C-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS

A. BALLESTER-BOLINCHES*

Department d'Àlgebra, Universitat de València, c/Dr.Moliner 50, 46100 Burjassot (València), Spain e-mail:Adolfo.Ballester@uv.es

YANMING WANG[†]

Department of Mathematics, Zhongshan University, Guangzhou 510275, P. R. China e-mail:stswym@zsulink.zsu.edu.cn

and GUO XIUYUN

Department of Mathematics, Shanxi University, Taiyuan 030006, P. R. China e-mail:gxy@deer.sxu.edu.cn

(Received 30 November, 1998)

Abstract. A subgroup *H* of a group *G* is said to be *c*-supplemented in *G* if there exists a subgroup *K* of *G* such that HK = G and $H \cap K$ is contained in $Core_G(H)$. We follow Hall's ideas to characterize the structure of the finite groups in which every subgroup is *c*-supplemented. Properties of *c*-supplemented subgroups are also applied to determine the structure of some finite groups.

1991 Mathematics Subject Classification. Primary 20D10, 20D20.

1. Introduction. In this paper the word group always means finite group.

A subgroup H of a group G is said to be *complemented in* G (complemented if G is understood) if there exists a subgroup K of G such that G = HK and $H \cap K = 1$. In this case we say that K is a complement of H in G.

In his well known series of papers about the structure of solvable groups, Hall proved that a group is solvable if and only if every Sylow subgroup is complemented [5]. He also characterized in [6] the groups in which every subgroup is complemented. He called these groups *complemented groups* and proved that these groups are exactly the supersolvable groups with elementary abelian Sylow subgroups. It is clear from these results that complementation of some families of subgroups of a group has a strong influence on its structure. This idea was strengthened in [1], where the complementation of minimal subgroups and maximal subgroups of the Sylow subgroups is studied. The main goal of the present paper is to study the *c*-normality introduced in [8] and it is closely related to complementation. Following Hall's idea, we determine the structure of the groups in which every subgroup is *c*-supplemented and study the influence of the *c*-supplementation of some families of subgroups on the structure of the groups.

Most of the notation is standard and can be found in [4] and [7].

^{*} The first author was supported by PB97-0674-C02-02, MEC, Spain.

[†]The second author was supported in part by NSF of China and NSFG.

2. C-supplemented subgroups.

DEFINITION. (a) A subgroup H of a group G is said to be *c*-supplemented (in G) if there exists a subgroup K of G such that G = HK and $H \cap K \leq H_G = Core_G(H)$. (Here H_G is the largest normal subgroup of G that is contained in H.) In this case, we say that K is a *c*-supplement of H in G.

(b) A group G is said to be *c*-supplemented if every subgroup of G is *c*-supplemented in G.

It is clear from the definition that a complemented subgroup is *c*-supplemented but the converse does not hold. For example, let *G* be a cyclic *p*-group, where *p* is a prime, with order greater than *p*. Then $\Phi(G)$ is the only maximal subgroup of *G* and is not complemented. However $\Phi(G)$ is *c*-supplemented because it is normal and *G* is a *c*-supplement of $\Phi(G)$ in *G*.

Recall that a subgroup H of G is c-normal in G if there exists a normal subgroup N of G such that HN = G and $H \cap N \leq H_G$. (See [8].)

It is clear that normality implies *c*-normality and *c*-normality implies *c*-supplementation. However the Sylow 5-subgroups of A_5 are *c*-supplemented in A_5 (by A_4) but neither of them is *c*-normal because A_5 is a simple group.

In the next lemma we gather the basic properties of *c*-supplemented subgroups.

LEMMA 2.1. Let G be a group.

