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Abstract. A subgroup H of a group G is said to be c-supplemented in G if there
exists a subgroup K of G such that HK � G and H \ K is contained in CoreG�H�. We
follow Hall's ideas to characterize the structure of the ®nite groups in which every
subgroup is c-supplemented. Properties of c-supplemented subgroups are also
applied to determine the structure of some ®nite groups.

1991 Mathematics Subject Classi®cation. Primary 20D10, 20D20.

1. Introduction. In this paper the word group always means ®nite group.
A subgroup H of a group G is said to be complemented in G (complemented if G

is understood) if there exists a subgroup K of G such that G � HK and H \ K � 1.
In this case we say that K is a complement of H in G.

In his well known series of papers about the structure of solvable groups, Hall
proved that a group is solvable if and only if every Sylow subgroup is complemented
[5]. He also characterized in [6] the groups in which every subgroup is com-
plemented. He called these groups complemented groups and proved that these
groups are exactly the supersolvable groups with elementary abelian Sylow sub-
groups. It is clear from these results that complementation of some families of sub-
groups of a group has a strong in¯uence on its structure. This idea was strengthened
in [1], where the complementation of minimal subgroups and maximal subgroups of
the Sylow subgroups is studied. The main goal of the present paper is to study the c-
supplemented subgroups. This concept arises naturally as an extension of the c-
normality introduced in [8] and it is closely related to complementation. Following
Hall's idea, we determine the structure of the groups in which every subgroup is c-
supplemented and study the in¯uence of the c-supplementation of some families of
subgroups on the structure of the group.

Most of the notation is standard and can be found in [4] and [7].
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2. C-supplemented subgroups.

Definition. (a) A subgroup H of a group G is said to be c-supplemented (in G)
if there exists a subgroup K of G such that G � HK and H \ K � HG � CoreG�H�.
(Here HG is the largest normal subgroup of G that is contained in H.) In this case,
we say that K is a c-supplement of H in G.

(b) A group G is said to be c-supplemented if every subgroup of G is c-supple-
mented in G.

It is clear from the de®nition that a complemented subgroup is c-supplemented
but the converse does not hold. For example, let G be a cyclic p-group, where p is a
prime, with order greater than p. Then ��G� is the only maximal subgroup of G and
is not complemented. However ��G� is c-supplemented because it is normal and G is
a c-supplement of ��G� in G.

Recall that a subgroup H of G is c-normal in G if there exists a normal subgroup
N of G such that HN � G and H \N � HG. (See [8].)

It is clear that normality implies c-normality and c-normality implies c-supp-
lementation. However the Sylow 5-subgroups of A5 are c-supplemented in A5 (by
A4) but neither of them is c-normal because A5 is a simple group.

In the next lemma we gather the basic properties of c-supplemented subgroups.

Lemma 2.1. Let G be a group.
(1) If H is c-supplemented in G, H �M � G, then H is c-supplemented in M.
(2) Let N /G and N � H. Then H is c-supplemented in G if and only if H/N is c-

supplemented in G/N.
(3) Let � be a set of primes. Let N be a normal �0-subgroup of G and let H be a

�-subgroup of G. If H is c-supplemented in G, then HN/N is c-supplemented
in G/N. If, furthermore, N normalizes H, then the converse also holds.

(4) Let H � G and L � ��H�. If L is c-supplemented in G, then L / G and
L � ��G�.

Proof. (1) If HK � G with H \ K � HG, then M �M \ G � H�M \ K� and
H \ �K \M� � HG \M � HM, so that H is c-supplemented in M.

(2) Suppose that H=N is c-supplemented in G=N. Then there exists a subgroup
K=N of G=N such that G=N � �H=N��K=N� and �H=N� \ �K=N� � �H=N�G=N �
�HG�=N. Then G � HK, H \ K � HG and H is c-supplemented in G.

Conversely, ifH is c-supplemented inG, then there existsK � G such thatG � HK
and H \ K � HG. It is easy to check that KN=N is a c-supplement of H=N in G=N.

(3) If H is c-supplemented in G, then there exists K � G such that G � HK and
H \ K � HG. Since jGj�0 � jKj�0 � jKNj�0 , we have that jK \Nj�0 � jNj�0 � jNj and
hence N � K. It is clear that �HN=N��K=N� � G=N and �HN=N� \ �K=N� �
�H \ K�N=N � �HN=N�G=N. Hence HN=N is c-supplemented in G=N.

