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Abstract
Variability inherent to handwriting has been suggested to help establish more robust letter
representations than other methods (e.g., typing). The present study tests whether encoding
letter strings from a novel alphabet becomes more resistant to distortion when trained with
variable input. Over 5 days, participants learned an 11-character artificial alphabet in a
variable handwritten format involving reading, listening and handwriting practice. Another
set of 11 artificial characters served as a visual control. Before and after the training,
participants completed a masked priming same–different matching task with the novel
alphabet letters. The key manipulation was in the primes: the identity/unrelated primes
could be presented in a printed or distorted format. Results showed identity priming in both
conditions, with a stronger effect for the printed primes. These effects increased post training
for experimental and visual control scripts, indicating that exposure to variable input
enhances distortion resistance even without explicit training. A second experiment assessed
the transposed-letter effect – another marker of orthographic processing – in the novel
scripts with an unprimed same–differentmatching task. Results showed that the transposed-
letter effect occurred similarly before and after the training for both scripts. Therefore, letter
shape variability when learning to read does not seem to boost orthographic processing.

Keywords: CAPTCHA; handwriting; orthographic processing; orthographic representations; visual word
recognition

1. Introduction
Reading and writing are revolutionary inventions of human civilization and are
essential communication tools in modern society. During reading, the eyes typically
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focus on each word in the text, often fixating only once, thereby providing a brief
foveal glimpse. In this fleeting moment, skilled readers process the word, transform-
ing the visual input into an increasingly abstract orthographic code. This code is
crucial for retrieving the word’s phonological, morphological and semantic proper-
ties from the mental lexicon. The present paper focuses on the emergence of
orthographic processing, the critical interface between visual input and the mental
lexicon. Orthographic processing serves as a vital bridge, linking the initial stages of
visual perception to the more complex processing of words. It encompasses the
encoding of abstract letter identities and the serial order of the letters, playing a
crucial role in guiding the selection of the appropriate entries in the mental lexicon.
This process is key in distinguishing orthographically similar words such as KISS
from HISS or GOD from DOG (see Grainger, 2018, for review).

The process of encoding letter identities in the brain, as agreed upon broadly in the
research community, involves specialized neuron layers attuned to abstract letter
representations during visual word identification. A notable example is the hierarchical
model of visual word recognition proposed by Dehaene et al. (2005), where specific
neuron layers exhibit similar responses to different forms of the same letter (d, d, D or
D). As reviewed byGrainger (2018), developing this level of abstraction is necessary for
proficient reading and these abstract orthographic representations are both stable and
resilient to visual noise – critical factors for effective reading. Notably, this ability is
thought to develop relatively early after learning to read (Jackson & Coltheart, 2001).
Empirical evidence supporting this view comes from masked priming experiments
showing sizeable repetition priming effects with handwritten words (Gil-López et al.,
2011; Qiao et al., 2010). An even more striking example of the brain’s proficiency in
handling distorted visual input occurs with CAPTCHAs (Completely Automated
Public Turing test to tell Computers and Humans Apart; von Ahn et al., 2003). In a
masked priming lexical decision task, Hannagan et al. (2012) found significant
repetition priming effects with printed target words when primes were distorted in a
CAPTCHA-like manner (e.g., ). Although the repetition priming effects were
less pronounced than with printed primes, they were still sizeable, suggesting that the
letter detectors, weathered by exposure to a wide variety of visual inputs, are quite
adaptable to distortion. This adaptability allows them to respond to a broad spectrum
of potential visual inputs for any given letter. In our study, we utilize the identity
priming effect of CAPTCHA primes to investigate the tolerance of letter detectors to
noise in the processing of letter strings for a novel – recently learned – script.

The main aim of this paper was to examine whether stable orthographic repre-
sentations, resilient to distortion, can be developed in the initial stages of literacy. To
explore this, we trained adult participants in a novel, artificial script over five sessions,
using varied visual inputs. We opted for adults learning an artificial script instead of
preliterate children to have better control over participants’ prior letter knowledge
and use more standardized tasks – note that in experiments with preliterate children,
the tasks and procedures must be simplified enormously (Perea et al., 2016a). This
approach has proven effective, akin to how children learn to read (Taylor et al., 2011;
C. Vidal et al., 2017).

Employing a similar methodology, Fernández-López et al. (2021) examined the
emergence of orthographic representations focusing on the encoding of letter order. In
their study, participants were trained in two unfamiliar scripts, each comprising 11
BACS (the Brussels Artificial Character Sets) characters (C. Vidal et al., 2017),
throughout six sessions, with each letter being assigned a phonological value. The

2 Solaja et al.

https://doi.org/10.1017/langcog.2024.71 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2024.71


training for one script encompassed extensive handwriting, listening and reading
exercises, while the other script served as a control, concentrating solely on superficial
letter recognition. The participants were tested on two aspects of orthographic pro-
cessing before and after the training. First, a same–different task was administered to
assess letter transposition effects, thereby evaluating the emergence of flexibility in
letter position within the new script, a phenomenon known as location-invariance
processing. This concept posits that letter strings evoke greater transposition effects
than strings of symbols or artificial letters (Duñabeitia et al., 2012; Massol et al., 2013).
Second, a target-in-string task examined the parallel processing of letter positions in a
string. Prior research has shown a divergence in the accuracy functions of symbols
versus letters in this task: participants tend to be more accurate when identifying
centrally fixated characters in symbols, while an advantage is also observed for the
exterior letters, especially the initial letter, in letter strings (Tydgat & Grainger, 2009).
Fernández-López et al. (2021) observed that the findings in both tasks were strikingly
similar before and after training for both the script learned by participants and the one
with which they were merely visually familiarized. They suggested that more robust
orthographic representations are required to distinguish orthographic processing from
the processing of other visual symbols – particularly regarding location invariance and
position-specific processing. Nonetheless, their study primarily examined the emer-
gence of location-invariance and location-specific processing in letter strings of the
newly trained script without directly examining the development of the encoding of
letter representations. Our study seeks to address this gap in the literature.

One effective strategy to develop more stable letter representations involves
increasing the variability of the visual input. This approach was examined in a study
by Li and James (2016), which focused on 5-year-old children learning four Greek
letters previously unfamiliar to them. The children were trained using either variable
or invariable input coupled with either visual-motor or visual-auditory training
methods. Li and James (2016) found that variable input, irrespective of the training
type, enhanced the children’s ability to categorize a letter correctly in the subsequent
testing phase. They argued that exposure to only a singular form of a letter (e.g., a)
would make it challenging for a learner to recognize that a and a belong to the same
abstract letter unit. However, through repeated exposure to various letter forms
within the same context, learners can develop amore robust sense of letter invariance.

