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Abstract We study the distribution of consecutive sums of two squares in arithmetic progressions. We
show that for any odd squarefree modulus q, any two reduced congruence classes a1 and a2 mod q,
and any r1,r2 ≥ 1, a positive density of sums of two squares begin a chain of r1 consecutive sums of
two squares, all of which are a1 mod q, followed immediately by a chain of r2 consecutive sums of two
squares, all of which are a2 mod q. This is an analog of the result of Maynard for the sequence of primes,
showing that for any reduced congruence class a mod q and for any r ≥ 1, a positive density of primes
begin a sequence of r consecutive primes, all of which are a mod q.
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1. Introduction

The sequence of primes is known, by the prime number theorem in arithmetic progres-

sions, to be equidistributed among reduced congruence classes to any modulus q. To be

precise, for any modulus q and for any reduced congruence class a mod q, let π(x;q,a)
denote the number of primes p≤ x with p≡ a mod q and let π(x) denote the number of

primes p≤ x. Then

π(x;q,a) =
π(x)

φ(q)
(1+o(1)).

Much less is known about analogous questions for strings of consecutive primes. Let pn
denote the sequence of primes in increasing order. For any M ≥ 1, for a fixed modulus

q and any M -tuple a= [a1, . . . ,aM ] of reduced residue classes mod q, let π(x;q,a) denote
the number of strings of consecutive primes matching the residue classes of a. That is,

define

π(x;q,a) := #{pn ≤ x : pn+i−1 ≡ ai (mod q) ∀1≤ i≤M}.

Any randomness-based model of the primes would suggest that M -tuples of consecutive

primes equidistribute among the possibilities for a, as is the case when M = 1. That is,

one would expect that π(x;q,a)∼ π(x)
φ(q)M

as x→∞. Lemke Oliver and Soundararajan [12]
provide a heuristic argument based on the Hardy–Littlewood k -tuples conjectures for

estimating π(x;q,a) which agrees with this expectation (although it also predicts large

second-order terms creating biases among the patterns).
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Positive density for consecutive runs of sums of two squares 3

However, little is known about π(x;q,a) whenM ≥ 2. In most cases, it is not even known

that π(x;q,a) tends to infinity as x → ∞ (i.e., it is not known that a occurs infinitely

often as a consecutive pattern in the sequence of primes mod q). If φ(q) = 2 and a1 	=
a2 mod q are distinct reduced congruence classes, then π(x;q,[a1,a2]) and π(x;q,[a2,a1])

must each tend to infinity as an immediate consequence of Dirichlet’s theorem for primes

in arithmetic progressions; Knapowski and Turán [11] observed that if φ(q) = 2, all four
patterns of length 2 occur infinitely often.

As for arbitrary q, Shiu [19] used the Maier matrix method to prove that for any constant

tuple a of any length, π(x;q,a) tends to infinity as x→∞. That is, for any fixed reduced
residue class a mod q, there are infinitely many arbitrarily long strings of consecutive

primes, all of which are congruent to a mod q. This result was rederived by Banks,

Freiberg and Turnage-Butterbaugh [2] using new developments in sieve theory. Maynard

[14] showed further that a positive density of primes begin strings of M consecutive
primes, all of which are congruent to a mod q – that is, that π(x;q,a)
 π(x) whenever

a is a constant pattern.

It is not currently known that π(x;q,a) tends to infinity for any other case, leading to
the question of what more can be proven for other arithmetic sequences. In previous work

[10], the authors considered the sequence of integer sums of two squares. Let E denote

the set of sums of two squares and let En denote the increasing sequence of sums of two
squares, so that

E= {a2+ b2 : a,b ∈ Z}= {En : n ∈ N}.

Let N(x) denote the number of sums of two squares less than x. A number n is in E if

and only if every prime congruent to 3 mod 4 divides n to an even power; that is, if n

factors as n =
∏

p p
ep , then ep is even whenever p ≡ 3 mod 4. For a modulus q =

∏
p p

ep

and a congruence class a mod q, write (a,q) =
∏

p p
fp , where fp ≤ ep for all p. There are

infinitely many n ∈ E congruent to a mod q if and only if the following two conditions

hold:

• for any prime p≡ 3 mod 4, fp is either even or fp = ep, and
• if e2−f2 ≥ 2, then a

2f2
	≡ 3 mod 4.

We will call a congruence class a mod q E-admissible if it satisfies these conditions (i.e.,
if there exists a solution to x2+y2 ≡ a mod q). For a modulus q, an integer M ≥ 1, and

an M -tuple a= [a1, . . . ,aM ] of E-admissible residue classes mod q, let

N(x;q,a) := #{En ≤ x : En+i−1 ≡ ai (mod q) ∀1≤ i≤M}.

Just as in the prime case, one expects N(x;q,a) to tend to infinity for any tuple of E-

admissible residue classes, and in fact, one expects N(x;q,a)
N(x). In other words, one
expects N(x;q,a) to represent a positive proportion of sums of two squares. When the

modulus q ≡ 1 mod 4 is a prime, David, Devin, Nam and Schlitt [3] develop heuristics for

second-order terms in the asymptotics of N(x;q,a) analogously to [12]. Their heuristics
are based on the analog of the Hardy–Littlewood k -tuples conjecture in the setting of

sums of two squares, which was developed in [4]. For a of length 1, these second-order

terms are reminiscent of Chebyshev’s bias, and were considered by Gorodetsky in [7].
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The authors [10] proved that for any modulus q, for any 3-tuple of E-admissible residue

classes [a1,a2,a3],

lim
x→∞

N(x;q,[a1,a2,a3])→∞.

They also showed that for any odd, squarefree modulus q, for any residues a1 and a2 with

(ai,q) = 1, for any tuple of the form [a1, . . . ,a1,a2, . . . ,a2] (i.e., the concatenation of two

constant tuples with values a1 and a2),

lim
x→∞

N(x;q,[a1, . . . ,a1,a2, . . . ,a2])→∞. (1)

Note that this result does not extend to all E-admissible residue classes a1 and a2.
In this paper, we strengthen (1) by proving the following theorem.

Theorem 1. Let q ≥ 1 be a squarefree odd modulus and let ã1 and ã2 be reduced residue
classes modulo q. Let M ≥ 1, and let a = [a1, . . . ,aM ] be a tuple of residue classes such

that for some 1≤M1 ≤M , ai = ã1 whenever i≤M1 and ai = ã2 whenever i >M1. Then

N(x;q,a)
N(x).

That is, any concatenation of two constant tuples appears with positive density among

consecutive increasing sums of two squares modulo q.

Remark. Again, this result does not extend to all E-admissible residue classes; ã1 and

ã2 must be relatively prime to q. For squarefree odd q, in fact, all residue classes modulo
q are E-admissible. For fixed squarefree odd q, and for ã1,ã2 modulo q such that if

p|(ãi,q), then p≡ 1 mod 4, we expect our proof to apply with only minor adjustments in

the computations of the technical results. We also expect that Theorem 1 extends with
essentially no new ideas to the case where q is not squarefree, if substantially more care

is taken on the background lemmas on evaluating sums of two squares in Section 3.3.

Finally, our proof may apply essentially as written to the case where (ãi,q) is divisible by

primes that are 3 mod 4. However, these should appear with a smaller (yet still positive)
density (for example, there are more sums of two squares that are 1 mod 3 than that are

0 mod 3), and it may be that understanding the case when q is not squarefree is necessary

for understanding this case.

The proof of Theorem 1 follows along the same basic idea as Maynard’s result [14] that

constant tuples appear with positive density among consecutive increasing primes. This
work in turn expands on the work of Maynard [13], in which he shows that for any m,

for any large enough k, and for any P-admissible (that is, admissible in a precise sense

with respect to the sequence of prime numbers) k -tuple of linear forms {L1(n), . . . ,Lk(n)},
there exist infinitely many n such that at least m of the Li(n) are simultaneously prime.

In [14], for a tuple {L1(n) = qn+a1, . . . ,Lk(n) = qn+ak} where each Li(n) is chosen such

that Li(n) ≡ a mod q for all i, Maynard shows that for infinitely many n, at least m of
the Li(n) are simultaneously prime and the numbers in between the outputs of the Li(n)

have small prime factors (and thus are not themselves prime). He then averages over

many such tuples of Li(n) in order to obtain a lower bound of positive density.
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In the setting of sums of two squares, stronger sieving results are available than those
that are available in the prime case. McGrath [15] showed that for any m, for large enough

k, for any k -tuple {h1, . . . ,hk} which is P-admissible, and for any partition of {h1, . . . ,hk}
into m sub-tuples or ‘bins’, for infinitely many n, there exists an hi in each bin such
that n+hi ∈E. Banks, Freiberg and Maynard [1] use a similar, but weaker, result in the

case of primes to show that a positive proportion of real numbers are limit points of the

sequence of normalized prime gaps, work which was refined in [17] and [16].

In order to prove Theorem 1, we strengthen the sieve result of McGrath [15] in the same
way that Maynard [14] had expanded his previous work [13]. Our paper is organized as

follows. In Section 2, we will state our sieve theoretic results and use them to prove

Theorem 1. In Section 3, we will prove the sieve theoretic results. Our notation and
setup is explained in Section 2.1, with an additional explanation of more technical sieve

notation in Section 3.1. Finally, in Section 4, we evaluate certain averages of ‘singular

series’ constants that appear in the proof of Theorem 1.

2. Statement of sieve results and proof of the main theorem

2.1. GPY sieve setup

Our argument will follow the Goldston–Pintz–Yıldırım method for detecting primes in P-

admissible k -tuples, building off of work of Maynard [14], which uses a rather sophisticated

version of this method, and of McGrath [15], which develops a second-moment version of
this method for sums of two squares.

An P-admissible k -tuple of linear forms (�1(n), . . . ,�k(n)) is one such that, for every

prime p, there exists some a mod p with �i(a) 	= 0 mod p for all 1≤ i≤ k. Using the GPY
method, Maynard [13] showed that for all integers m ≥ 2, there exists large enough k

such that for any P-admissible k -tuple of linear forms (�1(n), . . . ,�k(n)), there are many

integers n≥ 1 for which at least m of the values �1(n), . . . ,�k(n) are simultaneously prime.

This statement follows from the construction of positive weights w(n) such that for
all x,

∑
x≤n<2x

(
k∑

i=1

1P(�i(n))−m+1

)
w(n)> 0, (2)

where 1P denotes the indicator function of the set P of prime numbers. The inequality (2)
implies that there exists a strictly positive summand, so that for some n with x≤ n< 2x,

k∑
i=1

1P(�i(n))>m−1,

and thus, there are at least m primes among the values of �i(n).

We will require a version of this technique that is adapted in three different ways:

first, we will detect sums of two squares instead of primes; second, we will need a ‘second
moment’ adaptation to detect slightly more delicate patterns among the sequence of sums

of two squares; and third, we will exclude certain values of n so that we will be able to

average over many different k -tuples.
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We begin by defining a certain weighted indicator function of sums of two squares. For
any function f (say, the indicator functions 1P or 1E), in practice, applying the ‘second

moment’ adaptation requires an understanding of two-point correlations of the form∑
x≤n<2x

f(�i(n))f(�j(n)).

Estimates for two-point correlations of the standard indicator function of sums of two

squares are not known, so we will instead make use of Hooley’s ρ-function, which was

first introduced in [8] and also used in this context by McGrath [15].
The ρ function is defined by

ρ(n) = r2(n)t(n), (3)

where r2(n) is the representation function of n, given by

r2(n) := #{(x,y) ∈ Z2 : x2+y2 = n} (4)

= 4
∑
d|n

d odd

(−1)
d−1
2

and

t(n) = tx,θ1(n) :=
∑
a|n
a≤v

p|a⇒p≡1 mod 4

μ(a)

g2(a)

(
1− loga

logv

)
, (v = xθ1). (5)

Here, θ1 is a fixed small constant with θ1 < 1/18; for example, Hooley takes θ1 = 1/20.

Moreover, g2 is the multiplicative function defined on primes via

g2(p) =

{
2− 1

p if p≡ 1 (mod 4)
1
p if p≡ 3 (mod 4).

(6)

Using the indicator function ρ, McGrath [15] uses a second-moment bound to prove

the existence of sums of two squares in different ‘bins’ of the same tuple. To state this

precisely, fix M,k ≥ 1, and let K denote the product K =Mk. Let q ≥ 1 be a fixed odd
integer, and fix a tuple H∗ of size K such that 4|hi, (hi,q) = 1, and for �i(n) = qn+hi,

the tuple of linear forms {�1(n), . . . ,�K(n)} is P-admissible (indeed, McGrath’s result is

phrased as requiring the tuple to be P-admissible, not E-admissible). Suppose further
that we have a fixed partition H=B1�· · ·�BM where |Bi|= k for all i. McGrath showed

that there exists a real number u≥ 1 and a nonnegative weight function w(n) such that

for all sufficiently large x,

∑
x<n≤2x

⎡
⎣u2−

M∑
i=1

(∑
�∈Bi

ρ(�(n))−u

)2
⎤
⎦w(n)> 0. (7)
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The positivity of the left-hand side of (7) implies that for all sufficiently large x, there

exists some n with x < n≤ 2x such that

M∑
i=1

(∑
�∈Bi

ρ(�(n))−u

)2

< u2.

If for any bin Bi, there is no � ∈Bi with �(n) ∈E, then
∑

�∈Bi
ρ(�(n)) = 0, and thus,

u2 ≤
(∑

�∈Bi

ρ(�(n))−u

)2

≤
M∑
i=1

(∑
�∈Bi

ρ(�(n))−u

)2

< u2,

a contradiction. Thus, in particular, the inequality (7) implies that for all sufficiently

large x, there exists an n with x < n≤ 2x and such that for every bin Bi, there exists an

� ∈Bi with �(n) = qn+h ∈E.
Our aim is to combine this second-moment version of the GPY sieve setup with the

goal of excluding certain values of n for each tuple H∗ in order to be able to average

over many different tuples. In particular, we will choose weights w(n) such that for any n

making a positive contribution to the left-hand side of (7), �i(n) does not have any ‘small’
prime factors p ≡ 3 mod 4 for any of the �i, and for any b ≤ η

√
logx which is not in H

(i.e., b 	= hi), the integer qn+b is divisible exactly once by some ‘small’ prime p≡ 3 mod 4.

