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Abstract. A subgroup H of a group G is said to be c-supplemented in G if there
exists a subgroup K of G such that HK = G and H N K is contained in Coreg(H). We
follow Hall’s ideas to characterize the structure of the finite groups in which every
subgroup is c-supplemented. Properties of c-supplemented subgroups are also
applied to determine the structure of some finite groups.
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1. Introduction. In this paper the word group always means finite group.

A subgroup H of a group G is said to be complemented in G (complemented if G
is understood) if there exists a subgroup K of G such that G = HK and HN K = 1.
In this case we say that K is a complement of H in G.

In his well known series of papers about the structure of solvable groups, Hall
proved that a group is solvable if and only if every Sylow subgroup is complemented
[5]. He also characterized in [6] the groups in which every subgroup is com-
plemented. He called these groups complemented groups and proved that these
groups are exactly the supersolvable groups with elementary abelian Sylow sub-
groups. It is clear from these results that complementation of some families of sub-
groups of a group has a strong influence on its structure. This idea was strengthened
in [1], where the complementation of minimal subgroups and maximal subgroups of
the Sylow subgroups is studied. The main goal of the present paper is to study the c-
supplemented subgroups. This concept arises naturally as an extension of the c-
normality introduced in [8] and it is closely related to complementation. Following
Hall’s idea, we determine the structure of the groups in which every subgroup is c-
supplemented and study the influence of the c-supplementation of some families of
subgroups on the structure of the group.

Most of the notation is standard and can be found in [4] and [7].
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2. C-supplemented subgroups.

DEFINITION. (a) A subgroup H of a group G is said to be c-supplemented (in G)
if there exists a subgroup K of G such that G = HK and HN K < Hg = Coreg(H).
(Here Hg is the largest normal subgroup of G that is contained in H.) In this case,
we say that K is a c-supplement of H in G.

(b) A group G is said to be c-supplemented if every subgroup of G is c-supple-
mented in G.

It is clear from the definition that a complemented subgroup is c-supplemented
but the converse does not hold. For example, let G be a cyclic p-group, where p is a
prime, with order greater than p. Then ®(G) is the only maximal subgroup of G and
is not complemented. However ®(G) is ¢-supplemented because it is normal and G is
a c-supplement of ®(G) in G.

Recall that a subgroup H of G is c-normal in G if there exists a normal subgroup
N of G such that HN = G and HN N < Hg. (See [8].)

It is clear that normality implies c-normality and c-normality implies c-supp-
lementation. However the Sylow 5-subgroups of As are c-supplemented in 45 (by
Aq4) but neither of them is c-normal because A4s is a simple group.

In the next lemma we gather the basic properties of c-supplemented subgroups.

LEmMMA 2.1. Let G be a group.

(1) If H is c-supplemented in G, H < M < G, then H is c-supplemented in M.

(2) Let NG and N < H. Then H is c-supplemented in G if and only if H/N is c-
supplemented in G/N.

(3) Let 7 be a set of primes. Let N be a normal 7t'-subgroup of G and let H be a
m-subgroup of G. If H is c-supplemented in G, then HN/N is c-supplemented
in G/N. If, furthermore, N normalizes H, then the converse also holds.

(4) Let H< G and L < ®(H). If L is c-supplemented in G, then L<G and
L < ®(G).

Proof. (1) If HK=G with HNK < Hg, then M =MNG = HM N K) and
HN(KNM)<HgNM < Hy, so that H is c-supplemented in M.

(2) Suppose that H/N is c-supplemented in G/N. Then there exists a subgroup
K/N of G/N such that G/N = (H/N)K/N) and (H/N)N(K/N) < (H/N)g,n =
(Hg)/N. Then G = HK, HN K < Hg and H is c-supplemented in G.

Conversely, if H is c-supplemented in G, then there exists K < G such that G = HK
and HN K < Hg. It is easy to check that KN/N is a c-supplement of H/N in G/N.

(3) If H is c-supplemented in G, then there exists K < G such that G = HK and
HN K < Hg. Since |G|, = |K|, = |KN|,, we have that |[KN N|, = |N|, = |N| and
hence N < K. It is clear that (HN/N)K/N)=G/N and (HN/N)N(K/N)=
(HNK)N/N < (HN/N)g,y- Hence HN/N is c-supplemented in G/N.