In the present paper, we examined whether orthographic representations would
emerge after the reading–learning process rich in variability. Specifically, we primar-
ily focused on the encoding of letter identities. Our methodology was based on the
training protocol used by Fernández-López et al. (2021) but with two significant
modifications. First, to introduce variability in the training input, we presented the
learning materials in four different handwritten fonts, as opposed to the printed
BACS2serif font used previously (refer to Table 1 for details). Second, to assess
whether the newly formed orthographic representations could withstand distortion,
we conducted the masked priming same–different task introduced by Norris and
Kinoshita (2008) and Kinoshita and Norris (2009). In this task, primes were either
identical or unrelated to the target and were presented in either a regular, printed
format (e.g., ) or a distorted, CAPTCHA-like format (e.g., ). Notably,
the repetition priming effects potentially observed in this task – even for familiar
alphabetic stimuli – are considered to be prelexical, indicating that any observed
effects would primarily reflect bottom-up activation from the visual input to the letter
detectors (Kinoshita et al., 2018; Perea et al., 2016b).

Language and Cognition 3

https://doi.org/10.1017/langcog.2024.71 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2024.71


If the variability in training materials indeed bolsters the emergence of a greater
tolerance to noise in the evolving detectors for letter identities, we predict an
increasedmasked repetition priming effects post training, particularly for the printed
format, but, crucially, also for the CAPTCHA-like primes, only for the alphabet that
participants learned to read. Conversely, the lack of differences in repetition priming
effects between the trained alphabet and the visual control would imply that the
obtained priming effects are not uniquely orthographic but rather stem from greater
visual familiarity with the script. Additionally, as a secondary objective, we explored
the encoding of letter order in this new setup using the same task employed by
Fernández-López et al. (2021) – the specific details will be discussed in the context of
Experiment 2.

2. Experiment 1: the emergence of abstract letter representations
2.1. Methods

The analysis, exclusion criteria and sample size justification were preregistered at
https://aspredicted.org/PLZ_FNB. The study was approved by the local ethical
committee.

Table 1. Letters from Scripts 1 and 2 in printed BACS2serif and handwritten versions
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2.2. Participants

Participants were 28 native Spanish speakers (mean age = 20.69 years, SD= 1.75) with
normal or corrected-to-normal vision and reported no language-related or learning
disorders. All participants gave informed consent and were given monetary com-
pensation upon completing the experiment.

2.3. Materials and design

In the experiment, we used two novel scripts from previous research (Fernández-
López et al., 2021), available at https://osf.io/um6rw/?view_only=7d4754bbb5f445ad
b5e34530162ba552. Each script is a different subgroup of the BACS alphabet
(C. Vidal et al., 2017) and each is comprised nine consonants and two vowels. They
were matched in visual complexity and other visual properties by design, thus
avoiding any confounds. Each participant learned one script via print-to-sound
training, to establish grapheme–phoneme associations (i.e., experimental script).
In contrast, learning the other script referred to the visual familiarization with the
characters (i.e., control script). The use of the script across participants was coun-
terbalanced. Four different handwritten fonts were created using the Calligraphr
online app (www.calligraphr.com), to create the variability in the input. The complete
scripts and their handwritten versions can be seen in Table 1.

2.3.1. Training
Learning to read. As mentioned at the beginning of this subsection, the learning
materials were identical to those of Fernández-López et al. (2021), with one crucial
difference: instead of the capital letters of BACS2serif font (C. Vidal et al., 2017), they
were presented in a handwritten font.Within each character string, only one font was
used. The use of different fonts was pseudorandomized across items.

The training in the experimental script was done as follows. On the first day,
participants familiarized themselves with the grapheme–phoneme correspondences of
the experimental script. They were presented with graphemes of the novel script and
their corresponding phonemes. Theywere asked to read, listen andhand-copy themon a
piece of paper until they felt confident in remembering the associations. On Day 2, they
briefly reviewed the associations and completed three read-aloud tasks involving
12 sequences of four and five characters. They also completed three write-down tasks,
which consisted of listening and writing down another four- and five-character-long
sequences. On Day 3, they completed the same tasks with six- or seven-character-long
sequences, and onDay 4, they completed the same set of tasks with eight-character-long
sequences and then with six-, seven- and eight-character-long sequences.
Visual familiarization. To familiarize the participants with the control script’s visual
form, they were presented with the list of all control script characters on the first day.
They were asked to try to remember them. To practice the control script, we
administered a character count and detection tasks on Days 2, 3 and 4.

Character count task. In the character count task, a fixation point appeared on the
screen for 500 ms, substituted by a character string for a maximum of 2,000 ms or
until response. Participants were asked to press ‘yes’ only if the character string that
appeared on the screen contained three or more nonalphabetical symbols.

Character detection task. In the character detection task, a character from the
untrained script, which acted as a probe, appeared on the screen for 1,000 ms,
followed by a pattern mask (####) for 500 ms. The mask was then substituted by a
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target, a string of characters from the untrained script that had an equal length as the
mask. It stayed on the screen until response or until a timeout of 2,000 ms. The
participants were instructed to respond ‘yes’ if the probe appeared in the target or ‘no’
if it did not. The length of the character string in both Character count and Character
detection tasks corresponded to the length of the string in the training on that day
(i.e., if the training was on four and five-character strings, so were the visual
familiarization tasks). In 75% of the trials (27 out of 36), the BACS characters were
presented in a handwritten font – in the remaining 25%, the characters were
presented in the standard BACS font, to ensure that participants were exposed to
the typical version of the letters in the control script. The use of the four handwritten
fonts was pseudorandomized across trials.

2.3.2. Testing task – masked priming same–different task
Materials. The probes, primes and targets were four-consonant strings composed of
characters belonging to one of the scripts, thus creating two versions of the task, one
for each script. Characters were never repeated within a single string. Three hundred
and twenty probe-target pairs were created, 160 belonging to the ‘same’ condition
(probe and target were identical) and 160 to the ‘different’ condition (probe and
target consisted of entirely different characters). Half of the primes were distorted
similar to CAPTCHAs (von Ahn et al., 2003), while the other half was presented in a
regular printed format. CAPTCHA items were generated using Python script
(Python version 3.6.6; packages: pandas [version 1.1.5.], PIL [version 8.0.1.]). This
yielded a 2 × 2 × 2 design (same–different strings × identity-unrelated
probe × printed-distorted prime). Four lists, each comprising 320 trials, were created
following the Latin square design. In addition, a practice list with the same criteria,
containing 24 trials, was generated.
Procedure. The task was programmed using PsychoPy3 Builder v2020.2.10 (Peirce
et al., 2019). Like the standard masked same–different paradigm, the trial sequence
began with a 500 ms presentation of a fixation cross at the center of the screen. It was
followed by a probe andmask appearing together for 1,000ms. Themask consisted of
four hashtags and was positioned under the probe. Subsequently, the prime was
presented in the location of themask for 50ms, which was then replaced by the target
in isolation until a button press or a 2,000 ms timeout (see Figure 1). The target could
be either the same letter string as the probe (‘same’ trials) or a different letter string
(‘different’ trials). To prevent perceptual continuity, the prime was in a smaller size than
the target. Participantswere instructed to respond as accurately and as quickly as possible
whether the two-character strings were the same or not. The session lasted ~18 min.