These may seem like artificial constraints to place on the values n, but in fact, n that
do not satisfy these constraints are exceptionally rare; intuitively, although it cannot be

proven explicitly, the weights w(n) place emphasis on those n where all �i(n) ∈ E (or

close to it), and values qn+b that are outside of the tuple are unlikely to be sums of two
squares. In [14], Maynard takes advantage of a similar device to average over different

subsets H∗, which allows him to prove a lower bound of positive density on the tuples he

is counting.

Our precise setup is as follows. As in the setup of Theorem 1, we let q be a fixed odd
squarefree modulus, and we also fix the parameters M and two congruence classes ã1
and ã2 modulo q, as well as M1 with 1 ≤ M1 ≤ M . We will consider tuples of length

K, where K = kM , split into bins of size k. We define integers a1, . . . ,aK as follows.
For i with 1 ≤ i ≤ M1k, we let ai be the smallest positive integer with ai ≡ ã1 mod q

and ai ≡ 1 mod 4, whereas for i with M1k+1 ≤ i ≤K, we let ai be the second-smallest

positive integer with ai ≡ ã2 mod q and ai ≡ 1 mod 4 (that is, ai−4q is the smallest such
positive integer). The values of ai for M1k+1 ≤ i ≤ K are shifted by q to ensure that

ai1 < ai2 whenever 1 ≤ i1 ≤M1k < i2 ≤K. Note that there are only two distinct values

for the ai, but for ease of notation, we define K values ai, even though these values are

repetitive.
Then, for any tuple of integers b= (b1, . . . ,bK) with bi ≡ 3 mod 4 and 3≤ bi ≤ η

q

√
logx

for all i, we will define the K -tuple L= L(b) = {�i(n)}Ki=1 of linear forms given by

�i(n) := qn+ai+ qbi. (8)

Here, η is a positive constant to be set later. Note that the constraints on ai and bi
modulo 4 imply that whenever n≡ 1 mod 4, we also have �i(n)≡ 1 mod 4.
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We will ultimately average over many different choices of b. Our average will be taken
over b lying in a slightly restricted set of tuples B, where we define

B :=

⎧⎨
⎩b= (b1, . . . ,bK)

∣∣∣∣∣∣bi ≡ 3 mod 4,

b1 = 3

3≤ bi ≤ η
2q

√
logx ∀2≤ i≤M1k

η
2q

√
logx < bi ≤ η

q

√
logx ∀M1k < i≤K

⎫⎬
⎭ . (9)

The key consequence of this definition (along with the definition of the ai’s) is that for

any n, �i1(n)< �i2(n) whenever 1≤ i1 ≤M1k and M1k+1≤ i2 ≤K.
As described above, we will write L=B1�·· ·�BM , where

Bi := {�(i−1)k+1(n), . . . ,�ik(n)}. (10)

The Bi, which we refer to as bins, partition the tuple L into M bins, each of size k.

For certain real numbers ξ,η > 0 (to be fixed later), a certain real number u, and a
nonnegative weight function wn(L), we consider a sum of the shape

∑
x<n≤2x

[
u2−

M∑
i=1

(∑
�∈Bi

ρ(�(n))−u

)2

−
K∑
j=1

∑
p<xξ

p≡3 mod 4
p|�j(n)

u2−
∑

b≤η
√
logx

�(b) 
∈L

1S(ξ)(�
(b)(n))u2

]
wn(L),

(11)

where S(ξ) is the set of integers such that for all primes p < xξ which satisfy p≡ 3 mod 4,
either p � n or p2|n. We write �(b)(n) := qn+ b, so that the final sum in (11) is a sum

over b≤ η
√
logx such that �(b) 	∈ L. A choice of weights wn(L) such that (11) is positive

implies that for some n with x < n≤ 2x,

u2−
M∑
i=1

(∑
�∈Bi

ρ(�(n))−u

)2

−
K∑
j=1

∑
p<xξ

p≡3 mod 4
p|�j(n)

u2−
∑

b≤η
√
logx

�(b) 
∈L

1S(ξ)(�
(b)(n))u2 > 0,

which in turn implies that

• for each i, there exists a linear form � ∈Bi with ρ(�(n)) 	= 0, and thus, �(n) ∈E;
• for each j, with 1 ≤ j ≤ K, �j(n) is not divisible by any prime p < xξ with p ≡

3 mod 4; and
• for each b≤ η

√
logx with �(b) not in L, we have �(b)(n) 	∈ S(ξ), so there exists some

prime p < xξ with p≡ 3 mod 4 such that p‖�(b)(n).

In order to take advantage of this positivity argument, we will need to evaluate the
sums over n appearing in (11). These evaluations are accomplished in Theorem 2, which

we state in the next section before completing the proof of Theorem 1.

2.2. Conventions and notation

Before stating our main sieve theorem and presenting the proof of Theorem 1, we first

fix some notation and conventions that we will use throughout the paper. An index for

key quantities appears after the references.
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Positive density for consecutive runs of sums of two squares 9

All asymptotic notation, such as O(·), o(·),� , and
 , should be interpreted as referring

to the limit x→∞. We will use Vinogradov f � g to mean f = O(g); that is, |f | ≤ Cg

for some absolute constant C. Any constants are absolute unless otherwise noted. For all
sums or products over a variable p (or p′), the variable p will be assumed to lie in the

prime numbers; all other sums and products will be assumed to be taken over variables

lying in the natural numbers N≥1 unless otherwise specified.
Recall that the squarefree odd modulus q is fixed throughout. We denote q = q1q3,

where q1 is a product of primes that are 1 mod 4 and q3 is a product of primes that are

3 mod 4.
Let θ2 > 0 be a fixed positive real number such that 0<θ1+θ2 < 1/18, and let R= xθ2/2.

Letting D0 = η
√
logx for a constant η > 0 to be fixed later, we define

W =
∏

p≤D0
p≡3 mod 4

p�q

p. (12)

Note that q3W is the product of all primes p≤D0 which are 3 mod 4. This definition of

W differs from that of McGrath [15] because, while the value of D0 is much larger than
that used by McGrath, it is not divisible by any primes p≡ 1 mod 4.

We denote by A the Landau–Ramanujan constant, given by

A=
1√
2

∏
p≡3 mod 4

(
1− 1

p2

)− 1
2
=

π

4

∏
p≡1 mod 4

(
1− 1

p2

)1/2

. (13)

We also make use of a normalization constant B, defined as

B =
A

Γ(1/2)
√

L(1,χ4)
· φ(q3W )(logR)1/2

q3W
=

2A

π

φ(q3W )(logR)1/2

q3W
. (14)

Here, χ4 denotes the nontrivial Dirichlet character modulo 4. Finally, we will denote by

V the constant given by

V =
∏

p≡1 mod 4

(
1+

1

(2p−1)2

)
≈ 1.016. (15)

For K -tuples in NK , we will use the notation that a boldface letter such as d represents

a tuple d = (d1, . . . ,dK), whereas a non-boldface d represents the product of the entries∏K
i=1 di. Given tuples d and e, we will let [d,e] denote the product of the least common

multiples
∏K

i=1[di,ei], let (d,e) denote the product of the greatest common divisors∏K
i=1(di,ei), and let d|e denote the K conditions that di|ei for 1≤ i≤K.

2.3. Statement of the main sieve theorem

We are now ready to state our main sieving theorem, which we will use in the next section

to deduce Theorem 1.

Theorem 2. Fix b∈B and let L(b) be the fixed K-tuple of linear forms {�i(n)}Ki=1 given

by (8). Let ν0 be a fixed residue class modulo W such that for all � ∈ L, (�(ν0),W ) = 1.
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10 N. Kimmel and V. Kuperberg

Then there exists a choice of nonnegative weights wn(L)≥ 0, as well as a constant LK(F ),

such that

wn(L)�
(

logR

logD0

)K K∏
i=1

∏
p|�i(n)

p≡3 mod 4

4 (16)

and the following estimates hold:

a) Let S1(ν0) be the sum defined by

S1(ν0) :=
∑

x<n≤2x
n≡1 mod 4

n≡ν0 mod W

wn(L).

Then

S1(ν0) = (1+o(1))
BKx

4W
LK(F ). (17)

b) Let S
(m)
2 (ν0) be the sum defined by

S
(m)
2 (ν0) :=

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W

ρ(�m(n))wn(L).

Then

S
(m)
2 (ν0) = (1+o(1))

4π
√

logR
logv B

Kx

(π+2)
√
KW

LK(F ). (18)

c) Let S
(m1,m2)
3 (ν0) be the sum defined by

S
(m1,m2)
3 (ν0) :=

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W

ρ(�m1
(n))ρ(�m2

(n))wn(L).

Then

S
(m1,m2)
3 (ν0)≤ (1+o(1))

64π2 logR
logv B

Kx

(π+2)2KW
V LK(F ), (19)

where V is the constant defined in (15).
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Positive density for consecutive runs of sums of two squares 11

d) Let S
(m)
4 (ν0) be the sum defined by

S
(m)
4 (ν0) :=

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W

ρ(�m(n))2wn(L).

Then

S
(m)
4 (ν0) = (1+o(1))

8π
√

logR
logv

(
logx
logv +1

)
BKx

(π+2)
√
KW

∏
p≡1 mod 4

p�q1

(
1+

1

(2p−1)2

)
LK(F ).

(20)

e) Assume that ξ > 0 satisfies ξ < 1
K , and let S

(m)
5 (ν0) be the sum defined by

S
(m)
5 (ν0) :=

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W

∑
p<xξ

p≡3 mod 4
p|�m(n)

wn(L).

Then S
(m)
5 (ν0) satisfies

S
(m)
5 (ν0)�

K2ξ2

θ22

BKx

W
LK(F ). (21)

f) Let ν1 be a congruence class modulo q23W
2 such that (�(ν1),q

2
3W

2) is a square for all

� ∈ L. Fix 3< b≤ η
√
logx and a constant ξ with 0< ξ < 1/4. Let S

(b)
6 (ν1) be defined

by

S
(b)
6 (ν1) :=

∑
x<n≤2x

n≡1 mod 4
n≡ν1 mod q23W

2

1S(ξ)(�
(b)(n))wn(L).

Then

S
(b)
6 (ν1)�K

x

4q23W
2
ξ−1/2

(
θ2
2

)−1/2(
logR

logD0

)K−1
2

LK(F ). (22)

This theorem is key in all of our computations and will be proven in Section 3. In the

remainder of this section, we derive our main result as a consequence of Theorem 2.

2.4. Proof of Theorem 1

The goal of this subsection is to prove Theorem 1 as a consequence of Theorem 2 and

the evaluations of the linear functionals therein.
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12 N. Kimmel and V. Kuperberg

We will consider an average of E-admissible tuples L=L(b) = {�i(n)}Ki=1, given by (8),

over the set B (defined in (9)) of K -tuples b. We consider the sum

S =
∑
b∈B

L=L(b)E-admissible

∑
ν1 mod q23W

2

(�(ν1),W )=1∀�∈L

∑
x<n≤2x

n≡ν1 mod q23W
2

[
u2−

M∑
i=1

(∑
�∈Bi

ρ(�(n))−u

)2

(23)

−
K∑
i=1

∑
p<xξ

p≡3 mod 4
p|�i(n)

u2−
∑

b≤η
√
logx

�(b) 
∈L
(�(b)(ν1),q

2
3W

2)=�

1S(ξ)(�
(b)(n))u2

]
wn(L).

For technical reasons involving the final sum, we will initially sum over congruence classes

modulo q23W
2 instead of modulo W. However, note that the condition that (�(ν1),W ) = 1

is determined only by the congruence class of ν1 mod W , so this is in some sense really a
sum over congruence classes modulo W.

Here, wn(L) are the weights given by Theorem 2 for the E-admissible set L = L(b).
For fixed L, the term in the square parentheses in (23) is positive only if the following

conditions all hold:

(i) for each i with 1≤ i≤M , there exists some �∈Bi with ρ(�(n)) 	= 0, or equivalently

with �(n) ∈E;

(ii) for each � ∈ L, �(n) has no prime factors p with p < xξ and p≡ 3 mod 4; and

(iii) for all other �(b) 	∈ L with b ≤ η
√
logx, and (�(b)(n),q23W

2) a square, �(b)(n) has a

prime factor p with p < xξ, p≡ 3 mod 4, and p‖�(b)(n).

This has two crucial implications. One is that no n can make a positive contribution from
two different tuples L, since if n makes a positive contribution for any L, then the values

�(n) are uniquely determined as the integers in [qn,qn+η
√
logx] which are

(i) congruent to 1 mod 4,

(ii) congruent to ã1 mod q if they lie in [qn+a1,qn+a1+(η/2)
√
logx], or congruent

to ã2 mod q if they lie in [qn+aK +(η/2)
√
logx,qn+aK +

√
logx], and

(iii) not divisible to an odd power by any primes p < xξ with p≡ 3 mod 4.

The second observation is that if n makes a positive contribution for a tuple L, then
since for all �(b) 	∈ L with b≤ η

√
logx, �(b)(n) = qn+ b 	∈E, we have that the sums of two

squares appearing in L (of which there is at least one in each bin) must be consecutive
sums of two squares.

