑒 (𝛼
′(𝑚))𝑒,

using the fact that (11) holds for 𝛼′, we now see that (11) is satisfied for 𝛼. By Lemma 2.15 again,
we see that also (10) holds for 𝛼.

(v) Let 𝑙 ∈ 𝐿1 and let 𝛽 ∈ Aut(𝐿) be any automorphism satisfying (10) and (11). Let 𝛼 be the
automorphism 𝛼 = exp(𝑒1) · · · exp(𝑒𝑛) as constructed in (iv) with respect to some choice 𝑙 =
𝑒1 + · · · + 𝑒𝑛, and observe that by the same construction,

𝛼−1 = exp(−𝑒𝑛) · · · exp(−𝑒1)

then satisfies (10) and (11) for the element −𝑙 = −𝑒𝑛 − · · · − 𝑒1.
Now 𝛼 and 𝛽 coincide on 𝐿≥1. However, any element of 𝐸+(𝑥, 𝑦) preserves the filtration (𝐿≥𝑖),

so in particular, 𝛼−1(𝐿≥1) = 𝐿≥1. Hence, 𝛼𝛼−1 and 𝛽𝛼−1 coincide on 𝐿≥1, so 𝛾 := 𝛽𝛼−1 fixes 𝐿≥1.
Moreover, by (11) for 𝛽 and 𝛼−1, we have

𝛾(𝑥) = 𝛽𝛼−1 (𝑥) ∈ 𝛽(𝑥 − [𝑙, 𝑥] + 𝐿≥0) = 𝑥 + 𝐿≥0,

so 𝛾(𝑥) is an extremal element with trivial 𝐿−1-component. By Lemma 3.10, 𝛾(𝑥) = exp(𝑧) (𝑥) for
some unique 𝑧 = 𝜆𝑦 ∈ 𝐿2. Notice that also exp(𝑧) fixes 𝐿≥1. Since L is generated by 𝐿1 and x, we
conclude that 𝛾 = exp(𝑧).

(vi) Let 𝛼 ∈ 𝐸+(𝑥, 𝑦). We claim that 𝛼 can be written as a product of elements of the form exp(𝑎) with
𝑎 ∈ 𝐸 ∩ 𝐿1. Indeed, by definition, it is the product of elements exp(𝑙) with 𝑙 ∈ 𝐸 ∩ 𝐿≥1, but each
such l can be written as 𝑙 = 𝑎 + 𝑏 with 𝑎 ∈ 𝐸 ∩ 𝐿1 and 𝑏 ∈ 𝐿2. By (ii), exp(𝑙) = exp(𝑎) exp(𝑏), and
by the proof of (iii), exp(𝑏) = [exp(𝑐), exp(𝑑)] for certain 𝑐, 𝑑 ∈ 𝐸 ∩ 𝐿1; this proves our claim.
Hence, 𝛼 = exp(𝑒1) · · · exp(𝑒𝑛) for certain 𝑒1, . . . , 𝑒𝑛 ∈ 𝐸 ∩ 𝐿1. Now let 𝑚 := 𝑒1 + · · · + 𝑒𝑛; then
by (iv), 𝛼 is an m-exponential automorphism. This shows that any automorphism in 𝐸+(𝑥, 𝑦) is
m-exponential for some 𝑚 ∈ 𝐿1; the other inclusion ‘⊇’ holds by (v).

If 𝛼 is any l-exponential automorphism, then in particular, 𝛼 ∈ 𝐸+(𝑥, 𝑦), so by the previous
paragraph, 𝛼 is m-exponential for 𝑚 = 𝑒1 + · · · + 𝑒𝑛. Then by (11), the 𝐿−1-component of 𝛼(𝑥) is
equal to both [𝑚, 𝑥] and [𝑙, 𝑥], hence 𝑚 = 𝑙, and we have shown the required decomposition.
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(vii) By (vi), we can write 𝛼 = exp(𝑒1) · · · exp(𝑒𝑛) and 𝑙 = 𝑒1 + · · · + 𝑒𝑛, where 𝑒𝑖 ∈ 𝐸 ∩ 𝐿1. Now let
𝛽 := exp(𝜆𝑒1) · · · exp(𝜆𝑒𝑛) ∈ 𝐸+(𝑥, 𝑦), with corresponding element 𝜆𝑙 = 𝜆𝑒1 + · · · + 𝜆𝑒𝑛 ∈ 𝐿1
and corresponding maps 𝑞𝛽 , 𝑛𝛽 , 𝑣𝛽 : 𝐿 → 𝐿. Observe now that if we replace each 𝑒𝑖 by 𝜆𝑒𝑖 in the
recursive formulas (14) to (16) in the proof of (iv), then this yields

𝑞𝛽 (𝑚) = 𝜆
2𝑞𝛼 (𝑚), 𝑛𝛽 (𝑚) = 𝜆

3𝑛𝛼 (𝑚), 𝑣𝛽 (𝑚) = 𝜆
4𝑣𝛼 (𝑚),

for all 𝑚 ∈ 𝐿. We conclude that 𝛽 = 𝛼𝜆 and hence 𝛼𝜆 ∈ 𝐸+(𝑥, 𝑦), which is then a (𝜆𝑙)-exponential
automorphism.

(viii) By (vi), 𝛼 = exp(𝑒1) · · · exp(𝑒𝑛) and 𝛽 = exp( 𝑓1) · · · exp( 𝑓𝑚) with 𝑒𝑖 , 𝑓𝑖 ∈ 𝐸 ∩ 𝐿1 and with
𝑙 = 𝑒1 + · · · + 𝑒𝑛 and 𝑙 ′ = 𝑓1 + · · · + 𝑓𝑚. Hence, 𝛼𝛽 = exp(𝑒1) · · · exp(𝑒𝑛) exp( 𝑓1) · · · exp( 𝑓𝑚), so
by (iv), 𝛼𝛽 is an (𝑙 + 𝑙 ′)-exponential automorphism.

(ix) Assume char(𝑘) ≠ 2. We first show the existence of such an automorphism. As in the proof of part
(iv), we write 𝑙 = 𝑒1 + . . . 𝑒𝑛 with 𝑒 := 𝑒1 and 𝑙 ′ := 𝑒2 + · · · + 𝑒𝑛, and we proceed by induction on n.

If 𝑛 = 1, then we choose 𝛼 = exp(𝑒), which has 𝑞𝛼 (𝑚) = 𝑔𝑙 (𝑚)𝑙 = 1
2 [𝑙, [𝑙, 𝑚]], as required.

Now assume 𝑛 > 1. By the induction hypothesis, there exists an 𝑙 ′-exponential automorphism 𝛼′

with 𝑞𝛼′ (𝑚) = 1
2 [𝑙

′, [𝑙 ′, 𝑚]] for all 𝑚 ∈ 𝐿, and we first set 𝛽 := exp(𝑒)𝛼′, so that we can invoke
the formulas (14) to (16). In particular, we have

𝑞𝛽 (𝑚) = 1
2 [𝑙

′, [𝑙 ′, 𝑚]] + 1
2 [𝑒, [𝑒, 𝑚]] + [𝑒, [𝑙 ′, 𝑚]]

for all 𝑚 ∈ 𝐿. Now set 𝛼 := exp(− 1
2 [𝑒, 𝑙

′])𝛽, and notice that [𝑒, 𝑙 ′] ∈ 𝐿2, so 𝛼 is again an
l-exponential automorphism. We get, using the Jacobi identity,

𝑞𝛼 (𝑚) = 1
2 [𝑙

′, [𝑙 ′, 𝑚]] + 1
2 [𝑒, [𝑒, 𝑚]] + [𝑒, [𝑙 ′, 𝑚]] + 1

2 [𝑚, [𝑒, 𝑙
′]]

= 1
2 [𝑙

′ + 𝑒, [𝑙 ′ + 𝑒, 𝑚]] = 1
2 [𝑙, [𝑙, 𝑚]],

so 𝛼 satisfies the required assumptions, proving the existence.
To prove uniqueness, assume that 𝛼 and 𝛽 are two l-exponential automorphisms with 𝑞𝛼 = 𝑞𝛽;

then in particular, 𝑞𝛼 (𝑥) = 𝑞𝛽 (𝑥). By (v), we have 𝛽 = exp(𝑧)𝛼 for some 𝑧 = 𝜆𝑦 ∈ 𝐿2. By expanding
exp(𝑧) – see also Remark 3.14 below – we get 𝑞𝛽 (𝑥) = 𝑞𝛼 (𝑥) + [𝑧, 𝑥], but [𝑧, 𝑥] = 𝜆[𝑦, 𝑥], which
is 0 only for 𝜆 = 0, and hence 𝛽 = 𝛼.

Finally, let 𝛾 := 𝑒+(−𝑙)𝑒+(𝑙). By (viii), 𝛾 is a 0-exponential automorphism, so by (v), we have
𝛾 = exp(𝑧) for some 𝑧 = 𝜆𝑦 ∈ 𝐿2 again. However,

𝑞𝛾 (𝑥) = 𝑞𝑒+ (−𝑙) (𝑥) + 𝑞𝑒+ (𝑙) (𝑥) + [−𝑙, [𝑙, 𝑥]]

= 1
2 [−𝑙, [−𝑙, 𝑥]] +

1
2 [𝑙, [𝑙, 𝑥]] + [−𝑙, [𝑙, 𝑥]] = 0,

so 𝜆 = 0, and hence, 𝛾 = id. �

Remark 3.14.

(i) If 𝛼 is an l-exponential automorphism for some 𝑙 ∈ 𝐿1, then by Theorem 3.13(v), any other l-
exponential automorphism 𝛽 is of the form 𝛽 = exp(𝑧)𝛼 for some 𝑧 = 𝜇𝑦 ∈ 𝐿2. By expanding
exp(𝑧), we get the explicit formulas

𝑞𝛽 (𝑚) = 𝑞𝛼 (𝑚) + [𝑧, 𝑚],

𝑛𝛽 (𝑚) = 𝑛𝛼 (𝑚) + [𝑧, [𝑙, 𝑚]],

𝑣𝛽 (𝑚) = 𝑣𝛼 (𝑚) + [𝑧, 𝑞𝛼 (𝑚)] + 𝑔𝑧 (𝑚)𝑧,

for all 𝑚 ∈ 𝐿. In particular, 𝛼 = 𝛽 if and only if 𝑞𝛼 (𝑥) = 𝑞𝛽 (𝑥). (See also the second to last
paragraph of the proof of Theorem 3.13(ix).)
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(ii) If 𝛼 is an l-exponential automorphism and 𝛽 is a 𝑙 ′-exponential automorphism, then we get the fol-
lowing explicit formulas for the (𝑙+𝑙 ′)-exponential automorphism 𝛾 := 𝛼𝛽 from Theorem 3.13(viii):

𝑞𝛾 (𝑚) = 𝑞𝛼 (𝑚) + [𝑙, [𝑙 ′, 𝑚]] + 𝑞𝛽 (𝑚),

𝑛𝛾 (𝑚) = 𝑛𝛼 (𝑚) + 𝑞𝛼 ([𝑙
′, 𝑚]) + [𝑙, 𝑞𝛽 (𝑚)] + 𝑛𝛽 (𝑚),

𝑣𝛾 (𝑚) = 𝑣𝛼 (𝑚) + 𝑛𝛼 ([𝑙
′, 𝑚]) + 𝑞𝛼 (𝑞𝛽 (𝑚)) + [𝑙, 𝑛𝛽 (𝑚)] + 𝑣𝛽 (𝑚),

for all 𝑚 ∈ 𝐿.

We now turn our attention to the case where the extremal geometry does not necessarily contain lines.

Definition 3.15. Let L be a Lie algebra over k with extremal elements x and y with 𝑔(𝑥, 𝑦) = 1, with
corresponding 5-grading as in Proposition 2.4. Define

𝐸+(𝑥, 𝑦) =
{
𝛼 ∈ Aut(𝐿) | 𝛼 is 𝑙-exponential for some 𝑙 ∈ 𝐿1

}
.

By Theorem 3.13(v), this definition is consistent with our earlier definition when the extremal geometry
has lines. We call L algebraic (with respect to this 5-grading) if for each 𝑙 ∈ 𝐿1, there exists an l-
exponential automorphism 𝛼 ∈ Aut(𝐿).

Now we can extend the results of Theorem 3.13 to a larger class of Lie algebras, using a Galois
descent argument.

Theorem 3.16. Let L be a simple Lie algebra. Assume that for some Galois extension 𝑘 ′/𝑘 with 𝑘 ′ ≠ F2,
𝐿𝑘′ := 𝐿 ⊗𝑘 𝑘

′ is a simple Lie algebra generated by its pure extremal elements and has F (𝐿𝑘′ ) ≠ ∅.
Consider a hyperbolic pair 𝑥, 𝑦 ∈ 𝐸 and let 𝐿 = 𝐿−2⊕𝐿−1⊕𝐿0⊕𝐿1⊕𝐿2 be the associated 5-grading.
Then L is algebraic with respect to this grading.

Proof. Consider 𝑙 ∈ 𝐿1 arbitrary. To simplify the notation, we will identify each 𝑚 ∈ 𝐿 with 𝑚 ⊗ 1 ∈

𝐿 ⊗ 𝑘 ′.
By Theorem 3.13(v), we find an l-exponential automorphism 𝛼 of 𝐿 ⊗ 𝑘 ′. Since [𝑥, 𝑦] ≠ 0, we can

find a basis B for 𝐿0 containing [𝑥, 𝑦]. Now, by (10), we have 𝑞𝛼 (𝑥) ∈ 𝐿0 ⊗ 𝑘
′, so we can write

𝑞𝛼 (𝑥) = [𝑥, 𝑦] ⊗ 𝜆 + 𝑏1 ⊗ 𝜆1 + · · · + 𝑏𝑛 ⊗ 𝜆𝑛

with 𝑏1, . . . , 𝑏𝑛 ∈ B \ {[𝑥, 𝑦]} and 𝜆, 𝜆1, . . . , 𝜆𝑛 ∈ 𝑘 ′.
Let 𝛽 := exp(𝜆𝑦)𝛼 and notice that 𝛽 is again an l-exponential automorphism of 𝐿 ⊗ 𝑘 ′. By Re-

mark 3.14, we have 𝑞𝛽 = 𝑞𝛼 + ad𝜆𝑦 , and hence,

𝑞𝛽 (𝑥) = 𝑞𝛼 (𝑥) + [𝑦, 𝑥] ⊗ 𝜆 = 𝑏1 ⊗ 𝜆1 + · · · + 𝑏𝑛 ⊗ 𝜆𝑛.

Now each 𝜎 ∈ Gal(𝑘 ′/𝑘) acts on the Lie algebra 𝐿 ⊗ 𝑘 ′ by sending each 𝑚 ⊗ 𝜆 to 𝑚 ⊗ 𝜆𝜎 . Since
𝜎(𝑙) = 𝑙, we have, for each 𝑚′ ∈ 𝐿 ⊗ 𝑘 ′, that

(𝜎 ◦ 𝛽 ◦ 𝜎−1) (𝑚′) = 𝑚′ + [𝑙, 𝑚′] + (𝜎 ◦ 𝑞𝛽 ◦ 𝜎−1) (𝑚′)

+ (𝜎 ◦ 𝑛𝛽𝑙 ◦ 𝜎
−1) (𝑚′) + (𝜎 ◦ 𝑣𝛽𝑙 ◦ 𝜎

−1) (𝑚′),

so 𝛾 := 𝜎 ◦ 𝛽 ◦ 𝜎−1 is again an l-exponential automorphism of 𝐿 ⊗ 𝑘 ′, with corresponding maps
𝑞𝛾 = 𝜎 ◦ 𝑞𝛽 ◦𝜎

−1, 𝑛𝛾 = 𝜎 ◦𝑛𝛽 ◦𝜎
−1 and 𝑣𝛾 = 𝜎 ◦ 𝑣𝛽 ◦𝜎

−1. Hence, Theorem 3.13(v) implies that there
exists 𝜇 ∈ 𝑘 ′ such that 𝛾 = exp(𝜇𝑦)𝛽, and by Remark 3.14 again, we have 𝑞𝛾 = 𝑞𝛽 + ad𝜇𝑦 . In particular,

𝑏1 ⊗ 𝜆
𝜎
1 + · · · + 𝑏𝑛 ⊗ 𝜆𝜎𝑛 = 𝑞𝛾 (𝑥) = [𝑦, 𝑥] ⊗ 𝜇 + 𝑞𝛽 (𝑥)

= [𝑦, 𝑥] ⊗ 𝜇 + 𝑏1 ⊗ 𝜆1 + · · · + 𝑏𝑚 ⊗ 𝜆𝑛.
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Since 𝑏1, . . . , 𝑏𝑛 and [𝑥, 𝑦] are linearly independent by construction, this implies 𝜇 = 0, and thus, 𝛾 = 𝛽.
Since 𝜎 ∈ Gal(𝑘 ′/𝑘) was arbitrary, we get 𝛽 = 𝜎 ◦ 𝛽 ◦ 𝜎−1 for all 𝜎 ∈ Gal(𝑘 ′/𝑘), and therefore,

𝑞𝛽 = 𝜎 ◦ 𝑞𝛽 ◦ 𝜎−1, 𝑛𝛽 = 𝜎 ◦ 𝑛𝛽 ◦ 𝜎−1, 𝑣𝛽 = 𝜎 ◦ 𝑣𝛽 ◦ 𝜎−1,

for all 𝜎 ∈ Gal(𝑘 ′/𝑘). Since 𝑘 ′/𝑘 is a Galois extension and thus Fix(Gal(𝑘 ′/𝑘)) = 𝑘 , this implies that
the maps 𝑞𝛽 , 𝑛𝛽 and 𝑣𝛽 stabilize L, proving that the restriction of 𝛽 to L is an automorphism of L. Since
𝛽 is an l-exponential automorphism, we are done. �

Remark 3.17. Under the assumptions of Theorem 3.16, many of the conclusions of Theorem 3.13 now
remain valid, simply by extending the scalars to 𝑘 ′. In particular, we are allowed to use Theorem 3.13(v)
and (vii) to (ix) in this more general setting. (However, notice that Theorem 3.13(iv) and (vi) do not
necessarily make sense over k because 𝐸 ∩ 𝐿1 might be empty.)

Assumption 3.18. For the rest of this section, we assume that L is a simple Lie algebra over k with
extremal elements x and y with 𝑔(𝑥, 𝑦) = 1 and that 𝑘 ′/𝑘 is a Galois extension such that 𝐿 ⊗ 𝑘 ′ is a
simple Lie algebra generated by its pure extremal elements, with F (𝐿 ⊗ 𝑘 ′) ≠ ∅ and |𝑘 ′ | ≥ 3.

In the next two lemmas, we determine how l-exponential automorphisms commute, extending The-
orem 3.13(i).

Lemma 3.19. Let 𝑙, 𝑙 ′ ∈ 𝐿1 and let 𝛼 and 𝛽 be an l-exponential and 𝑙 ′-exponential automorphism of L,
respectively. Then 𝛼𝛽 = exp([𝑙, 𝑙 ′])𝛽𝛼.

Proof. Notice that by Theorem 3.13(viii), both 𝛼𝛽 and exp([𝑙, 𝑙 ′])𝛽𝛼 are (𝑙 + 𝑙 ′)-exponential automor-
phisms. By the uniqueness statement of Remark 3.14, it remains to show that 𝑞𝛼𝛽 (𝑥) = 𝑞exp( [𝑙,𝑙′ ])𝛽𝛼 (𝑥).
By Remark 3.14(ii), we have

𝑞𝛼𝛽 (𝑥) = 𝑞𝛼 (𝑥) + [𝑙, [𝑙 ′, 𝑥]] + 𝑞𝛽 (𝑥),

and by Remark 3.14(i), we have

𝑞exp( [𝑙,𝑙′ ])𝛽𝛼 (𝑥) = 𝑞𝛽 (𝑥) + [𝑙 ′, [𝑙, 𝑥]] + 𝑞𝛼 (𝑥) + [[𝑙, 𝑙 ′], 𝑥],

so by the Jacobi identity, these expressions are indeed equal. �

If char(𝑘) ≠ 2, we can be more precise.

Lemma 3.20. Assume char(𝑘) ≠ 2 and let 𝑙, 𝑙 ′ ∈ 𝐿1. Then

𝑒+(𝑙)𝑒+(𝑙
′) = exp

(
1
2 [𝑙, 𝑙

′]
)
𝑒+(𝑙 + 𝑙

′).

Proof. Let 𝛼 := 𝑒+(𝑙), 𝛽 := 𝑒+(𝑙
′), 𝛾 := 𝑒+(𝑙 + 𝑙

′) and 𝑧 := 1
2 [𝑙, 𝑙

′]. Exactly as in the proof of
Lemma 3.19, we only have to show that 𝑞𝛼𝛽 (𝑥) = 𝑞exp(𝑧)𝛾 (𝑥). Using Remark 3.14, we get

𝑞𝛼𝛽 (𝑥) = 𝑞𝛼 (𝑥) + 𝑞𝛽 (𝑥) + [𝑙, [𝑙 ′, 𝑥]] = 1
2 [𝑙, [𝑙, 𝑥]] +

1
2 [𝑙

′, [𝑙 ′, 𝑥]] + [𝑙, [𝑙 ′, 𝑥]],

and

𝑞exp(𝑧)𝛾 (𝑥) = 𝑞𝛾 (𝑥) +
1
2 [[𝑙, 𝑙

′], 𝑥] = 1
2 [𝑙 + 𝑙

′, [𝑙 + 𝑙 ′, 𝑥]] + 1
2 [[𝑙, 𝑙

′], 𝑥],

and again, the equality of these two expressions follows from the Jacobi identity. �

If char(𝑘) ≠ 2, 3, we now get an explicit description of the maps 𝑛𝑒+ (𝑙) and 𝑣𝑒+ (𝑙) . In particular, we
recover in this case (and under our running Assumption 3.18) the fact that the Lie algebra is algebraic
with respect to the given 5-grading, as defined in Definition 1.10.
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Corollary 3.21. Assume that char(𝑘) ≠ 2. Let 𝑙 ∈ 𝐿1 and let 𝛼 := 𝑒+(𝑙). Then

6𝑛𝛼 (𝑚) = [𝑙, [𝑙, [𝑙, 𝑚]]] and 24𝑣𝛼 (𝑚) = [𝑙, [𝑙, [𝑙, [𝑙, 𝑚]]]]

for all 𝑚 ∈ 𝐿.

Proof. Let 𝛽 := 𝛼2 be as in Theorem 3.13(vii) and let 𝛾 := 𝑒+(2𝑙) as in Theorem 3.13(ix). Then
𝑞𝛽 = 22𝑞𝛼 while 𝑞𝛾 (𝑚) = 1

2 [2𝑙, [2𝑙, 𝑚]] = 4𝑞𝛼 (𝑚) for all 𝑚 ∈ 𝐿, so by the uniqueness part of
Theorem 3.13(ix), we have 𝛽 = 𝛾. However, we have 𝑒+(2𝑙) = 𝑒+(𝑙 + 𝑙) = 𝑒+(𝑙)2 by Lemma 3.20, so
𝛼2 = 𝛼2.