Conversely, assume that HN/N is c-supplemented in G/N and N normalizes H.
Let K/N be a c-supplement of HN/N. Then HK=HNK=G and
(HNK)N/N < L/N = ((HN)/N)g,y- By hypothesis, NH= N x H. Hence NH is
both m-nilpotent and n-closed and so L = H; x N with H; < H and H; < G. Now
we have HN K < H| < Hg and H is c-supplemented in G.

(4) If L is c-supplemented in G with c-supplement K, then LK =G and
LNK<Lg. Now H=HNG=LHNK)=HNK since L < ®(H). Therefore
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L=LNK<Ls and hence L<G. If L £ ®(G), then there exists a maximal sub-
group M of G such that LM =G. Now H=HNG=LHNM)=HNM < M.
Therefore G = LM < HM < M < G, a contradiction. O

3. Theorems.

THEOREM 3.1. Let G be a group. Then G is solvable if and only if every Sylow
subgroup of G is c-supplemented in G.

Proof. If G is solvable, then by [4, Theorem 1.3.6] every Sylow subgroup of G is
complemented and hence is c-supplemented.

Conversely, assume that every Sylow subgroup P of G is c-supplemented in G.
By [4, Theorem 1.3.6] we only need to prove that P is complemented in G. Let K| be
a c-supplement of Pin G. Then PK; = G and PN K| < Pg. Let K = PgK;. We have
PK =G and PN K = Pg(PN K;) = Pg. Note that |G|, = (| P||K]|,)/| Pc| and so Pg is
a normal Sylow p-subgroup of K. By the Schur-Zassenhaus Theorem, [7, Theorem
9.1.10], we have that K= PgK, with K, a Hall p’-subgroup of K. Now
G = PK= PK, and PN K, = 1. Hence P is complemented in G. The theorem is
now proved. O

Using the same argument as in Theorem 3.1, we have the following corollary.

COROLLARY 3.2. Let G be a group and let H be a Hall subgroup of G. Then H is
complemented in G if and only if H is c-supplemented in G.

THEOREM 3.3. Let G be a group. Then the following statements are pairwise
equivalent.

(1) G is c-supplemented.

(2) G is supersolvable. Let M be a subgroup of G and L be a subgroup M con-
tained in ®(M). Then L < ®(G) and L is normal in G.

(3) G is supersolvable, every Sylow subgroup of G/®(G) is elementary abelian
and every subgroup of ®(G) is normal in G.

(4) G/O(G) is complemented and every subgroup of ®(G) is normal in G.

Proof. (1) = (2). We prove that G is supersolvable by induction on the order of G.

Since every Sylow subgroup of G is c-supplemented in G, Theorem 3.1 implies
that G is solvable. Let N be a minimal normal subgroup of G. Then N is an ele-
mentary abelian p-group for some prime p. By Lemma 2.1 (2) we know that G/N is
c-complemented; hence G/N is supersolvable by induction. Let x € N with |x| = p.
< X > is c-supplemented in G implies that there exists K < G such that < x > K=G
and < x > NK << x >5. N=< x> (NNK)and NN K<G since N is abelian. N is a
minimal normal subgroup implies that either N < K or NN K= 1. If N <K, then
<x>=<Xx>NK << x > and hence N =< x >. G/N is supersolvable implies that
G is supersolvable. In the latter case we also have N =< x > -1 =< x > and get the
same conclusion.

Suppose that M is a subgroup of G and L is a subgroup of ®(M). Then L is c-
supplemented in G. Lemma 2.1 (4) implies that L « G and L < ®(G).
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(2) = (3). For every Sylow subgroup P of G, we have that ®(P) < O(G).
Therefore every Sylow subgroup of G/®(G) is elementary abelian and every sub-
group of ®(G) is normal in G.

(3) = (4). This follows from [6, Theorem 2].