Also, if n makes a positive contribution, then none of the �i(n) can have any prime

factors p≡ 3 mod 4 which are less than xξ, so each �i(n) can have at most O(1/ξ) prime
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Positive density for consecutive runs of sums of two squares 13

factors p≡ 3 mod 4. In particular, this implies by (16) that

wn(L)�
(

logR

logD0

)K K∏
i=1

∏
p|�i(n)

p≡3 mod 4

4�
(

logR

logD0

)K

exp(O(K/ξ)), (24)

for any pair n and L making a positive contribution to (23).

We now evaluate the sum in (23). To begin with, we can swap the order of summation

for the various different terms to get

S =
∑
b∈B

L=L(b) adm.

[ ∑
ν0 mod W

(�(ν0),W )=1∀�∈L

(
u2(1−M)S1(ν0)+2u

K∑
m=1

S
(m)
2 (ν0)

−
M∑
i=1

∑
�m1

,�m2
∈Bi

m1 
=m2

S
(m1,m2)
3 (ν0)−

K∑
m=1

S
(m)
4 (ν0)−u2

K∑
i=1

S
(i)
5 (ν0)

)

−u2
∑

ν1 mod q23W
2

(�(ν1),W )=1∀�∈L

∑
b≤η

√
logx

�(b) 
∈L
(�(b)(ν1),q

2
3W

2)=�

S
(b)
6 (ν1)

]
,

(25)

where the sums S1(ν0),S
(m)
2 (ν0),S

(m1,m2)
3 (ν0),S

(m)
4 (ν0),S5(ν0) and S

(b)
6 (ν1) are in the

notation of Theorem 2.

We now wish to use our estimates from Theorem 2. For the sum S
(b)
6 (ν1), we will require

a more careful analysis that takes the averaging over b,ν1,b into account. Specifically, we

require the following lemma, which is proven in Section 4.2.

Lemma 3. With the notation above,

∑
b∈B

L=L(b) adm.

∑
ν1 mod q23W

2

(�(ν1),W )=1∀�∈L

∑
b≤η

√
logx

�(b) 
∈L
(�(b)(ν1),q

2
3W

2)=�

S
(b)
6 (ν1)

�K ξ−1/2θ
K
2 −1
2 LK(F )

(
q3

φ(q3)

)K
ηK

q23q
K−1

(logx)
K− 1

2

(logD0)
K

x,

where the implied constant depends only on K.
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Applying the estimates (17), (18), (19), (20) and (21) from Theorem 2 to (25), we get

S ≥ (1+o(1))
BKx

W
LK(F )

∑
b∈B

L=L(b) adm.

∑
ν0 mod W

(�(ν0),W )=1
∀�∈L

⎡
⎢⎢⎢⎢⎣ u2(1−M)

1

4
+2u

K∑
m=1

4π
√

logR
logv

(π+2)
√
K

−
M∑
i=1

∑
�m1

,�m2
∈Bi

m1 
=m2

64π2
(

logR
logv

)
(π+2)2K

V −
K∑

m=1

8π
√

logR
logv

(
logx
logv +1

)
(π+2)

√
K

∏
p≡1 mod 4

p�q1

(
1+

1

(2p−1)2

)

−u2
K∑
i=1

O

(
K2ξ2

4
LK(F )

)
⎤
⎥⎥⎥⎥⎦−u2

∑
b∈B

L=L(b) adm.

∑
ν1 mod q23W

2

(�(ν1),W )=1
∀�∈L

∑
b≤η

√
logx

�(b) 
∈L
(�(b)(ν1),q

2
3W

2)=�

S
(b)
6 (ν1).

(26)

We now use Lemma 3 to evaluate the last triple sum, and simplify using the facts that

logR= θ2
2 logx and logv = θ1 logx, which gives

S ≥ (1+o(1))

⎛
⎜⎜⎝ ∑

b∈B
L=L(b) adm.

∑
ν0 mod W

(�(ν0),W )=1∀�∈L

1

⎞
⎟⎟⎠BKx

W
LK(F )

⎡
⎢⎢⎣ u2(1−M)

4
+

8uπ
√
K
√

θ2/2θ1
π+2

−M
k(k+1)

2

64π2(θ2/2θ1)

(π+2)2K
V −

8π
√
K
√

θ2/2θ1

(
1
θ1

+1
)

(π+2)

∏
p≡1 mod 4

p�q1

(
1+

1

(2p−1)2

)

−O
(
u2K3ξ2

)
⎤
⎥⎥⎦−O

(
u2ξ−1/2θ

K
2 −1
2 LK(F )

(
q3

φ(q3)

)K
ηK

q23q
K−1

(logx)
K− 1

2

(logD0)
K

x

)
.

We will make the change of variables

u=
π

π+2

√
θ2
2θ1

ũ,
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so that the sum above simplifies to

S ≥(1+o(1))

⎛
⎜⎜⎝ ∑

b∈B
L=L(b) adm.

∑
ν0 mod W

(�(ν0),W )=1∀�∈L

1

⎞
⎟⎟⎠ BKx

W
LK(F )

⎡
⎢⎢⎢⎢⎣
(

π

π+2

)2
θ2
2θ1

⎛
⎜⎜⎝ ũ2(1−M)

4
+8

√
Kũ−32V

(
K

M
+1

)⎞⎟⎟⎠−Oθ1,θ2

(√
K
)
−O

(
u2K3ξ2

)
⎤
⎥⎥⎥⎥⎦−

O

(
u2ξ−1/2θ

K
2 −1
2 LK(F )

(
q3

φ(q3)

)K
ηK

q23q
K−1

(logx)
K− 1

2

(logD0)
K

x

)
.

We then set ũ= 16
√
K

M−1 to maximize the expression above, so that (recalling that K =Mk)

S ≥(1+o(1))

⎛
⎜⎜⎝ ∑

b∈B
L=L(b) adm.

∑
ν0 mod W

(�(ν0),W )=1∀�∈L

1

⎞
⎟⎟⎠ BKx

W
LK(F )

×

⎡
⎢⎢⎢⎢⎣
(

π

π+2

)2(
θ2
2θ1

)
·32
(
k
(2−V )M +V

M −1
−V

)
−Oθ1,θ2

(√
K
)
−O

(
u2K3ξ2

)
⎤
⎥⎥⎥⎥⎦

−O

(
u2ξ−1/2θ

K
2 −1
2 LK(F )

(
q3

φ(q3)

)K
ηK

q23q
K−1

(logx)
K− 1

2

(logD0)
K

x

)
.

Recall that V ≈ 1.016 < 2, so for a given M, we can pick k large enough in terms of M,
θ1 and θ2 so that the quantity

Δ =

(
π

π+2

)2(
θ2
2θ1

)
·32
(
K

(2−V )M +V

M(M −1)
−V

)
−Oθ1,θ2

(√
K
)

will be positive. We can then pick the constant ξ to be a small enough multiple of K−4

so that the term O
(
u2K3ξ2

)
will be negligible (for example, smaller than Δ

100 ). Note that

this is consistent with the constraint from the evaluation of S
(m)
5 that ξ < 1

K .

By Lemma 21, the sums over b and ν0 are bounded below by

∑
b∈B

L=L(b) adm.

∑
ν0 mod W

(�(ν0),W )=1∀�∈L

1
K

(
η

q

)K−1

(logx)
K−1

2 W

(
φ(W )

W

)K

.
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Thus, by definition of B,

BKx

W

∑
b∈B

L=L(b) adm.

∑
ν0 mod W

(�(ν0),W )=1∀�∈L

1
K

(
η

q

)K−1(
q3

φ(q3)

)K
(logx)

K− 1
2

(logD0)K
x.

Returning to S, we have that

S 
K

(
η

q

)K−1(
q3

φ(q3)

)K

LK(F )

(
Δ− 1

100
Δ

)
(logx)

K− 1
2

(logD0)K
x

+O

(
u2ξ−1/2θ

K
2 −1
2 LK(F )

(
q3

φ(q3)

)K
ηK

q23q
K−1

(logx)
K− 1

2

(logD0)
K

x

)
.

We can now set the parameter η to be sufficiently small (in terms of K,M,θ1,θ2,ξ) such

that the big-O term will be negligible, which implies that

S 
K,M,θ1,θ2,ξ,η

(
1

q

)K−1(
q3

φ(q3)

)K
(logx)

K− 1
2

(logD0)K
x. (27)

Equation (24) implies that

S �#{En ≤ x : En+i−1 ≡ ai mod q ∀1≤ i≤M}× exp(O(K/ξ))

(
logR

logD0

)K

,

which along with equation (27) and the fact that logR= θ2
2 logx, implies that

#{En ≤ x : En+i−1 ≡ ai mod q ∀1≤ i≤M}
K,M,θ1,θ2,ξ,η

(
1

q

)K−1(
q3

φ(q3)

)K
x√
logx

.

This completes the proof.

3. Proofs of sieve results

The goal of this section is to prove Theorem 2. Throughout, fix η > 0 and let L =

{�i(n)}1≤i≤K be a fixed tuple of linear forms �i(n) = qn+ai+ qbi, where qbi ≤ η
√
logx

for all i. Let ν0 be a congruence class modulo W such that (�(ν0),W ) = 1 for all � ∈ L.
This section will be organized as follows. In Section 3.1, we introduce notation that

will be used throughout, and define the sieve weights wn(L). Sections 3.2 and 3.3 contain

lemmas and computations that will be used throughout the proof of Theorem 2; the

estimate (16) is proven in Lemma 8. Finally, equations (17), (18), (19), (20), (21) and
(22) are proven (respectively) in Sections 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9, which completes

the proof of Theorem 2.

3.1. Sieve notation and setup

We begin by fixing some notation in preparation for defining the weights wn(L). Recall
thatW is the product of primes p≡ 3 mod 4 satisfying p≤D0 and (p,q) = 1. In particular,

this means that if a prime p≡ 3 mod 4 satisfies p|�i(n) and p|�j(n) for x < n≤ 2x and for

two distinct linear forms �i,�j ∈ L, then p|q3W . Let DK ⊂ ZK denote the set of K -tuples
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d= (di) such that for all i, (di,q3W ) = 1, such that (di,dj) = 1 for all i 	= j, and such that

each di is divisible only by primes congruent to 3 mod 4.

Let F : [0,1]K → R be a smooth function defined as follows. Let RK = {(x1, . . . ,xK) ∈
[0,1]K :

∑K
i=1xi ≤ 1}. Define F (t1, . . . ,tK) as

F (t1, . . . ,tK) :=

K∏
i=1

g(Kti), (28)

where

g(t) =

{
1

1+t, if t≤ 1,

0, otherwise.
(29)

Note that F is supported on the set RK .
We are now ready to define the sieve weights wn(L), which are nearly identical in

structure to the multi-dimensional Selberg sieve weights used in, among other papers,

[13] and [15]. We define

wn(L) =
( ∑

d∈DK

di|�i(n)

λd

)2
, (30)

where

λd =

(
K∏
i=1

μ(di)di

) ∑
r∈DK

di|ri∀i

μ(r)2

φ(r)
F

(
logr1
logR

,. . . ,
logrK
logR

)
. (31)

We will write

yr := F

(
logr1
logR

,. . . ,
logrK
logR

)
(32)

where F is a function defined in (28).
The results of our sieve evaluations will depend on the following functionals on F :

LK(F ) :=

∫ 1

0

· · ·
∫ 1

0

[F (x1, . . . ,xK)]
2

K∏
i=1

dxi√
xi
,

LK;m(F ) :=

∫ 1

0

· · ·
∫ 1

0

[∫ 1

0

F (x1, . . . ,xK)
dxm√
xm

]2 K∏
i=1
i
=m

dxi√
xi
,

LK;m1,m2
(F ) :=

∫ 1

0

· · ·
∫ 1

0

[∫ 1

0

(∫ 1

0

F (x1, . . . ,xK)
dxm1√
xm1

)
dxm2√
xm2

]2 K∏
i=1

i
=m1,m2

dxi√
xi

.

(33)

Using the function F that is explicitly given by (28) and (29), we can evaluate each of
LK(F ), LK;m(F ), and LK;m1,m2

(F ); each of these will be a constant depending only on

K. More convenient, however, is using the following lemma, which relates each of these

values to LK(F ).
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Lemma 4 ([15], Lemma 6.4: Evaluation of sieve functionals). Let F (t1, . . . ,tK) be given

by equation (28) and let LK(F ), LK;m1
(F ), and LK;m1,m2

(F ) denote the functionals

defined in (33). Then for any m1,m2,

LK;m1
(F )

LK(F )
=

π2

π+2

√
1

K
and

LK;m1,m2
(F )

LK(F )
=

(
π2

π+2

)2
1

K
.

3.2. Auxiliary lemmas for sieve weights

This subsection and the next collect various lemmas that will be used throughout our
estimates. To begin with, we present several lemmas concerning the sieve weights defined

in Section 3.1.

Lemma 5.

(i) Let r,s ∈ DK with si = ri for all i 	= j and sj = Arj for some A ∈ N. Then for yr
and ys defined by (32), we have

ys = yr+O

(
K

logA

logR
yr

)
.

(ii) Let r,s ∈DK with r = s and let A be the product of primes dividing r but not (r,s).

Then for yr and ys defined by (32), we have

ys = yr+O

(
K

logA

logR
(yr+ys)

)
.

Proof. Recall that yr = F
(

logr1
logR , . . . , logrKlogR

)
, where F (t1, . . . ,tK) :=

∏K
i=1 g(Kti) and

g(t) = 1
1+t for t≤ 1 and g(t) = 0 otherwise. Given u,v ≥ 0 with |u−v|< ε, we have

1

1+Ku
=

1+O(Kε)

1+Kv
.

Let ui = logri/ logR, vi = logsi/ logR and εi = vi−ui. In part (i), εi = 0 for i 	= j and
εj = logA/ logR. Thus,

1

1+Kvj
=

1+O
(

K logA
logR

)
1+Kuj

.

Multiplying by
∏

i
=j 1/(1+Kui) gives the result for (i).