- (1) If H is c-supplemented in G, $H \le M \le G$, then H is c-supplemented in M.
- (2) Let $N \trianglelefteq G$ and $N \le H$. Then H is c-supplemented in G if and only if H/N is c-supplemented in G/N.
- (3) Let π be a set of primes. Let N be a normal π'-subgroup of G and let H be a π-subgroup of G. If H is c-supplemented in G, then HN/N is c-supplemented in G/N. If, furthermore, N normalizes H, then the converse also holds.
- (4) Let $H \leq G$ and $L \leq \Phi(H)$. If L is c-supplemented in G, then $L \triangleleft G$ and $L \leq \Phi(G)$.

Proof. (1) If HK = G with $H \cap K \le H_G$, then $M = M \cap G = H(M \cap K)$ and $H \cap (K \cap M) \le H_G \cap M \le H_M$, so that H is c-supplemented in M.

(2) Suppose that H/N is *c*-supplemented in G/N. Then there exists a subgroup K/N of G/N such that G/N = (H/N)(K/N) and $(H/N) \cap (K/N) \le (H/N)_{G/N} = (H_G)/N$. Then G = HK, $H \cap K \le H_G$ and H is *c*-supplemented in G.

Conversely, if *H* is *c*-supplemented in *G*, then there exists $K \le G$ such that G = HK and $H \cap K \le H_G$. It is easy to check that KN/N is a *c*-supplement of H/N in G/N.

(3) If *H* is *c*-supplemented in *G*, then there exists $K \leq G$ such that G = HK and $H \cap K \leq H_G$. Since $|G|_{\pi'} = |K|_{\pi'} = |KN|_{\pi'}$, we have that $|K \cap N|_{\pi'} = |N|_{\pi'} = |N|$ and hence $N \leq K$. It is clear that (HN/N)(K/N) = G/N and $(HN/N) \cap (K/N) = (H \cap K)N/N \leq (HN/N)_{G/N}$. Hence HN/N is *c*-supplemented in G/N.

Conversely, assume that HN/N is *c*-supplemented in G/N and *N* normalizes *H*. Let K/N be a *c*-supplement of HN/N. Then HK = HNK = G and $(H \cap K)N/N \le L/N = ((HN)/N)_{G/N}$. By hypothesis, $NH = N \times H$. Hence NH is both π -nilpotent and π -closed and so $L = H_1 \times N$ with $H_1 \le H$ and $H_1 \triangleleft G$. Now we have $H \cap K \le H_1 \le H_G$ and *H* is *c*-supplemented in *G*.

(4) If *L* is *c*-supplemented in *G* with *c*-supplement *K*, then LK = G and $L \cap K \le L_G$. Now $H = H \cap G = L(H \cap K) = H \cap K$ since $L \le \Phi(H)$. Therefore

 $L = L \cap K \le L_G$ and hence $L \le G$. If $L \ne \Phi(G)$, then there exists a maximal subgroup M of G such that LM = G. Now $H = H \cap G = L(H \cap M) = H \cap M \le M$. Therefore $G = LM \le HM \le M < G$, a contradiction.

3. Theorems.

THEOREM 3.1. Let G be a group. Then G is solvable if and only if every Sylow subgroup of G is c-supplemented in G.

Proof. If G is solvable, then by [4, Theorem I.3.6] every Sylow subgroup of G is complemented and hence is c-supplemented.

Conversely, assume that every Sylow subgroup *P* of *G* is *c*-supplemented in *G*. By [4, Theorem I.3.6] we only need to prove that *P* is complemented in *G*. Let K_1 be a *c*-supplement of *P* in *G*. Then $PK_1 = G$ and $P \cap K_1 \le P_G$. Let $K = P_GK_1$. We have PK = G and $P \cap K = P_G(P \cap K_1) = P_G$. Note that $|G|_p = (|P||K|_p)/|P_G|$ and so P_G is a normal Sylow *p*-subgroup of *K*. By the Schur-Zassenhaus Theorem, [7, Theorem 9.1.10], we have that $K = P_GK_{p'}$ with $K_{p'}$ a Hall *p'*-subgroup of *K*. Now $G = PK = PK_{p'}$ and $P \cap K_{p'} = 1$. Hence *P* is complemented in *G*. The theorem is now proved.