Conversely, assume that HN=N is c-supplemented in G=N and N normalizes H.
Let K=N be a c-supplement of HN=N. Then HK � HNK � G and
�H \ K�N=N � L=N � ��HN�=N�G=N. By hypothesis, NH � N�H. Hence NH is
both �-nilpotent and �-closed and so L � H1 �N with H1 � H and H1 / G. Now
we have H \ K � H1 � HG and H is c-supplemented in G.

(4) If L is c-supplemented in G with c-supplement K, then LK � G and
L \ K � LG. Now H � H \ G � L�H \ K� � H \ K since L � ��H�. Therefore
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L � L \ K � LG and hence L /G. If L 6� ��G�, then there exists a maximal sub-
group M of G such that LM � G. Now H � H \ G � L�H \M� � H \M �M.
Therefore G � LM � HM �M < G, a contradiction. &

3. Theorems.

Theorem 3.1. Let G be a group. Then G is solvable if and only if every Sylow
subgroup of G is c-supplemented in G.

Proof. If G is solvable, then by [4, Theorem I.3.6] every Sylow subgroup of G is
complemented and hence is c-supplemented.

Conversely, assume that every Sylow subgroup P of G is c-supplemented in G.
By [4, Theorem I.3.6] we only need to prove that P is complemented in G. Let K1 be
a c-supplement of P in G. Then PK1 � G and P \ K1 � PG. Let K � PGK1. We have
PK � G and P \ K � PG�P \ K1� � PG. Note that jGjp � �jPjjKjp�=jPGj and so PG is
a normal Sylow p-subgroup of K. By the Schur-Zassenhaus Theorem, [7, Theorem
9.1.10], we have that K � PGKp0 with Kp0 a Hall p0-subgroup of K. Now
G � PK � PKp0 and P \ Kp0 � 1. Hence P is complemented in G. The theorem is
now proved. &

Using the same argument as in Theorem 3.1, we have the following corollary.

Corollary 3.2. Let G be a group and let H be a Hall subgroup of G. Then H is
complemented in G if and only if H is c-supplemented in G.

Theorem 3.3. Let G be a group. Then the following statements are pairwise
equivalent.

(1) G is c-supplemented.
(2) G is supersolvable. Let M be a subgroup of G and L be a subgroup M con-

tained in ��M�. Then L � ��G� and L is normal in G.
(3) G is supersolvable, every Sylow subgroup of G=��G� is elementary abelian

and every subgroup of ��G� is normal in G.
(4) G=��G� is complemented and every subgroup of ��G� is normal in G.

Proof. (1)) (2). We prove thatG is supersolvable by induction on the order ofG.
Since every Sylow subgroup of G is c-supplemented in G, Theorem 3.1 implies

that G is solvable. Let N be a minimal normal subgroup of G. Then N is an ele-
mentary abelian p-group for some prime p. By Lemma 2.1 (2) we know that G=N is
c-complemented; hence G=N is supersolvable by induction. Let x 2 N with jxj � p.
< x > is c-supplemented in G implies that there exists K � G such that < x > K � G
and < x > \K �< x >G. N �< x > �N \ K� and N \ K /G since N is abelian. N is a
minimal normal subgroup implies that either N � K or N \ K � 1. If N � K, then
< x >�< x > \K �< x >G and hence N �< x >. G=N is supersolvable implies that
G is supersolvable. In the latter case we also have N �< x > �1 �< x > and get the
same conclusion.

Suppose that M is a subgroup of G and L is a subgroup of ��M�. Then L is c-
supplemented in G. Lemma 2.1 (4) implies that L / G and L � ��G�.
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(2) ) (3). For every Sylow subgroup P of G, we have that ��P� � ��G�.
Therefore every Sylow subgroup of G=��G� is elementary abelian and every sub-
group of ��G� is normal in G.

(3)) (4). This follows from [6, Theorem 2].
(4)) (1). Assume that G=��G� is complemented and every subgroup of ��G� is

normal in G. Let H be a subgroup of G. Then there exists a subgroup K=��G� of
G=��G� such that �H��G�=��G���K=��G�� � G=��G� and �H��G�=��G�� \ �K=��G��
� ��H \ K���G��=��G� � 1. It follows that HK � G and H \ K � ��G�. Hence
H \ K � HG. By de®nition, H is c-supplemented in G and so G is c-supplemented.
The proof of the theorem is complete. &

4. Applications. In this section we investigate the in¯uence of the existence of c-
supplements for some families of subgroups on the structure of the group. We focus
our attention to minimal subgroups of the group. Let us ®rst introduce the following
notation.