Now consider part (ii), and let t be the vector with ti = [ri,si]. Applying part (i) to

each component in turn implies that

ys = yt+O

(
Kys

K∑
i=1

log ([ri,si])/si
logR

)
= yt+O

(
Kys

logA

logR

)
.

The same holds for r and t, which implies (ii).

The following lemma is a standard evaluation of sums of multiplicative functions that

appear frequently in sieve computations.
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Lemma 6. Let A1,A2,L > 0 and let γ be a multiplicative function satisfying

0≤ γ(p)

p
≤ 1− 1

A1

and

−L≤
∑

w≤p<z

γ(p) logp

p
− 1

2
log
( z
w

)
≤A2

for 2 ≤ w ≤ z. Let g be the multiplicative function defined by g(p) = γ(p)
p−γ(p) , and let G :

[0,1]→ R be a piece-wise differentiable function. Then

∑
d<z

μ2(d)g(d)G

(
logd

logz

)
= cγ

(logz)
1
2

Γ(1/2)

∫ 1

0

G(t)
dt√
t
+O

(
cγLGmax(logz)

− 1
2

)
,

where

cγ =
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

) 1
2

and

Gmax = sup
t∈[0,1]

(|G(t)|+ |G′(t)|) .

Proof. This is [6, Lemma 4] with κ= 1
2 .

Using Lemma 6, we show the following lemma, which is similar to [14, Lemma 8.4].

Lemma 7. Let Q be a squarefree modulus of the form Q= q3Wα with α=RO(K). Let f be

a multiplicative function with f(p) = p+O(K), and let G :R→R be a smooth decreasing

function supported on [0,1].
Then for K sufficiently large, we have

∑
e∈DK

(e,Q)=1

μ2(e)

f(e)

K∏
i=1

G

(
logei
logR

)

= (1+o(1))

(
φ(α)

α

)K
2
(

e−γ/2

Γ(1/2)

)K(
logR

logD0

)K/2
(∫

t1,...,tK≥0

K∏
i=1

G(ti)
dti√
ti

)
.

Proof. We would like to apply Lemma 6 for each variable. However, the variables ei are

not independent, since e ∈ DK implies (ei,ej) = 1 for i 	= j. Our first task is to decouple

these variables with a negligible penalty.
Denote the sum evaluated in the lemma by

S =
∑

e∈DK

(e,Q)=1

μ2(e)

f(e)

K∏
i=1

G

(
logei
logR

)
.
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If p|(er,ej) for some 1 ≤ r < j ≤ K, then we must have p > D0 since (e,Q) = 1. Thus,

using also the fact that G is decreasing, we have that

∑
e∈NK

(e,Q)=1
p|(ei,ej)

K∏
j=1

μ2(ej)

f(ej)

K∏
i=1

G

(
logei
logR

)

� 1

f(p)2

∑
e∈NK

(e,Q)=1

K∏
j=1

μ2(ej)

f(ej)
G

(
loger+logp

logR

)
G

(
logej +logp

logR

) K∏
i=1
i
=r,j

G

(
logei
logR

)

� (p+O(K))−2S.

Writing

S′ =
∑
e∈NK

(e,Q)=1

K∏
j=1

μ2(ej)

f(ej)

K∏
i=1

G

(
logei
logR

)
=
( ∑

n∈N
(n,Q)=1

μ2(n)

f(n)
G

(
logn

logR

))K
,

it follows that

S−S′ � S

(
K

2

) ∑
p>D0

1

(p+O(K))2
�K

S

D0
.

We now consider S′ in place of S and apply Lemma 6, where we take g(p) = 1
f(p) and

γ(p) = p
f(p)+1 for p � Q and g(p) = γ(p) = 0 for p|Q. For this, we need a bound on the

constant L from Lemma 6. If we did not have the restriction g(p) = γ(p) = 0 for p|Q,
then using the prime number theorem in arithmetic progressions, we could take L to be

a constant, since ∑
w≤p<z

p≡3 mod 4

logp

p+O(K)
− 1

2
log
( z
w

)
�K 1.

It follows that in our case, we can choose L satisfying

L�K 1+
∑
p≤D0

p≡3 mod 4

logp

p
+
∑
p|α

logp

p
.

The first sum is (1+o(1)) 12 logD0. For the second sum, we have the bound

∑
p|α

logp

p
�K log logR

since α= RO(K) and the sum is dominated by taking the smallest possible primes. This

implies that

L�K
1

2
logD0+log logR�K log logR.
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We will write

ΩG =Gmax ·
(∫

t≥0

G(t)
dt√
t

)−1

,

where Gmax is defined as in Lemma 6. Applying Lemma 6 successively K times, we get

S′ =
cKγ

Γ(1/2)K
(logR)K/2

(∫
t1,...,tK≥0

K∏
i=1

G(ti)
dti√
ti

)(
1+

K∑
�=1

(
K

�

)
OK

(
ΩG log logR

logR

)�
)

=
cKγ

Γ(1/2)K
(logR)K/2

(∫
t1,...,tK≥0

K∏
i=1

G(ti)
dti√
ti

)(
1+OK,G

(
log logR

logR

))
,

where cγ is given in Lemma 6 and satisfies

cγ = (1+o(1))
∏
p|α

(
1− 1

p

) 1
2 ∏
p≤D0

(
1− 1

p

) 1
2

= (1+o(1))

(
φ(α)

α

) 1
2 e−γ/2

(logD0)
1
2

Combining our estimates completes the proof.

Lemma 7 will be useful for many of our computations to follow. For now, we use it to
verify that the weights wn(L) given in (30) are bounded above as in (16), which we show

in the following lemma.

Lemma 8. We have the bounds

(i)

|λd| �K

(
logR

logD0

)K/2

, (34)

(ii)

wn(L)�K

(
logR

logD0

)K K∏
i=1

∏
p|�i(n)

p≡3 mod 4

4,

(iii)

wn(L)�K R2+o(1). (35)

Lemma 8, (ii) is precisely (16), whereas (i) and (iii) will be used in our sieve estimates.

Proof. By our choice of yr, for any d ∈ DK , we have

|λd|=
K∏
i=1

di
∑

r∈DK

d|r

yr
φ(r)

=
d

φ(d)

∑
d|r∈DK

F
(

logr1
logR , . . . , logrKlogR

)
φ(r/d)

. (36)

Since F is decreasing in each argument, we can bound |λd| above by replacing each logri
logR

in the argument of F with σi =
(logri/di)

logR .
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We now apply Lemma 7 with Q= dq3W , which gives

∑
d|r∈DK

F (σ1, . . . ,σK)

φ(r/d)
=
∑

d|r∈DK

1

φ(r/d)

K∏
i=1

g(Kσi)

∼
(
φ(d)

d

)K
2
(

e−γ/2

Γ(1/2)

)K(
logR

logD0

)K/2
(∫

t1,...,tK≥0

K∏
i=1

g(Kti)
dti√
ti

)
.

Evaluating the integral gives∫
t1,...,tK≥0

K∏
i=1

g(Kti)
dti√
ti

=

(
π

2
√
K

)K

.

Substituting this expression back into (36), we get that

|λd| �K

(
φ(d)

d

)K
2 −1(

logR

logD0

)K/2

�
(

logR

logD0

)K/2

for K ≥ 4. This completes the proof of (34).

For the second claim, recall that

wn(L) =
( ∑

d∈DK

di|�i(n)

λd

)2
�K

(
logR

logD0

)K

#{d ∈ DK : di | �i(n)}2

�K

(
logR

logD0

)K K∏
i=1

∏
p|�i(n)

p≡3 mod 4

4,

as desired.

For the third claim, note that since λd is supported on d= d1 · · ·dK <R, we have

wn(L)�K

(
logR

logD0

)K
( ∑

d1···dK<R

1

)2

�K R2+o(1)

( ∑
d1···dK<R

1

d1 · · ·dK

)2

�K R2+o(1).

Finally, throughout our sieve arguments, we will make crucial use of [15, Lemma 6.6],

which we restate below for convenience.

Lemma 9. Let J ⊆ {1, . . . ,K} (possibly empty) and p1,p2 ∈ P∪{1} be fixed. Write I =

{1, . . . ,K}\J . Define the sieve sum SJ,p1,p2,m = SJ,p1,p2,m,f,g by

SJ,p1,p2,m =
∑

d,e∈DK

q3W,[d1,e1],...,[dK,eK ] coprime
p1|dm,p2|em

λdλe

∏
i∈I

f([di,ei])
∏
j∈J

g([dj,ej ]),

with weights λd defined as in (30). If J = ∅, we define f(p) = 1/p (and in this case,

there is no dependence on g in the sum). Otherwise, f and g are nonzero multiplicative
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functions defined on primes by

f(p) =
1

p
+O

(
1

p2

)
, g(p) =

1

p2
+O

(
1

p3

)
,

and moreover, we assume that f(p) 	= 1/p. We write SJ for SJ,1,1,m. Then for |J | ∈
{0,1,2}, we have the following:

(i) If m ∈ J , then

SJ,p1,p2,m � F 2
maxB

K+|J|(log logR)2

(p1p2/(p1,p2))2
.

(ii) If m 	∈ J , then

SJ,p1,p2,m � F 2
maxB

K+|J|(log logR)2

p1p2/(p1,p2)
.

(iii) We have

SJ = (1+o(1))BK+|J|LJ (F ),

where we write LJ (F ) as shorthand for LK;j∈J(F ), defined analogously to (33).

Remark. This is [15, Lemma 6.6] with q3W in place of W. Note also that the restriction
d,e ∈ DK in the definition of SJ,p1,p2,m does not affect the statement since λd = 0 for

d 	∈ DK .

3.3. Auxiliary lemmas for sums of two squares

In this subsection, we record several useful results on estimates of the functions ρ and r2.
To begin with, we have the following lemma, which is [15, Lemma 5.3], and will be used

in the proof of (18).

Lemma 10. Let (α,r) = (d,r) = 1, where d and r are squarefree, odd and � xO(1). Then

∑
n≤x

n≡α mod r
n≡1 mod 4

d|n

r2(n) =
g1(r)g2(d)

2rd
πx+R1(x;d,r),

where g2 is defined as in (6), g1 is the multiplicative function defined on primes by

g1(p) = 1−χ(p)/p,

and

R1(x;d,r)�ε ((rd)
1
2 +x

1
3 )d

1
2xε.

The following lemma is nearly identical to [15, Lemma A.3] and will be used to prove

(19).

https://doi.org/10.1017/S1474748025000131 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025000131


24 N. Kimmel and V. Kuperberg

Lemma 11. Let r be a modulus and suppose that (α,r) = (α+h,r) = (c1,r) = (c2,r) = 1

and 4|h, where c1,c2,r are squarefree and odd, and of size � xO(1). Then we have

∑
n≤x

n≡α mod r
n≡1 mod 4

c1|n
c2|n+h

r2(n)r2(n+h) =
g1(r)

2Γ(h,c1,c2,r)

r
π2x+R2(x;c1,c2,r),

where

Γ(h,c1,c2,r) =
g2(c1)g2(c2)

c1c2

∑
(t,2r)=1

ct(h)(c1,t)(c2,t)χ[(c
2
1,t)]χ[(c

2
2,t)]

t2Ψ(c1,t)Ψ(c2,t)
,

where Ψ(u,t) := g2((u,t/(u,t))), ct(h) is the Ramanujan sum ct(h) =
∑

d|(t,h)μ
(
t
d

)
d, and

R2(x;c1,c2,r)�ε r
1
2 c1c2x

3
4+ε+ c

1
2
1 c

1
2
2 x

5
6+ε.

The only difference between Lemma 11 and [15, Lemma A.3] is that the latter requires

the additional constraint that (c1,c2) = 1. However, this constraint is not used in the

proof, which refers heavily to the proof of [18, Lemma 4]. Note that if (c1,c2) � h, then
the sum over r2(n)r2(n+h) is empty; in this case, Γ(h,c1,c2,r) = 0 and the equation still

holds. One can see that Γ(h,c1,c2,r) = 0 when (c1,c2) � h by noting that Γ is multiplicative

over primes p|[h,c1,c2,r] and that ct(h) = μ(t) whenever (t,h) = 1. Then if any prime p
divides (c1,c2) but p � h, the p-component of Γ(h,c1,c2,r) is 0.

The following lemma is [15, Lemma 5.5] and will be used in the proof of (20).

Lemma 12. Let (a,r) = (d,r) = 1, where d and r are squarefree, odd, and � xO(1). Then

∑
n≤x

n≡a mod r
n≡1 mod 4

d|n

r22(n) =
g3(r)g4(d)

rd

⎛
⎝logx+A2+2

∑
p|r

g5(p)−2
∑
p|d

g6(p)

⎞
⎠x+Oε

(
rx

3
4+ε
)
,

where

g3(p) :=

{
(p−1)2

p(p+1) if p≡ 1 mod 4

g1(p) if p≡ 3 mod 4
g4(p) :=

{
4p2−3p+1
p(p+1) if p≡ 1 mod 4

g2(p) if p≡ 3 mod 4

g5(p) :=

{
(2p+1)logp

p2−1 if p≡ 1 mod 4
logp
p2−1 if p≡ 3 mod 4

g6(p) :=

{
(p−1)2(2p+1)logp
(p+1)(4p2−3p+1) if p≡ 1 mod 4

logp if p≡ 3 mod 4

and A2 is a constant given explicitly in [15, Lemma 5.5].