Using the same argument as in Theorem 3.1, we have the following corollary.

COROLLARY 3.2. Let G be a group and let H be a Hall subgroup of G. Then H is complemented in G if and only if H is c-supplemented in G.

THEOREM 3.3. Let G be a group. Then the following statements are pairwise equivalent.

- (1) G is c-supplemented.
- (2) *G* is supersolvable. Let *M* be a subgroup of *G* and *L* be a subgroup *M* contained in $\Phi(M)$. Then $L \leq \Phi(G)$ and *L* is normal in *G*.
- (3) *G* is supersolvable, every Sylow subgroup of $G/\Phi(G)$ is elementary abelian and every subgroup of $\Phi(G)$ is normal in *G*.
- (4) $G/\Phi(G)$ is complemented and every subgroup of $\Phi(G)$ is normal in G.

Proof. (1) \Rightarrow (2). We prove that *G* is supersolvable by induction on the order of *G*. Since every Sylow subgroup of *G* is *c*-supplemented in *G*, Theorem 3.1 implies

that *G* is solvable. Let *N* be a minimal normal subgroup of *G*. Then *N* is an elementary abelian *p*-group for some prime *p*. By Lemma 2.1 (2) we know that *G/N* is *c*-complemented; hence *G/N* is supersolvable by induction. Let $x \in N$ with |x| = p. < x > is *c*-supplemented in *G* implies that there exists $K \leq G$ such that < x > K = G and $< x > \cap K \leq < x >_G$. $N = < x > (N \cap K)$ and $N \cap K \leq G$ since *N* is abelian. *N* is a minimal normal subgroup implies that either $N \leq K$ or $N \cap K = 1$. If $N \leq K$, then $< x > = < x > \cap K \leq < x >_G$ and hence N = < x >. *G/N* is supersolvable implies that *G* is supersolvable. In the latter case we also have $N = < x > \cdot 1 = < x >$ and get the same conclusion.

Suppose that *M* is a subgroup of *G* and *L* is a subgroup of $\Phi(M)$. Then *L* is *c*-supplemented in *G*. Lemma 2.1 (4) implies that $L \triangleleft G$ and $L \leq \Phi(G)$.

(2) \Rightarrow (3). For every Sylow subgroup *P* of *G*, we have that $\Phi(P) \leq \Phi(G)$. Therefore every Sylow subgroup of $G/\Phi(G)$ is elementary abelian and every subgroup of $\Phi(G)$ is normal in *G*.

 $(3) \Rightarrow (4)$. This follows from [6, Theorem 2].

 $(4) \Rightarrow (1)$. Assume that $G/\Phi(G)$ is complemented and every subgroup of $\Phi(G)$ is normal in *G*. Let *H* be a subgroup of *G*. Then there exists a subgroup $K/\Phi(G)$ of $G/\Phi(G)$ such that $(H\Phi(G)/\Phi(G))(K/\Phi(G)) = G/\Phi(G)$ and $(H\Phi(G)/\Phi(G)) \cap (K/\Phi(G))$ $= ((H \cap K)\Phi(G))/\Phi(G) = 1$. It follows that HK = G and $H \cap K \leq \Phi(G)$. Hence $H \cap K \leq H_G$. By definition, *H* is *c*-supplemented in *G* and so *G* is *c*-supplemented. The proof of the theorem is complete.

4. Applications. In this section we investigate the influence of the existence of *c*-supplements for some families of subgroups on the structure of the group. We focus our attention to minimal subgroups of the group. Let us first introduce the following notation.