By Theorem 3.13(vii), we have 𝑛𝛼2 = 8𝑛𝛼, while by Remark 3.14(ii), we have

𝑛𝛼2 (𝑚) = 2𝑛𝛼 (𝑚) + 𝑞𝛼 ([𝑙, 𝑚]) + [𝑙, 𝑞𝛼 (𝑚)]

for all 𝑚 ∈ 𝐿. Since 𝑞𝛼 (𝑚) = 1
2 [𝑙, [𝑙, 𝑚]], we conclude that 6𝑛𝛼 (𝑚) = [𝑙, [𝑙, [𝑙, 𝑚]]] for all 𝑚 ∈ 𝐿.

Similarly, we let 𝛿 := 𝑒+(−𝑙)𝑒+(𝑙), and we use the fact that 𝛼−1 = 𝛼−1. On the one hand, 𝛿 = id, so
𝑣 𝛿 = 0, while on the other hand, by Remark 3.14(ii) again,

𝑣 𝛿 (𝑚) = 2𝑣𝛼 (𝑚) − 𝑛𝛼 ([𝑙, 𝑚]) + 𝑞𝛼 (𝑞𝛼 (𝑚)) − [𝑙, 𝑛𝛼 (𝑚)]

for all 𝑚 ∈ 𝐿. Multiplying by 12, we get 24𝑣𝛼 (𝑚) = [𝑙, [𝑙, [𝑙, [𝑙, 𝑚]]]], as required. �

Our final result of this section shows that 𝐸+(𝑥, 𝑦) acts sharply transitively on the set of all extremal
points with nonzero 𝐿−2-component.

Proposition 3.22. Let L be a simple Lie algebra. Assume that for some Galois extension 𝑘 ′/𝑘 with
𝑘 ′ ≠ F2, 𝐿𝑘′ := 𝐿 ⊗𝑘 𝑘

′ is a simple Lie algebra generated by its pure extremal elements and has
F (𝐿𝑘′ ) ≠ ∅.

Consider a hyperbolic pair 𝑥, 𝑦 ∈ 𝐸 with 𝑔(𝑥, 𝑦) = 1 and let 𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2 be the
associated 5-grading.

Then every extremal element with 𝐿−2-component equal to x can be written as 𝜑(𝑥) for a unique
𝜑 ∈ 𝐸+(𝑥, 𝑦).

Proof. Let e be an extremal element with 𝐿−2-component equal to x. We first show the existence of an
automorphism 𝜑 ∈ 𝐸+(𝑥, 𝑦) with 𝜑(𝑥) = 𝑒.

Let 𝑒−1 be the 𝐿−1-component of e. By Proposition 2.4(iii), there is a (unique) 𝑎 ∈ 𝐿1 such that
[𝑎, 𝑥] = 𝑒−1. By Theorem 3.16, there exists an a-exponential automorphism 𝛼 ∈ 𝐸+(𝑥, 𝑦). Then
𝛼−1(𝑒) = 𝑥+ 𝑙0+ 𝑙1+ 𝑙2, with 𝑙𝑖 ∈ 𝐿𝑖 . By Lemma 3.10, there exists 𝜆 ∈ 𝑘 such that exp(𝜆𝑦) (𝑥) = 𝛼−1(𝑒).
This shows that 𝜑 := 𝛼 exp(𝜆𝑦) ∈ 𝐸+(𝑥, 𝑦) maps x to e, as required.

To show uniqueness, assume that also 𝜑′ ∈ 𝐸+(𝑥, 𝑦) satisfies 𝜑′(𝑥) = 𝑒 = 𝜑(𝑥). In particular, 𝜑 and 𝜑′
are l-exponential automorphisms for the same 𝑙 ∈ 𝐿1. This implies that also 𝜑(𝑚) = 𝑚 + [𝑙, 𝑚] = 𝜑′(𝑚)
for all 𝑚 ∈ 𝐿1. Since L is generated by {𝑥} ∪ 𝐿1, we conclude that 𝜑 = 𝜑′. �

Remark 3.23. Note that we did not make any assumptions on the dimension of the Lie algebra L in this
section. In particular, the results also hold for infinite-dimensional Lie algebras.

4. Extremal geometry with lines – recovering a cubic norm structure

In this section, we prove that if L is a simple Lie algebra over a field k with |𝑘 | ≥ 4, which is generated
by its pure extremal elements and such that its extremal geometry contains lines, then 𝐿1 can be
decomposed as 𝑘 ⊕ 𝐽 ⊕ 𝐽 ′ ⊕ 𝑘 , for a certain ‘twin cubic norm structure’ (𝐽, 𝐽 ′). If the norm of this twin
cubic norm structure is not the zero map, then 𝐽 ′ � 𝐽 and J gets the structure of a genuine cubic norm
structure (depending on the choice of a ‘base point’). At the end of this section, we also sketch how the
Lie algebra L can be completely reconstructed from this cubic norm structure.
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Assumption 4.1. Throughout the whole section, we assume that L is a simple Lie algebra defined over
a field k with |𝑘 | ≥ 4, such that L is generated by its pure extremal elements and such that the extremal
geometry contains lines.

We fix a pair of extremal elements 𝑥, 𝑦 ∈ 𝐸 with 𝑔(𝑥, 𝑦) = 1, and we consider the corresponding
5-grading 𝐿 = 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2 as in Proposition 2.4.

Notation 4.2. Since the extremal geometry contains lines, Proposition 2.16 implies that there exist
extremal elements c and d contained in 𝐿−1 such that [𝑐, 𝑑] = 𝑥. Set 𝑝 := [𝑦, 𝑐] and 𝑞 := −[𝑦, 𝑑], so
𝑝, 𝑞 ∈ 𝐿1. By Proposition 2.16 again, we see that [𝑥, 𝑦] = [𝑐 + 𝑑, 𝑝 + 𝑞] = [𝑐, 𝑞] + [𝑑, 𝑝]. (Notice that
[𝑐, 𝑝] = 0 and [𝑑, 𝑞] = 0.) Observe that both (𝑐, 𝑑) and (𝑝, 𝑞) are special pairs, with [𝑐, 𝑑] = 𝑥 and
[𝑞, 𝑝] = 𝑦.

We start with the following observation, needed to obtain a second grading on the Lie algebra which
we will use often in this section.

Lemma 4.3. We have 𝑔(𝑝, 𝑑) = 1 and 𝑔(𝑞, 𝑐) = 1.

Proof. We have 𝑔(𝑝, 𝑑) = 𝑔([𝑦, 𝑐], 𝑑) = 𝑔(𝑦, [𝑐, 𝑑]) = 𝑔(𝑦, 𝑥) = 1 and 𝑔(𝑞, 𝑐) = 𝑔(−[𝑦, 𝑑], 𝑐) =
−𝑔(𝑦, [𝑑, 𝑐]) = 𝑔(𝑦, 𝑥) = 1. �

We are now ready to define a subspace J which will turn out to have the structure of a cubic norm
structure. Using the grading related to (𝑐, 𝑞) ∈ 𝐸2, we are able to describe a decomposition of 𝐿−1 into
4 parts.

Notation 4.4. We denote the 5-grading of L obtained by considering the pair (𝑐, 𝑞) ∈ 𝐸2 in Proposi-
tion 2.4 by

𝐿 = 𝐿 ′
−2 ⊕ 𝐿

′
−1 ⊕ 𝐿

′
0 ⊕ 𝐿

′
1 ⊕ 𝐿

′
2, (17)

where 𝐿 ′
−2 = 〈𝑐〉 and 𝐿 ′

2 = 〈𝑞〉. We will occasionally also need a third grading arising from the
hyperbolic pair (𝑑, 𝑝) ∈ 𝐸2, denoted by

𝐿 = 𝐿 ′′
−2 ⊕ 𝐿

′′
−1 ⊕ 𝐿

′′
0 ⊕ 𝐿 ′′

1 ⊕ 𝐿 ′′
2 , (18)

where 𝐿 ′′
−2 = 〈𝑑〉 and 𝐿 ′′

2 = 〈𝑝〉.
We set

𝐽 = 𝐿−1 ∩ 𝐿
′
−1, 𝐽

′ = 𝐿−1 ∩ 𝐿
′
0.

Lemma 4.5. We have

𝑥 ∈ 𝐿−2 ∩ 𝐿
′
−1 ∩ 𝐿

′′
−1, 𝑦 ∈ 𝐿2 ∩ 𝐿

′
1 ∩ 𝐿

′′
1 ,

𝑐 ∈ 𝐿−1 ∩ 𝐿
′
−2 ∩ 𝐿

′′
1 , 𝑑 ∈ 𝐿−1 ∩ 𝐿

′
1 ∩ 𝐿

′′
−2,

𝑝 ∈ 𝐿1 ∩ 𝐿
′
−1 ∩ 𝐿

′′
2 , 𝑞 ∈ 𝐿1 ∩ 𝐿

′
2 ∩ 𝐿

′′
−1.

Proof. By our setup in Notation 4.2, the extremal points 〈𝑥〉, 〈𝑐〉, 〈𝑝〉, 〈𝑦〉, 〈𝑞〉, 〈𝑑〉, 〈𝑥〉 form an ordinary
hexagon in the extremal geometry, where all pairs at distance two are special. Now all containments
follow either directly from the grading (for the −2- and 2-components), or they follow from Lemma 2.14
(for the −1- and 1-components). �

We now obtain a decomposition of 𝐿−1 into 4 parts, by intersecting with the 𝐿 ′
𝑖-grading (17) arising

from the hyperbolic pair (𝑐, 𝑞).
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Proposition 4.6. We have a decomposition

𝐿−1 = 〈𝑐〉 ⊕ 𝐽 ⊕ 𝐽 ′ ⊕ 〈𝑑〉.

Moreover, 𝐿−1 ∩ 𝐿
′
1 = 〈𝑑〉.

Proof. Since 𝑐 ∈ 𝐿−1, we have 𝑔𝑐 (𝐿−1) = 0 by Lemma 2.15. However, we also have 𝑐 ∈ 𝐿 ′
−2, so we get

𝐿−1 ≤ 𝐿 ′
≤1 by Proposition 2.4(iv).

Now let 𝑙 ∈ 𝐿−1 be arbitrary, and write 𝑙 = 𝑙 ′
−2+ 𝑙

′
−1+ 𝑙

′
0+ 𝑙

′
1 with each 𝑙 ′𝑖 ∈ 𝐿

′
𝑖 . Since 𝐿 ′

−2 = 〈𝑐〉 ≤ 𝐿−1,
we may assume 𝑙 ′

−2 = 0.
Now observe that by Proposition 2.4(ii), [[𝑐, 𝑞], 𝑙] = −𝑙 ′

−1 + 𝑙
′
1. However, [𝑐, 𝑞] ∈ 𝐿0, so [[𝑐, 𝑞], 𝑙] ∈

𝐿−1, and we deduce that

−𝑙 ′−1 + 𝑙
′
1 ∈ 𝐿−1. (19)

Next, let 𝜆 ∈ 𝑘 be any nonzero scalar and consider the automorphism 𝜑𝜆 ∈ Aut(𝐿) defined in
Lemma 2.10, but with respect to the 5-grading (17). Since 𝑥 ∈ 𝐿 ′

−1 and 𝑦 ∈ 𝐿 ′
1, we have 𝜑𝜆 (𝑥) = 𝜆−1𝑥

and 𝜑𝜆(𝑦) = 𝜆𝑦. Then Lemma 2.12 implies 𝜑𝜆 (𝐿−1) = 𝐿−1. In particular, 𝜑𝜆 (𝑙) = 𝜆−1𝑙 ′
−1 + 𝑙

′
0 + 𝜆𝑙

′
1 is

contained in 𝐿−1, so subtracting 𝑙 ∈ 𝐿−1, we see that

(𝜆−1 − 1)𝑙 ′−1 + (𝜆 − 1)𝑙 ′1 ∈ 𝐿−1

for all nonzero 𝜆 ∈ 𝑘 . Combining this with (19), we get (𝜆−1 + 𝜆 − 2)𝑙 ′
−1 ∈ 𝐿−1 for all nonzero 𝜆 ∈ 𝑘 .

If char(𝑘) ≠ 2, we can take 𝜆 = −1 to get 𝑙 ′
−1 ∈ 𝐿−1, while if char(𝑘) = 2, then |𝑘 | > 2 implies that we

can find 𝜆 such that 𝜆 + 𝜆−1 ≠ 0. In both cases, we conclude that 𝑙 ′
−1 ∈ 𝐿−1, and then by (19) again, also

𝑙 ′1 ∈ 𝐿−1. Since 𝑙 = 𝑙 ′
−1 + 𝑙

′
0 + 𝑙

′
1, also 𝑙 ′0 ∈ 𝐿−1. Hence,

𝐿−1 = (𝐿−1 ∩ 𝐿
′
−2)︸���������︷︷���������︸

〈𝑐〉

⊕ (𝐿−1 ∩ 𝐿
′
−1)︸���������︷︷���������︸

𝐽

⊕ (𝐿−1 ∩ 𝐿
′
0)︸�������︷︷�������︸

𝐽 ′

⊕ (𝐿−1 ∩ 𝐿
′
1).

Finally, let 𝑙 ′1 ∈ 𝐿−1 ∩ 𝐿
′
1 be arbitrary. By Proposition 2.4(iii), we get [𝑞, [𝑐, 𝑙 ′1]] = −𝑙 ′1. Since [𝑐, 𝑙 ′1] ∈

𝐿−2 = 〈𝑥〉, this implies that 𝑙 ′1 is a multiple of [𝑞, 𝑥] = −𝑑. Hence, 𝐿−1 ∩ 𝐿
′
1 = 〈𝑑〉. �

Using this decomposition, we obtain some more information on the Lie bracket.

Corollary 4.7. We have a decomposition

𝐿1 = 〈𝑝〉 ⊕ [𝑦, 𝐽] ⊕ [𝑦, 𝐽 ′] ⊕ 〈𝑞〉.

Moreover,

〈𝑝〉 = 𝐿1 ∩ 𝐿
′
−1, [𝑦, 𝐽] = 𝐿1 ∩ 𝐿

′
0, [𝑦, 𝐽 ′] = 𝐿1 ∩ 𝐿

′
1; (20)

[𝐽, 𝐽] = 0, [𝐽, 𝑐] = [𝐽, 𝑑] = 0, [𝐽, 𝑝] = 0; (21)
[𝐽 ′, 𝐽 ′] = 0, [𝐽 ′, 𝑐] = [𝐽 ′, 𝑑] = 0, [𝐽 ′, 𝑞] = 0; (22)
[𝐽, [𝐽, 𝑞]] ≤ 𝐽 ′, [𝐽 ′, [𝐽 ′, 𝑝]] ≤ 𝐽. (23)

Proof. By Proposition 2.4(iii), the map ad𝑦 : 𝐿−1 → 𝐿1 is an isomorphism of vector spaces, so the
decomposition is clear. The identities (20) now follow from this new decomposition.

Next, by combining both gradings, we have

[𝐽, 𝐽] ≤ 𝐿−2 ∩ 𝐿
′
−2, [𝐽, 𝑐] ≤ 𝐿−2 ∩ 𝐿

′
−3,

[𝐽, 𝑑] ≤ 𝐿−2 ∩ 𝐿
′
0, [𝐽, 𝑝] ≤ 𝐿0 ∩ 𝐿

′
−2,
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but since 𝐿−2 = 〈𝑥〉 ≤ 𝐿 ′
−1 and 𝐿 ′

−2 = 〈𝑐〉 ≤ 𝐿−1, all four intersections are trivial, proving (21). The
proof of (22) is similar.

Finally, [𝐽, [𝐽, 𝑞]] ≤ 𝐿−1−1+1 ∩ 𝐿 ′
−1−1+2 = 𝐿−1 ∩ 𝐿 ′

0 = 𝐽 ′, and similarly, we have [𝐽 ′, [𝐽 ′, 𝑝]] ≤

𝐿−1 ∩ 𝐿
′
−1 = 𝐽, showing (23). �

Lemma 4.8. We have

𝐽 = {𝑙 ∈ 𝐿−1 | [𝑐, 𝑙] = [𝑑, 𝑙] = [𝑝, 𝑙] = 0}, (24)

𝐽 ′ = {𝑙 ∈ 𝐿−1 | [𝑐, 𝑙] = [𝑑, 𝑙] = [𝑞, 𝑙] = 0}. (25)

Proof. By (21), it is clear that J is contained in the set on the right-hand side of (24).
Conversely, let 𝑙 ∈ 𝐿−1 such that [𝑐, 𝑙] = [𝑑, 𝑙] = [𝑝, 𝑙] = 0 and use Proposition 4.6 to write

𝑙 = 𝜆𝑐 + 𝑗 + 𝑗 ′ + 𝜇𝑑, with 𝜆, 𝜇 ∈ 𝑘 , 𝑗 ∈ 𝐽 and 𝑗 ′ ∈ 𝐽 ′. Since [𝑐, 𝑑] ≠ 0, it already follows from [𝑐, 𝑙] = 0
that 𝜇 = 0 and from [𝑑, 𝑙] = 0 that 𝜆 = 0, so we already have 𝑙 = 𝑗+ 𝑗 ′, and it remains to show that 𝑗 ′ = 0.

Since [𝑝, 𝑙] = 0 and [𝑝, 𝑗] = 0, we have [𝑝, 𝑗 ′] = 0. Recall from Notation 4.2 that [𝑥, 𝑦] =
[𝑐, 𝑞] + [𝑑, 𝑝] and [𝑑, 𝑗 ′] = 0. Since 𝑗 ′ ∈ 𝐿−1 ∩ 𝐿

′
0, we can use Proposition 2.4(ii) twice to get

− 𝑗 ′ = [[𝑥, 𝑦], 𝑗 ′] = [[𝑐, 𝑞], 𝑗 ′] + [[𝑑, 𝑝], 𝑗 ′] = [𝑑, [𝑝, 𝑗 ′]] = 0,

as claimed. The proof of (25) is completely similar. �

The subspace 𝐿0 also has a decomposition, but this time it is a decomposition into 3 parts.

Proposition 4.9. We have a decomposition

𝐿0 = (𝐿0 ∩ 𝐿
′
−1) ⊕ (𝐿0 ∩ 𝐿

′
0) ⊕ (𝐿0 ∩ 𝐿

′
1). (26)

Moreover,

𝐿0 ∩ 𝐿
′
1 = [𝑞, 𝐽] and 𝐿0 ∩ 𝐿

′
−1 = [𝑝, 𝐽 ′] . (27)

Proof. By Lemma 2.15 applied to 𝑐 ∈ 𝐿−1, we get 𝑔𝑐 (𝐿0) = 0. By Proposition 2.4(iv), this implies
𝐿0 ≤ 𝐿 ′

−2 ⊕ 𝐿 ′
−1 ⊕ 𝐿 ′

0 ⊕ 𝐿 ′
1. Similarly, 𝑔𝑞 (𝐿0) = 0 implies 𝐿0 ≤ 𝐿 ′

−1 ⊕ 𝐿 ′
0 ⊕ 𝐿 ′

1 ⊕ 𝐿 ′
2. Hence,

𝐿0 ≤ 𝐿 ′
−1 ⊕ 𝐿

′
0 ⊕ 𝐿

′
1.

We can now apply the same technique as in the proof of Proposition 4.6. So let 𝑙 ∈ 𝐿0 be arbitrary and
write 𝑙 = 𝑙 ′

−1 + 𝑙
′
0 + 𝑙

′
1 with each 𝑙 ′𝑖 ∈ 𝐿

′
𝑖 . Again, [[𝑐, 𝑞], 𝑙] = −𝑙 ′

−1 + 𝑙
′
1 ∈ 𝐿0, and using the automorphisms

𝜑𝜆, we get 𝜆−1𝑙
′
−1 + 𝑙

′
0 + 𝜆𝑙

′
1 ∈ 𝐿0 for all 𝜆 ∈ 𝑘×, yielding 𝑙 ′𝑖 ∈ 𝐿0 for all three values of i, exactly as in

the proof of Proposition 4.6. This proves (26).
To show (27), notice that the inclusions [𝑞, 𝐽] ≤ 𝐿0 ∩ 𝐿

′
1 and [𝑝, 𝐽 ′] ≤ 𝐿0 ∩ 𝐿

′
−1 are clear from the

gradings. Conversely, let 𝑙0 ∈ 𝐿0 ∩ 𝐿
′
1 be arbitrary and let 𝑙 := −[𝑐, 𝑙0]. Then 𝑙 ∈ 𝐿−1 ∩ 𝐿

′
−1 = 𝐽. By

Proposition 2.4(iii), we have 𝑙0 = [𝑞, 𝑙], so indeed, 𝑙0 ∈ [𝑞, 𝐽]. Similarly, let 𝑙0 ∈ 𝐿0 ∩ 𝐿
′
−1 be arbitrary

and let 𝑙 := −[𝑑, 𝑙0]. Then 𝑙 ∈ 𝐿−1 ∩ 𝐿 ′
0 = 𝐽 ′. By Proposition 2.4(iii) again, we have 𝑙0 = [𝑝, 𝑙], so

indeed, 𝑙0 ∈ [𝑝, 𝐽 ′]. �

In the next lemma, we deduce some connections between the two gradings (17) and (18).

Lemma 4.10. We have

𝐿−1 ∩ 𝐿
′′
−1 = 𝐽 ′, 𝐿−1 ∩ 𝐿

′′
0 = 𝐽, 𝐿−1 ∩ 𝐿

′′
1 = 〈𝑐〉, (28)

𝐿0 ∩ 𝐿
′′
−1 = [𝑞, 𝐽], 𝐿0 ∩ 𝐿

′′
0 = 𝐿0 ∩ 𝐿

′
0, 𝐿0 ∩ 𝐿

′′
1 = [𝑝, 𝐽 ′] . (29)

Proof. Notice that in the setup in Notation 4.2, we can replace c with d, d with −𝑐, p with −𝑞 and q with
p. In the resulting decompositions introduced in Notation 4.4, this interchanges the two gradings (17)
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and (18). If we subsequently set 𝐾 := 𝐿−1 ∩ 𝐿
′′
−1 and 𝐾 ′ := 𝐿−1 ∩ 𝐿

′′
0 , then it follows from Lemma 4.8

that 𝐾 = 𝐽 ′ and 𝐾 ′ = 𝐽. By Proposition 4.6 applied on this new setup, we get

𝐿−1 = 〈𝑑〉 ⊕ 𝐾 ⊕ 𝐾 ′ ⊕ 〈𝑐〉

with 〈𝑐〉 = 𝐿−1 ∩ 𝐿
′′
1 . This shows (28).

By (27) applied on our new setup, we get 𝐿0 ∩ 𝐿
′′
1 = [𝑝, 𝐽 ′] and 𝐿0 ∩ 𝐿

′′
−1 = [𝑞, 𝐽]. Finally, consider

𝑙 ∈ 𝐿0 ∩ 𝐿
′′
0 . By Proposition 2.4(ii), we have [[𝑥, 𝑦], 𝑙] = 0 and [[𝑑, 𝑝], 𝑙] = 0. Recall from Notation 4.2

that [𝑥, 𝑦] = [𝑐, 𝑞] + [𝑑, 𝑝], so we get

0 = [[𝑥, 𝑦], 𝑙] = [[𝑐, 𝑞], 𝑙] + [[𝑑, 𝑝], 𝑙] = [[𝑐, 𝑞], 𝑙] .