(4) = (1). Assume that G/®(G) is complemented and every subgroup of ®(G) is
normal in G. Let H be a subgroup of G. Then there exists a subgroup K/®(G) of
G/®(G) such that (H®(G)/(G))(K/P(G)) = G/D(G) and (HD(G)/P(G)) N (K/D(G))
=((HNK)®(G))/P(G) = 1. It follows that HK =G and HN K < ®(G). Hence
HN K < Hg. By definition, H is c-supplemented in G and so G is ¢-supplemented.
The proof of the theorem is complete. O

4. Applications. In this section we investigate the influence of the existence of c-
supplements for some families of subgroups on the structure of the group. We focus
our attention to minimal subgroups of the group. Let us first introduce the following
notation.

Let p be a prime and G a group. We write

Py(G) = {x|x € G, x| = p).

Pa(G) = {x|x € G, |x| = 4},

P(G) = U[)EJI(G)P])(G):

P*(G) = P4(G) U P(G).

Let x be an element of G. We say that x is c-supplemented in G if < x > is ¢-
supplemented in G.

THEOREM 4.1. Let G be a group and let K be the supersolvable residual GY of G.
Suppose that every element of P*(K) is c-supplemented in G. Then G is supersolvable.

Proof. Assume that the theorem is false and let G be a counterexample of mini-
mal order.

(1) Every proper subgroup of G is supersolvable. Furthermore

(a) there exists a normal Sylow p-subgroup of G such that G = P x R and
P/®(P) is a minimal normal subgroup of G/®(P);

(b) if p > 2 then the exponent of P is p; when p = 2 the exponent of P is 2 or 4.

Let M be a maximal subgroup of G. It is clear that M/M N K is supersolvable
and hence MY < M N K. By Lemma 2.1, every element of P*(MY) is c-supplemented
in M, so that M satisfies the hypotheses of G. The minimal choice of G yields that M
is supersolvable. This holds for every maximal subgroup M of G. Hence we have
that G is not supersolvable but every proper subgroup of G is supersolvable. [3, Satz
1] implies (1)(a) and (1)(b).

(2) K = P. Since G/ P is supersolvable, we have that K < P. Then K&(P)/D(P) is
a normal subgroup of G/®(P) contained in P/P(P). Since P/P(P) is a minimal
normal subgroup of G/®(P), it follows that either K&(P) =P or K < ®(P). If
K < ®(P), then K is actually contained in ®(G) and G/®(G) is supersolvable. Hence
G is supersolvable, a contradiction, and so we have that P = K.

(3) ®(P) # 1. Otherwise P is elementary abelian and hence, by (1)(b), every
element of P lies in P(K). Our hypotheses claim that every element of P is c¢-sup-
plemented in G. Let 1 # x € P. Then there exists M < G such that < x> M =G
and <x >NM << x >g. Then P =< x > (PN M). Since P is abelian, it follows
that PN M <G. By (1)(a), P is a minimal normal subgroup of G when ®(P) = 1.
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Therefore PN M =1 or P < M. In both cases, we have that < x >= P and there-
fore G is supersolvable, a contradiction.

(4) p = 2. Assume that p > 2. Then by (1)(b) every element of P is c-supple-
mented in G. Moreover, by Lemma 2.1 (4), ®(P) is contained in ®(G) and ®(P) <« G.
Next we see that the hypotheses of the theorem hold in G/®(P). Let x € P — O(P).
By hypotheses there exists a subgroup M of G such that G =< x> M and
<Xx>NM << x>g. If <x>=<x>g, then (1)(a) implies that P =< x > &(P) =
<x>. Then G is supersolvable, a contradiction, and so we have that
< x> NM = 1. Hence M is a maximal subgroup of G because o(x) = p. This implies
that G/®(P) =< x > ®(P)/P(P) - M/®(P) and (< x > ®(P)/P(P))N(M/D(P)) =1
and < x > ®(P)/P(P) is c-supplemented in G/P(P). The minimal choice of G
(notice that ®(P)# 1 by (3)) implies that G/®(P) is supersolvable. Since
®(P) < ®(G), we have that G/P(G) is supersolvable and so is G, a contradiction.

(5) exp(P) =4, ®(P) <G, ®(P) < ®(G) and G/P(P) satisfies the hypotheses of
the theorem.