Figure 1. Illustration of themasked priming same–different task with the distorted (CAPTCHA) prime on the
left and the printed prime on the right for ‘same’ trials.
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2.4. Overall procedure

The experiment took place in a quiet laboratory setting over five consecutive
workdays. It consisted of the pre-training, training and post-training phases. On
the first day, participants completed the pre-training phase: they were administered
masked priming same–different task and the regular same–different task (described in
Experiment 2) in both Script 1 and Script 2. The order of the taskswas counterbalanced.
Then, they were familiarized with the experimental and control scripts. Half of the
participants learned Script 1 and half learned Script 2. On Days 2, 3 and 4, they were
trained on letter strings of increasing length (four to eight characters) for the experi-
mental script and they completed the visual familiarization tasks for the control script
(detailed description below). On Day 4, in addition to the training on eight-character
letter strings, another round of training with strings of mixed length (six, seven and
eight characters) was completed, to maximize learning. On the last day, they were first
administered a test consisting of one read-aloud exercise and one listening and writing
exercise. After passing the test with a minimum of 84% correct responses (20 correct
responses out of 24 in reading and writing), they completed the post-training phase,
which consisted ofmasked priming same–different task and the regular same–different
task in the script they were trained on. For a graphic depiction of the training, see
Figure 2. For more details on the procedure, see Fernández-López et al. (2021).

2.5. Data analysis

Table 2 shows the average RTs and accuracy. In the preregistered statistical analysis,
the critical dependent variable was RT. All RTs shorter than 250 ms and incorrect
responses were removed from the analyses (8.53% of data points were removed). The
analysis focused on the ‘same’ trials (where the probe was identical to the target)
because that is where the priming effect can be observed.We also conducted a parallel
analysis of the accuracy data – this analysis was not preregistered (see the Appendix).
All data and data analysis scripts are available at https://osf.io/85dmp/.

We ran Bayesian linear mixed models to analyze the data using the brms package
(Bürkner, 2017, 2018) in R (R Core Team, 2021). In the pre-registration, we chose this
option over frequentist models to mitigate convergence issues, allowing for the
maximal random-effect structure without simplification (see Barr et al. (2013), for a
discussion of the risks of simplifying the structure of the design). Phase, script, prime
relatedness and prime distortion, and their four-way interaction were contrast-coded
as fixed effects – these effects were zero-centered: identity versusunrelated (–0.5 and as
0.5), pre-training versus post-training (–0.5 and as 0.5), trained versus untrained (–0.5
and as 0.5) and captcha set versus printed set (–0.5 and as 0.5). We used the maximal
random structure both for participants and items.1 We used a shifted log-normal
distribution for the reaction time data. The priors for the response time (RT) data were
weakly informative: Normal (μ = 0, σ = 10) for the intercept andNormal (0, 1) for each

1Brms_captcha_rt_model <- brm(data = captcha_data_rt, rt ~ pre_post_c * trained_c *
prime_relatedness_c * prime_distortion_c + (1 + prime_distortion_c * pre_post_c * trained_c *
prime_relatedness_c| participant) + (1 + prime_distortion_c * pre_post_c *prime_relatedness_c | item),
warmup = 1000, iter = 5000, chains = 4, family=shifted_lognormalsample_prior = T, prior = priors,
save_all_pars = T, control = list(adapt_delta = 0.95), cores = 4).
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of the fixed effects/interactions and SD parameters.2 For the covariance matrix of
random effects, we had a regularization of 2.

Figure 2. Scheme of the experiment procedure over 5 days.

Table 2. Masked priming same–different task: mean correct reaction times (in milliseconds) and
accuracy (in parentheses) across conditions

Pre-training Post-training

Trained Untrained Trained Untrained

Identity Captcha 613 (7.7%) 625 (7.7%) 538 (6.6%) 547 (8%)
Printed 570 (4.3%) 581 (4.4%) 500 (3.9%) 500 (5%)

Unrelated Captcha 638 (9.8%) 650 (11%) 576 (11.3%) 575 (11.1%)
Printed 607 (8.5%) 628 (6.4%) 552 (9.7%) 552 (11%)

Priming effect Captcha 25 (2.1%) 25 (3.3%) 38 (4.7%) 28 (3.1%)
Priming effect Printed 37 (4.2%) 47 (2%) 52 (5.8%) 52 (6%)

2As a further check that the present findings were not affected by the choice of priors done in the
preregistration, we also conducted the analyses using the default prior from brms package. They produced
virtually the same estimates.

8 Solaja et al.

https://doi.org/10.1017/langcog.2024.71 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2024.71


The model was fitted using four chains with 5,000 iterations (1,000 as warmup).
We consider an effect credible if the 95% credible interval (CrI) estimated from the
posterior distribution does not contain zero. Simple test effects in case of evidence for
interactions were made using the emmeans package (Lenth, 2021).

2.6. Results

The results of the reaction time data showed evidence of a main effect of phase (b = –

0.22, Estimation Error = 0.05, 95% CrI [–0.31, –0.13]) where RTs were faster after
training (542ms) than before (614ms).We also found evidence of an effect of prime-
target relatedness (b = 0.13, Estimation Error = 0.01, 95% CrI [0.10, 0.15]) with faster
responses for identity targets (559ms) compared to unrelated targets (597ms) and an
effect of prime distortion (b = –0.12, Estimation Error = 0.01, 95%CrI [–0.14, –0.09])
with advantage for targets preceded by printed primes (561ms) than distorted primes
(595 ms). Prime relatedness interacted with phase (b = 0.04, Estimation Error = 0.01,
95% CrI [0.02, 0.07]). Unpacking this interaction showed a larger masked repetition
priming effect in the post-training phase (42 ms; b = -0.15, 95% CrI [–0.17, –0.12])
than in pre-training (33 ms; b = –0.10, CrI [–0.13, –0.08]). Prime relatedness also
interacted with prime distortion (b = 0.08, SD = 0.02, 95% CrI [0.04, 0.11]).
This interaction revealed greater repetition priming effects for targets preceded by
printed (47ms; b = –0.17, 95%CrI [–0.19, –0.13]) than distorted primes (29ms; b = –

0.09, 95% CrI [–0.11, –0.06]). Figure 3 depicts posterior distributions from the
estimates in the model. As shown in Figure 3, we found no evidence of the effects
related to the script (either trained vs. untrained) or its interactions with the other
factors.

The analysis of the accuracy data showed essentially the same general pattern as
the reaction time analyses (see the Appendix for details).

Thus, we found a stronger repetition priming effect after training than before
training. Critically, this increase in the priming effect cannot be attributed to
orthographic processing, as a similar pattern was observed for both the script that

Figure 3. Ninety-five percent and 100% highest density intervals from the Bayesian linear mixed-effects
model for the reaction times in the masked priming same–different task.
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participants learned to read and the script with which they were merely visually
familiarized. In addition, we found a stronger repetition priming for the intact primes
than for the distorted primes; again, this effect was similar for the trained and
untrained scripts.

