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Čebyšev Sets in Hyperspaces over Rn

Robert J. MacG. Dawson and Maria Moszyńska

Abstract. A set in a metric space is called a Čebyšev set if it has a unique “nearest neighbour” to each

point of the space. In this paper we generalize this notion, defining a set to be Čebyšev relative to

another set if every point in the second set has a unique “nearest neighbour” in the first. We are

interested in Čebyšev sets in some hyperspaces over Rn, endowed with the Hausdorff metric, mainly

the hyperspaces of compact sets, compact convex sets, and strictly convex compact sets.

We present some new classes of Čebyšev and relatively Čebyšev sets in various hyperspaces. In

particular, we show that certain nested families of sets are Čebyšev. As these families are characterized

purely in terms of containment, without reference to the semi-linear structure of the underlying metric

space, their properties differ markedly from those of known Čebyšev sets.

Introduction

Let (X, ρ) be a nonempty metric space and let A ⊆ X. The set A is a Čebyšev set in

(X, ρ) if and only if for every x ∈ X there is a unique nearest point in A.

The notion of a Čebyšev set has been studied by many authors, mainly for normed

linear spaces (see [4, 10] and the literature cited there). The case of a metric space
was considered in [2, 3, 7], and in [10, Appendix]. Some results on Čebyšev sets in

the space K
n of nonempty compact convex subsets of Rn and in the space Kn

0 of
convex bodies in Rn (both endowed with the Hausdorff metric) can be found in [3].

In particular, the set of all balls in Rn and the set of all singletons were proved to be

Čebyšev, the first one in Kn
0 and the second in Kn. Both are similarity invariant.

One of the central questions of the theory of Čebyšev sets concerns the relation-

ship between this notion and convexity; this depends strongly on the ambient space.

For instance, in any Minkowski space (i.e., finite dimensional Banach space) with
smooth balls every Čebyšev set is convex, while strict convexity of balls is sufficient

for closed convex sets to be Čebyšev. Thus, in particular, these two classes of subsets
coincide in Euclidean space.

For the space Kn this problem was considered in [3]. It was proved that a nonemp-

ty, closed, convex set in this space need not be a Čebyšev set, while strict convexity is
sufficient.

In this paper we study subsets of Cn (the class of nonempty compact subsets of

Rn) or K
n which are either Čebyšev sets or are Čebyšev relative to some subspace of

Kn. This more general notion can be defined for an arbitrary metric space (X, ρ)

as follows. Let X0 ⊆ X; a subset A of X is a Čebyšev set in (X, ρ) relative to X0

whenever every element of X0 has a unique nearest point in A. This includes as a
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special case the notion of “reach” [5]. The reach of a set A is the supremum of the set
{r | A is Čebyšev relative to (A)r} where (A)r is the outer parallel body at distance r

from A. (We define this notation more formally below.)

Our main results are Theorem 2.8 concerning strongly nested families and The-

orems 3.3 and 3.8 concerning families of translates. Section 4 deals primarily with

properties of Čebyšev sets in hyperspaces, some contrasting strongly with the prop-
erties of Čebyšev sets in Rn. In particular, we disprove two conjectures (6.3 and 6.4)

from [3] concerning relationships between convexity and Čebyšev sets in Kn. Some

new conjectures are made.

1 Preliminaries

In what follows we use the symbols ⊆ and ⊂ for inclusion and strict inclusion (that

is, we write X ⊂ Y to indicate X ( Y ). We will denote by ∆(a, b) the affine segment
{ta + (1 − t)b : 0 ≤ t ≤ 1}, both in Rn and in hyperspaces.

We begin with a simple lemma concerning real functions. Let I ⊆ R. As usual, for
any f : I → R, the support of f is defined by

supp( f ) := cl{i ∈ I | f (i) 6= 0}.

Lemma 1.1 Let I = [0, 1] or I = [0,∞) and let f , g : I → R+ be continuous, f

weakly increasing, and g weakly decreasing, both functions injective on their supports,

and supp( f ) ∩ supp(g) 6= ∅.
If either

(i) I = [0, 1], or

(ii) I = [0,∞) and f is unbounded,

then the function max{ f , g} has a unique minimizer.

Proof Evidently g(0) > 0, because otherwise supp( f ) ∩ supp(g) ⊆ supp(g) = ∅.

(i) Suppose f (0) ≥ g(0) (Figure 1a). Then f (i) ≥ f (0) > 0 for all i, max{ f , g} =

f is injective and 0 is the unique minimizer of max{ f , g}.

If f (i) < g(i) for all i (Figure 1b), then g(i) > f (i) ≥ 0, max{ f , g} = g is injective,
and 1 is the unique minimizer of max{ f , g}.