Hence, l is contained in the 0-eigenspace of ad[𝑐,𝑞] , which is 𝐿 ′
0 by Proposition 2.4(ii) again. Hence,

𝐿0 ∩ 𝐿
′′
0 ≤ 𝐿0 ∩ 𝐿

′
0, and 𝐿0 ∩ 𝐿

′
0 ≤ 𝐿0 ∩ 𝐿

′′
0 follows similarly. This shows (29). �

We have summarized all the information about the intersections of the different gradings in Figure 1.
Now that we have a complete understanding of how the different gradings intersect, we are ready to

invoke our results from Section 3. The next result on the uniqueness of certain extremal elements will
play a key role in defining the maps involved in the cubic norm structure.

Proposition 4.11.

(i) For every 𝑎 ∈ 𝐽, there is a unique extremal element of the form

𝑎−2 + 𝑎−1 + [𝑎, 𝑞] + 𝑞,

with 𝑎−2 ∈ 𝐿−2 and 𝑎−1 ∈ 𝐽 ′. This element is equal to𝛼(𝑞) for a unique a-exponential automorphism
𝛼 ∈ 𝐸−(𝑥, 𝑦).

(ii) For every 𝑏 ∈ 𝐽 ′, there is a unique extremal element of the form

𝑏−2 + 𝑏−1 + [𝑏, 𝑝] + 𝑝,

with 𝑏−2 ∈ 𝐿−2 and 𝑏−1 ∈ 𝐽 ′. This element is equal to 𝛽(𝑞) for a unique b-exponential automorphism
𝛽 ∈ 𝐸−(𝑥, 𝑦).

Proof. We show (i); the proof of (ii) is completely similar. By Theorem 3.13(iv), there exists an a-
exponential automorphism 𝛼, so we have a corresponding extremal element

𝛼(𝑞) = 𝑎−2 + 𝑎−1 + [𝑎, 𝑞] + 𝑞,

with 𝑎−1 ∈ 𝐿−1 and 𝑎−2 ∈ 𝐿−2. Notice that 𝛼(𝑑) = 𝑑 + [𝑎, 𝑑] = 𝑑 because [𝐽, 𝑑] = 0 by (21). By
Proposition 2.4(iv), this implies that 𝛼 preserves the filtration 𝐿 ′′

≤𝑖 , so in particular, 𝛼(𝑞) ∈ 𝐿 ′′
≤−1. Hence,

𝑎−1 ∈ 𝐿−1 ∩ 𝐿
′′
≤−1 = 〈𝑑〉 ⊕ 𝐽 ′ (see Figure 1).

Now, since [𝑥, 𝑞] = [𝑥,−[𝑦, 𝑑]] = −[[𝑥, 𝑦], 𝑑] = 𝑑, there is a (unique)𝜆 ∈ 𝑘 such that exp(𝜆𝑥) (𝛼(𝑞))
has its 𝐿−1-component in 𝐽 ′. By replacing 𝛼 with exp(𝜆𝑥)𝛼, we find the required a-exponential auto-
morphism and the required extremal element.

We now show uniqueness, so suppose that 𝑒 = 𝑏−2 + 𝑏−1 + [𝑎, 𝑞] + 𝑞 is an extremal element such
that 𝑏−2 ∈ 𝐿−2 and 𝑏−1 ∈ 𝐽 ′. Let 𝛽 := 𝛼−1 as defined in Theorem 3.13(vii), so 𝛽 is a (−𝑎)-exponential
automorphism. In particular, 𝑓 := 𝛽(𝑒) has trivial 𝐿0-component. Moreover, the 𝐿−1-component of f is
equal to 𝑏−1 + 𝑎−1 − [𝑎, [𝑎, 𝑞]]. By assumption, 𝑎−1, 𝑏−1 ∈ 𝐽 ′ and by (23), also [𝑎, [𝑎, 𝑞]] ∈ 𝐽 ′, so the
𝐿−1-component of f is contained in 𝐽 ′ ≤ 𝐿 ′

0. Hence,

𝑓 = 𝜇𝑥 + 𝑐−1 + 𝑞, with 𝜇 ∈ 𝑘 and 𝑐−1 ∈ 𝐽 ′
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Figure 1. Intersecting gradings for cubic norm structures.

is an extremal element. By Lemma 3.10 applied to the grading (17), we get 𝜇 = 0 and 𝑓 = exp(𝜆𝑐) (𝑞)
for certain 𝜆 ∈ 𝑘 . Considering the 𝐿0-components of these extremal elements yields 0 = 𝜆[𝑐, 𝑞] and
thus, 𝜆 = 0 and 𝑞 = 𝑓 = 𝛽(𝑒).

Next, since both 𝛽−1 and 𝛼 are a-exponential automorphisms, Theorem 3.13(v) implies 𝛽−1 =
exp(𝜈𝑥)𝛼 for some 𝜈 ∈ 𝑘 , so in particular, 𝑒 = exp(𝜈𝑥)𝛼(𝑞). However, [𝑥, 𝑞] = 𝑑 ∉ 𝐽 ′, so because the
𝐿−1-components of both e and 𝛼(𝑞) are contained in 𝐽 ′, this can only happen if 𝜆 = 0, and therefore
𝑒 = 𝛼(𝑞), proving the required uniqueness of the extremal element.

Notice that the uniqueness of the corresponding automorphism 𝛼 ∈ 𝐸−(𝑥, 𝑦) is now clear because
any other 𝛼′ ∈ 𝐸−(𝑥, 𝑦) with 𝛼′(𝑞) = 𝛼(𝑞) would again be a-exponential (for the same a) and therefore
differ from 𝛼 by an element of the form exp(𝜆𝑥), forcing 𝜆 = 0 as before. �

As promised, we can now use Proposition 4.11 to define some maps.

Definition 4.12. We define maps 𝑁 : 𝐽 → 𝑘 , ♯ : 𝐽 → 𝐽 ′, 𝑇 : 𝐽 × 𝐽 ′ → 𝑘 and × : 𝐽 × 𝐽 → 𝐽 ′ as follows:

𝑁 (𝑎)𝑥 = 𝑎−2, for any 𝑎 ∈ 𝐽 with 𝑎−2 as in Proposition 4.11(i);

𝑎♯ = 𝑎−1, for any 𝑎 ∈ 𝐽 with 𝑎−1 as in Proposition 4.11(i);
𝑇 (𝑎, 𝑏)𝑥 = [𝑎, 𝑏], for any 𝑎 ∈ 𝐽, 𝑏 ∈ 𝐽 ′;
𝑎 × 𝑏 = [𝑎, [𝑏, 𝑞]], for any 𝑎, 𝑏 ∈ 𝐽.

Note that T is a bilinear map and that × is a symmetric bilinear map because [𝐽, 𝐽] = 0. Similarly, we
define maps 𝑁 ′ : 𝐽 ′ → 𝑘 , ♯′ : 𝐽 ′ → 𝐽, 𝑇 ′ : 𝐽 ′ × 𝐽 → 𝑘 and ×′ : 𝐽 ′ × 𝐽 ′ → 𝐽:
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𝑁 ′(𝑏)𝑥 = 𝑏−2, for any 𝑏 ∈ 𝐽 ′ with 𝑏−2 as in Proposition 4.11(ii);

𝑏♯
′

= −𝑏−1, for any 𝑏 ∈ 𝐽 ′ with 𝑏−1 as in Proposition 4.11(ii);
𝑇 ′(𝑏, 𝑎)𝑥 = [𝑎, 𝑏], for any 𝑎 ∈ 𝐽, 𝑏 ∈ 𝐽 ′;
𝑎 ×′ 𝑏 = −[𝑎, [𝑏, 𝑝]], for any 𝑎, 𝑏 ∈ 𝐽 ′.

(Notice the two minus signs. Observe that 𝑇 ′(𝑏, 𝑎) = 𝑇 (𝑎, 𝑏) for all 𝑎 ∈ 𝐽, 𝑏 ∈ 𝐽 ′.)

Using Proposition 4.11, we can deduce some identities.

Lemma 4.13. Let 𝑎, 𝑏 ∈ 𝐽 and 𝜆 ∈ 𝑘 . Then

(𝜆𝑎)♯ = 𝜆2𝑎♯; (30)
𝑁 (𝜆𝑎) = 𝜆3𝑁 (𝑎); (31)

(𝑎 + 𝑏)♯ = 𝑎♯ + 𝑎 × 𝑏 + 𝑏♯; (32)

𝑁 (𝑎 + 𝑏) = 𝑁 (𝑎) + 𝑇 (𝑏, 𝑎♯) + 𝑇 (𝑎, 𝑏♯) + 𝑁 (𝑏); (33)

(𝑎♯)♯
′

= 𝑁 (𝑎)𝑎; (34)

𝑁 ′(𝑎♯) = 𝑁 (𝑎)2. (35)

Similar identities hold for 𝑎, 𝑏 ∈ 𝐽 ′.

Proof. Equations (30) and (31) follow immediately from Proposition 4.11 and Theorem 3.13(vii).
Now let 𝑎, 𝑏 ∈ 𝐽 and consider the corresponding automorphisms 𝛼 for a and 𝛽 for b as in Propo-

sition 4.11. Then 𝛼(𝑞) = 𝑁 (𝑎)𝑥 + 𝑎♯ + [𝑎, 𝑞] + 𝑞 and 𝛽(𝑞) = 𝑁 (𝑏)𝑥 + 𝑏♯ + [𝑏, 𝑞] + 𝑞. The elements
𝛼𝛽(𝑞) and 𝛽𝛼(𝑞) are also extremal, and

𝛼𝛽(𝑞) =
(
𝑁 (𝑏)𝑥 + 𝑇 (𝑎, 𝑏♯)𝑥 + 𝑞𝛼 ([𝑏, 𝑞]) + 𝑁 (𝑎)𝑥

)
+ (𝑏♯ + 𝑎 × 𝑏 + 𝑎♯) + [𝑏 + 𝑎, 𝑞] + 𝑞,

𝛽𝛼(𝑞) =
(
𝑁 (𝑎)𝑥 + 𝑇 (𝑏, 𝑎♯)𝑥 + 𝑞𝛽 ([𝑎, 𝑞]) + 𝑁 (𝑏)𝑥

)
+ (𝑎♯ + 𝑏 × 𝑎 + 𝑏♯) + [𝑎 + 𝑏, 𝑞] + 𝑞.

Since 𝑎♯ + 𝑎 × 𝑏 + 𝑏♯ ∈ 𝐽 ′, we can use the uniqueness in Proposition 4.11 applied on 𝑎 + 𝑏 ∈ 𝐽 to obtain
(32) and

𝑁 (𝑎 + 𝑏)𝑥 = 𝑁 (𝑎)𝑥 + 𝑇 (𝑏, 𝑎♯)𝑥 + 𝑞𝛽 ([𝑎, 𝑞]) + 𝑁 (𝑏)𝑥

= 𝑁 (𝑎)𝑥 + 𝑇 (𝑎, 𝑏♯)𝑥 + 𝑞𝛼 ([𝑏, 𝑞]) + 𝑁 (𝑏)𝑥.

In particular, we have

𝑇 (𝑎, 𝑏♯)𝑥 − 𝑞𝛽 ([𝑎, 𝑞]) = 𝑇 (𝑏, 𝑎
♯)𝑥 − 𝑞𝛼 ([𝑏, 𝑞]). (36)

Since 𝑏 ∈ 𝐽 is arbitrary, we can replace it by 𝜆𝑏 for arbitrary 𝜆 ∈ 𝑘 . By Theorem 3.13(vii), (30), and the
linearity of T, the left-hand side of (36) is quadratic in 𝜆, while the right-hand side is linear in 𝜆. Since
|𝑘 | ≥ 3, this implies that both the left- and the right-hand side of (36) are 0. So we obtain (33).

We now show (34) and (35) simultaneously. Let 𝑎 ∈ 𝐽 be arbitrary and consider the corresponding
extremal element 𝑒 = 𝑁 (𝑎)𝑥 + 𝑎♯ + [𝑎, 𝑞] + 𝑞. Since 𝑎♯ ∈ 𝐽 ′ ≤ 𝐿 ′

0 and 𝑝 ∈ 𝐿 ′
−1, we get 𝑔(𝑝, 𝑎♯) = 0 by

Lemma 2.15. Notice that 𝑒 ∈ 𝐿 ′′
−1, so (𝑒, 𝑝) ∈ 𝐸1 because of the grading (18). It follows that

[𝑒, 𝑝] = −𝑁 (𝑎)𝑐 + [𝑎♯, 𝑝] + [[𝑎, 𝑞], 𝑝] + 𝑦 ∈ 𝐸.
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Notice that [[𝑎, 𝑞], 𝑝] = [𝑎, 𝑦] by the Jacobi identity, since [𝑎, 𝑝] ∈ [𝐽, 𝑝] = 0. Applying the automor-
phism 𝜑 from Lemma 2.8, we get

𝑥 + [𝑥, [𝑎, 𝑦]] + 𝜑([𝑎♯, 𝑝]) − 𝑁 (𝑎)𝑝 ∈ 𝐸.

Recall that 𝜑(𝑙0) = 𝑙0 + [𝑥, [𝑦, 𝑙0]] for all 𝑙0 ∈ 𝐿0. However, [𝑦, [𝑎♯, 𝑝]] = 0 because of the grading (see
again Figure 1), so 𝜑([𝑎♯, 𝑝]) = [𝑎♯, 𝑝]. Combined with [𝑥, [𝑎, 𝑦]] = 𝑎 by Proposition 2.4(iii), we get

𝑥 + 𝑎 + [𝑎♯, 𝑝] − 𝑁 (𝑎)𝑝 ∈ 𝐸.

First, assume 𝑁 (𝑎) ≠ 0. Applying the automorphism 𝜑𝜆 from Lemma 2.10 with 𝜆 = −𝑁 (𝑎)−1, we get

𝑁 (𝑎)2𝑥 − 𝑁 (𝑎)𝑎 + [𝑎♯, 𝑝] + 𝑝 ∈ 𝐸.

By definition of ♯′, this implies (𝑎♯)♯
′
= 𝑁 (𝑎)𝑎 and 𝑁 ′(𝑎♯) = 𝑁 (𝑎)2, so we obtain (34) and (35) if

𝑁 (𝑎) ≠ 0.
Now assume 𝑁 (𝑎) = 0. If 𝑎♯ = 0, then (34) and (35) are trivially satisfied, so assume 𝑎♯ ≠ 0. Then

𝑒 = 𝑎♯ + [𝑎, 𝑞] + 𝑞.

In particular, 𝑒 ∈ 𝐿≥−1\𝐿≥0, so by Proposition 2.5, we get (𝑒, 𝑦) ∈ 𝐸1 and hence, [𝑎♯, 𝑦] = [𝑒, 𝑦] ∈ 𝐸 . It
follows that also 𝑎♯ = [𝑥, [𝑎♯, 𝑦]] ∈ 𝐸 . Since 𝑔(𝑝, 𝑎♯) = 0, it follows that exp(𝑎♯) (𝑝) = [𝑎♯, 𝑝] + 𝑝 ∈ 𝐸 ,
and thus, (𝑎♯)♯′ = 0 and 𝑁 ′(𝑎♯) = 0, proving (34) and (35) also in this case. �

Lemma 4.14. For all 𝑎, 𝑏, 𝑐 ∈ 𝐽, we have

𝑇 (𝑎, 𝑎♯) = 3𝑁 (𝑎); (37)

𝑎 × 𝑎 = 2𝑎♯; (38)
𝑇 (𝑐, 𝑎 × 𝑏) = 𝑇 (𝑎, 𝑏 × 𝑐); (39)

𝑎♯ ×′ (𝑎 × 𝑏) = 𝑁 (𝑎)𝑏 + 𝑇 (𝑏, 𝑎♯)𝑎; (40)

𝑎♯ ×′ 𝑏♯ = −(𝑎 × 𝑏)♯
′

+ 𝑇 (𝑏, 𝑎♯)𝑏 + 𝑇 (𝑎, 𝑏♯)𝑎. (41)

Similar identities hold for 𝑎, 𝑏, 𝑐 ∈ 𝐽 ′.

Proof. By (30) to (35), this follows in exactly the same way as in [TW02, (15.16), (15.18)]. (Recall
from Assumption 4.1 that we assume |𝑘 | ≥ 4.) �

Remark 4.15. The identities (30) to (35) and (37) to (41) we have shown so far may serve as an
axiom system for ‘cubic norm pairs’ (𝐽, 𝐽 ′). Although this seems to be a natural counterpart for cubic
norm structures in the context of Jordan pairs (rather than Jordan algebras), this notion seems to have
appeared only once in the literature in a paper by John Faulkner [Fau01], although the setup of a paired
structure also appears already in [Spr62]. (We thank Holger Petersson for pointing this out to us.) A
recent contribution to the theory of cubic norm pairs, also related to 𝐺2-graded Lie algebras, is Michiel
Smet’s preprint [Sme25].

At this point, we have, in principle, gathered enough information to reconstruct the Lie algebra from
our data. Since this is not our main focus, we will only sketch the procedure. We will need the following
concrete computations, providing us with information about the Lie bracket with the ‘middle part’
𝐿0 ∩ 𝐿

′
0, which is the most difficult piece to control. (Notice that [𝐽, [𝑦, 𝐽 ′]] and [𝐽 ′, [𝑦, 𝐽]] belong to

this middle part.)
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Lemma 4.16. Let 𝑎, 𝑏, 𝑒 ∈ 𝐽 and 𝑎′, 𝑏′, 𝑒′ ∈ 𝐽 ′ be arbitrary. Then

[𝑎, [𝑏, [𝑦, 𝑒]]] = 𝑇 (𝑎, 𝑏 × 𝑒)𝑐; (42)
[𝑎′, [𝑏′, [𝑦, 𝑒′]]] = 𝑇 (𝑏′ ×′ 𝑒′, 𝑎′)𝑑; (43)
[𝑎, [𝑏′, [𝑦, 𝑒′]]] = −𝑎 × (𝑏′ ×′ 𝑒′); (44)
[𝑎′, [𝑏, [𝑦, 𝑒]]] = 𝑎′ ×′ (𝑏 × 𝑒); (45)
[𝑎, [𝑏′, [𝑦, 𝑒]]] = 𝑏′ ×′ (𝑎 × 𝑒) − 𝑇 (𝑎, 𝑏′)𝑒; (46)
[𝑎′, [𝑏, [𝑦, 𝑒′]]] = −𝑏 × (𝑎′ ×′ 𝑒′) + 𝑇 (𝑏, 𝑎′)𝑒; (47)
[𝑎, [𝑏, [𝑦, 𝑒′]]] = 𝑒′ ×′ (𝑎 × 𝑏) − 𝑇 (𝑎, 𝑒′)𝑏 − 𝑇 (𝑏, 𝑒′)𝑎; (48)
[𝑎′, [𝑏′, [𝑦, 𝑒]]] = −𝑒 × (𝑎′ ×′ 𝑏′) + 𝑇 (𝑒, 𝑎′)𝑏′ + 𝑇 (𝑒, 𝑏′)𝑎′. (49)

Proof. By the grading (see Figure 1), we have [𝑎, [𝑏, [𝑦, 𝑒]]] ∈ 𝐿−1∩𝐿
′
−2 = 〈𝑐〉, so [𝑎, [𝑏, [𝑦, 𝑒]]] = 𝜆𝑐

for some 𝜆 ∈ 𝑘 . Since [𝑐, 𝑑] = 𝑥 and [𝐽, 𝑑] = 0, we get

𝜆𝑥 = [𝑑, [𝑎, [𝑏, [𝑒, 𝑦]]]] = [𝑎, [𝑏, [𝑒, [𝑑, 𝑦]]]] = [𝑎, [𝑏, [𝑒, 𝑞]]] = [𝑎, 𝑏 × 𝑒] = 𝑇 (𝑎, 𝑏 × 𝑒)𝑥,

and hence, (42) holds. The proof of (43) is similar.
Next, since 𝑦 = [𝑞, 𝑝], [𝑞, 𝑒′] = 0 and [𝑞, 𝑏′] = 0, we get

[𝑎, [𝑏′, [𝑦, 𝑒′]]] = [𝑎, [𝑏′, [[𝑞, 𝑝], 𝑒′]]]

= [𝑎, [𝑏′, [𝑞, [𝑝, 𝑒′]]]]

= [𝑎, [𝑞, [𝑏′, [𝑝, 𝑒′]]]] = −𝑎 × (𝑏′ ×′ 𝑒′),

proving (44). The proof of (45) is similar.
Now, by the Jacobi identity and (45), we have

[𝑎, [𝑏′, [𝑦, 𝑒]]] = [𝑏′, [𝑎, [𝑦, 𝑒]]] + [[𝑎, 𝑏′], [𝑦, 𝑒]] = 𝑏′ ×′ (𝑎 × 𝑒) + [𝑇 (𝑎, 𝑏′)𝑥, [𝑦, 𝑒]],

so we get (46). The proof of (47) is similar.
Finally, by applying the Jacobi identity twice and using [𝑎, [𝑏, 𝑒′]] ∈ 𝐿−3 = 0 and (46), we get

[𝑎, [𝑏, [𝑦, 𝑒′]]] = [𝑦, [𝑎, [𝑏, 𝑒′]]] + [𝑎, [[𝑏, 𝑦], 𝑒′]] + [[𝑎, 𝑦], [𝑏, 𝑒′]]

= 0 + [𝑎, [𝑒′, [𝑦, 𝑏]]] + [[𝑎, 𝑦], 𝑇 (𝑏, 𝑒′)𝑥]

= 𝑒′ ×′ (𝑎 × 𝑏) − 𝑇 (𝑎, 𝑒′)𝑏 − 𝑇 (𝑏, 𝑒′)𝑎,

showing (48). The proof of (49) is similar. �

Here is the promised sketch of the reconstruction result.

Corollary 4.17. The Lie bracket on L can be completely recovered from the maps T, × and ×′ alone.

Proof. Notice that, by Figure 1, the algebra L has a decomposition into 13 pieces. Now let

𝐾0 := 〈[𝑥, 𝑦], [𝑞, 𝑐]〉 ⊕ [𝐽, [𝑦, 𝐽 ′]],

and let K be the subspace of L spanned by 𝐾0 together with the 12 remaining pieces of L. It is not
difficult to check (but it requires some case analysis) that K is an ideal of L. Since L is simple, it
follows that 𝐾 = 𝐿, so in particular, 𝐾0 = 𝐿0 ∩ 𝐿

′
0. Now observe that we can identify 𝐾0 with the Lie

algebra �̃�0 consisting of the corresponding inner derivations ad𝑙 (for each 𝑙 ∈ 𝐾0) restricted to the sum
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of the 12 remaining pieces; see, for example, [BDMS19, Construction 4.1.2]. (Since L is simple, the
corresponding Lie algebra homomorphism 𝐾0 → �̃�0 is injective and hence an isomorphism.)