3. Experiment 2: the emergence of location-invariant processing with
variable visual input
A secondary goal of the present paper was to test whether variability in input could
enhance the flexibility of letter position encoding in orthographic representations. The
underlying rationale was that increased variability in letter forms might influence how
letter order is encoded in the novel-trained script. To this end,we implemented a same–
different task parallel to the one used by Fernández-López et al. (2021, Experiment 1).
As discussed in the Introduction, they found a consistent pattern of transposed-letter
effects in the new script, both before and after training. This pattern was parallel for
trained and visual control scripts. We aimed to reassess these results under conditions
where the visual input included variability in letter forms to understand the impact of
these variations on the transposed-letter effect. Should variability in visual input
facilitate the emergence of orthographic processing, we anticipated an increase in
the transposed-letter effect in the post-training test compared to the pre-training test,
reflected in more errors in the transposed compared to replaced letter condition.
However, this increase was expected only for participants trained to read the script.
Conversely, if this added variability does not impact the development of orthographic
processing regarding letter-position encoding, we would expect a similar pattern of
transposed-letter effects for both the trained and untrained scripts like that reported by
Fernández-López et al. (2021).

3.1. Methods

Participants, overall training procedure and materials for the training were identical
to Experiment 1. The testing task differed, as described below.

3.1.1. Testing task – same–different task
Materials. A separate set of items was created for each of the two scripts. Each set
consisted of 240 probe-target five-character consonant string pairs, displayed in 15pt
BACS2serif font (C. Vidal et al., 2017). All character strings were composed of non-
repeated letters. One hundred and twenty items belonged to the ‘same’ condition and
another 120 belonged to the ‘different’ condition. In the ‘different’ condition, 60 pairs
were created by transposing two adjacent letters (e.g., 1-2-3-4-5 à 1-3-2-4-5;

) and 60 pairs were created by replacing two adjacent
letters (e.g., 1-2-3-4-5 à 1-6-7-4-5; ). The proportion of
transpositions/replacements was the same in all letter locations. To counterbalance
the probe–target pairs, we created two lists for each script. For the practice phase, we
created eight 5-consonant string pairs for each script with the same criteria. Parti-
cipants were instructed to press ‘yes’ if the two strings were the same or ‘no’ if they did
not. They were encouraged to be as quick and as accurate as possible. The session
lasted ~18 min. The task was programmed using DmDX software (Forster & Forster,
2003).
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Procedure. The task followed the same design as in Fernández-López et al. (2021). In
each trial, a fixation point appeared in the center of the screen for 500ms. Then, it was
substituted by a probe positioned 3 mm above the center of the screen for 300 ms.
Next, the target appeared 3 mm below the center of the screen and remained at
display until response or until a timeout of 2,000 ms. See Figure 4 for the illustration
of the procedure.

3.2. Data analysis

Table 3 shows the average accuracy and RTs only for the correct items. Following the
preregistered statistical analysis, the only dependent variable was accuracy. We also
analyzed the reaction times in a non-preregistered analysis (see the Appendix). We
analyzed only the ‘different’ trials because that is where the critical manipulation lies
(i.e., transposed-letter vs. replacement-letter pairs). All data and analysis scripts are
available at https://osf.io/85dmp/.

We analyzed the accuracy data using Bayesian generalized mixed models. The
fixed effects were a phase (pre- vs. post-training), training (trained vs. untrained
[visually familiarized]) and probe–target relationship (transposed vs. replaced).
We used the maximal random factor structure for participants and items. They were
contrast-coded as zero-centered fixed effects: pre-training versus post-training (–0.5
and as 0.5), trained versus untrained (–0.5 and as 0.5) and transposed set versus
replaced set (–0.5 and as 0.5). For the fits, and due to the binary nature of the
responses (1 denoting a correct response and 0 an incorrect response), we used the
Bernoulli distribution with a logit link. The priors and model fitting were identical to
the masked priming same–different task. Again, we considered an effect as credible
where the 95% CrI estimated from the posterior distribution did not contain zero.
The emmeans package (Lenth, 2021) was used to unpack significant interactions.

Figure 4. Illustration of the same–different taskwith the ‘same trial’ on the left and the ‘different’ trial on the
right.

Table 3. Same–different task: mean correct reaction times (in milliseconds) and accuracy (in
parenthesis) across conditions

Pre-training Post-training

Trained Untrained Trained Untrained

Different Transposed 659.96 (45%) 704.10 (46%) 620.77 (41%) 613.62 (43%)
Replaced 630.08 (27%) 675.36 (27%) 569.62 (24%) 570.24 (24%)

Same 584.44 (8%) 617.93 (10%) 539.74 (8%) 530.25 (9%)
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3.3. Results

The results of the accuracy data showed evidence of an effect of the probe–target
relationship (b = 1.00, 95% CrI [0.84, 1.16]) where the error rate in the replaced
condition was lower compared to the transposed condition (43.75% vs. 25.5%). We
did not find any signs of the other effects or interactions (Figure 5 depicts the
posterior effects estimates from the model).

While not preregistered, the analysis of the RTs replicated the transposed-letter
effect. Moreover, phase also affected the reaction times, with faster RTs after the
training, and the interaction of the probe–target relationship and phase showed a
stronger effect after the training (see the Appendix for details).

Thus, we found the typical transposed-letter effect: participants’ responses were
more accurate for replacement-letter pairs than transposed-letter pairs. Critically, as
also occurred in the Fernández-López et al. (2021) experiment, the magnitude of this
effect was similar before and after the training. Also, it was similar for both the trained
script and the visual control script. In other words, adding variability to the letter
shapes in the training phase did not modulate how participants encoded the position
of the characters in the letter strings.

4. General discussion
In the present experiments, we examined whether the variable visual input influences
the development of two fundamental components of orthographic processing: the
encoding of letter identity and letter position. The underlying premise was that
exposure to varied visual input would facilitate the formation of more robust letter
representations, as shown by Li & James (2016). To test this hypothesis, we trained
participants in an artificial script, using handwritten versions, until they attained
proficiency in reading, listening and handwriting. Additionally, we introduced a
second set of novel letters as a visual control to better assess the specific impact of
reading and handwriting training. For the control script, participants were only
familiarized with their visual forms without the associated reading and handwriting

Figure 5. Ninety-five percent and 100% highest density intervals from the Bayesian generalized mixed-
effects model for accuracy in same–different task.
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training. In Experiment 1, participants completed a masked priming same–different
task both before and after training. This task involved identity versus unrelated
priming conditions, employing both printed and distorted (CAPTCHA-like) primes.
The aim was to assess the tolerance of the newly learned letters against visual
distortion. Specifically, the emergence of a greater repetition priming effect with
CAPTCHA-like items after training in the novel script would suggest that these
representations are resilient to distortion. In Experiment 2, we shifted our focus to
determine whether the novel characters had been internalized as abstract ortho-
graphic representations by examining whether training induced a more flexible
encoding of letter order – an index of orthographic processing (Grainger, 2018).
To assess this, we employed a same–different task comparing transposed-letter
versus replacement-letter pairs. Here, an increased transposed-letter effect observed
post training would indicate effective orthographic processing. This is supported by
previous findings, which suggest that letter strings typically exhibit stronger trans-
position effects than strings of non-letter symbols (Duñabeitia et al., 2012; Massol
et al., 2013).