Finally, suppose f (0) < g(0) and f (i) ≥ g(i) for some i (Figure 1c). Then by
continuity and the Intermediate Value Theorem there exists j such that f ( j) = g( j).

For k < j,

(1.1) max{ f , g}(k) ≥ g(k) ≥ g( j) = max{ f , g}( j),

and for k > j,

(1.2) max{ f , g}(k) ≥ f (k) ≥ f ( j) = max{ f , g}( j)

so j minimizes max{ f , g}.
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Figure 1: The functions f (dotted) and g (solid).

If f ( j) = 0, then supp(g) ⊆ [0, j] and supp( f ) ⊆ [ j, 1]. Since supp( f ) ∩
supp(g) 6= ∅, it follows that j belongs to both supports. Thus g must be positive

on [0, j), while f is positive on ( j, 1]. If f ( j) > 0, then g is positive on [0, j] (by

(1.1)) and f is positive on [ j, 1] (by (1.2)). In either case, g is injective on [0, j], f is
injective on [ j, 1], and we conclude that j is the unique minimizer.

(ii) The proof is as above, except that as g must be bounded and f is by hypothesis

unbounded, the case illustrated in Figure 1b does not occur.

Remark 1.2. While continuity is not needed to prove that there is at most one mini-

mizer, the existence of a minimizer does require continuity (see Figure 1d).

Let Cn be the space of nonempty compact subsets of Rn endowed with the Haus-

dorff metric induced by the Euclidean norm ‖ · ‖:

̺H(A,B) := max{ ~̺H(A,B), ~̺H(B,A)},

where the oriented Hausdorff metric ~̺H(A,B) is defined by the formula

~̺H(A,B) := sup
a∈A

inf
b∈B

‖a − b‖

for every A,B ∈ C
n.

Further, for any A ∈ Cn and δ > 0, let (A)δ := A + δBn. It is well known that for

every A,B ∈ Cn, we have ~̺H(A,B) = inf{δ | A ⊆ (B)δ} .
Now let Kn be the subspace of Cn consisting of convex sets and let Kn

0 consist of

convex bodies: Kn
0 := {A ∈ Kn | intA 6= ∅}.

Recall the following consequence of the Minkowski additivity of the function
conv: Cn → Kn: for any A ∈ Kn and ǫ > 0, conv((A)ǫ) = (convA)ǫ.

Let us also recall the following consequence of the cancellation law for Minkowski

addition in K
n: for any A,B ∈ K

n and ǫ > 0,

(1.3) (A)ǫ ⊆ (B)ǫ =⇒ A ⊆ B.
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Minkowski subtraction will be denoted by ⊖.1 It is defined by the formula

(1.4) A ⊖ B :=
⋂

b∈B

(A − b).

Recall that a closed convex subset of Rn is said to be strictly convex if its boundary

does not contain any segment. The following properties of strictly convex subsets
of Rn are well known, but as they are not easily found in the literature, we provide

proofs for some of them.

Proposition 1.3 If A is closed and strictly convex, then for every α > 0 the set (A)α is

strictly convex.

Proof Suppose that bd((A)α) contains a segment ∆(x0, x1) and let yi be the unique
point of A nearest to xi , for i = 0, 1. Then y0, y1 ∈ bdA.

Let x(t) := (1 − t)x0 + tx1 and y(t) := (1 − t)y0 + t y1 for every t ∈ [0, 1]. Since

A is strictly convex, y(t0) ∈ intA for some t0 ∈ (0; 1). Thus

min
y∈A

‖x(t0) − y‖ < ‖x(t0) − y(t0)‖ = ‖(1 − t0)(x0 − y0) + t0(x1 − y1)‖ = α,

whence x(t0) /∈ bd((A)α), a contradiction.

Proposition 1.4 Let A and B be nonempty subsets of Rn. If A is closed and strictly

convex and B is compact, then A ⊖ B is strictly convex.

Proof From (1.4) it follows that

(1.5) x ∈ A ⊖ B ⇐⇒ B + x ⊆ A.

Hence, if A is a singleton, then A⊖B is a singleton (if B is), otherwise it is empty, and

in either case A ⊖ B is strictly convex.

If A is not a singleton, then intA 6= ∅. Let x0, x1 ∈ A ⊖ B, x0 6= x1, and x(t) =

(1 − t)x0 + tx1 for some t ∈ (0; 1). By (1.10), it suffices to prove that x(t) ∈ int{x |
B + x ⊆ A}, that is, equivalently,

(1.6) (∃ǫ > 0) (B + x(t))ǫ ⊆ A.