The following lemma is [15, Lemma 5.6], and will be used to prove (18), (19) and (20).
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Lemma 13. Let Q be a squarefree integer such that Q |
∏

p≤(log logx)3 p and any prime p

dividing Q is 1 mod 4. Define Xx,Q, Z
(1)
x,Q, and Z

(2)
x,Q as follows:

Xx,Q =
∑
a≤v

(a,Q)=1
p|a⇒p≡1 mod 4

μ(a)

a
log

v

a
,

Z
(1)
x,Q =

∑
a,b≤v

(a,Q)=(b,Q)=1
p|ab⇒p≡1 mod 4

μ(a)μ(b)g4([a,b])

g2(a)g2(b)[a,b]
log

v

a
log

v

b

Z
(2)
x,Q =

∑
a,b≤v

(a,Q)=(b,Q)=1
p|ab⇒p≡1 mod 4

μ(a)μ(b)g4([a,b])

g2(a)g2(b)[a,b]
log

v

a
log

v

b

∑
p|ab

g6(p).

Then

Xx,Q = (1+o(1))
8A log

1
2 v

πg1(Q)
,

Z
(1)
x,Q = (1+o(1))8A

g7(Q) log
1
2 v

φ(Q)g1(Q)

∏
p≡1 mod 4

p�Q

(
1+

1

(2p−1)2

)
, and

Z
(2)
x,Q =−(1+o(1))4A

g7(Q) log
3
2 v

φ(Q)g1(Q)

∏
p≡1 mod 4

p�Q

(
1+

1

(2p−1)2

)
,

where g7 is the multiplicative function defined on primes by g7(p) = p+1.

Proof. The proof of this lemma is for the most part identical to the proof in Appendix B

of [15], so here we will restrict ourselves to highlighting the differences in the argument.
In general, the application of the Selberg–Delange method is identical to that described

in [15], with the same arguments applying for bounding, for example, relevant analytic

functions; the only change that need be made to McGrath’s arguments is replacing W
by an arbitrary Q (which must divide the W that McGrath uses) everywhere. Thus, by

following McGrath’s proof, we get that, for

K1(s)
2 =

(
1− 1

2s

)−1 ∏
p≡3 mod 4

(
1− 1

p2s

)−1

and

G1(Q,s) =
∏
p|Q

p≡1 mod 4

(
1− 1

ps

)−1

,
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we have

Xx,Q =
K1(1)G1(Q)

Γ(3/2)
√

L(1,χ4)
(logv)

1
2 +Oε

⎛
⎝ (logx)ε

(logv)
1
2

⎞
⎠,

which simplifies to the desired expression.

In the same manner, expressions for Z
(1)
x,Q and Z

(2)
x,Q can be derived.

3.4. Estimating S1

In this section, we will prove Theorem 2, equation (17), which we restate in the following

proposition.

Proposition 14. Consider the sum S1(ν0) defined by

S1(ν0) :=
∑

x<n≤2x
n≡1 mod 4

n≡ν0 mod W

wn(L).

Then

S1(ν0) = (1+o(1))
BKx

4W
LK(F ).

Proof. We have

S1(ν0) =
∑

x≤n≤2x
n≡1 mod 4

n≡ν0 mod W

wn(L) =
∑

x≤n≤2x
n≡1 mod 4

n≡ν0 mod W

( ∑
d∈DK

λd

)2

.

By expanding the square and swapping the order of summation, we get that

S1(ν0) =
∑

d,e∈DK

λdλe

∑
x≤n≤2x

qn+ai+qbi≡0 mod [di,ei]
n≡1 mod 4

n≡ν0 mod W

1

=
∑

d,e∈DK

λdλe

(
x

4W

K∏
i=1

1

[di,ei]
+O(1)

)

=
x

4W

∑
d,e∈DK

λdλe

[d,e]
+O

⎛
⎝ ∑

d,e∈DK

λdλe

⎞
⎠,

where the second line follows from the first by the Chinese remainder theorem and the
observation that 4, W and the [di,ei] are all pairwise relatively prime. In the notation

of Lemma 9, the sum in the main term is precisely the sum S∅ = S∅,1,1,m, which by

Lemma 9 is equal to BKLK(F ).
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It remains only to bound the error term; We have∣∣∣∣∣∣
∑

d,e∈DK

λdλe

∣∣∣∣∣∣� λ2
max|DK |2.

We use (34) to bound λmax, and the bound

|DK | ≤
∑
n≤R

τK(n)�ε R
1+ε. (37)

Since R= xθ2/2 with θ2 <
1
18 , we conclude∣∣∣∣∣∣

∑
d,e∈DK

λdλe

∣∣∣∣∣∣�K,ε R
2+ε = xθ2+ε � x1/18+ε,

which is negligible. This completes the proof.

3.5. Estimating S
(m)
2

In this section, we will prove Theorem 2, equation (18), which we restate in the following

proposition.

Proposition 15. For fixed 1≤m≤K, consider the sum S
(m)
2 (ν0) defined by

S
(m)
2 (ν0) :=

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W

ρ(�m(n))wn(L).

Then

S
(m)
2 (ν0) = (1+o(1))

4π
√

logR
logv B

Kx

(π+2)
√
KW

LK(F ).

Proof. By definition of ρ, we have that

ρ(�m(n)) =
r2(�m(n))

logv

∑
a|�m(n)

p|a⇒p≡1 mod 4
a≤v

μ(a)

g2(a)
log
(v
a

)
.

Note that since a|�m(n), which is relatively prime to q, we must have (a,q) = 1 for any

a in the definition of ρ(�m(n)). Since a is only divisible by primes that are 1 mod 4, the
only nontrivial constraint on a is that (a,q1) = 1. By expanding the definitions of wn(L)
and ρ in the expression for S

(m)
2 (ν0) and changing the order of summation, we get

S
(m)
2 (ν0) =

1

logv

∑
d,e∈DK

λdλe

∑
a≤v

(a,q1)=1
p|a⇒p≡1 mod 4

μ(a)

g2(a)
log

v

a

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W
[di,ei]|�i(n)∀i

a|�m(n)

r2(�m(n)). (38)
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The parameter a is supported on integers whose prime factors are all 1 mod 4, whereas
by the definition of DK , each [di,ei] is only divisible by primes that are 3 mod 4. Thus,

the [di,ei]’s and a are pairwise coprime. Also, all prime factors of each [di,ei] are larger

than D0, whereas each qbi <D0, so each [di,ei] is coprime to each qbi.
Thus, by Lemma 10, (applied with r = qW

∏
i
=m[di,ei] and with d= a[dm,em]), we get

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W
[di,ei]|�i(n)∀i

a|�m(n)

r2(�m(n)) =
g1

(
qW
∏

i
=m[di,ei]
)
g2(a[dm,em])

2qWa
∏

i[di,ei]
πqx

+Oε

((
(WR3v)1/2+x1/3

)
v1/2xε

)
. (39)

Recall that v = xθ1 , R2 = xθ2 , θ1+θ2 < 1/18, and W �ε x
ε for all ε > 0. Thus,

S
(m)
2 (ν0)

=
πx

logv

∑
d,e∈DK

λdλe

∑
a≤v

(a,q1)=1
p|a⇒p≡1 mod 4

μ(a)

g2(a)
log

v

a

g1

(
qW
∏

i
=m[di,ei]
)
g2(a[dm,em])

2Wa
∏

i[di,ei]
+E,

where

|E| �ε
1

logv

∣∣∣∣∣∣
∑

d,e∈DK

λdλe

∣∣∣∣∣∣
∑
a≤v

p|a⇒p≡1 mod 4

1

g2(a)
log

v

a
x

1
3+(θ1+θ2)/2+ε

� λ2
max|DK |2vx 1

3+(θ1+θ2)/2+ε �ε′ x
1
3+(θ1+θ2)

3
2+ε′ � x

5
12+ε′,

where we used use (34) to bound the λmax and (37) for |DK |.
It remains to consider the main term, which is given by

πx

logv

∑
d,e∈DK

λdλe

∑
a≤v

(a,q1)=1
p|a⇒p≡1 mod 4

μ(a)

g2(a)
log
(v
a

) g1(qW∏i
=m[di,ei]
)
g2(a[dm,em])

2Wa
∏

i[di,ei]

=
πxg1(qW )

2W logv

∑
d,e∈DK

λdλe

g1

(∏
i
=m[di,ei]

)
g2([dm,em])∏

i[di,ei]

∑
a≤v

(a,q1)=1
p|a⇒p≡1 mod 4

μ(a)

a
log

v

a
.

The inside sum is exactly Xx,q1 , as defined in Lemma 13. Also, all primes dividing

[dm,em] are congruent to 3 mod 4, so g2([dm,em]) = 1
[dm,em] . We can thus rewrite the
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main term as

Xx,q1πxg1(qW )

2W logv

∑
d,e∈DK

λdλe

∏
i
=m

(
g1([di,ei])

[di,ei]

)
1

[dm,em]2
. (40)

By Lemma 13, Xx,q1 = (1+ o(1)) 8A
√
logv

g1(q1)π
, and by Lemma 9 applied with f(p) = g1(p)

p

and g(p) = 1/p2,

∑
d,e∈DK

λdλe

∏
i
=m

(
g1([di,ei])

[di,ei]

)
1

[dm,em]2
= S{m} =BK+1LK;m(F )(1+o(1)).

Then (40) can be rewritten as

πxg1(qW )

2W logv
· 8A

√
logv

g1(q1)π
BK+1LK;m(F )(1+o(1)).

By definition of g1,

g1(q3W )φ(q3W )

q3W
=

1

2A2
+O

(
1

D0

)
. (41)

Recalling also that B = 2A
π

φ(q3W )
q3W

(logR)
1
2 , we get

S
(m)
2 (ν0) = (1+o(1))

4
√

logR
logv B

Kx

πW
LK;m(F ),

which, along with the fact from Lemma 4 that LK;m(F ) = π2

π+2
LK(F )√

K
, completes the

proof.

3.6. Estimating S
(m1,m2)
3

In this section, we will prove Theorem 2, equation (19), which we restate in the following
proposition.

Proposition 16. For fixed 1≤m1,m2 ≤K lying in the same bin of the tuple L, consider
the sum S

(m1,m2)
3 (ν0) defined by

S
(m1,m2)
3 (ν0) :=

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W

ρ(�m1
(n))ρ(�m2

(n))wn(L).

Then

S
(m1,m2)
3 (ν0)≤ (1+o(1))

64π2
(

logR
logv

)
BKx

(π+2)2KW
V LK(F ).
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Proof. We begin by expanding the definition of wn(L) to rewrite S
(m1,m2)
3 (ν0) as

S
(m1,m2)
3 (ν0) =

∑
d,e∈DK

λdλe

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W
[di,ei]|�i(n)∀i

ρ(�m1
(n))ρ(�m2

(n)).

Upon expanding the definition of ρ and changing the order of summation, the inside sum

over n is equal to

1

log2 v

∑
a,b≤v

(a,q1)=(b,q1)=1
p|a,b⇒p≡1 mod 4

μ(a)μ(b)

g2(a)g2(b)
log

v

a
log

v

b

×
∑

x<n≤2x
n≡1 mod 4

n≡ν0 mod W
[di,ei]|�i(n)∀i

a|(qn+am1
+qbm1

)

b|(qn+am2
+qbm2

)

r2(qn+am1
+ qbm1

)r2(qn+am2
+ qbm2

).

Since �m1
(n) and �m2

(n) are always relatively prime to q, we must also always have

(a,q) = (b,q) = 1; since a and b are only divisible by primes congruent to 1 mod 4, this
is equivalent to the constraint that (a,q1) = (b,q1) = 1. For the inside sum to be nonzero,

[d1,e1], . . . ,[dK,eK ], and W must all be pairwise coprime, and each of these must be

coprime to both a and b. Moreover, if any prime p divides (a,b), then p|q(bm2
−bm1

). We
thus have

S
(m1,m2)
3 (ν0) =

∑
d,e∈DK

λdλe

log2 v

∑
a,b≤v

(a,q1)=(b,q1)=1
p|a,b⇒p≡1 mod 4

μ(a)μ(b)

g2(a)g2(b)
log

v

a
log

v

b

×
∑

�m1
(x)<n≤�m1

(2x)
n≡1 mod 4

n≡α mod qW
∏

i�=m1,m2
[di,ei]

a[dm1
,em1

]|n
b[dm2

,em2
]|n+h

r2(n)r2(n+h),

where α is relatively prime to qW
∏

i
=m1,m2
[di,ei] and h= q(bm2

− bm1
).

We now apply Lemma 11 to estimate the inner sum, taking r = qW
∏

i
=m1,m2
[di,ei],

c1 = a[dm1
,em1

] and c2 = b[dm2
,em2

]. Note that Lemma 11 does not require that c1 and

c2 be relatively prime, but that the main term is 0 unless (c1,c2)|h. Thus,

S
(m1,m2)
3 (ν0) =

∑
d,e∈DK

λdλe

log2 v

∑
a,b≤v

(a,q1)=(b,q1)=1
p|a,b⇒p≡1 mod 4

μ(a)μ(b)

g2(a)g2(b)
log

v

a
log

v

b

×
[
π2qx

g21

(
qW
∏

i
=m1,m2
[di,ei]

)
qW
∏

i
=m1,m2
[di,ei]

g2(a[dm1
,em1

])g2(b[dm2
,em2

])

a[dm1
,em1

]b[dm2
,em2

]
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×
∑

(t,2qW
∏

i�=m1,m2
[di,ei])=1

ct(h)

t2
(a,t)(b,t)

Ψ(a,t)Ψ(b,t)

∏
i=1,2

([dmi
,emi

],t)χ
(
([dmi

,emi
]2,t)

)
Ψ([dmi

,emi
],t)

+O
(
x

5
6+εa

1
2 b

1
2 [dm1

,em1
]
1
2 [dm2

,em2
]
1
2

)

+O
(
x

3
4+ε
(
qW

∏
i
=m1,m2

[di,ei]
) 1

2

ab[dm1
,em1

][dm2
,em2

]
)]

.

Taking absolute values and noting that dmi
,emi

�R
1
K , the first error term is bounded

by

λ2
max|DK |2

(
x

5
6+εv

3
2R

1
K +x

3
4+εv2R2

)
� λ2

max|DK |2x 5
6 v2R2.