The results of the masked priming same–different task (Experiment 1) revealed
several key findings. First, we found that even before any training, distorted primes
(such as CAPTCHA) could produce repetition priming effects. This suggests that the
cognitive system of adult readers can handle a certain degree of variability in the letters
of a novel script, even when they are still entirely unfamiliar. This finding aligns with
and extends previous research indicating that visually variable primes, including
handwritten and CAPTCHA primes, aid in word processing (Gil-López et al., 2011;
Hannagan et al., 2012; Qiao et al., 2010). However, it is important to note that these
earlier studies employed tasks like lexical decision (Gil-López et al., 2011; Hannagan
et al., 2012) and semantic categorization (Qiao et al., 2010), which might involve top-
down processes aiding in the integration of primes and targets (see Vergara-Martínez
et al., 2015). In contrast, the masked priming same–different task primarily targets
prelexical processing, minimizing the influence of top-down information (Norris &
Kinoshita, 2008; Perea et al., 2016b). Therefore, our results demonstrate that distorted
primes can facilitate the processing of letter strings without lexical feedback.

Second, we found that the repetition priming effect was greater in the post-training
phase, indicating that participants’ familiarity with the novel letters increased over the
training sessions, yielding a sizable processing advantage. Notably, this boost in the
priming effect was observed both for the experimental and visual control scripts. Thus,
the enlarged repetition priming effect in the post-training phase should be attributed
more to heightened visual familiarity with the input rather than the development of
orthographic representations specific to the script participants learned to read.

Therefore, Experiment 1 uniquely demonstrated that distorted CAPTCHA
primes can be effectively normalized even in the absence of top-down influences.
This finding suggests that after training, participants had becomemore attuned to the
visual forms of the characters. In addition, participants could quickly develop stable
visual representations of the characters, which remained tolerant to input variability.
Crucially, the absence of differences in the results between the script that participants
learned to read and write, and the script with which they were only visually
familiarized implies two key points: (1) participants were able to construct resilient
representations of the novel characters even when there were no connection to
phonological information and (2) these representations are not orthographic in
nature. The results from Experiment 2 further corroborate our initial conclusion.
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This experiment aimed to assess the development of location-invariance processing.
We employed a same–different task to compare participants’ accuracy in responding
to transposed-letter versus replaced-letter pairs, measuring the transposed-letter
effect. The findings revealed similar transposed-letter effects for the trained and
control scripts, consistent in both the pre- and post-training phases. This extends the
observations of Fernández-López et al. (2021) to a context with high variability in
visual input. Consequently, our study suggests that learning to read and write in a
new script does not necessarily lead to a rapid emergence of location-invariant
processing. One remaining question for further experimentation is whether fully
consistent character exposure could modulate the pattern of findings (e.g., always
presenting the same pristine font on the screen and having participants type rather
than handwrite during the learning phase of the trained script, versus presenting
handwritten fonts and having participants handwrite during the learning phase).
However, as stated above, the experiments of Fernández-López et al. (2021), in which
participants were always exposed to a pristine font, also reported the absence of
orthographic processing, as indicated by the lack of differences in location-invariance
and location-specific processing in the pre- and post-training phases in the experi-
mental and control scripts.

All in all, the results of our experiments provide valuable insights for understanding
the process of learning to read in a novel script. Despite achieving fluency in reading
and writing the new script over five training sessions, participants did not sufficiently
develop orthographic representations in terms of both letter identities and letter order.
A possible explanation for this patternmight be that the intensity of training in a novel
script cannot replicate the extensive exposure and experience with letters and letter
strings typically received by children when learning to read and write. The develop-
ment of children’s reading skills often involves substantial visual familiarization with
letters, even before formal reading instruction begins, and the association of graph-
emes and phonemes with words. Thus, the emergence of orthographic processing
likely occurs progressively through print exposure (Gomez et al., 2021;Mano&Kloos,
2018). It is possible that both training protocols provided enough information to
perform the post-training tasks (especially bearing in mind that transposed-letter
effects emerge also with nonalphabetic symbols), but not enough to establish more
robust representations. Crucially, the absence of specific patterns typical for language
in our experimental letter strings (e.g., frequent letter co-occurrences acquired via
statistical learning) may have impacted our results. Such patterns are crucial in
orthographic processing and visual word recognition (e.g., Chetail, 2017; Fernández-
López & Perea, 2023; Lelonkiewicz et al., 2020, 2023; Y. Vidal et al., 2021). For
instance, Chetail (2017) found that adults developed sensitivity to the frequency of
bigrams in artificial character streams after brief exposure, regardless of learning
grapheme–phoneme associations. Fernández-López and Perea (2023) extended this
to the encoding of character order, demonstrating that participants also became
attuned to the order of characters in frequently occurring sequences. This evidence
suggests that a certain level of regularity, such as letter co-occurrences, is necessary for
the cognitive system to effectively modulate letter position encoding.

Our findings can also be interpreted as revealing an intermediary phase in the
progression from the general processing of visual objects by the visual system to the
specialized processing of orthography. Since reading is a relatively recent develop-
ment in human history, its foundational representations and processes likely origin-
ate from basic visual perception mechanisms. This notion aligns well with the
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Neuronal Recycling Hypothesis (Dehaene & Cohen, 2007), which posits that the
brain repurposes existing neural pathways for new tasks, such as reading. Recent
research by Y. Vidal et al. (2021) builds upon this hypothesis, investigating if the
bigram frequency effect, typically associated with orthographic material (e.g., Binder
et al., 2006; Chetail, 2015; Lochy et al., 2018; Vinckier et al., 2007), could also be
observed in non-orthographic stimuli. They discovered that participants were sen-
sitive to co-occurrence patterns across various visual objects, suggesting that mech-
anisms used in visual word recognition might apply more broadly. This finding
supports the idea that letter and word-specific processing evolves from pre-existing
visual processing systems as familiarity with orthographic material increases.

Central to this discussion is the role of the VisualWord FormArea (VWFA) in the
left ventral occipitotemporal cortex, which is crucial for rapid word recognition in
skilled reading (Cohen et al., 2000; Cohen & Dehaene, 2004; Lochy et al., 2018;
Vinckier et al., 2007). Neurons in this area become tuned to recognize orthographic
regularities, showing increased activation when processing letter sequences resem-
bling words (Binder et al., 2006; Cohen et al., 2002; Vinckier et al., 2007; but see Brem
et al., 2006; Tagamets et al., 2000, for alternative views). Developmental studies
indicate that VWFA specialization is influenced by early reading experiences (Brem
et al., 2010; Dehaene-Lambertz et al., 2018; Eberhard-Moscicka et al., 2015; Lochy
et al., 2016; Maurer et al., 2006; Schlaggar & McCandliss, 2007). In this line, recent
work underscores the importance of teaching methods, particularly those that
automate grapheme–phoneme connections rather than relying on the visual mem-
orization of whole words, in developing advanced reading skills and preventing
reading disabilities (Castles et al., 2018; van de Walle de Ghelcke et al., 2020).
Considering these findings, models of reading development should incorporate this
transitional stage where letters evolve from mere visual objects to recognized ortho-
graphic entities. Examining this incipient phasemay have significant implications for
instructional approaches in early literacy education, thus emphasizing the need for
strategies that support this fundamental aspect of learning to read.