In particular, B + xi ⊆ A for i = 0, 1. Since b + x(t) = (1 − t)(b + x0) + t(b + x1)
and A is strictly convex, it follows that b + x(t) ∈ intA for every b ∈ B.

Thus, for every b ∈ B there is an ǫ > 0 such that b + x(t) + ǫBn ⊆ A. Since B is

compact, it follows that we can choose the same ǫ for all b ∈ B, which proves (1.6).

The following is evident.

Proposition 1.5 The intersection of two strictly convex subsets of Rn is strictly convex.

1In [9] Schneider denotes it by ∼ , while A ⊖ B is defined as A ∼ −B.
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We shall use the symbol O
n to denote the family of strictly convex elements of C

n.
Thus, evidently, On consists of strictly convex bodies and singletons. Similarly, On

0

will denote the family of strictly convex bodies.
To any nonempty subset X of Rn we assign the set [X] of corresponding singletons:

[X] := {{x} | x ∈ X}.

In particular, the family Xn from [3] will be now denoted by [Rn].

2 Strictly Nested Families

Definition 2.1 Let A be a nonempty subset of Cn.

• A is said to be a nested family in Cn if it is a proper chain under the inclusion order,

that is, for every A,A ′ ∈ A, either A ⊂ A ′ or A ′ ⊂ A.
• A is said to be a strongly nested family in Cn if for distinct A,A ′ ∈ A, either A ⊂

intA ′ or A ′ ⊂ intA.
• The family A is said to be bounded if the set of diameters of its members is

bounded, otherwise unbounded.
• The family A is said to be dense if whenever A ⊂ A ′, there exists A ′′ such that

A ⊂ A ′′ ⊂ A ′.
• The nested family A is said to be closed if for every subfamily S ⊂ A,

⋂

S ∈ A

and, if S is bounded, cl
⋃

S ∈ A.

The following proposition (for which we make no special claim of originality)

allows us to use an indexing function to locate elements of certain nested families.

Proposition 2.2 Let A be a strongly nested family in Cn, and let

I =

{

[0, 1] if A is bounded;

[0,∞) if A is unbounded.

Then A is closed and dense if and only if there exists a continuous indexing function

φ : I → A such that

(2.1) i < j =⇒ φ(i) ⊂ intφ( j).

Proof As A is closed, it has a smallest element A0 =
⋂

A and, if bounded, a largest
element A1 =

⋃

A. Define ψ : A → I by the formula

ψ(A) =

{

̺H (A0,A)
̺H (A0,A1)

if A is bounded;

̺H(A0,A) if A is unbounded.

As A is strongly nested, if A ⊂ A ′ ∈ A, then A ⊂ intA ′. As A is compact, then also

(A)ǫ ⊂ A ′ for some ǫ > 0; and ψ((A)ǫ) ≤ ψ(A ′), so ψ is injective and increasing. We

shall show that it is in fact bijective.

https://doi.org/10.4153/CJM-2009-015-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-015-x


304 R. J. M. Dawson and M. Moszyńska

Suppose, to the contrary, that it is not surjective. Then there exists i ∈ I \ ψ(A),
and thus

(2.2) A = A
− ∪ A

+

where

A
−

= {A ∈ A | ψ(A) < i}, A
+

= {A ∈ A | ψ(A) > i} .

By continuity of ̺H , these subfamilies are closed. Moreover, A0 belongs to A− ,

and either A1 or arbitrarily large elements of A belong to A+; so both subfamilies are
nonempty. Since A is closed and dense, there exists an element A with cl

⋃

A− ⊂
A ⊂

⋂

A+; but this contradicts (2.2). Hence ψ is bijective. Let us define φ : I → A

to be the inverse of ψ.
As the inverse of an increasing function, φ is increasing; it remains to show that

it is continuous. Suppose it is not; then for some i ∈ I, either φ(i) ⊂
⋂

k>i φ(k)

or φ(i) ⊃ cl
⋃

k<i φ(k). In the former case, since A is closed and dense, there exists
A ∈ A such that φ(i) ⊂ A ⊂

⋂

k>i φ(k); but then i < ψ(A) < k for all k > i which is

impossible. The other case leads to a contradiction in a similar fashion.

Finally, if a continuous increasing indexing function exists, then A is dense and
closed by continuity and the corresponding properties of I.

We shall use the notation Ai for φ(i).

Remark 2.3. While strong nesting is essential to Proposition 2.2, in the presence of

other conditions a similar result can be obtained for arbitrary nested families. For
instance, for a nested family of compact convex sets, not necessarily strongly nested,

we could use (suitably scaled) mean width as the increasing bijection ψ : A → I .