Let p be a prime and G a group. We write
Pp�G� � fxj x 2 G; jxj � pg,
P4�G� � fxj x 2 G; jxj � 4g,
P�G� � [p2��G�Pp�G�,
P��G� � P4�G� [ P�G�.
Let x be an element of G. We say that x is c-supplemented in G if < x > is c-

supplemented in G.

Theorem 4.1. Let G be a group and let K be the supersolvable residual GU of G.
Suppose that every element of P��K� is c-supplemented in G. Then G is supersolvable.

Proof. Assume that the theorem is false and let G be a counterexample of mini-
mal order.

(1) Every proper subgroup of G is supersolvable. Furthermore
(a) there exists a normal Sylow p-subgroup of G such that G � P� --- R and

P=��P� is a minimal normal subgroup of G=��P�;
(b) if p > 2 then the exponent of P is p; when p � 2 the exponent of P is 2 or 4.
Let M be a maximal subgroup of G. It is clear that M=M \ K is supersolvable

and hence MU �M \ K. By Lemma 2.1, every element of P��MU� is c-supplemented
in M, so that M satis®es the hypotheses of G. The minimal choice of G yields that M
is supersolvable. This holds for every maximal subgroup M of G. Hence we have
that G is not supersolvable but every proper subgroup of G is supersolvable. [3, Satz
1] implies (1)(a) and (1)(b).

(2) K � P. Since G=P is supersolvable, we have that K � P. Then K��P�=��P� is
a normal subgroup of G=��P� contained in P=��P�. Since P=��P� is a minimal
normal subgroup of G=��P�, it follows that either K��P� � P or K � ��P�. If
K < ��P�, then K is actually contained in ��G� and G=��G� is supersolvable. Hence
G is supersolvable, a contradiction, and so we have that P � K.

(3) ��P� 6� 1. Otherwise P is elementary abelian and hence, by (1)(b), every
element of P lies in P�K�. Our hypotheses claim that every element of P is c-sup-
plemented in G. Let 1 6� x 2 P. Then there exists M � G such that < x >M � G
and < x > \M �< x >G. Then P �< x > �P \M�. Since P is abelian, it follows
that P \M /G. By (1)(a), P is a minimal normal subgroup of G when ��P� � 1.
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Therefore P \M � 1 or P �M. In both cases, we have that < x >� P and there-
fore G is supersolvable, a contradiction.

(4) p � 2. Assume that p > 2. Then by (1)(b) every element of P is c-supple-
mented in G. Moreover, by Lemma 2.1 (4), ��P� is contained in ��G� and ��P� / G.
Next we see that the hypotheses of the theorem hold in G=��P�. Let x 2 Pÿ��P�.
By hypotheses there exists a subgroup M of G such that G �< x >M and
< x > \M �< x >G. If < x >�< x >G, then (1)(a) implies that P �< x > ��P� �
< x >. Then G is supersolvable, a contradiction, and so we have that
< x > \M � 1. Hence M is a maximal subgroup of G because o�x� � p. This implies
that G=��P� �< x > ��P�=��P� �M=��P� and �< x > ��P�=��P�� \ �M=��P�� � 1
and < x > ��P�=��P� is c-supplemented in G=��P�. The minimal choice of G
(notice that ��P� 6� 1 by (3)) implies that G=��P� is supersolvable. Since
��P� � ��G�, we have that G=��G� is supersolvable and so is G, a contradiction.

(5) exp�P� � 4, ��P� / G, ��P� � ��G� and G=��P� satis®es the hypotheses of
the theorem.

If exp�P� � 2, then P is elementary abelian, contrary to (3). Note that every
element of ��P� is c-supplemented and hence, by Lemma 2.1 (4), ��P� / G and
��P� � ��G�. For any element x 2 Pÿ��P� with jxj � 2, the same argument of (4)
shows that < x > ��P�=��P� is c-supplemented in G=��P�. Now assume that
jxj � 4. If < x > /G, nothing remains to be proved. Note that < x2 >� ��P� and
hence < x2 > /G, by Lemma 2.1 (4). Let K1 be a c-supplement of < x >. Then
< x > K1 � G and < x > \K1 �< x >G�< x2 >. Let K �< x2 > K1. Then
< x > K � G and < x > \K �< x2 >. Now jG : Kj � 2 implies that K is a maximal
subgroup of G. Hence ��P� � K and

�< x > ��P��=��P���K=��P�� � G=��P�

and

�< x > ��P��=��P�� \ �K=��P�� � ��< x > ��P��=��P��G=��P�:

Therefore (5) holds.
By our minimal order choice, (5) implies that G=��P� is supersolvable and so is

G. This ®nal contradiction completes our proof. &

Since GU � G0 for every group G, we have the following corollary.