The Lie algebra L can now be reconstructed from six one-dimensional subspaces, three copies of J,
three copies of 𝐽 ′, and a copy of �̃�0, assembled exactly as in Figure 1. It is now a routine (but somewhat
lengthy) verification, relying on Lemma 4.16, that that the Lie bracket between every two of the 13
pieces is completey determined by the maps T, × and ×′. �

So far, we have been able to endow the pair (𝐽, 𝐽 ′) with a ‘twin cubic norm structure’ using the
various maps between them. (See also Remark 4.15.) When the norm N is not identically zero, we can
go one step further, by selecting a ‘base point’ to identify the two parts of this twin structure, which
then results in a genuine cubic norm structure.

Lemma 4.18. If 𝑁 ≠ 0, then we can re-choose c and d in Notation 4.2 in such a way that 𝑁 (𝑧) = 1 for
some 𝑧 ∈ 𝐽. We call z a base point for N.

Proof. Let 𝑧 ∈ 𝐽 such that 𝑁 (𝑧) ≠ 0. If we replace c by 𝑐 = 𝑁 (𝑧)𝑐 and d by 𝑑 = 𝑁 (𝑧)−1𝑑 in Notation 4.2,
and correspondingly replace p by 𝑝 = 𝑁 (𝑧)𝑝 and q by 𝑞 = 𝑁 (𝑧)−1𝑞, then all conditions in Notation 4.2
remain satisfied. Since we have only replaced these elements by a scalar multiple, this does not affect
any of the decompositions.

Now denote the norm obtained from Definition 4.12 with these new choices by �̃� . Since 𝑁 (𝑧)𝑥 +
𝑧♯ + [𝑧, 𝑞] + 𝑞 ∈ 𝐸 , we get 𝑥 + 𝑁 (𝑧)−1𝑧♯ + [𝑧, 𝑞] + 𝑞 ∈ 𝐸 , and it follows that indeed �̃� (𝑧) = 1. �

Assume for the rest of this section that 𝑁 ≠ 0 and that 𝑧 ∈ 𝐽 is a base point for N.

Definition 4.19. We define maps 𝜎 : 𝐽 → 𝐽 ′ and 𝜎′ : 𝐽 ′ → 𝐽 by

𝜎(𝑎) = 𝑇 (𝑎, 𝑧♯)𝑧♯ − 𝑧 × 𝑎,

𝜎′(𝑏) = 𝑇 (𝑧, 𝑏)𝑧 − 𝑏 ×′ 𝑧♯,

for all 𝑎 ∈ 𝐽 and all 𝑏 ∈ 𝐽 ′.

Lemma 4.20. We have 𝜎′ ◦ 𝜎 = id𝐽 and 𝜎 ◦ 𝜎′ = id𝐽 ′ .

Proof. Let 𝑎 ∈ 𝐽 be arbitrary. Then by (34) and (37) to (40) and since 𝑁 (𝑧) = 1,

𝜎′(𝜎(𝑎)) = 𝑇 (𝑧, 𝑇 (𝑎, 𝑧♯)𝑧♯)𝑧 − 𝑇 (𝑧, 𝑧 × 𝑎)𝑧 − 𝑇 (𝑎, 𝑧♯)𝑧♯ ×′ 𝑧♯ + (𝑧 × 𝑎) ×′ 𝑧♯

= 𝑇 (𝑎, 𝑧♯)𝑇 (𝑧, 𝑧♯)𝑧 − 𝑇 (𝑎, 𝑧 × 𝑧)𝑧 − 2𝑇 (𝑎, 𝑧♯) (𝑧♯)♯
′

+ 𝑁 (𝑧)𝑎 + 𝑇 (𝑎, 𝑧♯)𝑧

= 3𝑇 (𝑎, 𝑧♯)𝑧 − 2𝑇 (𝑎, 𝑧♯)𝑧 − 2𝑇 (𝑎, 𝑧♯)𝑧 + 𝑎 + 𝑇 (𝑎, 𝑧♯)𝑧
= 𝑎.

The proof of the second equality is similar. �

Lemma 4.21. We have 𝜎′ ◦ ♯ = ♯′ ◦ 𝜎.

Proof. Let 𝑎 ∈ 𝐽 be arbitrary. On the one hand, using (41), we get

𝜎′(𝑎♯) = 𝑇 (𝑧, 𝑎♯)𝑧 − 𝑎♯ ×′ 𝑧♯

= 𝑇 (𝑧, 𝑎♯)𝑧 + (𝑎 × 𝑧)♯
′

− 𝑇 (𝑧, 𝑎♯)𝑧 − 𝑇 (𝑎, 𝑧♯)𝑎

= (𝑎 × 𝑧)♯
′

− 𝑇 (𝑎, 𝑧♯)𝑎.
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On the other hand, using 𝑁 (𝑧) = 1, (30), (32), (34) and (40), we have

𝜎(𝑎)♯
′

= (𝑇 (𝑎, 𝑧♯)𝑧♯ − 𝑧 × 𝑎)♯
′

= 𝑇 (𝑎, 𝑧♯)2(𝑧♯)♯
′

− 𝑇 (𝑎, 𝑧♯)𝑧♯ ×′ (𝑧 × 𝑎) + (𝑧 × 𝑎)♯
′

= 𝑇 (𝑎, 𝑧♯)2𝑧 − 𝑇 (𝑎, 𝑧♯)𝑎 − 𝑇 (𝑎, 𝑧♯)2𝑧 + (𝑧 × 𝑎)♯
′

= (𝑎 × 𝑧)♯
′

− 𝑇 (𝑎, 𝑧♯)𝑎. �

We are now ready to define the cubic norm structure and prove the required defining identities; see
Definition 1.11.

Definition 4.22. We define maps 𝑇𝐽 : 𝐽 × 𝐽 → 𝑘 , ×𝐽 : 𝐽 × 𝐽 → 𝐽 and ♯𝐽 : 𝐽 → 𝐽 by setting

𝑇𝐽 (𝑎, 𝑏) = 𝑇 (𝑎, 𝜎(𝑏)), (50)
𝑎 ×𝐽 𝑏 = 𝜎′(𝑎 × 𝑏) = 𝜎(𝑎) ×′ 𝜎(𝑏), (51)

𝑎♯𝐽 = 𝜎′(𝑎♯) = 𝜎(𝑎)♯
′

, (52)

for all 𝑎, 𝑏 ∈ 𝐽. (The rightmost equalities in (51) and (52) hold by Lemma 4.21.)

Theorem 4.23. Let L be as in Notation 4.2 and J be as in Notation 4.4. Assume that the map N defined
in Definition 4.12 is not identically zero. Then the data (𝐽, 𝑘, 𝑁, ♯𝐽 , 𝑇𝐽 ,×𝐽 , 𝑧) forms a nondegenerate
cubic norm structure.

Proof. Recall that by Lemma 1.13, we only have to show that the defining identities (i), (ii), (iv), (v),
(vii), (x) and (xi) of Definition 1.11 are satisfied.

First, note that ×𝐽 is symmetric and bilinear by construction. For 𝑇𝐽 , we have

𝑇𝐽 (𝑎, 𝑏) = 𝑇 (𝑎, 𝑇 (𝑏, 𝑧
♯)𝑧♯) − 𝑇 (𝑎, 𝑧 × 𝑏) = 𝑇 (𝑎, 𝑧♯)𝑇 (𝑏, 𝑧♯) − 𝑇 (𝑧, 𝑎 × 𝑏)

by (39), and hence, 𝑇𝐽 is symmetric and bilinear.
Identity (i) follows from the linearity of 𝜎′ and (30). Identity (ii) is precisely (31). Identity (iv)

follows from the linearity of 𝜎′ and (32). Identity (v) follows from Lemma 4.20 and (33). Identity (vii)
follows from Lemmas 4.20 and 4.21 and (34). Identity (x) follows from

𝜎′(𝑧♯) = 𝑇 (𝑧, 𝑧♯)𝑧 − 𝑧♯ ×′ 𝑧♯ = 3𝑁 (𝑧)𝑧 − 2𝑁 (𝑧)𝑧 = 𝑧,

using (34), (37) and (38) and 𝑁 (𝑧) = 1. Identity (xi) follows from

𝑧 ×𝐽 𝑎 = 𝜎′(𝑧 × 𝑎) = 𝑇 (𝑧, 𝑧 × 𝑎)𝑧 − 𝑧♯ ×′ (𝑧 × 𝑎)

= 𝑇 (𝑎, 𝑧 × 𝑧)𝑧 − 𝑁 (𝑧)𝑎 − 𝑇 (𝑎, 𝑧♯)𝑧

= 𝑇 (𝑎, 𝑧♯)𝑧 − 𝑎 = 𝑇𝐽 (𝑎, 𝑧) − 𝑎

for all 𝑎 ∈ 𝐽, using (38) to (40), 𝜎(𝑧) = 𝑧♯ and 𝑁 (𝑧) = 1. Finally, the cubic norm structure is
nondegenerate: if 𝑎 ∈ 𝐽 is such that 𝑇𝐽 (𝑎, 𝐽) = 0, then we have 𝑇 (𝑎, 𝐽 ′) = 0 (i.e., [𝑎, 𝐽 ′] = 0), but it
then follows from the grading that [𝑎, 𝐿−1] = 0; Lemma 2.11 then implies that 𝑎 = 0. �

Remark 4.24. A different choice of base point would give rise to a different cubic norm structure, but
it is not hard to show (and not surprising) that the resulting cubic norm structures are isotopic; see
Definition 1.15.

Remark 4.25. If the cubic norm structure is anisotropic (see Definition 1.12), then the extremal geometry
is, in fact, a generalized hexagon. (The key point here is the fact that the extremal geometry is a
generalized hexagon if and only if there are no symplectic pairs, a fact that we have exploited already
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in the proof of Lemma 3.3. The existence of symplecta turns out to be equivalent to the existence of
extremal elements in 𝐿 ′

−1 ∩ 𝐿−1 = 𝐽, and such elements always have norm 0.)
With some more effort, we can use the techniques developed in this section to show that this

generalized hexagon is isomorphic to the Moufang hexagon obtained from the cubic norm structure as
in [TW02, (16.8)], and we can determine the root groups and the commutator relations explicitly in
terms of the Lie algebra. Since this result is not so surprising but still requires a substantial amount of
work, we omit the details. See [Meu21, §4.4.2].

Remark 4.26. If the map N is identically zero, then also the maps ♯, ×, 𝑁 ′, ♯′ and ×′ are identically
zero. In this case, it can be shown that the extremal geometry is isomorphic to a geometry of the form
Γ(𝑉,𝑊∗) as defined in [CM21, Example 2.8]. Note that these examples also occur when the Lie algebra
is infinite-dimensional. In the finite-dimensional case, these are precisely so-called root shadow spaces
of type 𝐴𝑛, {1,𝑛}.

5. Extremal geometry with symplectic pairs – recovering a quadrangular algebra

In this section, we continue to assume that L is a simple Lie algebra generated by its pure extremal
elements, but we make different assumptions on the existence of certain extremal elements and extremal
lines.

Assumption 5.1. We assume that L is a simple Lie algebra, defined over a field k with |𝑘 | > 2, such
that L is generated by its set E of pure extremal elements, and such that

(i) there exists a Galois extension 𝑘 ′/𝑘 of degree at most 2 such that the extremal geometry of 𝐿 ⊗ 𝑘 ′

contains lines;
(ii) there exist symplectic pairs of extremal elements.

This time, we will show that 𝐿−1 can be decomposed as 𝑉 ⊕ 𝑋 ⊕ 𝑉 ′ into 3 parts, where 𝑉 ′ � 𝑉 , and
that (𝑉, 𝑋) can be made into a quadrangular algebra. This will require a substantial amount of work,
mostly because we are including the case char(𝑘) = 2. Notice, however, that we will never require a
case distinction, not even in the computations in our proofs. For convenience, we have included the
char(𝑘) ≠ 2 description of 𝜃 in Proposition 5.30, but we never use this result.

We first point out that L remains simple after base extension to 𝑘 ′.

Lemma 5.2. The Lie algebra 𝐿𝑘′ := 𝐿 ⊗𝑘 𝑘
′ is simple.

Proof. Essentially, this is shown in the proof of [CM21, Theorem 5.7]. However, the statement in loc.
cit. assumes char(𝑘) ≠ 2, and extending it to all characteristics requires some subtle changes in the final
step, so we give a complete proof.

Let 𝜎 be the unique nontrivial element of Gal(𝑘 ′/𝑘). We first recall3 that, by Speiser’s Lemma (see,
for example, [GS17, Lemma 2.3.8]), each 𝜎-invariant subspace W of 𝐿𝑘′ can be written as𝑊 = 𝑉 ⊗𝑘 𝑘

′

for some subspace V of L.
Now let I be a nontrivial ideal of 𝐿𝑘′ and let 𝑎 ∈ 𝐼 with 𝑎 ≠ 0. Then, as the extremal elements in E

linearly span L, they also span 𝐿𝑘′ over 𝑘 ′, so we can write

𝑎 = 𝑥1 ⊗ 𝜆1 + · · · + 𝑥𝑘 ⊗ 𝜆𝑘 ,

where 𝑥 𝑗 ∈ 𝐸 are linearly independent and each 𝜆 𝑗 ∈ 𝑘 ′×. After replacing a with a scalar multiple,
we can assume 𝜆1 + 𝜆

𝜎
1 ≠ 0. Then 𝑎 + 𝑎𝜎 is a nontrivial element in 𝐼 + 𝐼𝜎 fixed by 𝜎. Therefore, the

subspace spanned by the elements in 𝐼 + 𝐼𝜎 fixed by 𝜎 forms a nontrivial ideal of L, which by simplicity
of L equals L. This implies that 𝐼 + 𝐼𝜎 = 𝐿𝑘′ .

3This fact is reproven in [CM21, Lemma 6.9] in this specific situation with an ad-hoc argument, but it holds in a much more
general setting.
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Since both I and 𝐼𝜎 are ideals, 𝐼 ∩ 𝐼𝜎 is an ideal which is stabilized by 𝜎. By Speiser’s Lemma,
𝐼 ∩ 𝐼𝜎 = 𝑉 ⊗𝑘 𝑘

′ for some subspace V of L, but then V is an ideal of L. By the simplicity of L, this
implies that either 𝐼 = 𝐿𝑘′ , or 𝐼 ∩ 𝐼𝜎 = 0. So we may assume the latter, and therefore, 𝐿𝑘′ = 𝐼 ⊕ 𝐼𝜎 . In
particular, [𝐼, 𝐼𝜎] ≤ 𝐼 ∩ 𝐼𝜎 = 0, and thus,

[𝐿𝑘′ , 𝐿𝑘′ ] = [𝐼, 𝐼] ⊕ [𝐼𝜎 , 𝐼𝜎] . (53)

Since L is simple, 𝐿 = [𝐿, 𝐿] and hence 𝐿𝑘′ = [𝐿𝑘′ , 𝐿𝑘′ ], so it follows from (53) that [𝐼, 𝐼] = 𝐼.
Now let 𝑥 ∈ 𝐸 be arbitrary. By the Premet identity (2) with 𝑦, 𝑧 ∈ 𝐼, we get 𝑔𝑥 ([𝑦, 𝑧])𝑥 ∈ 𝐼 for all

𝑦, 𝑧 ∈ 𝐼. Since 𝐼 = [𝐼, 𝐼], it follows that 𝑔𝑥 (𝑎)𝑥 ∈ 𝐼 for all 𝑎 ∈ 𝐼. It thus follows that 𝑥 ∈ 𝐼 if we can find
an 𝑎 ∈ 𝐼 with 𝑔(𝑥, 𝑎) ≠ 0. This is indeed always possible: since g is nondegenerate, there exists a 𝑦 ∈ 𝐿
with 𝑔(𝑥, 𝑦) ≠ 0, but since 𝐿𝑘′ = 𝐼 + 𝐼𝜎 , we either find 𝑎 ∈ 𝐼 with 𝑔(𝑥, 𝑎) ≠ 0 or we find 𝑏 ∈ 𝐼𝜎 with
𝑔(𝑥, 𝑏) ≠ 0. In the latter case, however, we simply apply 𝜎, and we find 𝑔(𝑥, 𝑏𝜎) ≠ 0 with 𝑏𝜎 ∈ 𝐼.

Since 𝑥 ∈ 𝐸 was arbitrary, we have shown that E is contained in I. However, E generates 𝐿𝑘′ , so we
get that 𝐼 = 𝐿𝑘′ as required. (In fact, this is now a contradiction to the fact that 𝐼 ∩ 𝐼𝜎 = 0.) �

Proposition 5.3. There exist extremal elements x, y, c and d such that 𝑔(𝑥, 𝑦) = 𝑔(𝑐, 𝑑) = 1 and
(𝑥, 𝑐), (𝑐, 𝑦), (𝑦, 𝑑), (𝑑, 𝑥) ∈ 𝐸0.

Proof. Assume first that the extremal geometry of L contains lines. By Assumption 5.1(ii), there exists
an 𝑥 ∈ 𝐸 and a symplecton S of the extremal geometry containing 〈𝑥〉. Recall from Assumption 3.1 that
(E , E2) is connected, so there exist 𝑦 ∈ 𝐸 such that 𝑔(𝑥, 𝑦) = 1. By Proposition 3.5(v), there exists 𝑐 ∈ 𝐸
such that 〈𝑐〉 ∈ 𝑆 and (𝑐, 𝑦) ∈ 𝐸0. Since 𝑆 ⊆ E≤0 (𝑥), Proposition 2.13(iv) implies that also (𝑥, 𝑐) ∈ 𝐸0.

By Proposition 2.13(ii) applied on (𝑥, 𝑐), there exists a symplecton T containing x and containing
an extremal point hyperbolic with 〈𝑐〉. By Proposition 3.5(v) again, we find 𝑑 ∈ 𝐸 such that 〈𝑑〉 ∈ 𝑇
with (𝑑, 𝑦) ∈ 𝐸0, and again, Proposition 2.13(iv) implies that also (𝑑, 𝑥) ∈ 𝐸0. It remains to show that
(𝑐, 𝑑) ∈ 𝐸2. Let 𝐴 := 𝑇 ∩ E≤0(𝑐). By Proposition 2.13(iv), 𝐴 = 𝑇 ∩ E0 (𝑐). By Proposition 3.5(v) now,
A consists of the single point 〈𝑥〉. We can now invoke [CM21, Lemma 2.17] to see that the point 〈𝑑〉 is
indeed contained in E2(𝑐). By rescaling c, we obtain 𝑔(𝑐, 𝑑) = 1.

Assume now that the extremal geometry of L does not contain lines. Then E × E = E−2 ∪ E0 ∪ E2. By
Assumption 5.1(i), the extremal geometry Γ′ = (E ′,F ′) of 𝐿𝑘′ contains lines. Recall from Lemma 5.2
that 𝐿𝑘′ is again simple, so it satisfies Assumption 3.1. Let Gal(𝑘 ′/𝑘) = 〈𝜎〉. Then the involution 𝜎
also acts on Γ′ and fixes all points of E .

We start now with a pair of extremal elements (𝑎, 𝑏) ∈ 𝐸0. Recall from Assumption 3.1 that (E , E2)
is connected, so there exist 𝑒 ∈ 𝐸 such that (𝑎, 𝑒) ∈ 𝐸2. Notice that by Proposition 3.5, there is a unique
symplecton S through a and b in Γ′, but since a and b are fixed by 𝜎, also S is fixed (setwise) by 𝜎.
By Proposition 3.5(v), there is a unique point 〈𝑥〉 ∈ 𝑆 in relation E ′

0 with 〈𝑒〉. Then also 〈𝑥〉𝜎 has this
property, so we must have 〈𝑥〉𝜎 = 〈𝑥〉. By Hilbert’s Theorem 90, we may replace x by a 𝑘 ′-multiple of
x to get 𝑥𝜎 = 𝑥 and therefore 𝑥 ∈ 𝐸 . Notice that now (𝑥, 𝑎) ∈ 𝐸0 and that S is the unique symplecton in
Γ′ through 〈𝑥〉 and 〈𝑎〉. We also have (𝑥, 𝑒) ∈ 𝐸0; let T be the unique sympecton in Γ′ through 〈𝑥〉 and
〈𝑒〉. Notice that 𝑆 ∩ 𝑇 = 〈𝑥〉.

We now apply the connectedness of (E , E2) again to find an element 𝑦 ∈ 𝐸2 (𝑥). Then again, there is
a unique point 〈𝑐〉 ∈ 𝑆 in relation E ′

0 with y, and similarly, there is a unique point 〈𝑑〉 ∈ 𝑇 in relation
E ′

0 with y. As before, we get 〈𝑐〉𝜎 = 〈𝑐〉 and 〈𝑑〉𝜎 = 〈𝑑〉, and we may rescale c and d so that 𝑐 ∈ 𝐸
and 𝑑 ∈ 𝐸 . Now observe that (𝑐, 𝑒) ∉ 𝐸0, since otherwise both 〈𝑥〉 and 〈𝑐〉 would be in relation E ′

0 with
〈𝑒〉, contradicting Proposition 3.5(v) applied on S and e. Since E × E = E−2 ∪ E0 ∪ E2, this implies that
(𝑐, 𝑒) ∈ 𝐸2. Similarly, it now follows that (𝑐, 𝑑) ∉ 𝐸0, since otherwise both 〈𝑥〉 and 〈𝑑〉 would be in
relation E ′

0 with 〈𝑐〉, again contradicting Proposition 3.5(v), now applied on T and c. We conclude that
(𝑐, 𝑑) ∈ 𝐸2. It now only remains to rescale the elements to see that x, y, c and d satisfy all the required
assumptions. �
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Notation 5.4. Let x, y, c, d be as in Proposition 5.3. We denote the 5-grading on L associated with the
hyperbolic pair (𝑥, 𝑦) as in Proposition 2.4 by

𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿0 ⊕ 𝐿1 ⊕ 𝐿2, (54)

with 𝐿−2 = 〈𝑥〉 and 𝐿2 = 〈𝑦〉. Similarly, we denote the 5-grading on L associated with the hyperbolic
pair (𝑐, 𝑑) as in Proposition 2.4 by

𝐿 ′
−2 ⊕ 𝐿

′
−1 ⊕ 𝐿

′
0 ⊕ 𝐿

′
1 ⊕ 𝐿

′
2, (55)

with 𝐿 ′
−2 = 〈𝑐〉 and 𝐿 ′

2 = 〈𝑑〉.
Now set

𝑉 := 𝐿−1 ∩ 𝐿
′
−1, 𝑋 := 𝐿−1 ∩ 𝐿

′
0, 𝑉 ′ := 𝐿−1 ∩ 𝐿

′
1, 𝑋 ′ := 𝐿0 ∩ 𝐿

′
−1.

Lemma 5.5. We have 𝑐, 𝑑 ∈ 𝐿0 and 𝑥, 𝑦 ∈ 𝐿 ′
0.