5. Conclusion
In sum, our experiments examined if orthographic processing, defined as the
encoding of letter identities and their positions (Grainger, 2018), could rapidly
emerge when learning to read a novel script with visually variable input. Although
participants achieved fluency in reading andwriting the new script, the evidence from
our study does not support the hypothesis of rapid development of orthographic
processing under these conditions – a similar pattern of results emerged with a visual
control script. Critically, our findings also revealed that exposure to variable visual
input did foster the formation of resilient character representations, demonstrating
high resistance to distortion. This resilience, however, appears to be rooted in visual
cognitive mechanisms rather than the development of orthographic representations.

Data availability statement. Data and analysis code are available at https://osf.io/85dmp/; training
materials are available at https://osf.io/um6rw/?view_only=7d4754bbb5f445adb5e34530162ba552.

Acknowledgements. The authors thank Inka Romero-Ortells, Josep Reyes, Jordi Moltó and Diana Esteve
for their help with data collection.

Competing interest. The authors declare no competing interests.

Language and Cognition 15

https://doi.org/10.1017/langcog.2024.71 Published online by Cambridge University Press

https://osf.io/85dmp/;
https://osf.io/um6rw/?view_only=7d4754bbb5f445adb5e34530162ba552
https://doi.org/10.1017/langcog.2024.71


References
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis

testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.
jml.2012.11.001

Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan, L. (2006). Tuning of the human left
fusiform gyrus to sublexical orthographic structure.NeuroImage, 33(2), 739–748. https://doi.org/10.1016/
j.neuroimage.2006.06.053

Brem, S., Bach, S., Kucian, K., Guttorm, T. K., Martin, E., Lyytinen, H., Brandeis, D., & Richardson, U. (2010).
Brain sensitivity to print emergeswhen children learn letter-speech sound correspondences. Proceedings of
the National Academy of Sciences of the United States of America, 107(17), 7939–7944. https://doi.
org/10.1073/pnas.0904402107

Brem, S., Bucher, K., Halder, P., Summers, P., Dietrich, T., Martin, E., & Brandeis, D. (2006). Evidence for
developmental changes in the visual word processing network beyond adolescence. NeuroImage, 29(3),
822–837. https://doi.org/10.1016/j.neuroimage.2005.09.023

Bürkner, P. (2017). brms: An R package for Bayesian multilevel models. Journal of Statistical Software, 80(1).
https://doi.org/10.18637/jss.v080.i01

Bürkner, P. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1),
395–411. https://doi.org/10.32614/RJ-2018-017

Castles, A., Rastle, K., & Nation, K. (2018). Ending the reading wars: Reading acquisition from novice to
expert. Psychological Science in the Public Interest, 19(1), 5–51. https://doi.org/10.1177/15
29100618772271

Chetail, F. (2015). Reconsidering the role of orthographic redundancy in visual word recognition. Frontiers in
Psychology, 6(645), 1–10. https://doi.org/10.3389/fpsyg.2015.00645

Chetail, F. (2017).What do we dowithwhat we learn? Statistical learning of orthographic regularities impacts
written word processing. Cognition, 163, 103–120. https://doi.org/10.1016/j.cognition.2017.02.015

Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form
area. NeuroImage, 22, 466–476. https://doi.org/10.1016/j.neuroimage.2003.12.049

Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hénaff, M. A., &Michel, F. (2000).
The visual word form area. Spatial and temporal characterization of an initial stage of reading in normal
subjects and posterior split-brain patients. Brain, 123(2), 291–307. https://doi.org/10.1093/brain/
123.2.291

Cohen, L., Lehéricy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S. (2002). Language-specific tuning of
visual cortex? Functional properties of the VisualWord FormArea. Brain, 125(5), 1054–1069. https://doi.
org/10.1093/brain/awf094

Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps.Neuron, 56(2), 384–398. https://doi.org/
10.1016/j.neuron.2007.10.004

Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal.
Trends in Cognitive Sciences, 9(7), 335–341. https://doi.org/10.1016/j.tics.2005.05.004

Dehaene-Lambertz, G., Monzalvo, K., & Dehaene, S. (2018). The emergence of the visual word form:
Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biology,
16(3), 1–34. https://doi.org/10.1371/journal.pbio.2004103

Duñabeitia, J. A., Dimitropoulou, M., Grainger, J., Hernández, J. A., & Carreiras, M. (2012). Differential
sensitivity of letters, numbers and symbols to character transpositions. Journal of Cognition, 24(7),
1610–1624. https://doi.org/10.1162/jocn

Eberhard-Moscicka, A. K., Jost, L. B., Raith,M., &Maurer, U. (2015). Neurocognitivemechanisms of learning
to read: Print tuning in beginning readers related to word-reading fluency and semantics but not
phonology. Developmental Science, 18(1), 106–118. https://doi.org/10.1111/desc.12189

Fernández-López, M., Marcet, A., & Perea, M. (2021). Does orthographic processing emerge rapidly after
learning a new script? British Journal of Psychology, 112(1), 52–91. https://doi.org/10.1111/bjop.12469

Fernández-López, M., & Perea, M. (2023). A letter is a letter and its co-occurrences: Cracking the emergence
of position-invariance processing. Psychonomic Bulletin and Review, 30(6), 2328–2337. https://doi.
org/10.3758/s13423-023-02265-7

Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy.
Behavior Research Methods, 35(1), 116–124. https://doi.org/10.3758/bf03195503

16 Solaja et al.

https://doi.org/10.1017/langcog.2024.71 Published online by Cambridge University Press

https://doi.org/10.1016/j.jml.2012.11.001
https://doi.org/10.1016/j.jml.2012.11.001
https://doi.org/10.1016/j.neuroimage.2006.06.053
https://doi.org/10.1016/j.neuroimage.2006.06.053
https://doi.org/10.1073/pnas.0904402107
https://doi.org/10.1073/pnas.0904402107
https://doi.org/10.1016/j.neuroimage.2005.09.023
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.1177/1529100618772271
https://doi.org/10.1177/1529100618772271
https://doi.org/10.3389/fpsyg.2015.00645
https://doi.org/10.1016/j.cognition.2017.02.015
https://doi.org/10.1016/j.neuroimage.2003.12.049
https://doi.org/10.1093/brain/123.2.291
https://doi.org/10.1093/brain/123.2.291
https://doi.org/10.1093/brain/awf094
https://doi.org/10.1093/brain/awf094
https://doi.org/10.1016/j.neuron.2007.10.004
https://doi.org/10.1016/j.neuron.2007.10.004
https://doi.org/10.1016/j.tics.2005.05.004
https://doi.org/10.1371/journal.pbio.2004103
https://doi.org/10.1162/jocn
https://doi.org/10.1111/desc.12189
https://doi.org/10.1111/bjop.12469
https://doi.org/10.3758/s13423-023-02265-7
https://doi.org/10.3758/s13423-023-02265-7
https://doi.org/10.3758/bf03195503
https://doi.org/10.1017/langcog.2024.71


Gil-López, C., Perea, M., Moret-Tatay, C., & Carreiras, M. (2011). Can masked priming effects be obtained
with handwritten words? Attention, Perception, and Psychophysics, 73(6), 1643–1649. https://doi.org/10.
3758/s13414-011-0174-y