Using (34) to bound λmax, (37) for |DK |, and the fact that θ1+θ2 <
1
18 , we get that the

error term is bounded by

�ε′ x
5
6+2(θ1+θ2)+ε′ � x

17
18+ε′,

which is negligible.

We return to the main term which, after some simplification, and recalling that g2(p)=
1
p

for p≡ 3 mod 4, becomes

S
(m1,m2)
3 (ν0)∼

π2xg21 (qW )

W log2 v

∑
d,e∈DK

λdλe

∏
i
=m1,m2

g21 ([di,ei])

[dm1
,em1

]2[dm2
,em2

]2
∏

i
=m1,m2
[di,ei]

×
∑
a,b≤v

(a,q1)=(b,q1)=1
p|a,b⇒p≡1 mod 4

μ(a)μ(b)

ab
log

v

a
log

v

b

∑
(t,2qW

∏
i�=m1,m2

[di,ei])=1

ct(h)

t2

×
∏
i=1,2

([dmi
,emi

],t)χ
(
([dmi

,emi
]2,t)

)
Ψ([dmi

,emi
],t)

(a,t)(b,t)

Ψ(a,t)Ψ(b,t)
.

(42)

The sum over t is multiplicative, and can thus be written as a product Σ1×Σ3, where

Σ1 ranges over integers divisible only by primes congruent to 1 mod 4 and Σ3 ranges over
integers divisible only by primes congruent to 3 mod 4. That is,

Σ3 =
∑
t

p|t⇒p≡3 mod 4
(t,q3W

∏
i�=m1,m2

[di,ei])=1

ct(h)

t2

∏
i=1,2

([dmi
,emi

],t)χ
(
([dmi

,emi
]2,t)

)
Ψ([dmi

,emi
],t)

,

and

Σ1 =
∑
t

(t,q1)=1
p|t⇒p≡1 mod 4

ct(h)

t2
(a,t)(b,t)

Ψ(a,t)Ψ(b,t)
.

We have used the fact that in Σ3 we have (a,t) = (b,t) = Ψ(a,t) = Ψ(b,t) = 1, and in Σ1

we have ([dmi
,emi

],t) = χ
(
([dmi

,emi
]2,t)

)
=Ψ([dmi

,emi
],t) = 1.
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We begin by considering Σ3. Using the definition ct(h) =
∑

t1|(t,h)μ(t/t1)t1, and

swapping sums and relabeling via t2 = t/t1, we get

Σ3 =
∑

t1,t2 p|t1t2⇒p≡3 mod 4
(t1t2,q3W

∏
i�=m1,m2

[di,ei])=1 t1|h

t1μ(t2)

(t1t2)2

∏
i=1,2

([dmi
,emi

],t1t2)χ
(
([dmi

,emi
]2,t1t2)

)
Ψ([dmi

,emi
],t1t2)

.

Any prime p|h with p ≡ 3 mod 4 divides q3W , and t1|h must be co-prime with q3W ,
so t1 = 1. Furthermore, t2 is squarefree due to the term μ(t2), which implies that

Ψ([dmi
,emi

],t2) = 1. Thus,

Σ3 =
∑

t2 p|t2⇒p≡3 mod 4
(t2,q3W

∏
i�=m1,m2

[di,ei])=1

μ(t2)

t22

∏
i=1,2

([dmi
,emi

],t2)χ
(
([dmi

,emi
]2,t2)

)

=
∏

p�q3W
∏

[di,ei]
p≡3 mod 4

(
1− 1

p2

) ∏
p�q3W

∏
i�=m1,m2

[di,ei]

p|
∏

i=1,2[dmi
,emi

]

p≡3 mod 4

(
1+

1

p

)
.

Since q3W is the product of all primes congruent to 3 mod 4 smaller than D0, we have

Σ3 =
∏

p>D0
p≡1 mod 4

(
1− 1

p2

) ∏
i
=m1,m2

⎛
⎝ ∏

p|[di,ei]

(
1− 1

p2

)−1
⎞
⎠g1([dm1

,em1
])g1([dm2

,em2
])

= (1+o(1))g1([dm1
,em1

])g1([dm2
,em2

])
∏

i
=m1,m2

f ([di,ei]),

where f(n) =
∏

p|n

(
1− 1

p2

)−1

.

Plugging this back into (42), we get

S
(m1,m2)
3 (ν0)

∼ π2xg21 (qW )

W log2 v

∑
d,e∈DK

λdλe

∏
i
=m1,m2

g21 ([di,ei])f ([di,ei])
∏

i=1,2 g1 ([dmi
,emi

])

[dm1
,em1

]2[dm2
,em2

]2
∏

i
=m1,m2
[di,ei]

×
∑
a,b≤v

(a,q1)=(b,q1)=1
p|a,b⇒p≡1 mod 4

μ(a)μ(b)

ab
log

v

a
log

v

b

∑
t

(t,q1)=1
p|t⇒p≡1 mod 4

ct(h)

t2
(a,t)(b,t)

Ψ(a,t)Ψ(b,t)
.

In the notation of Lemma 9, the sum over d and e (which is independent of a,b,t) is of

the form SJ for J = {m1,m2}, so that by Lemma 9, we get
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S
(m1,m2)
3 (ν0)∼

π2xg21 (qW )

W log2 v
BK+2LK;m1,m2

(F )

×
∑
a,b≤v

(a,q1)=(b,q1)=1
p|a,b⇒p≡1 mod 4

μ(a)μ(b)

ab
log

v

a
log

v

b

∑
t

(t,q1)=1
p|t⇒p≡1 mod 4

ct(h)

t2
(a,t)(b,t)

Ψ(a,t)Ψ(b,t)
.

Switching the order of summation gives

S
(m1,m2)
3 (ν0)∼

π2xg21 (qW )

W log2 v
BK+2LK;m1,m2

(F ) (43)

×
∑
t

(t,q1)=1
p|t⇒p≡1 mod 4

ct(h)

t2

∑
a,b≤v

(a,q1)=(b,q1)=1
p|a,b⇒p≡1 mod 4

μ(a)μ(b)

ab

(a,t)(b,t)

Ψ(a,t)Ψ(b,t)
log

v

a
log

v

b
.

Denoting the inner sum as Σa,b(t), we can write

Σa,b(t) =

( ∑
a≤v

(a,q1)=1
p|a⇒p≡1 mod 4

μ(a)(a,t)

aΨ(a,t)
log

v

a

)2

.

The calculations from [9, Lemma 6] (along much the same lines as Lemma 13) imply that

Σa,b(t) =

(
8A

πg1(q1)
C(t) log

1
2 v+O

(
t
1
4

log
1
2 v

))2

,

where C(t) is the constant in [9, Lemma 6], given by

C(t) =

⎧⎨
⎩
∏

p|t
p≡1 mod 4

(
2− 1

p

)−1

if p|t and p≡ 1 mod 4 implies p2|t

0 otherwise.

Note that in [9, Lemma 6], the Landau–Ramanujan constant is normalized as
√
2A, and

that the statements of [9, Lemma 5] and [9, Lemma 6] are missing another factor of
√
2.

Plugging this estimate back into (43), we get

S
(m1,m2)
3 (ν0)∼

64A2xg21 (q3W )BK+2

W logv
LK;m1,m2

(F )

( ∑
t

(t,q1)=1
p|t⇒p≡1 mod 4

ct(h)C
2(t)

t2
+O (E)

)
,
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where

E � 1

logv

∑
t

(t,q1)=1
p|t⇒p≡1 mod 4

|ct(h)|C(t)

t
7
4

+
1

log2 v

∑
t

(t,q1)=1
p|t⇒p≡1 mod 4

|ct(h)|
t
3
2

� 1

logv

∑
t

(t,q1)=1
p|t⇒p≡1 mod 4

|ct(h)|
t
3
2

.

From [9, Eq 15], we have that E � 1
logvσ− 1

2
(h), which implies E � log logx

logx since h ≤
η(logx)

1
2 . As for the main term, from [9, Eq 18], we have

∑
t

(t,q1)=1
p|t⇒p≡1 mod 4

ct(h)C
2(t)

t2
=

∏
pβ‖h

p≡1 mod 4
p�q1

(
1+

1

(2p−1)2

(
1− 1

pβ−1
− 1

pβ

))
.

Thus,

S
(m1,m2)
3

∼ 64A2xg21 (q3W )BK+2

W logv

∏
pβ‖bm2

−bm1
p≡1 mod 4

p�q1

(
1+

1

(2p−1)2

(
1− 1

pβ−1
− 1

pβ

))
LK;m1,m2

(F ).

The product over pβ‖(bm2
− bm1

) is bounded above by V (defined in (15)), so that

S
(m1,m2)
3 (ν0)≤ (1+o(1))

64A2xg21 (q3W )BK+2

W logv
V LK;m1,m2

(F ).

Finally, using the identity that B = 2A
π

φ(q3W )(logR)1/2

q3W
as well as applying (41) and

Lemma 4 completes the proof.

3.7. Estimating S
(m)
4

In this section, we will prove Theorem 2, equation (20), which we restate in the following

proposition.

Proposition 17. For fixed 1≤m≤K, consider the sum S
(m)
4 (ν0) defined by

S
(m)
4 (ν0) =

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W

ρ2(�m(n))wn(L).

Then

S
(m)
4 (ν0) = (1+o(1))

8π
√

logR
logv

(
logx
logv +1

)
BKx

(π+2)
√
KW

∏
p≡1 mod 4

p�q1

(
1+

1

(2p−1)2

)
LK(F ).
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Proof. We first expand the definitions of wn(L) and ρ2(�m(n)) and swap the order of

summation to write

S
(m)
4 (ν0) =

1

log2 v

∑
d,e∈DK

λdλe

∑
a,b≤v

(a,q1)=(b,q1)=1
p|ab⇒p≡1 mod 4

μ(a)μ(b)

g2(a)g2(b)
log

v

a
log

v

b

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W
[di,ei]|�i(n)∀i
[a,b]|�m(n)

r22(�m(n)).

(44)

The quantities W,[d1,e1], . . . ,[dk,ek], q, and [a,b] must be pairwise coprime because of the
support of DK . We use Lemma 12 in order to evaluate the inner sum; we will apply

Lemma 12 with r = qW
∏

i
=m[di,ei] and d = [a,b][dm,em]. The sum (44) can then be

written as

1

log2 v

∑
d,e∈DK

λdλe

∑
a,b≤v

p|ab⇒p≡1 mod 4

μ(a)μ(b)

g2(a)g2(b)
log

v

a
log

v

b
× (45)

⎛
⎝g3(r)g4(d)

rd

⎛
⎝logqx+A2+2

∑
p|r

g5(p)−2
∑
p|d

g6(p)

⎞
⎠qx+Oε

(
(qx)

3
4+θ2+ε

)⎞⎠ .

Taking absolute values, the error term from (45) is bounded by

�ε λ
2
max|DK |2v2(qx) 3

4+θ2+ε �ε′ x
3
4+2(θ2+θ1)+ε′,

where we used (34) to bound the λmax and (37) for |DK |. This error term is negligible,
since θ1+θ2 <

1
18 .

We now evaluate the main term via a process that is identical to the one in [15,

Proposition 6.2, part (iv)]. Using the notation from Lemma 13, the main term of (45) is

(1+o(1))
g3(qW )BK+1qx

W log2 v

(
Z(1)
x,q1 logx−2Z(2)

x,q1

)
LK;m(F ).

By Lemma 13, this is equal to

(1+o(1))
g3(qW )BK+1qx

W log2 v

8Ag7(q1)

φ(q1)g1(q1)

√
logv(logx+logv)

×
∏

p≡1 mod 4
p�q1

(
1+

1

(2p−1)2

)
LK;m(F )

= (1+o(1))
8Ag3(qW )g7(q1)B

K+1 log
3
2 v
(

logx
logv +1

)
qx

qWφ(q1)g1(q1) log
2 v

×
∏

p≡1 mod 4
p�q1

(
1+

1

(2p−1)2

)
LK;m(F ).
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Recalling the definition of B and equation(41), we get that

S
(m)
4 (ν0)

= (1+o(1))
g3(q1)g7(q1)

φ(q1)g1(q1)

8Bk
√

logR
logv

(
logx
logv +1

)
x

Wπ

∏
p≡1 mod 4

p�q1

(
1+

1

(2p−1)2

)
LK;m(F ).

Observing that the factors dividing q1 cancel and applying the identity from Lemma 4

that LK;m(F ) = π2

π+2
LK(F )√

K
completes the proof.

3.8. Estimating S
(m)
5

In this section, we will prove Theorem 2, equation (21), which we restate in the following

proposition.

Proposition 18. Let ξ > 0 be a constant with ξ < 1
K . For fixed 1 ≤ m ≤ K, define

S
(m)
5 (ν0) to be the sum

S
(m)
5 (ν0) :=

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W

∑
p<xξ

p≡3 mod 4
p|�m(n)

wn(L).

Then

S
(m)
5 (ν0)�

K2ξ2

θ22

BKx

W
LK(F ).

The proof of the proposition relies on the following lemma, which we state and prove
before turning to the main proof of Proposition 18.

Lemma 19. Define

T =
x

W

∑
u,v∈DK

yuyv
φ(u)φ(v)

∏
p|uv

|σp(u,v)|,

where

σp(u,v) =
∑

d|u, e|v
di,ei|p ∀i

μ(d)μ(e)de

[d,e]
=

⎧⎪⎨
⎪⎩
p−1 if p | (u,v)
0 if p | uv, p � (u,v)
1 if p � uv

.

Then

T � x

W

(
e−γ/2

Γ(1/2)

)K(
logR

logD0

)K/2

LK(F ).
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Proof. First note that if u 	= v, then for some prime p, σp(u,v) = 0, so these terms do

not contribute. Thus, for a fixed u ∈ DK ,

∑
v∈DK

∏
p|uv |σp(u,v)|

φ(v)
=
∏
p|u

( ∑
w∈DK

wi|p∀i

|σp(u,w)|
φ(w)

)
= 1.