Proof. Since (𝑥, 𝑐), (𝑐, 𝑦) ∈ 𝐸0, it follows immediately from Proposition 2.5 that 𝑐 ∈ 𝐿0. The proof of
the other three statements is similar. �

Lemma 5.6. We have 𝑔𝑐 (𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿1 ⊕ 𝐿2) = 0 and 𝑔𝑑 (𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿1 ⊕ 𝐿2) = 0.

Proof. We show the claim for 𝑔𝑐 . Since (𝑐, 𝑥), (𝑐, 𝑦) ∈ 𝐸0, we get 𝑔𝑐 (𝑥) = 0 and 𝑔𝑐 (𝑦) = 0. Next, let
𝑙 ∈ 𝐿−1 be arbitrary and recall from Proposition 2.4(iii) that [𝑥, [𝑦, 𝑙]] = −𝑙. Using the associativity of
g, we get

−𝑔𝑐 (𝑙) = 𝑔(𝑐, [𝑥, [𝑦, 𝑙]]) = 𝑔([𝑐, 𝑥], [𝑦, 𝑙]) = 𝑔(0, [𝑦, 𝑙]) = 0,

so 𝑔𝑐 (𝐿−1) = 0. Similarly, 𝑔𝑐 (𝐿1) = 0. �

Proposition 5.7. We have decompositions

𝐿−1 = 𝑉 ⊕ 𝑋 ⊕ 𝑉 ′,

𝐿1 = [𝑦,𝑉] ⊕ [𝑦, 𝑋] ⊕ [𝑦,𝑉 ′],

𝐿 ′
−1 = 𝑉 ⊕ 𝑋 ′ ⊕ [𝑦,𝑉],

𝐿 ′
1 = 𝑉 ′ ⊕ [𝑑, 𝑋 ′] ⊕ [𝑦,𝑉 ′] .

Proof. By Lemma 5.6, we get 𝑔𝑑 (𝐿−1) = 0 and hence 𝐿−1 ≤ 𝐿 ′
≥−1 by Proposition 2.4(v) applied to the

grading (55). Similarly, it follows from 𝑔𝑐 (𝐿−1) = 0 that 𝐿−1 ≤ 𝐿 ′
≤1. Hence, 𝐿−1 ≤ 𝐿 ′

−1 ⊕ 𝐿
′
0 ⊕ 𝐿

′
1.

The rest of the proof of the decomposition of 𝐿−1 now follows exactly the same method as in the
proof of Proposition 4.6, using the grading element [𝑐, 𝑑] ∈ 𝐿0, so we can safely omit the details. The
second decomposition follows from the first by applying the isomorphism ad𝑦 from 𝐿−1 to 𝐿1; see
Proposition 2.4(iii).

The other two decompositions follow in a similar fashion by interchanging the roles of the two
gradings (54) and (55).

�

We have summarized all the information about the intersections of the two gradings in Figure 2.
Notice that the four subspaces V, 𝑉 ′ = [𝑑,𝑉], [𝑦,𝑉] and [𝑦,𝑉 ′] = [𝑦, [𝑑,𝑉]] are all isomorphic, by
Proposition 2.4(iii). (See also the proof of Corollary 5.8 below.) For the same reason, 𝑋 � [𝑦, 𝑋] and
𝑋 ′ � [𝑑, 𝑋 ′]. We will see later that also the subspaces X and 𝑋 ′ are isomorphic; see Corollary 5.24.
Notice that in Figure 2, we have also identified a third grading (diagonally), but this grading is not
directly necessary for our purposes. See, however, Remark 5.60 below.
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Figure 2. Intersecting gradings for quadrangular algebras.

By combining both gradings, we already obtain some more information on the Lie bracket.

Corollary 5.8. The following identities and inclusions hold:

[𝑐,𝑉 ′] = 𝑉, [𝑑,𝑉] = 𝑉 ′, (56)
[𝑐,𝑉] = 0, [𝑑,𝑉 ′] = 0, (57)
[𝑐, 𝑋] = 0, [𝑑, 𝑋] = 0, (58)
[𝑉,𝑉] = 0, [𝑉 ′, 𝑉 ′] = 0, [𝑉, 𝑋] = 0, [𝑉 ′, 𝑋] = 0, (59)
[𝑋, [𝑋, [𝑦,𝑉]] ≤ 𝑉, [𝑋, [𝑋, [𝑦,𝑉 ′]] ≤ 𝑉 ′, (60)
[𝑋, [𝑉, [𝑦,𝑉 ′]]] ≤ 𝑋, [𝑋, [𝑉 ′, [𝑦,𝑉]]] ≤ 𝑋. (61)

Proof. By Proposition 2.4(iii) applied on the grading (55), the map ad𝑑 is an isomorphism from 𝐿 ′
−1

to 𝐿 ′
1 with inverse − ad𝑐 . Since 𝑐, 𝑑 ∈ 𝐿0, these maps preserve the grading (54). It follows from

Proposition 5.7 that ad𝑑 induces an isomorphism from V to 𝑉 ′, with inverse − ad𝑐 . This shows (56).
The relations (57) to (61) all follow immediately from combining the two gradings, as can be seen

from Figure 2. �

We will now exploit the uniqueness of certain extremal elements to define a quadratic form on the
vector space V.

Lemma 5.9. For every 𝑣 ∈ 𝑉 , there is a unique 𝜆 ∈ 𝑘 such that

𝑙𝑣 := 𝜆𝑥 + [𝑣, 𝑑] + 𝑑 (62)
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is an extremal element. Moreover, 𝑙𝑣 = 𝑙𝑣′ if and only if 𝑣 = 𝑣′, where 𝑣, 𝑣′ ∈ 𝑉 .

Proof. Since 𝑣 ∈ 𝐿−1, Theorem 3.16 implies that there exists a v-exponential automorphism𝛼 ∈ Aut(𝐿).
Then 𝛼(𝑑) is an extremal element, and we have 𝛼(𝑑) = 𝑞𝛼 (𝑑) + [𝑣, 𝑑] + 𝑑 with 𝑞𝛼 (𝑑) ∈ 𝐿−2 = 〈𝑥〉,
showing the existence.

Assume now that that there are two distinct scalars such that (62) holds. Then the 2-dimensional
subspace 〈𝑥, [𝑣, 𝑑] + 𝑑〉 contains three distinct extremal elements, so Proposition 1.8 implies that this is
a line of the extremal geometry. This contradicts Corollary 2.6.

Finally, if 𝑙𝑣 = 𝑙𝑣′ for certain 𝑣, 𝑣′ ∈ 𝑉 , then [𝑣, 𝑑] = [𝑣′, 𝑑]. Proposition 2.4(iii) applied on the
grading (55) then implies that 𝑣 = 𝑣′. �

Definition 5.10. Define the map 𝑄 : 𝑉 → 𝑘 by setting 𝑄(𝑣) to be the unique 𝜆 ∈ 𝑘 from Lemma 5.9 –
that is, such that the element

𝑙𝑣 = 𝑄(𝑣)𝑥 + [𝑣, 𝑑] + 𝑑 (63)

is an extremal element. Define the bilinear form 𝑇 : 𝑉 ×𝑉 → 𝑘 by

𝑇 (𝑢, 𝑣)𝑥 = [𝑢, [𝑣, 𝑑]]

for all 𝑢, 𝑣 ∈ 𝑉 .

Remark 5.11. The uniqueness aspect, although easy to prove, is somewhat subtle, because the v-
exponential automorphism 𝛼 that we have used in the proof of Lemma 5.9 is not unique. Notice, however,
that we will be able to single out a unique v-exponential automorphism in Definition 5.15 below.

Lemma 5.12. The map Q is a quadratic form on V, with corresponding bilinear form T.

Proof. Let 𝜆 ∈ 𝑘 and 𝑢, 𝑣 ∈ 𝑉 . Let 𝛼, 𝛽 be a u-exponential and a v-exponential automorphism,
respectively. Then 𝑞𝛼 (𝑑) + [𝑢, 𝑑] + 𝑑 ∈ 𝐸 and 𝑞𝛼 (𝑑) = 𝑄(𝑢)𝑥. By Theorem 3.13(vii), 𝜆2𝑞𝛼 (𝑑) +
𝜆[𝑢, 𝑑] + 𝑑 ∈ 𝐸 . Hence, 𝑄(𝜆𝑢) = 𝜆2𝑄(𝑢).

Next, we have

𝛼(𝛽(𝑑)) = 𝛼(𝑄(𝑣)𝑥 + [𝑣, 𝑑] + 𝑑)

= 𝑄(𝑣)𝑥 + [𝑣, 𝑑] + [𝑢, [𝑣, 𝑑]] +𝑄(𝑢)𝑥 + [𝑢, 𝑑] + 𝑑

=
(
𝑄(𝑣) + 𝑇 (𝑢, 𝑣) +𝑄(𝑢)

)
𝑥 + [𝑢 + 𝑣, 𝑑] + 𝑑 ∈ 𝐸,

and hence, 𝑄(𝑢 + 𝑣) = 𝑄(𝑣) + 𝑇 (𝑢, 𝑣) + 𝑄(𝑢). The map T is bilinear by construction; hence, Q is a
quadratic form on V with corresponding bilinear form T. �

We will see in Lemma 5.19 below that Q is not the zero map. The following lemma is a first step,
useful in its own right.

Lemma 5.13. Let 𝑣 ∈ 𝑉 \ {0} be such that 𝑄(𝑣) = 0. Then v, [𝑣, 𝑑], [𝑦, 𝑣] and [𝑦, [𝑣, 𝑑]] are extremal
elements.

Proof. By definition of Q and Lemma 5.12, we have 𝜆[𝑣, 𝑑] + 𝑑 ∈ 𝐸 for all 𝜆 ∈ 𝑘 . Note that [𝑣, 𝑑] ≠ 0
since ad𝑑 induces an isomorphism from V to 𝑉 ′. By Proposition 1.8, this implies that [𝑣, 𝑑] ∈ 𝐸 . Since
ad𝑐 maps extremal elements in 𝐿 ′

1 to extremal elements in 𝐿 ′
−1 (by Lemma 2.8), it follows that also

𝑣 = [𝑐, [𝑣, 𝑑]] ∈ 𝐸 . Similarly, ad𝑦 maps extremal elements in 𝐿−1 to extremal elements in 𝐿1, and thus
also [𝑦, 𝑣] and [𝑦, [𝑣, 𝑑]] are extremal elements. �
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Lemma 5.14. Let 𝑣 ∈ 𝑉 . Then

𝑄(𝑣)𝑥 + 𝑣 + 𝑐 ∈ 𝐸, 𝑥 + 𝑣 +𝑄(𝑣)𝑐 ∈ 𝐸, (64)
𝑄(𝑣)𝑥 + [𝑣, 𝑑] + 𝑑 ∈ 𝐸, 𝑥 + [𝑣, 𝑑] +𝑄(𝑣)𝑑 ∈ 𝐸, (65)
𝑄(𝑣)𝑦 + [𝑦, 𝑣] + 𝑐 ∈ 𝐸, 𝑦 + [𝑦, 𝑣] +𝑄(𝑣)𝑐 ∈ 𝐸, (66)
𝑄(𝑣)𝑦 + [𝑦, [𝑣, 𝑑]] + 𝑑 ∈ 𝐸, 𝑦 + [𝑦, [𝑣, 𝑑]] +𝑄(𝑣)𝑑 ∈ 𝐸. (67)

Moreover, in each case, 𝑄(𝑣) is the unique scalar that makes the statement true.

Proof. Assume first that 𝑄(𝑣) = 0. Then by Lemma 5.13, we have 𝑣 ∈ 𝐸 . By Corollary 2.6, this
element is collinear with c and with x, so in particular, 𝑣 + 𝑐 ∈ 𝐸 and 𝑥 + 𝑣 ∈ 𝐸 . The proof of the other
6 statements is similar.

Assume now that 𝑄(𝑣) ≠ 0. By definition, 𝑄(𝑣)𝑥 + [𝑣, 𝑑] + 𝑑 ∈ 𝐸 . By replacing v with 𝑄(𝑣)−1𝑣, we
also get 𝑄(𝑣)−1𝑥 +𝑄(𝑣)−1 [𝑣, 𝑑] + 𝑑 ∈ 𝐸 , and multiplying by 𝑄(𝑣) now gives 𝑥 + [𝑣, 𝑑] +𝑄(𝑣)𝑑 ∈ 𝐸 .
This proves (65).

Next, let 𝜑 ∈ Aut(𝐿) be the automorphism obtained from Lemma 2.8 applied to the grading (55). In
particular, 𝜑(𝑑) = 𝑐 and 𝜑(𝑥) = 𝑥 + [𝑐, [𝑑, 𝑥]] = 𝑥, so we get

𝜑
(
𝑄(𝑣)𝑥 + [𝑣, 𝑑] + 𝑑

)
= 𝑄(𝑣)𝑥 + [𝑐, [𝑣, 𝑑]] + 𝑐 = 𝑄(𝑣)𝑥 + 𝑣 + 𝑐 ∈ 𝐸.

We can again replace v by 𝑄(𝑣)−1𝑣 to get 𝑥 + 𝑣 +𝑄(𝑣)𝑐 ∈ 𝐸 as well. This proves (64).
We now apply the automorphism 𝜓 ∈ Aut(𝐿) obtained from Lemma 2.8 applied to the grading (54).

Then in exactly the same way as in the previous paragraph, applying 𝜓 on (64) yields (66) and applying
𝜓 on (65) yields (67).

Finally, the uniqueness statement follows in each case in exactly the same way as in the proof of
Lemma 5.9. �

The previous lemma will, in particular, allow us to single out a specific v-exponential automorphism,
as announced in Remark 5.11 above.

Definition 5.15. Let 𝑣 ∈ 𝑉 . Then by Lemma 5.14 applied on −𝑣, we have 𝑦 + [𝑣, 𝑦] + 𝑄(𝑣)𝑐 ∈ 𝐸 . By
Proposition 3.22, there exists a unique automorphism 𝛼𝑣 ∈ 𝐸−(𝑥, 𝑦) such that

𝛼𝑣 (𝑦) = 𝑦 + [𝑣, 𝑦] +𝑄(𝑣)𝑐. (68)

By Theorem 3.13(vi), 𝛼𝑣 is an ℓ-exponential automorphism for some ℓ ∈ 𝐿−1, but then [ℓ, 𝑦] = [𝑣, 𝑦],
and therefore, by applying ad𝑥 , we get ℓ = 𝑣, so 𝛼𝑣 is a v-exponential automorphism. Notice that by
Lemma 5.9 and Definition 5.10, we also have

𝛼𝑣 (𝑑) = 𝑑 + [𝑣, 𝑑] +𝑄(𝑣)𝑥. (69)

In a similar way, we can define a unique [𝑦, 𝑣]-exponential automorphism for each 𝑣 ∈ 𝑉 , this
time with respect to the 𝐿 ′

𝑖-grading (55). We will need these automorphisms in Lemma 5.53 and
Proposition 5.55 below.

Definition 5.16. Let 𝑣 ∈ 𝑉 and consider [𝑦, 𝑣] ∈ [𝑦,𝑉]. By Lemma 5.14, we have 𝑑 + [𝑦, [𝑣, 𝑑]] +
𝑄(𝑣)𝑦 ∈ 𝐸 . By Proposition 3.22, there exists a unique automorphism 𝛽𝑣 ∈ 𝐸−(𝑐, 𝑑) such that

𝛽𝑣 (𝑑) = 𝑑 + [𝑦, [𝑣, 𝑑]] +𝑄(𝑣)𝑦 = 𝑑 + [[𝑦, 𝑣], 𝑑] +𝑄(𝑣)𝑦.

In particular, by Theorem 3.13(vi), 𝛽𝑣 is an ℓ-exponential automorphism for some ℓ ∈ 𝐿 ′
−1, but then

[ℓ, 𝑑] = [[𝑦, 𝑣], 𝑑], so by applying ad𝑐 , we get ℓ = [𝑦, 𝑣], so 𝛽𝑣 is a [𝑦, 𝑣]-exponential automorphism
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with respect to the 𝐿 ′
𝑖-grading (55). Notice that 𝛽𝑣 (𝑥) = 𝑥 + [[𝑦, 𝑣], 𝑥] + 𝜆𝑐 ∈ 𝐸 for some 𝜆 ∈ 𝑘 , so

𝑥 + 𝑣 + 𝜆𝑐 ∈ 𝐸 , and hence by the uniqueness part of Lemma 5.14, we have

𝛽𝑣 (𝑥) = 𝑥 + 𝑣 +𝑄(𝑣)𝑐.

It is a slightly subtle fact that 𝛼𝑣 is not only v-exponential with respect to the 𝐿𝑖-grading (54), but
also with respect to the 𝐿 ′

𝑖-grading (55), as we now show.

Proposition 5.17. Let 𝑣 ∈ 𝑉 = 𝐿−1 ∩ 𝐿
′
−1. Then 𝛼𝑣 is also v-exponential with respect to the 𝐿 ′

𝑖-grading
(55).

Proof. First apply Assumption 5.1(i) and extend k to a larger field 𝑘 ′ such that the extremal geometry
𝐸 (𝐿 ⊗ 𝑘 ′) contains lines. Let 𝛼𝑣 be the v-exponential automorphism with respect to the 𝐿𝑖-grading (54)
as in Definition 5.15. Moreover, let 𝛼′

𝑣 be the unique v-exponential automorphism with respect to the
𝐿 ′
𝑖-grading (55) such that

𝛼′
𝑣 (𝑑) = 𝑑 + [𝑣, 𝑑] +𝑄(𝑣)𝑥,

similarly to what we have done in Definition 5.16, and notice that also

𝛼′
𝑣 (𝑦) = 𝑦 + [𝑣, 𝑦] +𝑄(𝑣)𝑐 = 𝛼𝑣 (𝑦).

We claim that 𝛼𝑣 and 𝛼′
𝑣 also coincide on 𝐿−1 = 𝑉 ⊕ 𝑋 ⊕ 𝑉 ′; it will then follow from Lemma 3.3 that

𝛼𝑣 = 𝛼′
𝑣 . Our claim is obvious by the grading for elements of 𝑉 ⊕ 𝑋 , so it only remains to show that

𝛼𝑣 ([𝑑, 𝑤]) = 𝛼′
𝑣 ([𝑑, 𝑤]) for all 𝑤 ∈ 𝑉 . This is also clear, however, because 𝛼𝑣 and 𝛼′

𝑣 coincide on both
〈𝑑〉 and V.

We conclude that indeed, 𝛼𝑣 = 𝛼′
𝑣 , so in particular, 𝛼𝑣 is also v-exponential with respect to the

𝐿 ′
𝑖-grading (55). �

Lemma 5.18. We have𝑉 ≠ 0 and𝑉 ′ ≠ 0. Moreover, the bilinear form 𝑇 : 𝑉 ×𝑉 → 𝑘 is nondegenerate.

Proof. Notice that by (56), we have 𝑉 ≠ 0 if and only if 𝑉 ′ ≠ 0. Suppose now that 𝑉 = 𝑉 ′ = 0; then
𝐿−1 = 𝑋 and 𝐿1 = [𝑦, 𝑋] (see Figure 2), so

𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿1 ⊕ 𝐿2 ≤ 𝐿 ′
0.

In particular, by Proposition 2.4(ii), ad[𝑐,𝑑 ] maps 𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿1 ⊕ 𝐿2 to 0. Since L is generated by
𝐿−2 ⊕ 𝐿−1 ⊕ 𝐿1 ⊕ 𝐿2, this implies that the map ad[𝑐,𝑑 ] is zero on all of L, a contradiction. Hence, 𝑉 ≠ 0
and 𝑉 ′ ≠ 0.

Now let 𝑣 ∈ 𝑉 \ {0} be arbitrary, and assume that 𝑇 (𝑣, 𝑢) = 0 for all 𝑢 ∈ 𝑉 . Then by definition of
T, this implies that [𝑣,𝑉 ′] = 0, but since also [𝑣, 𝑋] = 0 and [𝑣,𝑉] = 0 by the grading, we then have
[𝑣, 𝐿−1] = 0. This contradicts Lemma 2.11. �

Lemma 5.19. There exists 𝑣 ∈ 𝑉 such that 𝑄(𝑣) ≠ 0.

Proof. Assume that 𝑄(𝑣) = 0 for all 𝑣 ∈ 𝑉 . By Lemma 5.13, there exist elements in 𝐸 ∩ 𝐿−1, so by
Corollary 2.6, the extremal geometry contains lines. In fact, each nonzero 𝑣 ∈ 𝑉 is an extremal element
collinear with x and, by Lemma 5.14, also collinear with c. Moreover, it now follows from the grading
and Corollary 2.6 that 𝐸−1 (𝑥) ∩ 𝐸−1(𝑐) = 𝑉 \ {0}.

By Proposition 3.5, however, there is a (unique) symplecton S containing 〈𝑥〉 and 〈𝑐〉. By Proposi-
tion 3.5(i), S is a nondegenerate polar space of rank ≥ 2, so we can find two distinct non-collinear points
〈𝑢〉 and 〈𝑣〉 both collinear to both 〈𝑥〉 and 〈𝑐〉. By the previous paragraph, u and v belong to 𝑉 \ {0}.
However, this implies that also 𝑢 + 𝑣 ∈ 𝑉 \ {0}, so by assumption, 𝑄(𝑢 + 𝑣) = 0, so also 𝑢 + 𝑣 is an
extremal element. This contradicts Proposition 1.8 because u and v are not collinear. �
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In a similar way as in Lemma 4.18, we can now ensure that Q has a base point (i.e., 𝑄(𝑣) = 1 for
some 𝑣 ∈ 𝑉).

Lemma 5.20. We can re-choose x in y in Notation 5.4 in such a way that 𝑄(𝑒) = 1 for some 𝑒 ∈ 𝑉 . We
call e a base point for Q.

Proof. Consider 𝑒 ∈ 𝑉 such that 𝑄(𝑒) ≠ 0. Set 𝑥 := 𝑄(𝑒)𝑥 and �̃� := 𝑄(𝑒)−1𝑦. Then 𝑥, �̃�, c and d still
satisfy the conclusions from Proposition 5.3. Since we have only replaced these elements by a scalar
multiple, this does not affect any of the decompositions.

Now denote the map obtained as in Definition 5.10 from these new choices by �̃�. Since 𝑥+[𝑒, 𝑑]+𝑑 =
𝑄(𝑒)𝑥 + [𝑒, 𝑑] + 𝑑 ∈ 𝐸 , it follows that indeed �̃�(𝑒) = 1. �

Definition 5.21. Assume from now on that 𝑒 ∈ 𝑉 is a base point for Q.

(i) We set

𝑒′ := [𝑑, 𝑒] ∈ 𝑉 ′, 𝑓 := [𝑦, 𝑒] ∈ [𝑦,𝑉], 𝑓 ′ := [𝑦, 𝑒′] ∈ [𝑦,𝑉 ′] .

Notice that 𝑓 ′ = [𝑑, 𝑓 ] because [𝑑, 𝑦] = 0.
(ii) Since T is nondegenerate by Lemma 5.18, we can fix an element 𝛿 ∈ 𝑉 such that 𝑇 (𝑒, 𝛿) = 1. If

char(𝑘) ≠ 2, we will assume that 𝛿 = 1
2 𝑒.