If exp(P) =2, then P is elementary abelian, contrary to (3). Note that every
element of ®(P) is c-supplemented and hence, by Lemma 2.1 (4), ®(P)< G and
®(P) < ©(G). For any element x € P — ®(P) with |x| = 2, the same argument of (4)
shows that < x > ®(P)/D(P) is c-supplemented in G/P(P). Now assume that
|x| = 4. If < x > <G, nothing remains to be proved. Note that < x*> >< ®(P) and
hence < x?> > <G, by Lemma 2.1 (4). Let K; be a c-supplement of < x >. Then
<x>K =G and <x>NK <<x>g=<x>>. Let K=<x?>>K,. Then
<x>K=Gand <x >NK =< x> >. Now |G : K| =2 implies that K is a maximal
subgroup of G. Hence ®(P) < K and

(< x> ®(P))/B(P))(K/D(P)) = G/D(P)

and
(< x> ®(P)/P(P) N(K/P(P) = ((< x> D(P)/P(P))g 0(p)

Therefore (5) holds.
By our minimal order choice, (5) implies that G/®(P) is supersolvable and so is
G. This final contradiction completes our proof. ]

Since GY < G’ for every group G, we have the following corollary.

COROLLARY 4.2. Let G be a group. If every element of P*(G') is c-supplemented in
G, then G is supersolvable.

THEOREM 4.3. Let G be a group and let K = GV be the nilpotent residual of G.
Suppose that every element of P4(K) is c-supplemented in G. Then G is nilpotent if and
only if < x > lies in the hypercenter Z(G) of G, for every element x of P(K).

Proof. If G is nilpotent, then G = Z,(G). Certainly P(K) C G and so we only
need to prove that the converse is true.

Assume that the statement is false and let G be a counterexample of minimal
order. The following statements hold.

(1) Every proper subgroup M of G is nilpotent.
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In fact, if M < G, then we have M/M N K =2 MK/K < G/K which is nilpotent.
We have that MY < MNK < K. By Lemma 2.1 and Zo(G)NM < Zoo(M), M
satisfies the hypotheses of G. By the minimal choice of G, M is nilpotent.

(2) G is a minimal non-nilpotent group so that G has the following properties.

(2)(a) There exists a normal Sylow p-subgroup of G such that G =P x Q.
P/®(P) is a minimal normal subgroup of G/®(P), and ®(P) < Z(G).

(2)(b) If p > 2, then the exponent of P is p. When p = 2 the exponent of P is 2 or
4. See [3, Satz Al.

(3) K=P.

Since G/P is nilpotent, we have that K < P. If K < P, then we have that
KO(P)/P(P) « G/®(P) which implies that P =K < ®(P) < ®(G). Therefore
G/®(G) is nilpotent and so is G, a contradiction.

(4) p =2 and P has element of order 4.

Otherwise, by our hypotheses, every element of P lies in P(K) C Z(G). Now
G/Z~(G) is nilpotent yields G is nilpotent, a contradiction.

(5) There is an element y of order 4 such that y¢ ®(P).

If all the elements of order 4 lie in ®(P), then again P < Z(G) < Z(G), a con-
tradiction.

(6) G is 2-nilpotent.

By (5), there exists an element x € P — ®(P) with |x| = 4. Since < x > is ¢-sup-
plemented in G, there exists a subgroup K; of G such that G =< x > K| and
<x>NK<< x> If <x>=<x>g, then < x > ®(P)/P(P) is a non-trivial nor-
mal subgroup of G/®(G). (2)(a) implies that P =< x > ®(P) =< x > is cyclic. By
[7, 10.1.9] we have that G is 2-nilpotent.

Assume that < x >¢ is a proper subgroup of < x >. Then < x >g=< x> >
because x> € Z(G). Let K=< x> > K;. Then G =< x > K and < x > NK =< x? >.
Therefore |G : K| =2 and K is normal in G. Since P/®(P) is a minimal normal
subgroup of G/®(P), it follows that either P < K or PN K < ®(P). If P < K, then
<x>=<x?>>, a contradiction. Hence PNK < ®(P) and P =< x > is cyclic.
Again we have that G is 2-nilpotent.

By step (6), O is normal in G and so G is nilpotent, a contradiction. O

COROLLARY 4.4. Let G be a group and suppose that every element of order 4 of G’
is c-supplemented in G. Then G is nilpotent if and only if every element of P(G’) lies in
Z(G).
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