This, along with the bound that yuyv � y2u+y2v, implies that

T � x

W

∑
u,v∈DK

y2u+y2v
φ(u)φ(v)

∏
p|uv

|σp(u,v)| �
x

W

∑
u∈DK

y2u
φ(u)

( ∑
v∈DK

∏
p|uv |σp(u,v)|

φ(v)

)

� x

W

∑
u∈DK

y2u
φ(u)

.

By Lemma 7,

∑
r∈DK

y2r
φ(r)

=
∑

r∈DK

μ(r)2

φ(r)

K∏
i=1

g

(
K

logr1
logR

)2

�
(

e−γ/2

Γ(1/2)

)K(
logR

logD0

)K/2

LK(F ),

as desired.

We are now ready to prove Proposition 18.

Proof of Proposition 18. Expanding the square and swapping the order of summation

gives

S
(m)
5 (ν0) =

∑
p<xξ

p≡3 mod 4

∑
d,e∈DK

λdλe

∑
x<n≤2x

n≡1 mod 4
n≡ν0 mod W
[di,ei]|�i(n)
p|�m(n)

1.

By choice of ν0 mod W , if p|�m(n), then p > D0. Because of the support of DK , if
λd 	= 0 and λe 	= 0, then any prime p ≡ 3 mod 4 can divide at most one of the �i(n).

Thus, if p|�m(n), then p � �i(n) for all i 	= m, which implies that (diei,p) = 1 for all

i 	=m. By the Chinese remainder theorem, the inner sum is of the form x
Q +O(1), where

Q = 4W [dm,em,p]
∏

i
=m[di,ei]. Note that Q < 4WR2xξ, and for any fixed Q, there are
O(τ3k+4(Q)) choices of d,e,p giving rise to the modulus Q. Thus, the error term from the

Chinese remainder theorem application and (34) makes a contribution that is

�
∑

Q<4WR2xξ

τ3k+4(Q)λ2
max �ε R

2xξxε = xθ2+ξ+ε,

which is negligible for ξ small.
The remaining term is given by

x

4W

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
d,e∈DK

(diei,p)=1∀i
=m

λdλep

[dm,em,p]
∏

i
=m[di,ei]
.
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Expanding the definitions of λd,λe and rearranging, this is

x

4W

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
d,e∈DK

(diei,p)=1∀i
=m

μ(d)μ(e)dep

[dm,em,p]
∏

i
=m[di,ei]

∑
r,s∈DK

d|r,e|s

yrys
φ(r)φ(s)

=
x

4W

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
r,s∈DK

yrys
φ(r)φ(s)

∑
d,e∈DK

(diei,p)=1∀i
=m
d|r,e|s

μ(d)μ(e)dep

[dm,em,p]
∏

i
=m[di,ei]
.

(46)

The inside sum is multiplicative over p′|rs; write σp′(r,s,p) for the p′ component. If p′ 	= p,

then

σp′(r,s,p) =
∑

d,e∈DK

di,ei|p′ ∀i
d|r,e|s

μ(d)μ(e)dep

[dm,em,p]
∏

i
=m[di,ei]
=

⎧⎪⎨
⎪⎩
p′−1 if p′|(r,s)
−1 if p′|r,p′|s,p′ � (r,s)
0 otherwise,

where we recall that (r,s) =
∏

i(ri,si). If p
′ = p, then

σp(r,s,p) =
∑

d,e∈DK

dm,em|p
di=ei=1 ∀i
=m

d|r,e|s

μ(d)μ(e)dep

[dm,em,p]
∏

i
=m[di,ei]
=

⎧⎪⎨
⎪⎩
(p−1)2 if p|(rm,sm)

−(p−1) if p|rmsm,p � (rm,sm)

1 otherwise.

.

Let fu(r) = (r1, . . . ,rm/(rm,p), . . . ,rk) be the vector formed by removing a possible factor
of p from rm. Then our expression (46) can be written as

x

4W

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
u,s∈DK

(um,p)=1

ys
φ(s)

∑
r

fu(r)=u

yr
φ(r)

∏
p′|rs

σp′(r,s,p).

We split the sum above into several parts. Let Σ1 be the summands where p|uj for some
j 	=m, and let Σ2 be the summands where p � ui for all i. Define

T =
x

W

∑
u,v∈DK

yuyv
φ(u)φ(v)

∏
p′|uv

|σp′(u,v)|, (47)

where

σp′(u,v) =
∑

d|u, e|v
di,ei|p′ ∀i

μ(d)μ(e)de

[d,e]
.
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We will bound both Σ1 and Σ2 in terms of T, showing first that Σ1 � 1
D0

T . We have

Σ1 =
x

4W

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
i
=m

∑
u,s∈DK

(um,p)=1
p|ui

ys
φ(s)

∑
r

fu(r)=u

yr
φ(r)

σp(r,s,p)
∏
p′|rs
p′ 
=p

σp′(r,s,p).

Given u, there is only one vector r such that fu(r) = u; namely, r= u. Thus,

Σ1 =
x

4W

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
i
=m

∑
u,s∈DK

(um,p)=1
p|ui

ysyu
φ(s)φ(u)

σp(u,s,p)
∏
p′|us
p′ 
=p

σp′(u,s).

Denote by u′ the vector obtained from u by removing all factors of p. Then φ(u) =

(p−1)φ(u′) and σp(u,s,p) = σp(u
′,s,p) = μ((sm,p))φ((sm,p)), which is independent of u

because we already require (um,p) = 1. Thus,

Σ1 =
x

4W

∑
s∈DK

ys
φ(s)

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
u′∈DK

p�u′
i

1

φ(u′)
σp(u

′,s,p)
∏

p′|u′s
p′ 
=p

σp′(u′,s)
∑

u∈DK

u→u′

yu
(p−1)

.

By Lemma 5, we have yu = yu′ (1+O (Kξ)). By assumption, Kξ� 1, so (recalling that

the weights yr are nonnegative), yu � yu′ and

Σ1 �
x

W
(K−1)

∑
s∈DK

ys
φ(s)

∑
D0<p<xξ

p≡3 mod 4

1

p(p−1)

∑
u′∈DK

p�u′
i

yu′

φ(u′)
|σp(u

′,s,p)|
∏

p′|u′s
p′ 
=p

|σp′(u′,s)|.

To bound Σ1, we now further split it into subsums. First, let T1 consist of all those

terms with s such that p � si for all i. In this case, σp(u
′,s,p) = 1, so

T1 �
x

W
(K−1)

∑
D0<p<xξ

p≡3 mod 4

1

p(p−1)

∑
s∈DK

p�si ∀i

ys
φ(s)

∑
u′∈DK

p�u′
i ∀i

yu′

φ(u′)

∏
p′|u′s

|σp′(u′,s)| .

Dropping the requirement that p � si, p � u′
i only increases T1. The sum over p is then

independent of the rest of the expression, and converges to a constant that is � 1
D0

,

which in turn implies that T1 � K
D0

T , where T is defined in (47).

Now consider T2, the terms s in Σ1 such that p | si for some i 	= m. In this case,

σp(u
′,s,p) = 1, so

T2 �
x

W
(K−1)2

∑
D0<p<xξ

1

p(p−1)

∑
s∈DK

p|s1

ys
φ(s)

∑
u′∈DK

p�u′
i ∀i

yu′

φ(u′)

∏
p′|u′s
p′ 
=p

|σp′(u′,s)| .

Let s′ be the vector obtained by removing the factor of p from s. Once again, ys � ys′ ,
so

T2 �
x

W
(K−1)2

∑
D0<p<xξ

p≡3 mod 4

1

p(p−1)2

∑
s′∈DK

p�si ∀i

ys′

φ(s′)

∑
u′∈DK

p�u′
i ∀i

yu′

φ(u′)

∏
p′|u′s

|σp′(u′,s)| .
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Once more, we can remove the constraints that p � si and p � u′
i and evaluate the sum over

p to get that T2 � K2

D2
0
T .

Finally, consider T3, the subsum of Σ1 with those s such that p | sm. In this case,

σp(u
′,s,p) =−(p−1). A similar computation gives

T3 �
x

W

∑
D0<p<xξ

p≡3 mod 4

1

p(p−1)2

∑
s′∈DK

p�si ∀i

ys′

φ(s′)

∑
u′∈DK

p�u′
i ∀i

yu′

φ(u′)
(p−1)

∏
p′|u′s

|σp′(u′,s)| � 1

D0
T.

Thus, |Σ1| � T1+T2+T3 � K2

D0
T .

Now consider Σ2, given by

Σ2 =
x

4W

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
u,s∈DK

(ui,p)=1∀i

ys
φ(s)

∑
r∈DK

fu(r)=u

yr
φ(r)

∏
p′|rs

σp′(r,s,p).

Observe that for fixed u,s ∈ DK with p � ui for all i,

∑
r∈DK

fu(r)=u

σp(r,s,p)

φ(r)
=

μ((sm,p))φ((sm,p))

φ(u)

(
1− p−1

p−1

)
= 0. (48)

We substitute yr = yu+(yr−yu) into Σ2. By (48), the yu do not contribute, leaving only

the contribution from (yr−yu). The only terms remaining have r 	=u, so that p|rm. Thus,

Σ2 =
x

4W

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
r,s∈DK

p|rm

ys(yr−yu)

φ(r)φ(s)

∏
p′|rs

σp′(r,s,p).

By running the same argument for s and a tuple v obtained from s by removing a factor

of p from sm (including bounding the terms where p|vi for some i 	= m by K2

D0
T using

identical arguments to the bound on Σ1), we can also replace ys by ys− yv. By Lemma

5, we have

(yr−yu)(ys−yv)� yuyvK
2 (logp)

2

(logR)2
,

so Σ2 is given by

Σ2 =
x

4W

∑
D0<p<xξ

p≡3 mod 4

1

p

∑
r,s∈DK

p|(rm,sm)

(yr−yu)(ys−yv)

φ(r)φ(s)

∏
p′|rs

σp′(r,s,p)+O

(
K2T

D0

)

�xK2

W

∑
D0<p<xξ

p≡3 mod 4

1

p

(
logp

logR

)2 ∑
u,v∈DK

(uv,p)=1

yuyv
∏
p′|uv
p′ 
=p

|σp′(u,v)|
∑

r,s∈DK
rm=pum
sm=pvm

ri=ui∀i
=m
si=vi∀i
=m

|σp(r,s,p)|
φ(r)φ(s)

+
K2T

D0
.
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The sum over r and s is equal to φ(u)−1φ(v)−1, so

Σ2 �
xK2

W

∑
D0<p<xξ

p≡3 mod 4

1

p

(
logp

logR

)2 ∑
u,v∈DK

(uv,p)=1

yuyv
φ(u)φ(v)

∏
p′|uv
p′ 
=p

|σp′(u,v)|+ K2T

D0

� xK2ξ2

Wθ22

∑
u,v∈DK

yuyv
φ(u)φ(v)

∏
p′|uv

|σp′(u,v)|+ KT

D0
�
(
K2 ξ

2

θ22
+

K2

D0

)
T.

Altogether, we get that S
(m)
5 (ν0)�

(
K2ξ2

θ2
2

+ K2

D0

)
T . The contribution from the K2

D0
term

vanishes as x grows large. The quantity T is evaluated in Lemma 19, giving

S
(m)
5 (ν0)�

xK2ξ2

Wθ22

(
e−γ/2

Γ(1/2)

)K(
logR

logD0

)K/2

LK(F ).

From the definition of B and Mertens’ theorem, we get

(
e−γ/2

Γ(1/2)

)K(
logR

logD0

)K/2

∼Bk,

which completes the argument.

3.9. Estimating S
(b)
6

In this section, we will prove Theorem 2, equation (22), which we restate in the following

proposition.

Proposition 20. Let ν1 be a congruence class modulo q23W
2 such that (�(ν1),q

2
3W

2) is

a square for all � ∈ L. Fix 3< b≤ η
√
logx and consider the linear form �(b)(n) := qn+ b.

Fix a constant ξ with 0< ξ < 1/4, and define

S
(b)
6 (ν1) :=

∑
x<n≤2x

n≡1 mod 4
n≡ν1 mod q23W

2

1S(ξ)(�
(b)(n))wn(L),

where S(ξ) is the set described in (11). Then

S
(b)
6 (ν1)�K

x

4q23W
2
ξ−1/2

(
θ2
2

)−1/2(
logR

logD0

)K−1
2

LK(F ).

Proof. We will apply Selberg’s sieve to bound the function 1S(ξ)(�(n)), while also

evaluating the sum over sieve weights wn(L). We begin by defining the additional sieve

weights.
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Recall that S(ξ) denotes the set of integers such that for all primes p < xξ with p ≡
3 mod 4, either p � n or p2|n. Thus, for each prime p ≡ 3 mod 4, with D0 < p < xξ, we

sieve by the set Ap of integers x≤ n≤ 2x such that p | �(n) but p2 � �(n). The sieving set

Ap has density function

g(p) =

{
1
p −

1
p2 p > D0 and p≡ 3 mod 4

0 otherwise.

We extend both g(p) and Ap multiplicatively to squarefree d, so that

|rd| := |Ad−g(d)x| � τ(d).

We will use the upper bound Selberg sieve

1S(ξ)(�(n))≤
∑

f |�(n)
μ+(f)|Af |,

where

μ+(f) =
1

λ̃1
2

∑
[d0,e0]=f

λ̃d0
λ̃e0,

and λ̃d is a sequence of weights defined as follows. Define ‘diagonalizing vectors’ ỹr0 via

ỹr0 :=

{
1 if (r0,q3W ) = 1,r0 < xξ, and p|r0 ⇒ p≡ 3 mod 4

0 otherwise,

and define λ̃d0
to be

λ̃d0
:= μ(d0)

d20
φ(d0)

∑
d0|r0

ỹr0
φ(r0)

. (49)

By Möbius inversion, we also have the relation that

ỹr0 = μ(r0)φ(r0)
∑
r0|d0

λ̃d0
φ(d0)

d20
.