We may assume, in addition, that 𝑄(𝛿) ≠ 0. Indeed, this holds automatically if char(𝑘) ≠ 2, and
if char(𝑘) = 2 and 𝑄(𝛿) = 0, then we choose some 𝜆 ∈ 𝑘 with 𝜆2 ≠ 𝜆 (which exist because we
assume |𝑘 | > 2; see Assumption 5.1) and we replace 𝛿 by 𝜆𝑒 + 𝛿.

Remark 5.22. This definition of 𝛿 corresponds to the definition of 𝛿 for quadrangular algebras in
[Wei06, Definition 4.1] and [MW19, Definition 7.1]. In fact, we will use this 𝛿 in Proposition 5.28
below to ensure that our quadrangular algebra will be 𝛿-standard; see Definition 5.29(iii).

Lemma 5.23. For any 𝑣 ∈ 𝑉 , we have

𝑄(𝑣)
(
[𝑐, 𝑑] − [𝑥, 𝑦]

)
= [[𝑣, 𝑑], [𝑣, 𝑦]]; (70)

𝑄(𝑣)
(
[𝑐, 𝑑] + [𝑥, 𝑦]

)
= [𝑣, [𝑦, [𝑑, 𝑣]]] . (71)

In particular,

[𝑒′, 𝑓 ] = [𝑐, 𝑑] − [𝑥, 𝑦] and [𝑒, 𝑓 ′] = [𝑐, 𝑑] + [𝑥, 𝑦] . (72)

Proof. Let 𝑣 ∈ 𝑉 and let 𝛼𝑣 ∈ Aut(𝐿) be as in Definition 5.15. Since [𝑑, 𝑦] = 0 and 𝛼𝑣 ∈ Aut(𝐿), we
also get [𝛼𝑣 (𝑑), 𝛼𝑣 (𝑦)] = 0, so by (68) and (69), we get

[
𝑑 + [𝑣, 𝑑] +𝑄(𝑣)𝑥, 𝑦 + [𝑣, 𝑦] +𝑄(𝑣)𝑐

]
= 0.

Expanding this – or in fact, only expanding the (𝐿0 ∩ 𝐿
′
0)-component suffices – yields (70).

Next, observe that [𝑣, [𝑣, 𝑑]] = 𝑇 (𝑣, 𝑣)𝑥 = 2𝑄(𝑣)𝑥 by Lemma 5.12. Hence,

[[𝑣, 𝑑], [𝑣, 𝑦]] = [𝑣, [[𝑣, 𝑑], 𝑦]] − 2𝑄(𝑣) [𝑥, 𝑦],

so together with (70), this yields (71).
Finally, (72) now follows by plugging in 𝑣 = 𝑒 and using 𝑄(𝑒) = 1. �

Corollary 5.24. The restriction of ad 𝑓 to X defines a linear isomorphism from X to 𝑋 ′ with
inverse ad𝑒′ .
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Proof. Let 𝑎 ∈ 𝑋 and 𝑎′ ∈ 𝑋 ′. Then using (72) and Proposition 2.4(ii), we get

[𝑒′, [ 𝑓 , 𝑎]] = [𝑎, [ 𝑓 , 𝑒′]] = [[𝑐, 𝑑] − [𝑥, 𝑦], 𝑎] = 𝑎,

[ 𝑓 , [𝑒′, 𝑎′]] = [𝑎′, [𝑒′, 𝑓 ]] = [−[𝑐, 𝑑] + [𝑥, 𝑦], 𝑎′] = 𝑎′. �

We can now also determine the Lie bracket between V and [𝑦,𝑉] explicitly.

Proposition 5.25. Let 𝑣, 𝑤 ∈ 𝑉 . Then [[𝑦, 𝑣], 𝑤] = 𝑇 (𝑣, 𝑤)𝑐.

Proof. Since 𝑉 = 𝐿−1 ∩ 𝐿
′
−1, it follows from Proposition 2.4(ii) that

[[𝑐, 𝑑] − [𝑥, 𝑦], 𝑤] = 0.

By (70), therefore, we have
[
[[𝑣, 𝑑], [𝑣, 𝑦]], 𝑤

]
= 0, and hence,

[
[𝑣, 𝑑], [[𝑣, 𝑦], 𝑤]

]
=
[
[𝑣, 𝑦], [[𝑣, 𝑑], 𝑤]

]
.

By the grading, we know that [[𝑦, 𝑣], 𝑤] = 𝜇𝑐 for some 𝜇 ∈ 𝑘 . Hence, by Definition 5.10, the previous
equality reduces to

[[𝑣, 𝑑],−𝜇𝑐] = [[𝑣, 𝑦],−𝑇 (𝑣, 𝑤)𝑥] .

By Proposition 2.4(iii), this can be rewritten as 𝜇𝑣 = 𝑇 (𝑣, 𝑤)𝑣, so 𝜇 = 𝑇 (𝑣, 𝑤). �

Definition 5.26. We define maps ℎ : 𝑋 × 𝑋 → 𝑉 and · : 𝑋 ×𝑉 → 𝑋 : (𝑎, 𝑣) ↦→ 𝑎 · 𝑣 by setting

ℎ(𝑎, 𝑏) := [𝑎, [𝑏, 𝑓 ]], (73)
𝑎 · 𝑣 := [𝑎, [𝑒′, [𝑣, 𝑦]]] = [[𝑎, [𝑦, 𝑣]], 𝑒′], (74)

for all 𝑎, 𝑏 ∈ 𝑋 and all 𝑣 ∈ 𝑉 . Note that the image of these maps is indeed contained in V and X,
respectively, by (60) and (61) (see again Figure 2). Also notice that the second equality in (74) holds
because [𝑉 ′, 𝑋] = 0.

Lemma 5.27. Let 𝑎, 𝑏 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then

(i) 𝑎 · 𝑒 = 𝑎,
(ii) [𝑎 · 𝑣, 𝑓 ] = [𝑎, [𝑦, 𝑣]] = [[𝑎, 𝑦], 𝑣],

(iii) ℎ(𝑎, 𝑏 · 𝑣) = [𝑎, [𝑏, [𝑦, 𝑣]]],
(iv) [𝑑, ℎ(𝑎, 𝑏)] = [𝑎, [𝑏, 𝑓 ′]].

Proof.

(i) Using Definition 5.21 and (72), we have

𝑎 · 𝑒 = [𝑎, [𝑒′, [𝑒, 𝑦]]] = −[𝑎, [𝑒′, 𝑓 ]] = [[𝑐, 𝑑] − [𝑥, 𝑦], 𝑎] = 𝑎

since 𝑎 ∈ 𝑋 = 𝐿−1 ∩ 𝐿
′
0.

(ii) The first equality follows from (74) and Corollary 5.24, and the second equality follows from the
fact that [𝑋,𝑉] = 0.

(iii) This follows from (73) and (ii).
(iv) Since [𝑑, 𝑋] = 0, we have

[𝑑, ℎ(𝑎, 𝑏)] = [𝑑, [𝑎, [𝑏, 𝑓 ]]] = [𝑎, [𝑏, [𝑑, 𝑓 ]]] = [𝑎, [𝑏, 𝑓 ′]] .

�
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Proposition 5.28. Let 𝑎 ∈ 𝑋 ≤ 𝐿−1. Then there exists a unique a-exponential automorphism𝛼 ∈ Aut(𝐿)
such that

[𝑞𝛼 ( 𝑓 ), [𝑑, 𝛿]] = 0. (75)

Moreover, 𝛼 preserves the 𝐿 ′
𝑖-grading (55) of L, so in particular, 𝑞𝛼 ([𝑦, 𝑣]) ∈ 𝑉 for all 𝑣 ∈ 𝑉 .

Proof. By Theorem 3.16, there exists an a-exponential automorphism 𝛼 ∈ Aut(𝐿). We first show that 𝛼
preserves the 𝐿 ′

𝑖-grading (55) of L. Since 𝑐 ∈ 𝐿0, we can write 𝛼(𝑐) = 𝑐+ [𝑎, 𝑐] +𝑞𝛼 (𝑐). Now [𝑎, 𝑐] = 0,
and if 𝑞𝛼 (𝑐) ≠ 0, then 𝛼(𝑐) is an extremal element of the form 𝑐 + 𝜆𝑥, which is impossible. Hence,
𝛼(𝑐) = 𝑐, and similarly 𝛼(𝑑) = 𝑑. By Lemma 2.12, this implies that 𝛼 preserves the 𝐿 ′

𝑖 grading (55).
In particular, 𝛼( 𝑓 ) ∈ 𝐿 ′

−1, so we can write

𝛼( 𝑓 ) = 𝑓 + [𝑎, 𝑓 ] + 𝑞𝛼 ( 𝑓 )

with 𝑞𝛼 ( 𝑓 ) ∈ 𝐿−1 ∩ 𝐿 ′
−1 = 𝑉 . By Theorem 3.13(v), any other such a-exponential automorphism

𝛼′ can be written as 𝛼′ = exp(𝜆𝑥)𝛼 for some 𝜆 ∈ 𝑘 . By Remark 3.14(i), we then have 𝑞𝛼′ ( 𝑓 ) =
𝑞𝛼 ( 𝑓 )+ [𝜆𝑥, 𝑓 ] = 𝑞𝛼 ( 𝑓 )−𝜆𝑒. Notice now that [𝑞𝛼 ( 𝑓 ), [𝑑, 𝛿]] ∈ 〈𝑥〉. Since – [𝑒, [𝑑, 𝛿]] = 𝑇 (𝑒, 𝛿)𝑥 = 𝑥
by Definitions 5.10 and 5.21, there is indeed a unique choice of 𝜆 such that (75) holds. �

Definition 5.29.

(i) For each 𝑎 ∈ 𝑋 , we denote the a-exponential automorphism 𝛼 ∈ Aut(𝐿) satisfying (75) by Θ𝑎.
The corresponding (uniquely defined) maps 𝑞𝛼, 𝑛𝛼 and 𝑣𝛼 will be denoted by 𝑞𝑎, 𝑛𝑎 and 𝑣𝑎,
respectively.

(ii) For each 𝑎 ∈ 𝑋 and each 𝑣 ∈ 𝑉 , we define 𝜃 (𝑎, 𝑣) := 𝑞𝑎 ([𝑦, 𝑣]) ∈ 𝑉 . In particular, we have

Θ𝑎 ([𝑦, 𝑣]) = [𝑦, 𝑣] + [𝑎, [𝑦, 𝑣]] + 𝜃 (𝑎, 𝑣) = [𝑦, 𝑣] + [𝑎 · 𝑣, 𝑓 ] + 𝜃 (𝑎, 𝑣), (76)

where the second equality holds by Lemma 5.27(ii). Notice that for each 𝜆 ∈ 𝑘 , the automorphism
Θ𝜆𝑎 coincides with (Θ𝑎)𝜆 as defined in Theorem 3.13(vii); it follows that 𝜃 (𝜆𝑎, 𝑣) = 𝜆2𝜃 (𝑎, 𝑣).

(iii) For each 𝑎 ∈ 𝑋 , we define 𝜋(𝑎) := 𝜃 (𝑎, 𝑒) = 𝑞𝑎 ( 𝑓 ) ∈ 𝑉 . In particular, we have

Θ𝑎 ( 𝑓 ) = 𝑓 + [𝑎, 𝑓 ] + 𝜋(𝑎).

Notice that (75) tells us that

𝑇 (𝜋(𝑎), 𝛿) = 0, (77)

which corresponds precisely to condition (iii) in [Wei06, Definition 4.1] and [MW19, Definition
7.1].

When char(𝑘) ≠ 2, we can describe 𝜃 and 𝜋 in terms of h and ·; cfr. [Wei06, Proposition 4.5(i) and
Remark 4.8].

Proposition 5.30. If char(𝑘) ≠ 2, then Θ𝑎 = 𝑒−(𝑎) as in Theorem 3.13(ix). Moreover, we have
𝜋(𝑎) = 1

2 ℎ(𝑎, 𝑎) and 𝜃 (𝑎, 𝑣) = 1
2 ℎ(𝑎, 𝑎 · 𝑣).

Proof. By definition, we have

Θ𝑎 ( 𝑓 ) = 𝑓 + [𝑎, 𝑓 ] + 𝜋(𝑎),

𝑒−(𝑎) ( 𝑓 ) = 𝑓 + [𝑎, 𝑓 ] + 1
2 [𝑎, [𝑎, 𝑓 ]] = 𝑓 + [𝑎, 𝑓 ] + 1

2 ℎ(𝑎, 𝑎).
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We claim that 𝑇 ( 1
2 [𝑎, [𝑎, 𝑓 ]], 𝛿) = 0. Recall that 𝛿 = 1

2 𝑒 since char(𝑘) ≠ 2. Using twice the fact that
[𝑎, 𝑒′] = 0 and using (72), we get

𝑇 ([𝑎, [𝑎, 𝑓 ]], 𝑒) = [[𝑎, [𝑎, 𝑓 ]], [𝑒, 𝑑]] = [𝑒′, [𝑎, [𝑎, 𝑓 ]]] = [𝑎, [𝑒′, [𝑎, 𝑓 ]]]

= [𝑎, [𝑎, [𝑒′, 𝑓 ]]] = [𝑎, [𝑎, [𝑐, 𝑑] − [𝑥, 𝑦]]] = [𝑎, 𝑎] = 0,

proving our claim. This shows that 𝑒−(𝑎) satisfies the assumption (75), so it coincides with Θ𝑎. In
particular, 𝜋(𝑎) = 1

2 ℎ(𝑎, 𝑎). Moreover,

Θ𝑎 ([𝑦, 𝑣]) = 𝑒−(𝑎) ( [𝑦, 𝑣]) = [𝑦, 𝑣] + [𝑎, [𝑦, 𝑣]] + 1
2 [𝑎, [𝑎, [𝑦, 𝑣]]],

and hence, 𝜃 (𝑎, 𝑣) = 1
2 [𝑎, [𝑎, [𝑦, 𝑣]]] =

1
2 ℎ(𝑎, 𝑎 · 𝑣) by Lemma 5.27(iii). �

Next, we return to the case where char(𝑘) is arbitrary, and we recover identity (vii) from Defini-
tion 1.17.

Proposition 5.31. There exists a function 𝛾 : 𝑋 × 𝑋 → 𝑘 such that

𝜃 (𝑎 + 𝑏, 𝑣) = 𝜃 (𝑎, 𝑣) + 𝜃 (𝑏, 𝑣) + ℎ(𝑎, 𝑏 · 𝑣) − 𝛾(𝑎, 𝑏)𝑣

for all 𝑎, 𝑏 ∈ 𝑋 and all 𝑣 ∈ 𝑉 . Moreover, we have 𝛾(𝑎, 𝑏) = 𝑇 (ℎ(𝑎, 𝑏), 𝛿) for all 𝑎, 𝑏 ∈ 𝑋 .

Proof. Let 𝑎, 𝑏 ∈ 𝑋 . By Theorem 3.13(viii), the composition Θ𝑎Θ𝑏 is an (𝑎 + 𝑏)-exponential automor-
phism of L, so by Theorem 3.13(v), there exists some 𝜆 ∈ 𝑘 such that

Θ𝑎Θ𝑏 = exp(𝜆𝑥)Θ𝑎+𝑏 . (78)

We write 𝛾(𝑎, 𝑏) := −𝜆.
Observe now that [𝑏, 𝑓 ] ∈ [𝑋, 𝑓 ] = 𝑋 ′. Since Θ𝑎 preserves the 𝐿 ′

𝑖-grading by Proposition 5.28, we
thus get

Θ𝑎 ([𝑏, 𝑓 ]) = [𝑏, 𝑓 ] + [𝑎, [𝑏, 𝑓 ]] = [𝑏, 𝑓 ] + ℎ(𝑎, 𝑏). (79)

Now let 𝑣 ∈ 𝑉 ; then using (76) and (79), we get

Θ𝑎Θ𝑏 ([𝑦, 𝑣]) = Θ𝑎
(
[𝑦, 𝑣] + [𝑏 · 𝑣, 𝑓 ] + 𝜃 (𝑏, 𝑣)

)
= [𝑦, 𝑣] + [𝑎 · 𝑣, 𝑓 ] + 𝜃 (𝑎, 𝑣) + [𝑏 · 𝑣, 𝑓 ] + ℎ(𝑎, 𝑏 · 𝑣) + 𝜃 (𝑏, 𝑣).

However,

Θ𝑎+𝑏 ([𝑦, 𝑣]) = [𝑦, 𝑣] + [(𝑎 + 𝑏) · 𝑣, 𝑓 ] + 𝜃 (𝑎 + 𝑏, 𝑣),

and since [𝑥, [𝑦, 𝑣]] = −𝑣, we get

exp(𝜆𝑥)Θ𝑎+𝑏 ([𝑦, 𝑣]) = [𝑦, 𝑣] + [(𝑎 + 𝑏) · 𝑣, 𝑓 ] + 𝜃 (𝑎 + 𝑏, 𝑣) − 𝜆𝑣.

Since 𝜆 = −𝛾(𝑎, 𝑏), the required expression for 𝜃 (𝑎 + 𝑏) now follows from (78).
Next, if we set 𝑣 = 𝑒 in this expression, then we get, using Lemma 5.27(i),

𝜋(𝑎 + 𝑏) = 𝜋(𝑎) + 𝜋(𝑏) + ℎ(𝑎, 𝑏) − 𝛾(𝑎, 𝑏)𝑒. (80)

By (77), this implies that 𝑇 (ℎ(𝑎, 𝑏) − 𝛾(𝑎, 𝑏)𝑒, 𝛿) = 0, and since 𝑇 (𝑒, 𝛿) = 1, this implies that
𝛾(𝑎, 𝑏) = 𝑇 (ℎ(𝑎, 𝑏), 𝛿), as claimed. �
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Recall from Definition 1.16 that the quadratic form Q with base point e has an associated involution

𝜎 : 𝑉 → 𝑉 : 𝑣 ↦→ 𝑣𝜎 := 𝑇 (𝑣, 𝑒)𝑒 − 𝑣.

Lemma 5.32. Let 𝑎 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then 𝑎 · 𝑣𝜎 = [𝑎, [𝑣, 𝑓 ′]] = [𝑣, [𝑎, 𝑓 ′]].

Proof. Notice that

[𝑣, 𝑒′] = [𝑣, [𝑑, 𝑒]] = −𝑇 (𝑣, 𝑒)𝑥 and
[𝑣, 𝑓 ′] = [𝑣, [𝑦, 𝑒′]] = −[[𝑣, 𝑒′], 𝑦] − [𝑒′, [𝑣, 𝑦]] = 𝑇 (𝑣, 𝑒) [𝑥, 𝑦] − [𝑒′, [𝑣, 𝑦]] .

Since 𝑋 ≤ 𝐿−1, it follows that

[𝑎, [𝑣, 𝑓 ′]] = 𝑇 (𝑣, 𝑒)𝑎 − [𝑎, [𝑒′, [𝑣, 𝑦]]] = 𝑇 (𝑣, 𝑒)𝑎 − 𝑎 · 𝑣 = 𝑎 · 𝑣𝜎 .

The second equality follows from the fact that [𝑎, 𝑣] = 0. �

Proposition 5.33. Let 𝑎 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then

(𝑎 · 𝑣) · 𝑣𝜎 = 𝑄(𝑣)𝑎.

Proof. Since [𝑑, 𝑎 · 𝑣] ∈ [𝑑, 𝑋] = 0, we have, using Lemma 5.27(ii), that

[𝑎 · 𝑣, 𝑓 ′] = [𝑎 · 𝑣, [𝑑, 𝑓 ]] = [𝑑, [𝑎 · 𝑣, 𝑓 ]] = [𝑑, [𝑎, [𝑦, 𝑣]]] . (81)

By Lemma 5.32, we then get

(𝑎 · 𝑣) · 𝑣𝜎 = [𝑎 · 𝑣, [𝑣, 𝑓 ′]]

= [𝑣, [𝑎 · 𝑣, 𝑓 ′]] since [𝑋,𝑉] = 0
= [𝑣, [𝑑, [𝑎, [𝑦, 𝑣]]]] by (81)
= [𝑣, [𝑎, [𝑑, [𝑦, 𝑣]]]] since [𝑑, 𝑋] = 0
= [𝑎, [𝑣, [𝑑, [𝑦, 𝑣]]]] since [𝑋,𝑉] = 0
= [[𝑣, [𝑑, [𝑣, 𝑦]]], 𝑎] .

Now [[𝑣, 𝑑], [𝑣, 𝑦]] = [𝑣, [𝑑, [𝑣, 𝑦]]] − [𝑑, [𝑣, [𝑣, 𝑦]]] = [𝑣, [𝑑, [𝑣, 𝑦]]] + 𝜆[𝑐, 𝑑] for some 𝜆 ∈ 𝑘
because [𝑣, [𝑣, 𝑦]] ∈ 〈𝑐〉 by the grading. By Proposition 2.4(ii), however, [[𝑐, 𝑑], 𝑎] = 0, and hence,

(𝑎 · 𝑣) · 𝑣𝜎 =
[
[[𝑣, 𝑑], [𝑣, 𝑦]], 𝑎

]
.

The result now follows from (70) together with Proposition 2.4(ii). �

Lemma 5.34. Let 𝑎, 𝑏 ∈ 𝑋 . Then [𝑎, 𝑏] = −𝑇 (ℎ(𝑎, 𝑏), 𝑒)𝑥. In particular, the bilinear map

𝑋 × 𝑋 → 𝑘 : (𝑎, 𝑏) ↦→ 𝑇 (ℎ(𝑎, 𝑏), 𝑒)

is nondegenerate.

Proof. Using the definitions of T and h, we get

𝑇 (ℎ(𝑎, 𝑏), 𝑒)𝑥 = [ℎ(𝑎, 𝑏), [𝑒, 𝑑]] = [[𝑎, [𝑏, 𝑓 ]],−𝑒′] = [𝑒′, [𝑎, [𝑏, 𝑓 ]]] .

Since [𝑒′, 𝑎] = [𝑒′, 𝑏] = 0, it follows that

𝑇 (ℎ(𝑎, 𝑏), 𝑒)𝑥 = [𝑎, [𝑏, [𝑒′, 𝑓 ]]] .
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Once again using (72) and Proposition 2.4(ii), we get [𝑏, [𝑒′, 𝑓 ]] = −𝑏, and the required identity
follows.

Next, suppose that 𝑎 ∈ 𝑋 is such that 𝑇 (ℎ(𝑎, 𝑏), 𝑒) = 0 for all 𝑏 ∈ 𝑋 . Then [𝑎, 𝑏] = 0 for all 𝑏 ∈ 𝑋 .
Since also [𝑎,𝑉] = 0 and [𝑎,𝑉 ′] = 0 by the grading, this implies that [𝑎, 𝐿−1] = 0. By Lemma 2.11,
however, this implies 𝑎 = 0, as required. �

Corollary 5.35. Let 𝑎, 𝑏 ∈ 𝑋 . Then ℎ(𝑎, 𝑏)𝜎 = −ℎ(𝑏, 𝑎).