Proposition 2.4 Let A be a closed, dense, strongly nested family in Cn with indexing

function φ : I → A, and let X ∈ Kn. If f , g : I → R+ are defined by

(2.3) f (i) := ~̺H(Ai,X)

and

(2.4) g(i) := ~̺H(X,Ai)

for every i ∈ I, then

(a) f and g are continuous,

(b) f is weakly increasing and g is weakly decreasing,

(c) if f 6= 0, then f |supp( f ) is increasing,

(d) if g 6= 0, then g|supp(g) is decreasing.

Proof (a) The functions f and g are continuous because the indexing function and

the directed Hausdorff metric are continuous.
(b) By (2.3), (2.4), and (1.3), for every i ∈ I

(2.5) ψ(i) = inf{δ > 0 | Ai ⊆ (X)δ}
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and

(2.6) g(i) = inf{δ > 0 | X ⊆ (Ai)δ}.

Let ∆(i) := {δ > 0 | Ai ⊆ (X)δ}. Then

i < j =⇒ ∆( j) ⊆ ∆(i) =⇒ f (i) ≤ f ( j).

Thus f is weakly increasing. The proof that g is weakly decreasing is analogous.

(c) Let i0 := inf supp( f ) and let i0 ≤ i < j. Suppose f (i) = f ( j) =: α. Then
α > 0 and by (2.5) and (2.1), for some ǫ > 0

(2.7) (Ai)ǫ ⊆ A j ⊆ (X)α.

We may assume that ǫ < α.
Since X is convex, from (2.7) and (1.4) it follows that (convAi)ǫ ⊆ convA j ⊆ (X)α.

Hence, by (1.5), Ai ⊆ convAi ⊆ (X)α−ǫ, a contradiction.
(d) Let now j0 := sup supp(g) and let i < j ≤ j0. Suppose g(i) = g( j) =: β.

Then β > 0 and by (2.6),

(2.8) X ⊆ (Ai)β ∩ (A j)β.

Since Ai ⊂ intA j (by (2.1)) and Ai is compact, there exists an ǫ > 0 such that (Ai)ǫ ⊆
A j . We may assume that ǫ < β. Then, from (2.8) it follows that X ⊆ ((Ai)ǫ)β−ǫ ⊂
(A j)β−ǫ, a contradiction.

Theorem 2.5 If A is a closed, dense, strongly nested family in Cn, then for every X ∈
Kn there exists a unique nearest element in A.

Proof By Proposition 2.2, A has a continuous indexing function with domain I.

Take a test set X ∈ Kn and let f , g : I → R+ be defined by (2.3) and (2.4).
By Proposition 2.4, the functions f and g are continuous, f is weakly increasing

and is increasing on its support, while g is weakly decreasing and is decreasing on its

support.
By (1.3), ̺H(X,Ai) = max{ f (i), g(i)}.

Case 1: f = 0, i.e., supp( f ) = ∅. Then Ai ⊆ X for every i ∈ I, whence I = [0, 1],
and max{ f , g} = g. Thus there is at most one i0 with g(i0) = 0 (because there is

at most one Ai0
which coincides with X). If such an i0 exists, then X = Ai0

, so Ai0

is a unique element of the family nearest to X. Otherwise g > 0 and A1 is a unique
element of A nearest to X.

Case 2: g = 0, i.e., supp(g) = ∅. Then X ⊆ Ai for every i ∈ I and max{ f , g} = f ,

whence there is at most one i0 with f (i0) = 0. If such an i0 exists, then i0 = 0, whence
A0 is a unique element nearest to X. If not, then f > 0 and thus f attains its unique

minimum at 0; so again A0 is the unique nearest element.
Case 3: f 6= 0 6= g, i.e., both supports are nonempty. Then there exist i0, j0 ∈ I

such that

supp( f ) = [i0, 1] (or [i0,∞)), supp(g) = [0, j0].
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Let us note that if i0 > j0, then ̺H(X,Ai) = 0 (and thus X = Ai) for all i ∈
[ j0, i0], contrary to the assumption that A is strongly nested (Definition 2.1). Thus

i0 ≤ j0, whence the supports of f and g have a nonempty intersection. By Lemma
1.1, this completes the proof.

Theorem 2.5 may be reformulated as follows.

Corollary 2.6 Every closed, dense, strongly nested family in Cn is a Čebyšev set relative

to Kn.

Remark 2.7. In Proposition 2.2 as well as in Proposition 2.4, Theorem 2.5, and Corol-

lary 2.6, the interval [0, 1] may be replaced by an arbitrary [α, β]. Similarly, [0,∞]
may be replaced by [α,∞). Thus, Theorem 2.5 is a generalization of [3, Theo-

rem 4.3(i)].