Corollary 4.2. Let G be a group. If every element of P��G0� is c-supplemented in
G, then G is supersolvable.

Theorem 4.3. Let G be a group and let K � GN be the nilpotent residual of G.
Suppose that every element of P4�K� is c-supplemented in G. Then G is nilpotent if and
only if < x > lies in the hypercenter Z1�G� of G, for every element x of P�K�.

Proof. If G is nilpotent, then G � Z1�G�. Certainly P�K� � G and so we only
need to prove that the converse is true.

Assume that the statement is false and let G be a counterexample of minimal
order. The following statements hold.

(1) Every proper subgroup M of G is nilpotent.
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In fact, if M < G, then we have M=M \ K �MK=K � G=K which is nilpotent.
We have that MN �M \ K � K. By Lemma 2.1 and Z1�G� \M � Z1�M�, M
satis®es the hypotheses of G. By the minimal choice of G, M is nilpotent.

(2) G is a minimal non-nilpotent group so that G has the following properties.
(2)(a) There exists a normal Sylow p-subgroup of G such that G � P� --- Q.

P=��P� is a minimal normal subgroup of G=��P�, and ��P� � Z�G�.
(2)(b) If p > 2, then the exponent of P is p. When p � 2 the exponent of P is 2 or

4. See [3, Satz A].
(3) K � P.
Since G=P is nilpotent, we have that K � P. If K < P, then we have that

K��P�=��P� / G=��P� which implies that P � K � ��P� � ��G�. Therefore
G=��G� is nilpotent and so is G, a contradiction.

(4) p � 2 and P has element of order 4.
Otherwise, by our hypotheses, every element of P lies in P�K� � Z1�G�. Now

G=Z1�G� is nilpotent yields G is nilpotent, a contradiction.
(5) There is an element y of order 4 such that y=2��P�.
If all the elements of order 4 lie in ��P�, then again P � Z�G� � Z1�G�, a con-

tradiction.
(6) G is 2-nilpotent.
By (5), there exists an element x 2 Pÿ��P� with jxj � 4. Since < x > is c-sup-

plemented in G, there exists a subgroup K1 of G such that G �< x > K1 and
< x > \K �< x >G. If < x >�< x >G, then < x > ��P�=��P� is a non-trivial nor-
mal subgroup of G=��G�. (2)(a) implies that P �< x > ��P� �< x > is cyclic. By
[7, 10.1.9] we have that G is 2-nilpotent.

Assume that < x >G is a proper subgroup of < x >. Then < x >G�< x2 >
because x2 2 Z�G�. Let K �< x2 > K1. Then G �< x > K and < x > \K �< x2 >.
Therefore jG : Kj � 2 and K is normal in G. Since P=��P� is a minimal normal
subgroup of G=��P�, it follows that either P � K or P \ K � ��P�. If P � K, then
< x >�< x2 >, a contradiction. Hence P \ K � ��P� and P �< x > is cyclic.
Again we have that G is 2-nilpotent.

By step (6), Q is normal in G and so G is nilpotent, a contradiction. &

Corollary 4.4. Let G be a group and suppose that every element of order 4 of G0

is c-supplemented in G. Then G is nilpotent if and only if every element of P�G0� lies in
Z1�G�.

Acknowledgement. The second author is grateful to the University of
Valencia and the Department of Algebra for their hospitality.

REFERENCES

1. A. Ballester-Bolinches and X. Guo, On complemented subgroups of ®nite groups,
Arch. Math. (Basel) 72 (1999), 161±166.

2. J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z., 116
(1970), 15±17.

3. K. Doerk, Minimal nicht UÈ berau¯oÈ sbarer endliche Gruppen, Math. Z., 91 (1966),
198±205.

4. K. Doerk and T. Hawkes, Finite soluble groups (de Gruyter, 1992).
5. P. Hall, A characteristic property of soluble groups, J. London Math. Soc., 12 (1937),

198±200.

388 A. BALLESTER-BOLINCHES, YANMING WANG AND GUO XIUYUN

https://doi.org/10.1017/S001708950003007X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003007X


6. P. Hall, Complemented groups, J. London Math. Soc., 12 (1937), 201±204.
7. D. J. Robinson, A course in the theory of groups (Springer-Verlag, 1993).
8. Y. Wang, C-normality of groups and its properties, J. Algebra, 78 (1996), 101±108.

C-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS 389

https://doi.org/10.1017/S001708950003007X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003007X