Gomez, P., Marcet, A., & Perea, M. (2021). Are better young readers more likely to confuse their mother with
their mohter? Quarterly Journal of Experimental Psychology, 74(9), 1542–1552. https://doi.org/10.11
77/17470218211012960

Grainger, J. (2018). Orthographic processing: A ‘mid-level’ vision of reading: The 44th Sir Frederic Bartlett
Lecture. Quarterly Journal of Experimental Psychology, 71(2), 335 –359. https://doi.org/10.10
80/17470218.2017.1314515

Hannagan, T., Ktori, M., Chanceaux,M., &Grainger, J. (2012). Deciphering CAPTCHAs:What a Turing test
reveals about human cognition. PLOS ONE, 7(3), 5–7. https://doi.org/10.1371/journal.pone.0032121

Jackson, N. E., & Coltheart, M. (2001). Routes to reading success and failure: Toward an integrated cognitive
psychology of atypical reading (1st ed.). Psychology Press. https://doi.org/10.4324/9780203759905

Kinoshita, S., Gayed, M., & Norris, D. (2018). Orthographic and phonological priming effects in the same–
different task. Journal of Experimental Psychology: Human Perception and Performance, 44(11),
1661–1671. https://doi.org/10.1037/xhp0000548

Kinoshita, S., & Norris, D. (2009). Transposed-letter priming of prelexical orthographic representations.
Journal of Experimental Psychology: Learning Memory and Cognition, 35(1), 1–18. https://doi.org/10.
1037/a0014277

Lelonkiewicz, J. R., Ktori,M., &Crepaldi, D. (2020).Morphemes as letter chunks: Discovering affixes through
visual regularities. Journal of Memory and Language, 115, Article 104152. https://doi.org/10.1016/j.
jml.2020.104152

Lelonkiewicz, J. R., Ktori, M., & Crepaldi, D. (2023). Morphemes as letter chunks: Linguistic information
enhances the learning of visual regularities. Journal of Memory and Language, 130, Article 104411. https://
doi.org/10.1016/j.jml.2023.104411

Lenth, R. V. (2021). emmeans: Estimated marginal means, aka least-squares means (1.6.3). https://doi.
org/10.1080/00031305.1980.10483031

Li, J. X., & James, K. H. (2016). Handwriting generates variable visual input to facilitate symbol learning.
Journal of Experimental Psychology General, 145(3), 298–313. https://doi.org/10.1037/xge0000134

Lochy, A., Jacques, C., Maillard, L., Colnat-Coulbois, S., Rossion, B., & Jonas, J. (2018). Selective visual
representation of letters and words in the left ventral occipito-temporal cortex with intracerebral
recordings. Proceedings of the National Academy of Sciences of the United States of America, 115(32),
E7595–E7604. https://doi.org/10.1073/pnas.1718987115

Lochy, A., Van Reybroeck, M., & Rossion, B. (2016). Left cortical specialization for visual letter strings
predicts rudimentary knowledge of letter-sound association in preschoolers. Proceedings of the National
Academy of Sciences of the United States of America, 113(30), 8544–8549. https://doi.org/10.1073/
pnas.1520366113

Mano, Q. R., & Kloos, H. (2018). Sensitivity to the regularity of letter patterns within print among
preschoolers: Implications for emerging literacy. Journal of Research in Childhood Education, 32(4),
379–391. https://doi.org/10.1080/02568543.2018.1497736

Massol, S., Duñabeitia, J. A., Carreiras, M., & Grainger, J. (2013). Evidence for letter-specific position coding
mechanisms. PLOS ONE, 8(7), 1–9. https://doi.org/10.1371/journal.pone.0068460

Maurer, U., Brem, S., Kranz, F., Bucher, K., Benz, R., Halder, P., Steinhausen, H. C., & Brandeis, D. (2006).
Coarse neural tuning for print peaks when children learn to read.NeuroImage, 33(2), 749–758. https://doi.
org/10.1016/j.neuroimage.2006.06.025

Norris, D., &Kinoshita, S. (2008). Perception as evidence accumulation andBayesian inference: Insights from
masked priming. Journal of Experimental Psychology: General, 137(3), 434–455. https://doi.org/10.1037/
a0012799

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K.
(2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203.
https://doi.org/10.3758/s13428-018-01193-y

Perea, M., Jiménez, M., & Gomez, P. (2016a). Does location uncertainty in letter position coding emerge
because of literacy training? Journal of Experimental Psychology: Learning Memory and Cognition, 42(6),
996–1001. https://doi.org/10.1037/xlm0000208

Language and Cognition 17

https://doi.org/10.1017/langcog.2024.71 Published online by Cambridge University Press

https://doi.org/10.3758/s13414-011-0174-y
https://doi.org/10.3758/s13414-011-0174-y
https://doi.org/10.1177/17470218211012960
https://doi.org/10.1177/17470218211012960
https://doi.org/10.1080/17470218.2017.1314515
https://doi.org/10.1080/17470218.2017.1314515
https://doi.org/10.1371/journal.pone.0032121
https://doi.org/10.4324/9780203759905
https://doi.org/10.1037/xhp0000548
https://doi.org/10.1037/a0014277
https://doi.org/10.1037/a0014277
https://doi.org/10.1016/j.jml.2020.104152
https://doi.org/10.1016/j.jml.2020.104152
https://doi.org/10.1016/j.jml.2023.104411
https://doi.org/10.1016/j.jml.2023.104411
https://doi.org/10.1080/00031305.1980.10483031
https://doi.org/10.1080/00031305.1980.10483031
https://doi.org/10.1037/xge0000134
https://doi.org/10.1073/pnas.1718987115
https://doi.org/10.1073/pnas.1520366113
https://doi.org/10.1073/pnas.1520366113
https://doi.org/10.1080/02568543.2018.1497736
https://doi.org/10.1371/journal.pone.0068460
https://doi.org/10.1016/j.neuroimage.2006.06.025
https://doi.org/10.1016/j.neuroimage.2006.06.025
https://doi.org/10.1037/a0012799
https://doi.org/10.1037/a0012799
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1037/xlm0000208
https://doi.org/10.1017/langcog.2024.71


Perea, M., Marcet, A., & Vergara-Martínez, M. (2016b). Does top-down feedback modulate the encoding of
orthographic representations during visual-word recognition? Experimental Psychology, 63(5), 278–286.
https://doi.org/10.1027/1618-3169/a000327

Qiao, E., Vinckier, F., Szwed, M., Naccache, L., Valabrègue, R., Dehaene, S., & Cohen, L. (2010). Uncon-
sciously deciphering handwriting: Subliminal invariance for handwritten words in the visual word form
area. NeuroImage, 49(2), 1786–1799. https://doi.org/10.1016/j.neuroimage.2009.09.034

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical
Computing. https://www.r-project.org/

Schlaggar, B. L., & McCandliss, B. D. (2007). Development of neural systems for reading. Annual Review of
Neuroscience, 30, 475–503. https://doi.org/10.1146/annurev.neuro.28.061604.135645

Tagamets, M. A., Novick, J. M., Chalmers, M. L., & Friedman, R. B. (2000). A parametric approach to
orthographic processing in the brain: An fMRI study. Journal of Cognitive Neuroscience, 12(2), 281–297.
https://doi.org/10.1162/089892900562101