Let p be a prime and G a group. We write

 $\mathcal{P}_{p}(G) = \{x | x \in G, |x| = p\}, \\ \mathcal{P}_{4}(G) = \{x | x \in G, |x| = 4\}, \\ \mathcal{P}(G) = \bigcup_{p \in \pi(G)} \mathcal{P}_{p}(G), \end{cases}$

$$\mathcal{P}^*(G) = \mathcal{P}_4(G) \cup \mathcal{P}(G).$$

Let x be an element of G. We say that x is c-supplemented in G if < x > is c-supplemented in G.

THEOREM 4.1. Let G be a group and let K be the supersolvable residual $G^{\mathcal{U}}$ of G. Suppose that every element of $\mathcal{P}^*(K)$ is c-supplemented in G. Then G is supersolvable.

Proof. Assume that the theorem is false and let G be a counterexample of minimal order.

(1) Every proper subgroup of G is supersolvable. Furthermore

(a) there exists a normal Sylow *p*-subgroup of G such that $G = P \rtimes R$ and $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$;

(b) if p > 2 then the exponent of P is p; when p = 2 the exponent of P is 2 or 4.

Let M be a maximal subgroup of G. It is clear that $M/M \cap K$ is supersolvable and hence $M^{\mathcal{U}} \leq M \cap K$. By Lemma 2.1, every element of $\mathcal{P}^*(M^{\mathcal{U}})$ is *c*-supplemented in M, so that M satisfies the hypotheses of G. The minimal choice of G yields that Mis supersolvable. This holds for every maximal subgroup M of G. Hence we have that G is not supersolvable but every proper subgroup of G is supersolvable. [3, Satz 1] implies (1)(a) and (1)(b).

(2) K = P. Since G/P is supersolvable, we have that $K \le P$. Then $K\Phi(P)/\Phi(P)$ is a normal subgroup of $G/\Phi(P)$ contained in $P/\Phi(P)$. Since $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$, it follows that either $K\Phi(P) = P$ or $K \le \Phi(P)$. If $K < \Phi(P)$, then K is actually contained in $\Phi(G)$ and $G/\Phi(G)$ is supersolvable. Hence G is supersolvable, a contradiction, and so we have that P = K.

(3) $\Phi(P) \neq 1$. Otherwise *P* is elementary abelian and hence, by (1)(b), every element of *P* lies in $\mathcal{P}(K)$. Our hypotheses claim that every element of *P* is *c*-supplemented in *G*. Let $1 \neq x \in P$. Then there exists $M \leq G$ such that $\langle x \rangle M = G$ and $\langle x \rangle \cap M \leq \langle x \rangle_G$. Then $P = \langle x \rangle (P \cap M)$. Since *P* is abelian, it follows that $P \cap M \leq G$. By (1)(a), *P* is a minimal normal subgroup of *G* when $\Phi(P) = 1$.

Therefore $P \cap M = 1$ or $P \leq M$. In both cases, we have that $\langle x \rangle = P$ and therefore G is supersolvable, a contradiction.

(4) p = 2. Assume that p > 2. Then by (1)(b) every element of P is c-supplemented in G. Moreover, by Lemma 2.1 (4), $\Phi(P)$ is contained in $\Phi(G)$ and $\Phi(P) \triangleleft G$. Next we see that the hypotheses of the theorem hold in $G/\Phi(P)$. Let $x \in P - \Phi(P)$. By hypotheses there exists a subgroup M of G such that $G = \langle x \rangle M$ and $\langle x \rangle \cap M \leq \langle x \rangle_G$. If $\langle x \rangle = \langle x \rangle_G$, then (1)(a) implies that $P = \langle x \rangle \Phi(P) = \langle x \rangle$. Then G is supersolvable, a contradiction, and so we have that $\langle x \rangle \cap M = 1$. Hence M is a maximal subgroup of G because o(x) = p. This implies that $G/\Phi(P) = \langle x \rangle \Phi(P)/\Phi(P) \cdot M/\Phi(P)$ and $\langle \langle x \rangle \Phi(P)/\Phi(P) \cap (M/\Phi(P)) = 1$ and $\langle x \rangle \Phi(P)/\Phi(P)$ is c-supplemented in $G/\Phi(P)$. The minimal choice of G (notice that $\Phi(P) \neq 1$ by (3)) implies that $G/\Phi(P)$ is supersolvable. Since $\Phi(P) \leq \Phi(G)$, we have that $G/\Phi(G)$ is supersolvable and so is G, a contradiction.