We can combine several of the above results to obtain the following.

Theorem 2.8 For a strongly nested family A in Kn, the following are equivalent:

(a) A is a Čebyšev set;

(b) A is closed and dense;

(c) A has a continuous indexing function as defined in Proposition 2.2 .

Proof The equivalence of (b) and (c) was established in Proposition 2.2, and Corol-

lary 2.6 gives (b) ⇒ (a); it remains to show that (a) implies (b). If A is not closed,

it has a subfamily S such that X :=
⋂

S 6∈ A or a bounded subfamily S such that
X := cl

⋃

S 6∈ A. In either case, infA∈A ̺H(X,A) = 0, but this infimum is not

attained; thus A is not a Čebyšev set.

Suppose A is not dense; then there exist A,A ′ ∈ A with A ⊂ A ′, such that for
every other A ′′ ∈ A, either A ′′ ⊂ intA or A ′ ⊂ intA ′′. Let X =

1
2
(A + A ′); then

̺H(X,A) = ̺H(X,A ′) < ̺H(X,A ′ ′), so the closest point of A to X is not unique and
A is not a Čebyšev set.

The following proposition shows that in Theorem 2.5 the assumption that the

test sets are convex is necessary; that is, nests (even of compact convex sets) are not
Čebyšev sets in Cn. This is also valid for the hyperspace Cn

0 of compact bodies (a set

A ∈ Cn is a body if cl intA = A).

Proposition 2.9 No nest is a Čebyšev set in C
n or in C

n
0 .

Proof Let the nest be {At | t ∈ [0, 1]}. Let p ∈ A0, let r be large enough that

A0 ⊂ int(rBn + p)), and let S = bd(rBn + p). Then ̺→H (Ai, S) ≥ r, and equality is

achieved for all Ai ⊂ rBn + p, thus by continuity, for a nonsingleton collection. On
the other hand, ̺→H (S,Ai) ≤ r for all Ai , whence ̺H(Ai, S) = ̺→H (Ai , S). It follows

that the nest is not a Čebyšev set.
For Cn

0 we can assume the existence of an ǫ-ball within A0 with centre p; the test

set should then be a spherical shell of inner radius r, thickness ǫ/2, and center p, and

the result again follows (see Figure 2).

It is not hard to find examples of non-strongly nested families that are not

Čebyšev sets.
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X

A
r

Figure 2: A nest of convex bodies equidistant from a nonconvex test body.

XY

Figure 3: A non-Čebyšev nest.

Example 2.10 Let At = t · Bn + tu, where ‖u‖ = 1. Then the “peacock eye”

A = {At | 1
2
≤ t ≤ 1} shown in Figure 3 is not a Čebyšev set. For instance, the

singleton X = {3u} and the set Y are each equidistant from all the members of A.

3 Families of Translates

For a given A ∈ Kn, let A be the family of all translates of A, i.e., {A + x | x ∈ Rn}.

We will consider under what assumptions on A the family A is a Čebyšev set in

K
n or in a subspace of K

n. For every A,X ∈ C
n and α ≥ 0, let

(3.1) F(A,X;α) := {x ∈ Rn | ̺H(X,A + x) ≤ α}.

Directly from the definition (1.4) of Minkowski subtraction it follows that for
α > 0,

(3.2) F(A,X;α) = ((X)α ⊖ A) ∩−((A)α ⊖ X).

Lemma 3.1 (i) Let A,X ∈ Cn. If 0 < α < β, then F(A,X;α) ⊆ F(A,X;β).

(ii) For every A,X ∈ Cn and α > 0, the set F(A,X;α) is compact.

(iii) If A,X are convex, then F(A,X;α) is convex.

(iv) If A,X are strictly convex, then so is F(A,X;α).

(v) For α large enough, the set F(A,X;α) is nonempty.
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(vi) F(A,X; 0) is a singleton if X is a translate of A and is empty otherwise.

Proof (i) follows directly from (3.1). We will use (3.2) to prove (ii)–(iv).

(ii) The set F(A,X;α) is the intersection of compact subsets of Rn, whence it is
compact, because is bounded, closed in Rn, and Rn is finitely compact.

(iii) If A,X are convex, then the set F(A,X;α) is the intersection of convex subsets

of Rn, whence it is convex.
(iv) By Prop. 1.3 the sets (A)α and (X)α are strictly convex, whence, by Prop. 1.4,

both (A)α⊖X and ((X)α⊖A) are strictly convex. Thus, by (3.2) combined with
Prop. 1.5, the assertion follows.

(v) If α ≥ ̺H(A,X), then 0 ∈ F(A,X;α).

(vi) is obvious.