Proof. Since [𝑥, 𝑓 ] = −𝑒, it follows from Lemma 5.34 that

𝑇 (ℎ(𝑎, 𝑏), 𝑒)𝑒 = [[𝑎, 𝑏], 𝑓 ] = [𝑎, [𝑏, 𝑓 ]] − [𝑏, [𝑎, 𝑓 ]] = ℎ(𝑎, 𝑏) − ℎ(𝑏, 𝑎).

Since ℎ(𝑎, 𝑏)𝜎 = 𝑇 (ℎ(𝑎, 𝑏), 𝑒)𝑒 − ℎ(𝑎, 𝑏), the result follows. �

Proposition 5.36. Let 𝑎, 𝑏 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then

𝑇 (ℎ(𝑎, 𝑏), 𝑣) = 𝑇 (ℎ(𝑎 · 𝑣, 𝑏), 𝑒) = 𝑇 (ℎ(𝑎, 𝑏 · 𝑣𝜎), 𝑒).

Proof. Using the definition of T, Lemma 5.27(iv) and the fact that [𝑉, 𝑋] = 0, we get

𝑇 (ℎ(𝑎, 𝑏), 𝑣)𝑥 = [𝑣, [ℎ(𝑎, 𝑏), 𝑑]] = −[𝑣, [𝑎, [𝑏, 𝑓 ′]]] = −[𝑎, [𝑏, [𝑣, 𝑓 ′]]] .

By Lemma 5.32, we have [𝑏, [𝑣, 𝑓 ′]] = 𝑏 · 𝑣𝜎 , so together with Lemma 5.34, we get

𝑇 (ℎ(𝑎, 𝑏), 𝑣)𝑥 = −[𝑎, 𝑏 · 𝑣𝜎] = −𝑇 (ℎ(𝑎, 𝑏 · 𝑣𝜎), 𝑒)𝑥.

Next, since 𝜎 is an involutory isometry of Q, we also have, using Corollary 5.35,

𝑇 (ℎ(𝑎, 𝑏), 𝑣)𝑥 = 𝑇 (ℎ(𝑎, 𝑏)𝜎 , 𝑣𝜎)𝑥 = −𝑇 (ℎ(𝑏, 𝑎), 𝑣𝜎)𝑥 = −𝑇 (ℎ(𝑏, 𝑎 · 𝑣), 𝑒)𝑥

= −𝑇 (ℎ(𝑏, 𝑎 · 𝑣)𝜎 , 𝑒𝜎)𝑥 = 𝑇 (ℎ(𝑎 · 𝑣, 𝑏), 𝑒)𝑥.

�

Proposition 5.37. Let 𝑎, 𝑏 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then

ℎ(𝑎, 𝑏 · 𝑣) = ℎ(𝑏, 𝑎 · 𝑣) + 𝑇 (ℎ(𝑎, 𝑏), 𝑒)𝑣.

Proof. By Proposition 5.31, we have

ℎ(𝑎, 𝑏 · 𝑣) − 𝛾(𝑎, 𝑏)𝑣 = ℎ(𝑏, 𝑎 · 𝑣) − 𝛾(𝑏, 𝑎)𝑣.

Moreover, we have

𝛾(𝑎, 𝑏) − 𝛾(𝑏, 𝑎) = 𝑇 (ℎ(𝑎, 𝑏) − ℎ(𝑏, 𝑎), 𝛿),

so by Corollary 5.35, we get, using 𝑇 (𝑒, 𝛿) = 1, that

𝛾(𝑎, 𝑏) − 𝛾(𝑏, 𝑎) = 𝑇
(
𝑇 (ℎ(𝑎, 𝑏), 𝑒)𝑒, 𝛿

)
= 𝑇 (ℎ(𝑎, 𝑏), 𝑒).

The result follows. �

We now introduce some auxiliary notation.

Notation 5.38. Let 𝑎 ∈ 𝑋 and let Θ𝑎 be as in Definition 5.29. Then we can decompose

Θ𝑎 (𝑦) = 𝑦 + [𝑎, 𝑦] + ℓ𝑎 + �̃� + 𝜆𝑎𝑥

with ℓ𝑎 ∈ 𝐿0 ∩ 𝐿
′
0, �̃� ∈ 𝑋 and 𝜆𝑎 ∈ 𝑘 .
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It turns out that understanding the adjoint action of ℓ𝑎 explicitly on the various components in the
5 × 5-grading gives a lot of insight, so this is what we will examine in the next few results.
Lemma 5.39. Let 𝑎 ∈ 𝑋 . Then [ℓ𝑎, 𝑐] = 0 and [ℓ𝑎, 𝑑] = 0.
Proof. Since Θ𝑎 (𝑐) = 𝑐 and [𝑦, 𝑐] = 0, we have [Θ𝑎 (𝑦), 𝑐] = 0, so in particular, [ℓ𝑎, 𝑐] = 0. The proof
of [ℓ𝑎, 𝑑] = 0 is similar. �

Lemma 5.40. Let 𝑎 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then

[ℓ𝑎, 𝑣] = 𝜃 (𝑎, 𝑣) and
[ℓ𝑎, [𝑑, 𝑣]] = [𝑑, 𝜃 (𝑎, 𝑣)] .

Proof. Since Θ𝑎 (𝑣) = 𝑣, we have

Θ𝑎 ([𝑦, 𝑣]) = [Θ𝑎 (𝑦),Θ𝑎 (𝑣)] =
[
𝑦 + [𝑎, 𝑦] + ℓ𝑎 + �̃� + 𝜆𝑎𝑥, 𝑣

]
= [𝑦, 𝑣] + [[𝑎, 𝑦], 𝑣] + [ℓ𝑎, 𝑣] .

However, recall from (76) that

Θ𝑎 ([𝑦, 𝑣]) = [𝑦, 𝑣] + [𝑎 · 𝑣, 𝑓 ] + 𝜃 (𝑎, 𝑣).

Hence, [ℓ𝑎, 𝑣] = 𝜃 (𝑎, 𝑣). Next, consider the automorphism 𝜑 from Lemma 2.8 with respect to the
𝐿 ′
𝑖-grading (55). Then by Lemmas 2.8 and 5.39,

𝜑(ℓ𝑎) = ℓ𝑎 + [𝑐, [𝑑, ℓ𝑎]] = ℓ𝑎,

𝜑(𝑣) = [𝑑, 𝑣],

𝜑(𝜃 (𝑎, 𝑣)) = [𝑑, 𝜃 (𝑎, 𝑣)],

so the second identity follows from the first by applying 𝜑. �

Proposition 5.41. Let 𝑎 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then

[ℓ𝑎, 𝑥] = 𝑇 (𝜋(𝑎), 𝑒)𝑥,

[ℓ𝑎, 𝑦] = −𝑇 (𝜋(𝑎), 𝑒)𝑦

and

𝑇 (𝜃 (𝑎, 𝑣), 𝑣) = 𝑄(𝑣)𝑇 (𝜋(𝑎), 𝑒). (82)

Proof. Since Θ𝑎 (𝑥) = 𝑥, we have

Θ𝑎 ([𝑥, 𝑦]) =
[
𝑥, 𝑦 + [𝑎, 𝑦] + ℓ𝑎 + �̃� + 𝜆𝑎𝑥

]
= [𝑥, 𝑦] + 𝑎 − [ℓ𝑎, 𝑥] . (83)

We also have Θ𝑎 ([𝑐, 𝑑]) = [Θ𝑎 (𝑐),Θ𝑎 (𝑑)] = [𝑐, 𝑑] and Θ𝑎 ([𝑑, 𝑣]) = [𝑑, 𝑣]. We now apply Θ𝑎 to
(70), so we get, using (76) and (83),

𝑄(𝑣)
(
[𝑐, 𝑑] − [𝑥, 𝑦] − 𝑎 + [ℓ𝑎, 𝑥]

)
=
[
[𝑑, 𝑣], [𝑦, 𝑣] + [𝑎 · 𝑣, 𝑓 ] + 𝜃 (𝑎, 𝑣)

]
.

In particular, the 𝐿−2-components of both sides are equal, so we get

𝑄(𝑣) [ℓ𝑎, 𝑥] =
[
[𝑑, 𝑣], 𝜃 (𝑎, 𝑣)

]
= 𝑇 (𝜃 (𝑎, 𝑣), 𝑣).

If we set 𝑣 = 𝑒, then we get [ℓ𝑎, 𝑥] = 𝑇 (𝜋(𝑎), 𝑒). Substituting this again in the identity for general v then
yields the third identity. Finally, to get the second identity, write [ℓ𝑎, 𝑦] = 𝜇𝑦. Since [ℓ𝑎, [𝑥, 𝑦]] = 0 by
Proposition 2.4(ii), we have [[ℓ𝑎, 𝑥], 𝑦] = [[ℓ𝑎, 𝑦], 𝑥] and hence 𝜇 = −𝑇 (𝜋(𝑎), 𝑒). �

https://doi.org/10.1017/fms.2025.46 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.46


52 T. De Medts and J. Meulewaeter

Corollary 5.42. Let 𝑎 ∈ 𝑋 and 𝑣, 𝑤 ∈ 𝑉 . Then

𝑇 (𝜃 (𝑎, 𝑣), 𝑤) + 𝑇 (𝜃 (𝑎, 𝑤), 𝑣) = 𝑇 (𝑣, 𝑤)𝑇 (𝜋(𝑎), 𝑒)

and

𝜃 (𝑎, 𝑣𝜎)𝜎 = 𝜃 (𝑎, 𝑣) − 𝑇 (𝑒, 𝑣)𝜋(𝑎) + 𝑇 (𝜋(𝑎), 𝑣)𝑒.

Proof. The first identity follows by linearizing (82). If we choose 𝑤 = 𝑒, then we get

𝑇 (𝜃 (𝑎, 𝑣), 𝑒) + 𝑇 (𝜋(𝑎), 𝑣) = 𝑇 (𝑣, 𝑒)𝑇 (𝜋(𝑎), 𝑒).

The second identity then follows from the definition of 𝜎 together with this identity. �

Lemma 5.43. Let 𝑎, 𝑏 ∈ 𝑋 . Then

[ℓ𝑎, [𝑏, 𝑓 ]] = −[𝑎 · ℎ(𝑎, 𝑏), 𝑓 ] (84)

and

𝜃 (𝑎, ℎ(𝑎, 𝑏)) + ℎ(�̃�, 𝑏) = 0. (85)

Proof. We have [𝑦, [𝑏, 𝑓 ]] = 0 by the grading, and hence, [Θ𝑎 (𝑦),Θ𝑎 ([𝑏, 𝑓 ])] = 0. Recall from (79)
that

Θ𝑎 ([𝑏, 𝑓 ]) = [𝑏, 𝑓 ] + ℎ(𝑎, 𝑏) ∈ 𝑋 ′ ⊕ 𝑉.

Combining this with Notation 5.38, we get
[
𝑦 + [𝑎, 𝑦] + ℓ𝑎 + �̃� + 𝜆𝑎𝑥, [𝑏, 𝑓 ] + ℎ(𝑎, 𝑏)

]
= 0.

In particular, the 𝐿0-component and 𝐿−1-component of the left-hand side are 0, so
[
[𝑎, 𝑦], ℎ(𝑎, 𝑏)

]
+
[
ℓ𝑎, [𝑏, 𝑓 ]

]
= 0,[

ℓ𝑎, ℎ(𝑎, 𝑏)
]
+
[
�̃�, [𝑏, 𝑓 ]

]
= 0.

Applying Lemma 5.27(ii) on the first identity now yields (84), and applying Lemma 5.40 and (73) on
the second identity yields (85). �

Lemma 5.44. Let 𝑎 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then

ℎ(𝑎, 𝑎 · 𝑣) + 𝑇 (𝜋(𝑎), 𝑒)𝑣 = 2𝜃 (𝑎, 𝑣). (86)

In particular, 𝜋(𝑎)𝜎 = 𝜋(𝑎) − ℎ(𝑎, 𝑎). Moreover, we have 𝑇 (𝜋(𝑎), 𝑒) = 𝛾(𝑎, 𝑎) and 2𝛾(𝑎, 𝑎) = 0 (i.e.,
𝛾(𝑎, 𝑎) = 0 when char(𝑘) ≠ 2).

Proof. By Proposition 2.4(ii), we have [[𝑥, 𝑦], 𝑦] = 2𝑦. Applying Θ𝑎 and using Notation 5.38, Propo-
sition 5.41, and (83) then gives

[
[𝑥, 𝑦] + 𝑎 − 𝑇 (𝜋(𝑎), 𝑒)𝑥, 𝑦 + [𝑎, 𝑦] + ℓ𝑎 + �̃� + 𝜆𝑎𝑥

]
= 2

(
𝑦 + [𝑎, 𝑦] + ℓ𝑎 + �̃� + 𝜆𝑎𝑥

)
.

In particular, the 𝐿0-components of both sides are equal, so using [[𝑥, 𝑦], ℓ𝑎] = 0 (by Proposition 2.4(ii)
again), we get

[𝑎, [𝑎, 𝑦]] − 𝑇 (𝜋(𝑎), 𝑒) [𝑥, 𝑦] = 2ℓ𝑎 .
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Now notice that by Lemma 5.27(iii) and using [𝑎, 𝑣] = 0, we have
[
[𝑎, [𝑎, 𝑦]], 𝑣

]
= ℎ(𝑎, 𝑎 · 𝑣).

Moreover, [[𝑥, 𝑦], 𝑣] = −𝑣 by Proposition 2.4(ii) again, and [ℓ𝑎, 𝑣] = 𝜃 (𝑎, 𝑣) by Lemma 5.40, so we get
(86). In particular, we have ℎ(𝑎, 𝑎) + 𝑇 (𝜋(𝑎), 𝑒)𝑒 = 2𝜋(𝑎), so

𝜋(𝑎)𝜎 = 𝑇 (𝜋(𝑎), 𝑒)𝑒 − 𝜋(𝑎) = 𝜋(𝑎) − ℎ(𝑎, 𝑎).

Moreover, by Proposition 5.31 with 𝑎 = 𝑏 and 𝑣 = 𝑒, we have

2𝜋(𝑎) = ℎ(𝑎, 𝑎) − 𝛾(𝑎, 𝑎)𝑒,

so by comparing with the previous identity, we get 𝑇 (𝜋(𝑎), 𝑒) = −𝛾(𝑎, 𝑎).
Finally, observe that when char(𝑘) ≠ 2, then 𝛿 = 1

2 𝑒, so by Proposition 5.31, 𝛾(𝑎, 𝑎) = 𝑇 (ℎ(𝑎, 𝑎), 1
2 𝑒),

which is 0 by Lemma 5.34. �

Proposition 5.45. Let 𝑎 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then �̃� = −𝑎 · 𝜋(𝑎)𝜎 and

𝑎 · 𝜃 (𝑎, 𝑣) = 𝑎 · 𝜋(𝑎) · 𝑣. (87)

Moreover, we have

𝜆𝑎𝑣 = 𝜃 (𝑎, 𝜃 (𝑎, 𝑣)) − ℎ(𝑎 · 𝜋(𝑎)
𝜎 , 𝑎 · 𝑣). (88)

Proof. We have [𝑦, [𝑦, 𝑣]] = 0 by the grading, and hence, [Θ𝑎 (𝑦),Θ𝑎 ([𝑦, 𝑣])] = 0. By (76) and
Notation 5.38, we get

[
𝑦 + [𝑎, 𝑦] + ℓ𝑎 + �̃� + 𝜆𝑎𝑥, [𝑦, 𝑣] + [𝑎 · 𝑣, 𝑓 ] + 𝜃 (𝑎, 𝑣)

]
= 0. (89)

In particular, the 𝐿0-component of the left-hand side is 0, so
[
[𝑎, 𝑦], 𝜃 (𝑎, 𝑣)

]
+
[
ℓ𝑎, [𝑎 · 𝑣, 𝑓 ]

]
+
[
�̃�, [𝑦, 𝑣]

]
= 0.

Now using Lemma 5.27(ii) for the first and third term and using (84) for the second term, we get
[
𝑎 · 𝜃 (𝑎, 𝑣) − 𝑎 · ℎ(𝑎, 𝑎 · 𝑣) + �̃� · 𝑣, 𝑓

]
= 0,

and hence, by Corollary 5.24,

𝑎 · 𝜃 (𝑎, 𝑣) − 𝑎 · ℎ(𝑎, 𝑎 · 𝑣) + �̃� · 𝑣 = 0.

By (86), this can be rewritten as

�̃� · 𝑣 = 𝑎 · 𝜃 (𝑎, 𝑣) − 𝑇 (𝜋(𝑎), 𝑒)𝑎 · 𝑣.

If we set 𝑣 = 𝑒, then we get �̃� = −𝑎 · 𝜋(𝑎)𝜎 . Substituting this again in the previous identity, we get,
using 𝜋(𝑎)𝜎 = 𝑇 (𝜋(𝑎), 𝑒)𝑒 − 𝜋(𝑎), that

𝑎 · 𝜃 (𝑎, 𝑣) = −𝑎 · 𝜋(𝑎)𝜎 · 𝑣 + 𝑇 (𝜋(𝑎), 𝑒)𝑎 · 𝑣 = 𝑎 · 𝜋(𝑎) · 𝑣.

To prove the second identity, we again start from (89), but this time we compute the 𝐿−1-component, so
we get

[
ℓ𝑎, 𝜃 (𝑎, 𝑣)

]
+
[
�̃�, [𝑎 · 𝑣, 𝑓 ]

]
+
[
𝜆𝑎𝑥, [𝑦, 𝑣]

]
= 0.

Using �̃� = −𝑎 · 𝜋(𝑎)𝜎 , (73) and Lemma 5.40, we get (88). �
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Lemma 5.46. Let 𝑎 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then

[ℓ𝑎, [𝑦, 𝑣]] = [𝑦, 𝜃 (𝑎, 𝑣) − 𝑇 (𝜋(𝑎), 𝑒)𝑣] .

In particular, [ℓ𝑎, 𝑓 ] = −[𝑦, 𝜋(𝑎)𝜎].

Proof. Using Lemma 5.40 and Proposition 5.41, we get

[ℓ𝑎, [𝑦, 𝑣]] = [[ℓ𝑎, 𝑦], 𝑣] + [𝑦, [ℓ𝑎, 𝑣]] = −𝑇 (𝜋(𝑎), 𝑒) [𝑦, 𝑣] + [𝑦, 𝜃 (𝑎, 𝑣)] .

The second identity follows by setting 𝑣 = 𝑒 since 𝑓 = [𝑦, 𝑒]. �

Lemma 5.47. Let 𝑎, 𝑏 ∈ 𝑋 . Then

[ℓ𝑎, 𝑏] = 𝑏 · 𝜋(𝑎)
𝜎 − 𝑎 · ℎ(𝑎, 𝑏).

Proof. Using (84), Lemma 5.46 and Lemma 5.27(iii), we get

[[ℓ𝑎, 𝑏], 𝑓 ] = [ℓ𝑎, [𝑏, 𝑓 ]] − [𝑏, [ℓ𝑎, 𝑓 ]] = −[𝑎 · ℎ(𝑎, 𝑏), 𝑓 ] + [𝑏, [𝑦, 𝜋(𝑎)𝜎]]

= [−𝑎 · ℎ(𝑎, 𝑏) + 𝑏 · 𝜋(𝑎)𝜎 , 𝑓 ] .

The result now follows from Corollary 5.24. �

We can now explicitly determine the value of 𝜆𝑎 introduced in Notation 5.38.

Proposition 5.48. Let 𝑎 ∈ 𝑋 . Then 𝜆𝑎 = 𝑄(𝜋(𝑎)).

Proof. Since �̃� = −𝑎 · 𝜋(𝑎)𝜎 by Proposition 5.45, it follows from (85) with 𝑏 = 𝑎 that ℎ(𝑎 · 𝜋(𝑎)𝜎 , 𝑎) =
𝜃 (𝑎, ℎ(𝑎, 𝑎)), so by (87), we get

𝑎 · ℎ(𝑎 · 𝜋(𝑎)𝜎 , 𝑎) = 𝑎 · 𝜋(𝑎) · ℎ(𝑎, 𝑎). (90)

By (88) with 𝑣 = 𝑒, we have 𝜆𝑎𝑒 = 𝜃 (𝑎, 𝜋(𝑎)) − ℎ(𝑎 · 𝜋(𝑎)𝜎 , 𝑎), and hence,

𝜆𝑎𝑎 = 𝑎 · 𝜃 (𝑎, 𝜋(𝑎)) − 𝑎 · ℎ(𝑎 · 𝜋(𝑎)𝜎 , 𝑎).

By (87) again and by (90), we can rewrite this as

𝜆𝑎𝑎 = 𝑎 · 𝜋(𝑎) · 𝜋(𝑎) − 𝑎 · 𝜋(𝑎) · ℎ(𝑎, 𝑎).

Since 𝜋(𝑎) − ℎ(𝑎, 𝑎) = 𝜋(𝑎)𝜎 by Lemma 5.44, we get, using Proposition 5.33, that

𝜆𝑎𝑎 = 𝑎 · 𝜋(𝑎) · 𝜋(𝑎)𝜎 = 𝑄(𝜋(𝑎))𝑎. �

We can now summarize our information about Θ𝑎 (𝑦).

Corollary 5.49. Let 𝑎 ∈ 𝑋 . Then

Θ𝑎 (𝑦) = 𝑦 + [𝑎, 𝑦] + ℓ𝑎 − 𝑎 · 𝜋(𝑎)
𝜎 +𝑄(𝜋(𝑎))𝑥.

Proof. This follows from Notation 5.38 and Propositions 5.45 and 5.48. �

We deduce another interesting identity, which is not required for the proof of our main result
(Theorem 5.56), but which is interesting in its own right, and relevant also in the reconstruction process
(see Remark 5.59 below).
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Proposition 5.50. Let 𝑎, 𝑏, 𝑐 ∈ 𝑋 . Write 𝑉𝑎,𝑏 := [𝑎, [𝑦, 𝑏]] ∈ 𝐿0 ∩ 𝐿
′
0. Then

[𝑉𝑎,𝑏 , 𝑐] = 𝑎 · ℎ(𝑏, 𝑐) + 𝑏 · ℎ(𝑎, 𝑐) + 𝑐 · ℎ(𝑏, 𝑎).

Proof. We apply (78) on y and invoke Corollary 5.49 to get

Θ𝑎
(
𝑦 + [𝑏, 𝑦] + ℓ𝑏 − 𝑏 · 𝜋(𝑏)

𝜎 +𝑄(𝜋(𝑏))𝑥
)

= exp(−𝛾(𝑎, 𝑏)𝑥)
(
𝑦 + [𝑎 + 𝑏, 𝑦] + ℓ𝑎+𝑏 − (𝑎 + 𝑏) · 𝜋(𝑎 + 𝑏)𝜎 +𝑄(𝜋(𝑎 + 𝑏))𝑥

)
.

Comparing the 𝐿0-component of both sides yields

ℓ𝑎 + [𝑎, [𝑏, 𝑦]] + ℓ𝑏 = ℓ𝑎+𝑏 − 𝛾(𝑎, 𝑏) [𝑥, 𝑦] .