(5) exp(P) = 4, $\Phi(P) \triangleleft G$, $\Phi(P) \leq \Phi(G)$ and $G/\Phi(P)$ satisfies the hypotheses of the theorem.

If exp(P) = 2, then *P* is elementary abelian, contrary to (3). Note that every element of $\Phi(P)$ is *c*-supplemented and hence, by Lemma 2.1 (4), $\Phi(P) \triangleleft G$ and $\Phi(P) \leq \Phi(G)$. For any element $x \in P - \Phi(P)$ with |x| = 2, the same argument of (4) shows that $\langle x \rangle \Phi(P)/\Phi(P)$ is *c*-supplemented in $G/\Phi(P)$. Now assume that |x| = 4. If $\langle x \rangle \triangleleft G$, nothing remains to be proved. Note that $\langle x^2 \rangle \leq \Phi(P)$ and hence $\langle x^2 \rangle \triangleleft G$, by Lemma 2.1 (4). Let K_1 be a *c*-supplement of $\langle x \rangle$. Then $\langle x \rangle K_1 = G$ and $\langle x \rangle \cap K_1 \leq \langle x \rangle_G = \langle x^2 \rangle$. Let $K = \langle x^2 \rangle K_1$. Then $\langle x \rangle K = G$ and $\langle x \rangle \cap K = \langle x^2 \rangle$. Now |G : K| = 2 implies that *K* is a maximal subgroup of *G*. Hence $\Phi(P) \leq K$ and

$$(\langle x \rangle \Phi(P))/\Phi(P))(K/\Phi(P)) = G/\Phi(P)$$

and

$$(\langle x \rangle \Phi(P))/\Phi(P)) \cap (K/\Phi(P)) \le ((\langle x \rangle \Phi(P))/\Phi(P))_{G/\Phi(P)}.$$

Therefore (5) holds.

By our minimal order choice, (5) implies that $G/\Phi(P)$ is supersolvable and so is *G*. This final contradiction completes our proof.

Since $G^{\mathcal{U}} \leq G'$ for every group G, we have the following corollary.

COROLLARY 4.2. Let G be a group. If every element of $\mathcal{P}^*(G')$ is c-supplemented in G, then G is supersolvable.

THEOREM 4.3. Let G be a group and let $K = G^N$ be the nilpotent residual of G. Suppose that every element of $\mathcal{P}_4(K)$ is c-supplemented in G. Then G is nilpotent if and only if $\langle x \rangle$ lies in the hypercenter $Z_{\infty}(G)$ of G, for every element x of $\mathcal{P}(K)$.

Proof. If G is nilpotent, then $G = Z_{\infty}(G)$. Certainly $\mathcal{P}(K) \subset G$ and so we only need to prove that the converse is true.

Assume that the statement is false and let G be a counterexample of minimal order. The following statements hold.

(1) Every proper subgroup M of G is nilpotent.

In fact, if M < G, then we have $M/M \cap K \cong MK/K \leq G/K$ which is nilpotent. We have that $M^{\mathcal{N}} \leq M \cap K \leq K$. By Lemma 2.1 and $Z_{\infty}(G) \cap M \leq Z_{\infty}(M)$, M satisfies the hypotheses of G. By the minimal choice of G, M is nilpotent.

(2) G is a minimal non-nilpotent group so that G has the following properties.

(2)(a) There exists a normal Sylow *p*-subgroup of *G* such that $G = P \rtimes Q$. $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$, and $\Phi(P) \leq Z(G)$.