Lemma 3.2 Let A,X ∈ Kn and let

(3.3) α0 := inf{α > 0 | F(A,X;α) 6= ∅}.

Then the set F(A,X;α0) is nonempty and has empty interior.

Proof By the assumption, α0 = limαk for some decreasing sequence (αk)k∈N such

that F(A,X;αk) 6= ∅ for every k. That is, for every k there exists xk ∈ Rn such that
̺H(X,A + xk) ≤ αk. Since (αk)k∈N is bounded, so is (xk)k∈N and thus there exists a

convergent subsequence (xnk
)k∈N . Let x0 = lim xnk

. Then, by continuity of metric,

̺H(X,A + x0) ≤ α0, whence x0 ∈ F(A,X;α0).
It remains to prove that intF(A,X;α0) = ∅. If α0 = 0, then F(A,X;α0) has

empty interior, because it is a singleton in view of Lemma 3.1 (vi).

Let α0 > 0 and suppose that intF(A,X;α0) 6= ∅. Then, for every x ∈ F(A,X;α0)
there exists an ǫ > 0 with x + ǫBn ⊆ F(A,X;α0).

Of course, we may assume that ǫ < α0. Then by (3.2),

x + ǫBn ⊆ (−((A)α0
⊖ X)) ∩ ((X)α0

⊖ A),

whence, by (1.4) and the cancellation law,

x ∈
⋂

a∈A

((X)α0−ǫ − a) ∩ −
⋂

b∈X

((A)α0−ǫ − b) = F(A,X;α0 − ǫ).

Thus F(A,X;α0 − ǫ) 6= ∅, contrary to (3.3).

Theorem 3.3 For every A ∈ On, the family A of all translates of A is a Čebyšev set in

the space On.

Proof Take a strictly convex X ∈ Cn. By Lemma 3.1(ii–iv), the set F(A,X;α) is

compact and strictly convex for every α > 0. By Lemma 3.2, if α0 is defined by

(3.3), then F(A,X;α0) is nonempty and has empty interior. Hence, as a nonempty
strictly convex set with empty interior, the set F(A,X;α0) is a singleton. This means

that there is a unique point x such that ̺H(X,A + x) is minimal, i.e, X has a unique

nearest element in A. This completes the proof.
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Remark 3.4. Let us note that if A is a singleton, then the family A coincides with
[Rn], the set of all singletons in Rn, (compare (1.12)). Thus, as a consequence of

Theorem 3.3 we obtain a weaker version of [3, Proposition 3.2], which states that the
set of singletons is a Čebyšev set in Kn.

The following proposition shows that in Theorem 3.3 the assumption of strict

convexity is essential and the hyperspace On cannot be replaced by Kn.

Proposition 3.5 If {A + x | x ∈ Rn} is a Čebyšev set in Kn for n > 1, then A is a

singleton.

Proof Suppose that A ∈ Kn is not a singleton and diamA = α. Choose a1, a2 ∈ A

with ||a1 − a2|| = α and let a0 =
1
2
(a1 + a2). Take a test body

X := (A) α
8
∩ {x ∈ Rn | ||x − a0|| ≤ ||x − ai || for i = 1, 2}

(see Figure 4). Let π : Rn → aff{a1a2} be the orthogonal projection. Then, for every

x ∈ Rn the set π(A + x) is a segment of length α while π(X) is a segment of length α
2

and thus

ρ→H (A + x,X) ≥ ρ→H (π(A + x), π(X)) ≥
α

4
.

On the other hand, if x ⊥ a1 − a2 and ||x|| < α
8

, then

ρ→H (X,A + x) <
α

4
= ρ→H (A + x,X).

Hence, the minimal distance ρH(A + x,X) =
α
4

is achieved for many translates
of A.

A

X

a
1

a
2

a
0

A+x

X

Figure 4: Equidistant nearest translates of A.
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Remark 3.6. Note that even when A is strictly convex, {A + x | x ∈ Rn} is not
a Čebyšev set in Kn. Interchanging A and X shows, furthermore, that families of

translates in Kn are not in general Čebyšev sets relative to On.

Remark 3.7. While On seems to be the most natural setting for Theorem 3.3, further

generalizations are still possible at cost of some artificiality. The reader may verify, for
instance, that if for some fixed u0 and αwe let Dn be the subspace of Kn consisting of

all compact “D-shaped” sets, obtained by intersecting elements of On with halfspaces
of the form {x | x ◦ u0 ≥ α}, we may substitute Dn for On in Theorem 3.3 and the

proof is more or less unchanged.

We are now going to derive a stronger version of Theorem 3.3, replacing the family

of all translates of a given A by the subfamily of translates by vectors in an arbitrary

nonempty closed convex set.