Taking the Lie bracket with 𝑐 ∈ 𝑋 ≤ 𝐿−1 now gives

[ℓ𝑎, 𝑐] − [𝑉𝑎,𝑏 , 𝑐] + [ℓ𝑏, 𝑐] = [ℓ𝑎+𝑏, 𝑐] + 𝛾(𝑎, 𝑏)𝑐.

We now apply Lemma 5.47, and we get

[𝑉𝑎,𝑏 , 𝑐] =
(
𝑐 · 𝜋(𝑎)𝜎 − 𝑎 · ℎ(𝑎, 𝑐)

)
+
(
𝑐 · 𝜋(𝑏)𝜎 − 𝑏 · ℎ(𝑏, 𝑐)

)
−
(
𝑐 · 𝜋(𝑎 + 𝑏)𝜎 − (𝑎 + 𝑏) · ℎ(𝑎 + 𝑏, 𝑐)

)
− 𝛾(𝑎, 𝑏)𝑐. (91)

By (80) and Corollary 5.35, we have

𝑐 · 𝜋(𝑎 + 𝑏)𝜎 = 𝑐 · 𝜋(𝑎)𝜎 + 𝑐 · 𝜋(𝑏)𝜎 − 𝑐 · ℎ(𝑏, 𝑎) − 𝛾(𝑎, 𝑏)𝑐.

Substituting this expression in (91), the result follows. �

Remark 5.51. The notation 𝑉𝑎,𝑏 that we use is not a coincidence: the expression for [𝑉𝑎,𝑏 , 𝑐] is exactly
the expression for the V-operators in the theory of structurable algebras (in characteristic ≠ 2, 3) related
to quadrangular algebras. See [BDM13, Theorem 5.4].

We have now arrived at the most difficult identity, which we will prove in Proposition 5.55 below.
The crucial ingredient will be Lemma 5.53, proving the equality of certain products of automorphisms,
which is, in fact, a typical ‘long commutator relation’ in disguise.

Similarly to Proposition 5.28 and Definition 5.29, we will need exponential maps for elements of 𝑋 ′,
with respect to the 𝐿 ′

𝑖-grading (55).

Definition 5.52.

(i) For each [𝑎, 𝑓 ] ∈ 𝑋 ′ ≤ 𝐿 ′
−1, we write Θ̂𝑎 for the unique [𝑎, 𝑓 ]-exponential automorphism 𝛼 ∈

Aut(𝐿) such that [𝑞𝛼 (𝑒′), [𝑑, 𝛿]] = 0. The corresponding (uniquely defined) maps 𝑞𝛼, 𝑛𝛼 and 𝑣𝛼
will be denoted by 𝑞𝑎, �̂�𝑎 and �̂�𝑎, respectively.

(ii) For each 𝑎 ∈ 𝑋 and each 𝑣 ∈ 𝑉 , we define 𝜃 (𝑎, 𝑣) := 𝑞𝑎 ([𝑑, 𝑣]) ∈ 𝑉 . In particular, we have

Θ̂𝑎 ([𝑑, 𝑣]) = [𝑑, 𝑣] + [[𝑎, 𝑓 ], [𝑑, 𝑣]] + 𝜃 (𝑎, 𝑣) = [𝑑, 𝑣] + 𝑎 · 𝑣𝜎 + 𝜃 (𝑎, 𝑣), (92)

where the second equality holds by Lemma 5.32 since 𝑓 ′ = [𝑑, 𝑓 ].
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For the next lemma, recall that 𝛼𝜃 (𝑎,𝑣) and 𝛽𝑣 have been introduced in Definitions 5.15 and 5.16,
respectively.

Lemma 5.53. Let 𝑎 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then there is a (unique) 𝜇 =: 𝜇(𝑎, 𝑣) ∈ 𝑘 such that

exp(−𝜇𝑐) Θ𝑎 𝛽𝑣 = 𝛽𝑣 Θ̂𝑎 ·𝑣 𝛼𝜃 (𝑎,𝑣) Θ𝑎 .

Proof. Consider the automorphism 𝛽 := Θ𝑎 𝛽𝑣 Θ−1
𝑎 and recall that 𝛽𝑣 is a [𝑦, 𝑣]-exponential automor-

phism with respect to the 𝐿 ′
𝑖-grading (55). Write

𝛽𝑣 = id+ ad[𝑦,𝑣 ] +𝑞 [𝑦,𝑣 ] + 𝑛 [𝑦,𝑣 ] + 𝑣 [𝑦,𝑣 ] .

Now let 𝑙𝑖 ∈ 𝐿 ′
𝑖 . Since Θ𝑎 preserves the 𝐿 ′

𝑖-grading (55), also Θ−1
𝑎 (𝑙𝑖) ∈ 𝐿

′
𝑖 , so we can write

𝛽𝑣 Θ
−1
𝑎 (𝑙𝑖) = Θ−1

𝑎 (𝑙𝑖)︸��︷︷��︸
∈𝐿′

𝑖

+ [[𝑦, 𝑣],Θ−1
𝑎 (𝑙𝑖)]︸��������������︷︷��������������︸

∈𝐿′
𝑖−1

+ 𝑞 [𝑦,𝑣 ] (Θ
−1
𝑎 (𝑙𝑖))︸�������������︷︷�������������︸

∈𝐿′
𝑖−2

.

Hence,

𝛽(𝑙𝑖) = 𝑙𝑖︸︷︷︸
∈𝐿′

𝑖

+
[
Θ𝑎 ([𝑦, 𝑣]), 𝑙𝑖

]
︸�������������︷︷�������������︸

∈𝐿′
𝑖−1

+Θ𝑎 (𝑞 [𝑦,𝑣 ] (Θ
−1
𝑎 (𝑙𝑖)))︸��������������������︷︷��������������������︸

∈𝐿′
𝑖−2

.

This shows that 𝛽 is an l-exponential automorphism for 𝑙 = Θ𝑎 ([𝑦, 𝑣]), with respect to the 𝐿 ′
𝑖-grading

(55). Now

𝑙 = [𝑦, 𝑣] + [𝑎 · 𝑣, 𝑓 ] + 𝜃 (𝑎, 𝑣),

so by Theorem 3.13(viii), also 𝛽𝑣 Θ̂𝑎 ·𝑣 𝛼𝜃 (𝑎,𝑣) is an l-exponential automorphism. (Notice that we have
implicitly used Proposition 5.17 for 𝛼𝜃 (𝑎,𝑣) here.) The result now follows from Theorem 3.13(v). �

Definition 5.54. Let 𝑎 ∈ 𝑋 and 𝑣 ∈ 𝑉 . Then we set

𝜙(𝑎, 𝑣) := 𝜇(𝑎, 𝑣) − 𝜇(𝑎 · 𝑣, 𝑒).

Proposition 5.55. Let 𝑎 ∈ 𝑋 and 𝑣, 𝑤 ∈ 𝑉 . Then

𝜃 (𝑎, 𝑣) = 𝜃 (𝑎, 𝑣𝜎)𝜎 + 𝜇(𝑎, 𝑒)𝑣

and

𝜃 (𝑎 · 𝑣, 𝑤𝜎)𝜎 = 𝑄(𝑣)𝜃 (𝑎, 𝑤) − 𝑇 (𝑣, 𝑤)𝜃 (𝑎, 𝑣) + 𝑇 (𝜃 (𝑎, 𝑣), 𝑤)𝑣 + 𝜙(𝑎, 𝑣)𝑤.

Proof. We apply both sides of Lemma 5.53 to [𝑑, 𝑤] ∈ 𝑉 ′, and we extract the V-component of the
resulting equality (so there are many terms that we do not need to compute explicitly). We first compute

𝛽𝑣 ([𝑑, 𝑤]) = [𝛽𝑣 (𝑑), 𝛽𝑣 (𝑤)]

=
[
𝑑 + [[𝑦, 𝑣], 𝑑] +𝑄(𝑣)𝑦, 𝑤 + [[𝑦, 𝑣], 𝑤]

]
=
[
𝑑 + [[𝑦, 𝑣], 𝑑] +𝑄(𝑣)𝑦, 𝑤 + 𝑇 (𝑣, 𝑤)𝑐

]
(by Proposition 5.25)

= [𝑑, 𝑤] +
[
[𝑦, 𝑣], [𝑑, 𝑤]

]
+
[
[[𝑦, 𝑣], 𝑑], 𝑇 (𝑣, 𝑤)𝑐

]
+ [𝑄(𝑣)𝑦, 𝑤]

= [𝑑, 𝑤] +
[
[𝑦, 𝑣], [𝑑, 𝑤]

]
+
[
𝑦, 𝑄(𝑣)𝑤 − 𝑇 (𝑣, 𝑤)𝑣

]
.
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After applying exp(−𝜇(𝑎, 𝑣)𝑐)Θ𝑎 on 𝛽𝑣 ([𝑑, 𝑤]), we see from the grading in Figure 2 that only two
terms contribute to the V-component, namely

exp(−𝜇(𝑎, 𝑣)𝑐) ( [𝑑, 𝑤]) and Θ𝑎
( [
𝑦, 𝑄(𝑣)𝑤 − 𝑇 (𝑣, 𝑤)𝑣

] )
,

and the resulting V-component is equal to

𝜇(𝑎, 𝑣)𝑤 +𝑄(𝑣)𝜃 (𝑎, 𝑤) − 𝑇 (𝑣, 𝑤)𝜃 (𝑎, 𝑣). (93)

We now compute the V-component of

𝛽𝑣 Θ̂𝑎 ·𝑣 𝛼𝜃 (𝑎,𝑣) Θ𝑎 ([𝑑, 𝑤]) = 𝛽𝑣 Θ̂𝑎 ·𝑣
(
[𝑑, 𝑤] + [𝜃 (𝑎, 𝑣), [𝑑, 𝑤]]

)
= 𝛽𝑣 Θ̂𝑎 ·𝑣

(
[𝑑, 𝑤] − 𝑇 (𝜃 (𝑎, 𝑣), 𝑤)𝑥

)
.

Again, only two terms contribute, namely

Θ̂𝑎 ·𝑣 ([𝑑, 𝑤]) and 𝛽𝑣
(
− 𝑇 (𝜃 (𝑎, 𝑣), 𝑤)𝑥

)
,

and the resulting V-component is equal to

𝜃 (𝑎 · 𝑣, 𝑤) − 𝑇 (𝜃 (𝑎, 𝑣), 𝑤)𝑣. (94)

Since the expressions in (93) and (94) coincide, we get

𝜃 (𝑎 · 𝑣, 𝑤) = 𝑄(𝑣)𝜃 (𝑎, 𝑤) − 𝑇 (𝑣, 𝑤)𝜃 (𝑎, 𝑣) + 𝑇 (𝜃 (𝑎, 𝑣), 𝑤)𝑣 + 𝜇(𝑎, 𝑣)𝑤. (95)

Setting 𝑣 = 𝑒 and invoking Corollary 5.42 then gives

𝜃 (𝑎, 𝑤) = 𝜃 (𝑎, 𝑤) − 𝑇 (𝑒, 𝑤)𝜋(𝑎) + 𝑇 (𝜋(𝑎), 𝑤)𝑒 + 𝜇(𝑎, 𝑒)𝑤

= 𝜃 (𝑎, 𝑤𝜎)𝜎 + 𝜇(𝑎, 𝑒)𝑤.

Finally, substituting 𝑎 · 𝑣 for a in this identity gives

𝜃 (𝑎 · 𝑣, 𝑤) = 𝜃 (𝑎 · 𝑣, 𝑤𝜎)𝜎 + 𝜇(𝑎 · 𝑣, 𝑒)𝑤.

Comparing this with (95) gives the required identity. �

We have now assembled all that is required to prove our main result of this section.

Theorem 5.56. Let L be as in Assumption 5.1, let V and X be as in Notation 5.4, let Q and T be as in
Definition 5.10, let e and 𝛿 be as in Definition 5.21, let h and · be as in Definition 5.26 and let 𝜃 be as
in Definition 5.29.

Then the system (𝑘,𝑉, 𝑄, 𝑇, 𝑒, 𝑋, ·, ℎ, 𝜃) is a quadrangular algebra, which is 𝛿-standard and for
which both T and the bilinear map 𝑋 × 𝑋 → 𝑘 : (𝑎, 𝑏) ↦→ 𝑇 (ℎ(𝑎, 𝑏), 𝑒) are nondegenerate (so in
particular, h is nodegenerate).

Proof. We first observe that 𝑄 : 𝑉 → 𝑘 is a regular quadratic form with associated bilinear form T, by
Definition 5.10 and Lemma 5.18, so in fact, T is nondegenerate. By Definition 5.21, 𝑒 ∈ 𝑉 is a base
point for Q. By definition, the maps · : 𝑋 × 𝑉 → 𝑋 and ℎ : 𝑋 × 𝑋 → 𝑉 defined in Definition 5.26 are
bilinear maps. Finally, the map 𝜃 : 𝑋 ×𝑉 → 𝑉 has been introduced in Definition 5.29.

We now verify each of the defining axioms (i)–(ix) from Definition 1.17.

(i) This is Lemma 5.27(i).
(ii) This is Proposition 5.33.

(iii) This is Proposition 5.37.
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(iv) This is Proposition 5.36.
(v) This follows from the definition of 𝜃 in Definition 5.29 because for each 𝑎 ∈ 𝑋 , Θ𝑎 is a linear map.

(vi) This was observed already in Definition 5.29.
(vii) This is Proposition 5.31.

(viii) This is Proposition 5.55.
(ix) This is Proposition 5.45.

This shows that (𝑘,𝑉, 𝑄, 𝑇, 𝑒, 𝑋, ·, ℎ, 𝜃) is a quadrangular algebra. By Definition 5.21 and (77), it
is 𝛿-standard. Finally, the bilinear map 𝑋 × 𝑋 → 𝑘 : (𝑎, 𝑏) ↦→ 𝑇 (ℎ(𝑎, 𝑏), 𝑒) is nondegenerate by
Lemma 5.34. �

Remark 5.57. The conditions on the quadrangular algebra in the statement of Theorem 5.56 imply that
if 𝑋 ≠ 0, then either the quadrangular algebra is ‘generic’ (as in [MW19, §8]) or it is ‘of split type
𝐹4’ (as in [MW19, §10]). (We ignore the detail that |𝐾 | > 4 is required in the generic case in [MW19,
Hypothesis 8.1] and |𝐾 | > 3 is required in the split 𝐹4-case in [MW19, Hypothesis 10.1].) Notice,
however, that we allow the situation where 𝑋 = 0, in which case the quadrangular algebra is nothing
more than a nondegenerate quadratic space with base point.

Remark 5.58. When the quadrangular algebra is anisotropic, it ought to be possible to show that the
resulting inner ideal geometry is a Moufang generalized quadrangle and that it is isomorphic to the
Moufang quadrangle obtained from the quadrangular algebra as in [Wei06]. (Notice that in this case,
the extremal geometry has no lines. The inner ideal geometry is the geometry with point set E (𝐿) and as
line set the collection of inner ideals containing at least two extremal points and minimal with respect
to this property.)

The explicit computations might be lengthy in general, but in the case that char(𝑘) ≠ 2, this has been
worked out in [Meu21, §4.5.2].

Remark 5.59. We are confident that, similarly to Corollary 4.17, the Lie algebra can be completely
reconstructed from the quadrangular algebra, but we have not worked out the details. This time, we let

𝐾0 := 〈[𝑥, 𝑦], [𝑐, 𝑑]〉 ⊕ [𝑋, [𝑦, 𝑋]] ⊕ [𝑉, [𝑦,𝑉 ′]],

and we follow exactly the same procedure as in the proof of Corollary 4.17. However, working out all
the different cases of Lie brackets between the 13 different pieces in the grading requires substantially
more computational effort than in the case of Section 4, and one crucial ingredient seems to be
Proposition 5.50. We leave the details to the courageous reader.

Remark 5.60. As we can see, there is a third interesting grading on the Lie algebra L that we obtain
from the diagonals in Figure 2. (There is, of course, also a fourth grading from the other diagonals.)
Notice that this time, the ends of the grading are not one-dimensional! More precisely, we have

𝐿 = 𝐿 ′′
−2 ⊕ 𝐿

′′
−1 ⊕ 𝐿

′′
0 ⊕ 𝐿 ′′

1 ⊕ 𝐿 ′′
2

with

𝐿 ′′
−2 = 〈𝑥〉 ⊕ 𝑉 ⊕ 〈𝑐〉

𝐿 ′′
−1 = 𝑋 ⊕ 𝑋 ′

𝐿 ′′
0 = 𝑉 ′ ⊕ (𝐿0 ∩ 𝐿

′
0) ⊕ [𝑦,𝑉]

𝐿 ′′
1 = [𝑑, 𝑋 ′] ⊕ [𝑦, 𝑋]

𝐿 ′′
2 = 〈𝑑〉 ⊕ [𝑦,𝑉 ′] ⊕ 〈𝑦〉.
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This grading has been used implicitly in [BDM15] in the context of J-ternary algebras. See in particular
its Theorem 3.5, where the Jordan algebra J is of the form 𝑘 ⊕𝑉 ⊕ 𝑘 , and where the space called X plays
the role of 𝐿 ′′

±1 and admits a Peirce decomposition into two isomorphic parts 𝑋 = 𝑋0 ⊕ 𝑋1 (introduced
in its Lemma 3.4).

A. Tables

In this appendix, we present an overview of the possible Lie algebras of exceptional type that arise in
this context. For each of the two situations (cubic norm structures vs. quadrangular algebras), we present
two tables:

◦ We first list the dimensions of the different pieces in the decomposition of the Lie algebra, depending
only on the absolute type of the Lie algebra.

◦ We then present a more detailed table with the possible Tits indices along with the corresponding
precise form of the algebraic structure.

We do not provide proofs, and we rely instead on the corresponding information for Tits hexagons (taken
from [MW22]) and Tits quadrangles (taken from [MW19]), respectively. Providing a direct connection
between Tits hexagons and Tits quadrangles of index type and our Lie algebras is an interesting project
in its own right. (See also Remarks 4.25 and 5.58.)

A.1. Cubic norm structures

In the case of cubic norm structures, corresponding to the𝐺2-grading as in Figure 1 on p. 32, we see that

dim 𝐿 = 6 + 6 dim 𝐽 + dim(𝐿0 ∩ 𝐿
′
0).

We have listed the six possibilities in Table 1.
In Table 2, we rely on [MW22, Theorem 2.5.22], and we adopt its notationH(𝐶, 𝑘) for the Freudenthal

algebra constructed from the composition algebra C over k. (See also [MW22, Notation 4.1.72].)

Remark A.1. The example of type 𝐷4 in the second row of Table 2 also occurs in non-triality forms,
which we have not included in the list because they are not exceptional. These correspond to the Tits
indices

and

and have corresponding 3-dimensional J of the form 𝐽 = 𝑘 × 𝐸 , where 𝐸/𝑘 is a separable quadratic
field extension, for the first case, and of the form 𝐽 = 𝑘 × 𝑘 × 𝑘 , a split cubic étale extension, for the
second case.

A.2. Quadrangular algebras

In the case of quadrangular algebras, corresponding to the 𝐵𝐶2-grading as in Figure 2 on p. 42, we see
that

dim 𝐿 = 4 + 4 dim 𝑋 + 4 dim𝑉 + dim(𝐿0 ∩ 𝐿
′
0).

We have listed the four possibilities in Table 3.
By Remark 5.57, our quadrangular algebras are either generic or of split type 𝐹4. By [MW19,

Theorems 8.16 and 10.16], these are either special (i.e., not exceptional), or they are anisotropic, or
they are isotopic to Q2(𝐶, 𝑘) for some octonion algebra C or to Q4(𝐶, 𝑘) for some composition algebra
C. (The definition of these quadrangular algebras can be found in [MW19, Notations 4.12 and 4.14].)
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Table 1. Dimensions of the pieces for the 𝐺2-grading..

dim 𝐿 dim 𝐽 dim(𝐿0 ∩ 𝐿′
0)

𝐺2 14 1 2
𝐷4 28 3 4
𝐹4 52 6 10
𝐸6 78 9 18
𝐸7 133 15 37
𝐸8 248 27 80

Table 2. Exceptional Tits indices with 𝐺2-graded Lie algebra.

Tits index rel. type dim 𝐽 Cubic norm structure (up to isotopy)

𝐺2 1 𝐽 = 𝑘

𝐺2 3 𝐽/𝑘 sep. cubic field ext.

𝐹4 6 H(𝑘, 𝑘)

𝐺2 9 cubic division algebra

𝐺2 9 cubic division algebra over 𝐸/𝑘 with
involution of the second kind

𝐹4 9 H(𝐸, 𝑘) , 𝐸/𝑘 sep. quadr. field ext.

𝐸6 9 𝑀3 (𝑘)

𝐹4 15 H(Q, 𝑘) , Q quaternion division

𝐸7 15 H(Q, 𝑘) , Q quaternion split

𝐺2 27 Albert division algebra

𝐹4 27 H(O, 𝑘) , O octonion division

𝐸8 27 H(O, 𝑘) , O octonion split

In other words, we get all cases from [MW19, Table 1] except the last two rows. We have essentially
reproduced this table in Table 4.

Remark A.2. Comparing Tables 2 and 4, we see that the Tits indices that occur in both tables are the
following:

(i) The split forms of type 𝐹4, 𝐸6, 𝐸7 and 𝐸8;
(ii) The forms of relative type 𝐹4 (and of absolute type 𝐹4, 𝐸6, 𝐸7 and 𝐸8).
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Table 3. Dimensions of the pieces for the 𝐵𝐶2-grading..

dim 𝐿 dim𝑉 dim 𝑋 dim(𝐿0 ∩ 𝐿′
0)

𝐹4 52 4 5 12
𝐸6 78 6 8 18
𝐸7 133 8 16 33
𝐸8 248 12 32 68

Table 4. Exceptional Tits indices with 𝐵𝐶2-graded Lie algebra.

Tits index rel.type dim𝑉 dim 𝑋 Quadrangular algebra (up to isotopy)

𝐹4 4 5 Q4 (𝑘, 𝑘)

𝐵𝐶2 6 8 anisotropic of type 𝐸6

𝐹4 6 8 Q4 (𝐸, 𝑘) , 𝐸/𝑘 sep. quadr. field ext.

𝐸6 6 8 Q4 (𝑘 × 𝑘, 𝑘)

𝐵𝐶2 8 16 anisotropic of type 𝐸7

𝐶3 8 16 Q2 (O, 𝑘) , O octonion division

𝐹4 8 16 Q4 (𝑄, 𝑘) , Q quaternion division

𝐸7 8 16 Q4 (𝑄, 𝑘) , Q quaternion split

𝐵𝐶2 12 32 anisotropic of type 𝐸8

𝐹4 12 32 Q4 (O, 𝑘) , O octonion division

𝐸8 12 32 Q4 (O, 𝑘) , O octonion split

In other words, these seven types of Lie algebras are precisely the ones admitting both a𝐺2-grading and
a 𝐵𝐶2-grading, and hence, they are parametrized both by a cubic norm structure and by a quadrangular
algebra. As we have alluded to in the introduction, it is an interesting question to investigate the
connection between these two different algebraic structures for each of these seven types.
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