(2)(b) If p > 2, then the exponent of P is p. When p = 2 the exponent of P is 2 or 4. See [3, Satz A].

(3) K = P.

Since G/P is nilpotent, we have that $K \le P$. If K < P, then we have that $K\Phi(P)/\Phi(P) \lhd G/\Phi(P)$ which implies that $P = K \le \Phi(P) \le \Phi(G)$. Therefore $G/\Phi(G)$ is nilpotent and so is G, a contradiction.

(4) p = 2 and P has element of order 4.

Otherwise, by our hypotheses, every element of P lies in $\mathcal{P}(K) \subset Z_{\infty}(G)$. Now $G/Z_{\infty}(G)$ is nilpotent yields G is nilpotent, a contradiction.

(5) There is an element *y* of order 4 such that $y \notin \Phi(P)$.

If all the elements of order 4 lie in $\Phi(P)$, then again $P \leq Z(G) \leq Z_{\infty}(G)$, a contradiction.

(6) G is 2-nilpotent.

By (5), there exists an element $x \in P - \Phi(P)$ with |x| = 4. Since $\langle x \rangle$ is *c*-supplemented in *G*, there exists a subgroup K_1 of *G* such that $G = \langle x \rangle K_1$ and $\langle x \rangle \cap K \leq \langle x \rangle_G$. If $\langle x \rangle = \langle x \rangle_G$, then $\langle x \rangle \Phi(P)/\Phi(P)$ is a non-trivial normal subgroup of $G/\Phi(G)$. (2)(a) implies that $P = \langle x \rangle \Phi(P) = \langle x \rangle$ is cyclic. By [7, 10.1.9] we have that *G* is 2-nilpotent.

Assume that $\langle x \rangle_G$ is a proper subgroup of $\langle x \rangle$. Then $\langle x \rangle_G = \langle x^2 \rangle$ because $x^2 \in Z(G)$. Let $K = \langle x^2 \rangle K_1$. Then $G = \langle x \rangle K$ and $\langle x \rangle \cap K = \langle x^2 \rangle$. Therefore |G:K| = 2 and K is normal in G. Since $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$, it follows that either $P \leq K$ or $P \cap K \leq \Phi(P)$. If $P \leq K$, then $\langle x \rangle = \langle x^2 \rangle$, a contradiction. Hence $P \cap K \leq \Phi(P)$ and $P = \langle x \rangle$ is cyclic. Again we have that G is 2-nilpotent.

By step (6), Q is normal in G and so G is nilpotent, a contradiction.

COROLLARY 4.4. Let G be a group and suppose that every element of order 4 of G' is c-supplemented in G. Then G is nilpotent if and only if every element of $\mathcal{P}(G')$ lies in $Z_{\infty}(G)$.

ACKNOWLEDGEMENT. The second author is grateful to the University of Valencia and the Department of Algebra for their hospitality.

REFERENCES

1. A. Ballester-Bolinches and X. Guo, On complemented subgroups of finite groups, *Arch. Math. (Basel)* 72 (1999), 161–166.

2. J. Buckley, Finite groups whose minimal subgroups are normal, *Math. Z.*, **116** (1970), 15–17.

3. K. Doerk, Minimal nicht Überauflösbarer endliche Gruppen, Math. Z., 91 (1966), 198–205.

4. K. Doerk and T. Hawkes, Finite soluble groups (de Gruyter, 1992).

5. P. Hall, A characteristic property of soluble groups, *J. London Math. Soc.*, **12** (1937), 198–200.

C-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS

- 6. P. Hall, Complemented groups, J. London Math. Soc., 12 (1937), 201–204.
 7. D. J. Robinson, A course in the theory of groups (Springer-Verlag, 1993).
 8. Y. Wang, C-normality of groups and its properties, J. Algebra, 78 (1996), 101–108.