For every T ⊆ Rn, every A,X ∈ Cn, and α ≥ 0, let

FT(A,X;α) := {x ∈ T | ̺H(X,A + x) ≤ α}

and

(3.4) α0(T) := inf{α | FT(A,X;α) 6= ∅}.

Of course, FT(A,X;α) = T ∩ F(A,X;α).

Theorem 3.8 Let A ∈ On and let T be a nonempty, closed, and convex subset of Rn.

Let

(3.5) AT := {A + x | x ∈ T}.

Then AT is a Čebyšev set in On.

Proof Let X ∈ On. Then, by Lemma 3.1(iv), the set F(A,X;α0(T)) is strictly convex.
It suffices to prove that FT(A,X;α0(T)) is a singleton. Suppose, to the contrary, that

x1, x2 ∈ FT(A,X;α0(T)) and x1 6= x2.

Then 1
2
(x1 + x2) ∈ T ∩ intF(A,X;α0(T)), because T is convex and F(A,X, α0(T))

is strictly convex. But then there exists ǫ > 0 such that

1

2
(x1 + x2) ∈ T ∩ intF(A,X;α0(T) − ǫ),

contrary to (3.4).

Note that 3.8 is a generalization of a weaker version of Theorem 4.5 in [3], in

which K
n is replaced by O

n. However, no such generalization is possible for K
n.

Proposition 3.9 If the family AT , as defined by (3.5), is a Čebyšev set in Kn, then A

or T is a singleton.

https://doi.org/10.4153/CJM-2009-015-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-015-x
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Proof Suppose that A and T are closed, convex, and nonsingletons. Unless A and T

are parallel segments, we may choose a segment S ⊂ T such that A has nonzero width

in a direction normal to S and follow the construction in the proof of Proposition 3.5
to obtain a test set X equidistant from various A + s, s ∈ S, and which is no closer to

any other translate of A.

If on the other hand A and T are parallel segments, A having length l and (without
loss of generality) T centered at the origin, take X to be a segment of length 2l, with

the midpoint common with A, and perpendicular to A. It is clear that if x ∈ T and

‖x‖ is small enough, then ̺H(X,A) = ̺H(X,A+x) = l and no translate of A is nearer
to X.

4 Properties of Čebyšev Sets in Hyperspaces

Conjecture 6.4 of [3] states that if a pair {A,B} in Kn has more than one metric
midpoint, ∆(A,B) is not a Čebyšev set in Kn. The following example disproves this

conjecture.

Example 4.1 Let A and B be convex bodies, A ⊂ intB, such that B is not a parallel
body of A. By Theorem 2.8, the affine segment ∆(A,B) is a Čebyšev set; but by

[9, p.59, note 10] there is more than one metric segment joining A and B, and by [6]
this implies that the metric midpoint of {A,B} is not unique.

As is well known, a subset of Rn is a Čebyšev set if and only if it is nonempty,

closed, and convex. Examples of nonempty, compact, affine convex subsets of Kn

which are not Čebyšev sets in Kn were given in [3] (see 4.1, 4.3, and 4.7). Conversely,

we shall prove, using Theorem 2.8, that a Čebyšev set in Kn need not be affine convex,

that is, Conjecture 6.2 in [3] is false. Moreover, the class of Čebyšev sets in K
n is not

closed under intersection.

Example 4.2 Let f (t) = t(1 − t); let At = t · Bn and let A ′

t = At + f (t)u where

‖u‖ = 1. Let A = {At | 0 ≤ t ≤ 1}, and let A
′
= {A ′

t | 0 ≤ t ≤ 1} (see Figure 5).
The family A is strongly nested and affine convex.

As the balls {A ′

t : t ∈ [0, 1]} are centered on the line through the origin and u, the
family A is strongly nested if the family of their intersections with that line is strongly

nested. The intersection of A ′(t) with the line extends from −t2u to (2t − t2)u, and

for 0 ≤ s < t ≤ 1 we have −t2 < −s2 and 2s − s2 < 2t − t2. Thus, by Corollary 2.6,
both families are Čebyšev sets.

However, A ∩ A ′
= {A0,A1}, which is not affine convex. But A is affine convex

and the class of affine convex sets is closed under intersection, so A
′ is not affine

convex.

We also note that {A0,A1}, the intersection of Čebyšev sets, is not a Čebyšev set,
since the two bodies are equidistant from A1/2.

Since the space Kn has infinite dimension, it is reasonable to ask about possible

dimensions of Čebyšev sets in Kn.