Taylor, J. S. H., Plunkett, K., & Nation, K. (2011). The influence of consistency, frequency, and semantics on
learning to read: An artificial orthography paradigm. Journal of Experimental Psychology: Learning
Memory and Cognition, 37(1), 60–76. https://doi.org/10.1037/a0020126

Tydgat, I., & Grainger, J. (2009). Serial position effects in the identification of letters, digits, and symbols.
Journal of Experimental Psychology: Human Perception and Performance, 35(2), 480–498. https://doi.
org/10.1037/a0013027

van deWalle de Ghelcke, A., Rossion, B., Schiltz, C., & Lochy, A. (2020). Impact of learning to read in amixed
approach on neural tuning to words in beginning readers. Frontiers in Psychology, 10(January), 1–15.
https://doi.org/10.3389/fpsyg.2019.03043

Vergara-Martínez, M., Gómez, P., Jiménez, M., & Perea, M. (2015). Lexical enhancement during prime–
target integration: ERP evidence frommatched-case identity priming. Cognitive, Affective and Behavioral
Neuroscience, 15(2), 492–504. https://doi.org/10.3758/s13415-014-0330-7

Vidal, C., Content, A., & Chetail, F. (2017). BACS: The Brussels Artificial Character Sets for studies in
cognitive psychology and neuroscience. Behavior Research Methods, 49, 2093–2112. https://doi.
org/10.3758/s13428-016-0844-8

Vidal, Y., Viviani, E., Zoccolan, D., & Crepaldi, D. (2021). A general-purpose mechanism of visual feature
association in visual word identification and beyond. Current Biology, 31(6), 1261–1267.e3. https://doi.
org/10.1016/j.cub.2020.12.017

Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman,M., &Cohen, L. (2007). Hierarchical coding of letter
strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron,
55(1), 143–156. https://doi.org/10.1016/j.neuron.2007.05.031

vonAhn, L., Blum,M., Hopper, N. J., & Langford, J. (2003). CAPTCHA:Using hard AI problems for security.
Lecture Notes in Computer Science, 2656, 294–311. https://doi.org/10.1007/3-540-39200-9_18

A. Appendix
Supplementary non-preregistered analyses.

A.1. Experiment 1: the emergence of abstract letter representations
A.1.1. Data analysis – accuracy

We ran Bayesian generalized linear mixedmodels to analyze the data using the brms package (Bürkner, 2017,
2018) in R (R Core Team, 2021). Phase, script, prime relatedness and prime distortion, and their four-way
interactionwere contrast-coded as fixed effects – these effects were zero-centered: identity versus unrelated (–
0.5 and as 0.5), pre-training versus post-training (–0.5 and as 0.5), trained versus untrained (–0.5 and as 0.5)
and captcha set versus printed set (–0.5 and as 0.5). We used the maximal random structure both for
participants and items. We used the Bernoulli distribution with a logit link. The priors for the RT data were
weakly informative: Normal (μ = 0, σ = 10) for the intercept and Normal (0, 1) for each of the fixed effects/
interactions and SD parameters. For the covariance matrix of random effects, we had a regularization of 2.
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The model was fitted using four chains with 5,000 iterations (1,000 as warmup). We consider an effect
credible if the 95% CrI estimated from the posterior distribution does not contain zero. Simple tests effects in
case of evidence for interactions were made using the emmeans package (Lenth, 2021).

A.1.2. Results

The results of the accuracy data mimicked the same pattern of priming effects as the latency data (see
Figure A1). We found evidence for an effect of prime-target relatedness (b = –0.71, Estimation Error = 0.12,
95% CrI [–0.94, –0.48]), with target words being responded more accurately when preceded by an identity
prime than an unrelated prime (5.95% vs. 9.85% error rate), and also an effect of prime distortion (b = 0.44,
Estimation Error = 0.10, 95% CrI [0.24, 0.64]), where printed primes yielded more accurate responses than
distorted primes (6.65% vs. 9.15% error rate).Moreover, prime-target relatedness interactedwith phase (b = –

0.54, Estimation Error = 0.21, 95% CrI [–0.96, –0.16]): the identity priming effect was smaller after the
training (4.9% error rate; b = 0.44, 95% CrI [0.15, 0.73]) than before training (2.9% error rate; b = 0.98, 95%
CrI [0.67, 1.31]) (see Table 2). Prime-target relatedness also interacted with distortion (b = –0.38, Estimation
Error = 0.15, 95%CrI [–0.68, –0.08]), where identity primingwas largerwhen the primewas in printed format
(4.5% error rate reduction; b = 0.90, 95%CrI [0.61, 1.19]) than in distorted format (3.3% error rate reduction;
b = 0.52, 95% CrI [0.27, 0.78]). Finally, we found no evidence of the effect of phase or the other interactions
(see Figure A1).

A.2. Experiment 2: the emergence of location-invariant processing with variable
visual input
A.2.1. Data analysis – reaction times

We analyzed the data using Bayesian linear mixed model. The fixed effects were phase, training, transposed/
replaced letters and their interaction, with themaximal random structure for participants and items.We used
shifted log-normal distribution. The priors and model fitting were identical to the masked priming same–
different task. Again, we consider an effect as credible where the 95% CrI estimated from the posterior
distribution did not contain zero. The emmeans package (Lenth, 2021) was used to unpack significant
interactions.

Figure A1. Ninety-five percent and 100% highest density intervals from the Bayesian generalized mixed
effects model for the accuracy in the masked priming same–different task.
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A.2.2. Results

We found evidence for an effect of phase (see Figure A2), with an advantage in post-training compared to pre-
training (667 ms vs. 593 ms), (b = –0.11, Estimation Error = 0.03, 95% CrI [–0.16, –0.06]). Moreover,
transposed letter effect emerged independently (b = –0.05, Estimation Error = 0.01, 95% CrI [–0.07, –0.04]),
with transposed-letter condition being slower compared to replaced (649 ms vs. 611 ms). The effect emerged
also in interactionwith phase (b = –0.03, Estimation Error = 0.01, 95%CrI [–0.05, –0.00]), with stronger effect
emerging after the training (pre-training: 29.31 ms; b = 0.04, 95% CrI [0.02, 0.06] vs. post-training: 47 ms;
b = 0.07, 95% CrI [0.05, 0.09]). Phase also interacted with script (b = –0.07, Estimation Error = 0.03, 95% CrI
[–0.12, –0.01]), where facilitation was strong in pre-training but was lost in post-training (44 ms; b = –0.06,
95% CrI [–0.11, –0.02] vs. –3 ms; b = 0.01, 95% CrI [–0.03, 0.04]).

Cite this article: Solaja, O., Fernández-López, M., Crepaldi, D., & Perea, M. (2025). Catching a CAPTCHA:
the impact of variable input on the processing of emerging orthographic representations, Language and
Cognition, 17, e24, 1–20. https://doi.org/10.1017/langcog.2024.71

Figure A2. Ninety-five percent and 100% highest density intervals from the Bayesian linear mixed effects
model for reaction times in same–different task.
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