Proposition 4.3 For every k ∈ {0, . . . , n + 1} there exists a Čebyšev set in Kn with
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A A´

Figure 5: Two Čebyšev nests with exactly two common elements.

dimension k.

Proof Let 0 ≤ k ≤ n and let A be a closed convex subset of Rn with dim A = k. By
[3, Theorem 4.5], the set of singletons A := {{a} | a ∈ A}, is a Čebyšev set in Kn.

Since A is homeomorphic (even isometric) to A, its dimension is equal to k.

By [3, Theorem 3.3], the closure of the family Bn of balls is a Čebyšev set in
Kn. This family is homeomorphic to Rn × [0,∞), whence its dimension is equal to

n + 1.

The space Kn itself is, trivially, a Čebyšev set of infinite dimension. However, this

is not the only example.

Proposition 4.4 There exists a nontrivial Čebyšev set in Kn of infinite dimension.

Proof Let A be the ball with centre {0} and radius α in the space Kn endowed with

the metric ρ2 defined by ρ2(A,B) := ‖hA − hB‖2. In view of [3], 5.3 combined with

5.2, the ball A is a Čebyšev set in K
n. By [11], it is homeomorphic to the ball with

centre {0} and radius α in the space (Kn, ρH). By [1], the subspace of Kn consisting

of bodies with a constant width is a Q-manifold (where Q is the Hilbert cube). Thus
Q can be topologically embedded into A.

Problem 4.5 Does there exist a Čebyšev set in Kn with finite dimension greater

than n + 1 ?

Remark 4.6. Let us note that while sets in Rn that are isometric to Čebyšev sets are

themselves Čebyšev sets, this is not the case in Kn. There are many and varied coun-

terexamples.
For instance, let Ar = r · Bn and A ′

r =
r
2
· Bn + r

2
u, where ‖u‖ = 1. Take A =

{Ar | 0 ≤ r ≤ 1} and A ′
= {A ′

r | 0 ≤ r ≤ 1} (see Figure 6). Then ̺H(Ar,As) =

̺H(A ′

r ,A
′

s ) = |r − s|, so there is an isometry of A onto A ′. However, it is evident

that A is a Čebyšev set, while A ′ is not. Specifically, if X is the singleton {2u}, then

̺H(X,A ′

r ) = 2 for all r.
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Obviously, an isometry of K
n onto K

n must preserve the class of Čebyšev sets.
However, an isometric embedding which is not surjective, such as Minkowski trans-

lation (see [8, Example 4.1.2]) need not do so. Consider, for instance, the set [A] of
singletons for some convex body A. This is, as mentioned above, a Čebyšev set in

Kn, but for any convex body B, the family {B + x | x ∈ A} is not (this follows from

Proposition 3.5).

X

Figure 6: Isometric nests, only one of which is a Čebyšev set.

Remark 4.7. Let A be a segment. Then [A] is a Čebyšev arc in Kn that is not nested.
Similarly, for any strictly convex body B, the family {B + x | x ∈ A} is (by Theorem

3.8) a Čebyšev set in On but is not nested. There is, however, some evidence for the

following conjecture.

Conjecture 4.8 A Čebyšev arc in K
n
0 must be nested .

In Example 2.10 we observed that a non-strongly nested family need not be a

Čebyšev set.

Conjecture 4.9 A nested family in Kn, Kn
0 , On or On

0 is a Čebyšev set if and only if

it is strongly nested.

The situation is not as straightforward as it might at first seem. The “peacock
eye” of Figure 3 may be extended, as shown in Figure 7, to include nearer neighbours

of both X and Y , thereby hiding from these sets the common boundary point. The
conjecture is that this cannot be done simultaneously for all test sets.

5 Conclusion

It was made apparent in [3] that there are several diverse types of Čebyšev sets in

hyperspaces. In this paper, we have generalized one of these, showing that not only

families of parallel bodies but all closed, continuous, and strongly nested families
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XY

Figure 7: X and Y have unique nearest neighbours.

are Čebyšev sets. This class of examples is surprising because it depends more on
the topology and the containment order of the hyperspace than on its semi-linear

structure.

We have also introduced a new class of Čebyšev sets in On, those sets consisting
of the translates of a fixed strictly convex body by a closed convex set of vectors.

For these sets, as for the sets of balls and singletons described in [3], the semi-linear

structure of the hyperspace does appear to be essential.
The infinite-dimensional Čebyšev sets, described in detail in [3] and to which

we have briefly alluded here, appear to have a completely different nature again. The
main question, then, in the theory of Čebyšev sets in hyperspaces appears to be this: is

there any hidden structure uniting these various families of Čebyšev sets? Is there, in

the image of the folk tale, some single elephant of which these very different-seeming
objects are all in fact parts?
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