Note that λ̃d0
is supported on squarefree d0 with (d0,q3W ) = 1, d0 < xξ, and d0 only

divisible by primes congruent to 3 mod 4. Also, with this choice,

λ̃1 =
∑

r0<xξ

(r0,q3W )=1
p|r0⇒p≡3 mod 4

1

φ(r0)


√

ξ logx

logD0
. (50)
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For what follows, we will fix the notation that

φω∗(n) = n
∏
p|n

(
1− K+1

p

)
,

and define further ‘cross’-diagonalizing vectors

yr,r0 := μ(r0r)φω∗(r0r)
∑
r|d
r0|d0

(d0,d)=1

λdλ̃d0
φ(d0)

dd20
, (51)

which satisfy the inverse relation that

λdλ̃d0
=

μ(d0d)dd
2
0

φ(d0)

∑
d|r
d0|r0

(r0,r)=1

yr,r0
φw∗(rr)

. (52)

We are now ready to apply Selberg’s sieve, which gives that

S
(b)
6 (ν1)≤

1

λ̃1
2

∑
d0,e0,d,e

λ̃d0
λ̃e0λdλe

∑
x<n≤2x

[di,ei]|�i(n)
p|d0e0⇒p‖�(n)

n≡1 mod 4
n≡ν1 mod q23W

2

|A[d0,e0]|

=
1

λ̃1
2

∑
d0,e0,d,e

(d0e0,de)=1

λ̃d0
λ̃e0λdλe

(
xg([d0,e0])

4q23W
2
∏K

i=1[di,ei]
+O(τ([d0,e0]))

)
.

The contribution from the O(τ([d0,e0])) term satisfies

1

λ̃1
2

∑
d0,e0,d,e

(d0e0,de)=1

|λ̃d0
||λ̃e0 ||λd||λe|τ([d0,e0])�R2+o(1) 1

λ̃1
2

∑
d0,e0

|λ̃d0
||λ̃e0 |τ([d0,e0]).

By construction of λ̃1 and λ̃d0
, we always have that |λ̃d0

|/|λ̃1| ≤ d2
0

φ(d0)2
. Thus, this term

contributes �ε R
2+εx2ξ+ε � xθ2+2ξ+2ε, which is negligible since ξ < 1/4.

The remaining ‘main’ term is given by

x

4q23W
2λ̃1

2

∑
d0,e0

(d0,e0,q3W )=1

λ̃d0
λ̃e0g([d0,e0])

∑
d,e∈DK

(de,d0e0)=1

λdλe∏K
i=1[di,ei]

. (53)
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Substituting the formula (52) for λdλ̃d0
into (53), we get that (53) is equal to

=
x

4q23W
2λ̃1

2

∑
d,e∈DK
d0,e0

(diei,djej)=1 ∀0≤i<j≤k

μ(d0d)μ(e0e)d
2
0de

2
0eg([d0,e0])

[d,e]φ(d0)φ(e0)

×
∑

d|r,e|s
d0|r0,e0|s0

yr,r0ys,s0
φω∗(r0r)φω∗(s0s)

=
x

4q23W
2λ̃1

2

∑
r,s∈DK
r0,s0

(r0s0,rs)=1

yr,r0ys,s0
φω∗(r0r)φω∗(s0s)

×
∑

d|r, e|s
d0|r0, e0|s0

(diei,djej)=1 ∀0≤i<j≤k

μ(d0d)μ(e0e)d
2
0de

2
0eg([d0,e0])

[d,e]φ(d0)φ(e0)
.

The inner sum is multiplicative over p | rsr0s0, where the pth factor is given by

σp(r,s,r0,s0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p−1 p | ri, p | si, i≥ 1
p2

p−1 −1 p | r0, p | s0
−1 p | ri, p | sj, i 	= j, i,j ≥ 0

0 p divides exactly one of rr0 and ss0.

The product
∏

p|rsr0s0 σp(r,s,r0,s0) is 0 unless rr0 = ss0. Then using the bound

yr,r0ys,s0 ≤ y2r,r0 +y2s,s0 we see (by symmetry) that (53) is

≤ x

4q23W
2λ̃1

2

∑
r,r0

y2r,r0
φ2
ω∗(rr0)

∑
s,s0

ss0=rr0

∏
p|rr0

|σp(r,s,r0,s0)|

=
x

4q23W
2λ̃1

2

∑
r,r0

y2r,r0
φ2
ω∗(rr0)

∏
p|r

(K+p−1)
∏
p|r0

(
K+

p2

p−1
−1

)

≤ x

4q23W
2λ̃1

2

∑
r,r0

y2r,r0

∏
p|rr0

⎛
⎝K+ p2

p−1 −1

(p−K−1)2

⎞
⎠

� x

4q23W
2λ̃1

2

∑
r,r0

y2r,r0∏
p|rr0 (p+O(K))

. (54)

In order to estimate this sum, we wish to express yr,r0 in terms of yr and ỹr0 . This is

very similar to the computation done in [14, Proposition 9.4]. Writing yr,r0 as in (51) and
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using the definition of λd in (31) and λ̃d0
in (49), we get

yr,r0 = μ(r0r)φω∗(r0r)
∑
r|d
r0|d0

(d0,d)=1

λdλ̃d0
φ(d0)

dd20

= μ(r0r)φω∗(r0r)
∑
r0|d0

μ(d0)
∑
d0|f0

ỹf0
φ(f0)

∑
r|d

(d,d0)=1

μ(d)
∑
d|f

yf
φ(f)

= μ(r0r)φω∗(r0r)
∑
f0,f

r0|f0,r|f

yf ỹf0
φ(f0)ϕ(f)

∑
d0,d

r0|d0,r|d
d0|f0,d|f
(d,d0)=1

μ(d)μ(d0).

The inner sum is 0 unless every prime dividing one of f and f0 but not the other is a

divisor of rr0; in that case, the inner sum is ±1. Thus, using the fact that yr ≥ yf (since

F is decreasing), as well as the fact that ỹr0 ≥ ỹf0 , we get that

yr,r0 ≤ φω∗(r0r)yrỹr0
∑
f0

r0|f0
(f0,q3W )=1

∑
f∈DK

r|f
ff0/(f,f0)

2|rr0

μ2(f0)

φ(f0)φ(f)
.

Let f0 = r0f
′
0g0 and fi = rif

′
igi for 1≤ i≤K, where f ′

i = fi/(fi,rr0) is the largest divisor
of fi that is relatively prime to rr0. In particular, g0 | r and gi | r0 for 1 ≤ i ≤K. Since

ff0/(f,f0)
2 | rr0, we must have f ′

0 =
∏K

i=1 f
′
i . Thus, yr,r0 is bounded by

yr,r0 ≤ φω∗(r0r)yrỹr0
1

φ(r0r)

∑
f ′∈DK

1

φ2(f ′)

∑
g∈DK

gi|r0∀1≤i≤k

1

φ(g)

∑
g0|r

1

φ(g0)

≤ φω∗(r0r)yrỹr0
∏

p>D0
p≡3 mod 4

(
1+

K

(p−1)2

)∏
p|r0

(
1+

K

(p−1)

)∏
p|r

(
1+

1

(p−1)

)
.

The first product is �OK(1). By the definition of φω∗ , we then have

yr,r0 � yrỹr0
∏
p|r0

(
1+

K

p−1

)(
1− K+1

p

)∏
p|r

(
1+

1

p−1

)(
1− K+1

p

)
,

which in turn implies that yr,r0 � yrỹr0 because both products are ≤ 1.

Plugging this into (54), we get that

S
(b)
6 (ν1)�

x

q23W
2λ̃1

2

( ∑
r0≤xξ

(r0,W )=1

ỹr0
2∏

p|r0(p+O(K))

)( ∑
r∈DK

y2r∏
p|r(p+O(K))

)
. (55)

https://doi.org/10.1017/S1474748025000131 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025000131


46 N. Kimmel and V. Kuperberg

Recalling that ỹr0 = 1 for r0 ≤ xξ and (r0,q3W ) = 1, we have

∑
r0≤xξ

(r0,q3W )=1

ỹr0
2∏

p|r0(p+O(K))
�
(
ξ logx

logD0

)1/2

.

We can bound the sum over r using Lemma 7. From the definition of LK(F ), we then get

∑
r∈DK

y2r∏
p|r(p+O(K))

�
(

e−γ/2

Γ(1/2)

)K(
logR

logD0

)K/2

LK(F ).

Using these estimates as well as the bound (50) on λr, equation (55) becomes

S
(b)
6 (ν1)�K

x

q23W
2

logD0

ξ logx

(
ξ logx

logD0

)1/2(
logR

logD0

)K/2

LK(F )

� x

q23W
2
ξ−1/2θ

−1/2
2

(
logR

logD0

)K−1
2

LK(F ),

as desired.

4. Singular series estimates

We now prove several computational lemmas providing bounds on sums over E-admissible

tuples L= L(b) for b ∈ B. We begin with an average that appears in the sums over the

terms S1(ν0) through S
(m)
5 (ν0) in the proof of Theorem 1, before turning to bounding

S
(b)
6 (ν1) on average over different values of b.

4.1. Averaging over B and ν0

Lemma 21. In the notation of Section 2,

∑
b∈B

L=L(b) adm.

∑
ν0 mod W

(�(ν0),W )=1∀�∈L

1
K

(
η

q

)K−1

(logx)
K−1

2

(
φ(W )

W

)K

W.

Proof. We first consider the number of b∈B that will produce an admissible tuple L(b).
If L(b) is not admissible, then there is some prime p ≤K, p ≡ 3 mod 4, p � q such that∏

�∈L(b) �(n) is always divisible by p. In order to prevent this situation, we can consider

only those b for which each bi, i ≥ 2 satisfies q+ ai + qbi 	≡ 0,1 mod p for all p ≤ K,
p ≡ 3 mod 4, p � 2q. Having excluded two congruence classes for each prime p, together

with the linear form corresponding to b1, the tuple L(b) cannot cover all of the congruence
classes mod p.

Thus, for each 2≤ i≤K, we can choose bi from a set of size

η

8q

√
logx

∏
p|W

2<p≤K

(
1− 2

p

)

K

η

q

√
logx
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while ensuring that the resulting b is admissible. It follows that there are at least 
K

(ηq )
K−1(logx)(K−1)/2 choices of b ∈ B with L(b) admissible.

For each b with L(b), we now consider the sum over ν0. For fixed b, this is bounded

by

∑
ν0 mod W

(�(ν0),W )=1∀�∈L

1
W
∏
p|W

2<p≤K

(
1

p

) ∏
p|W
p>K

(
1− K

p

)

K W

(
φ(W )

W

)K

,

which, along with the number of choices of b yielding admissible tuples, completes the

proof.

4.2. Averaging over S
(b)
6 (ν1)

In this section, we will analyze the sum over S
(b)
6 (ν1) terms appearing in the proof of

Theorem 1, and in particular provide the proof of Lemma 3. To begin with, the S
(b)
6 (ν1)

sum can be bounded via Theorem 2 by∑
b∈B

L=L(b) adm.

∑
ν1 mod W 2

(�(ν1),W )=1∀�∈L

∑
b≤η

√
logx

qn+b 
∈L
(qν1+b,W 2)=�

S
(b)
6 (ν1) (56)

�K
x

q23W
2
ξ−1/2θ

−1/2
2

(
logR

logD0

)K−1
2

LK(F )
∑
b∈B

L=L(b) adm.

∑
b≤η

√
logx

qn+b 
∈L

∑
ν1 mod W 2

(�(ν1),W )=1∀�∈L
(qν1+b,W 2)=�

1.

Our next task is estimating the sums over b,b and ν1. The constraints on ν1 mod W 2 are

multiplicative, so we can understand them separately for each p |W . For a fixed p |W , let

Ñp2(L,b) denote the number of congruence classes ν mod p2 such that p | �(ν) for some
� ∈ L or such that p | �b(ν) but p2 � �b(ν). Then we have, for fixed L(b) and fixed b, that

∑
ν1 mod W 2

(�(ν1),W )=1∀�∈L
(qν1+b,W 2)=�

1 =
∏
p|W

(p2− Ñp2(L,b)) =W 2

(
φ(W )

W

)K+1∏
p|W

1− Ñp2(L,b)/p2
(1−1/p)K+1

.

The remaining sum over b and b is bounded in the following proposition.

Proposition 22. We have

∑
b∈B

L(b)adm.

∑
b≤η

√
logx

qn+b 
∈L

∏
p|W

1− Ñp2(L,b)/p2
(1−1/p)K+1

�K
(η
√
logx)K

(8q)K−1
,

where the implied constant depends only on K.
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Plugging this estimate into (56), we have∑
b∈B

L=L(b) adm.

∑
ν1 mod W 2

(�(ν1),W )=1∀�∈L

∑
b≤η

√
logx

qn+b 
∈L
(qν1+b,W 2)=�

S
(b)
6

�K
x

q23W
2
LK(F )ξ−1/2θ

−1/2
2

(
logR

logD0

)K−1
2

W 2φ(W )K+1

WK+1

(η
√
logx)K

(8q)K−1
.

Using the fact that

φ(W )

W
� q3

φ(q3)
(logD0)

−1

and that logR= θ2 logx, we get∑
b∈B

L=L(b) adm.

∑
ν1 mod W 2

(�(ν1),W )=1∀�∈L

∑
b≤η

√
logx

qn+b 
∈L
(qν1+b,W 2)=�

S
(b)
6

�K ξ−1/2θ
K
2 −1
2 LK(F )

(
q3

φ(q3)

)K+1
ηK

q23q
K−1

(logx)
K− 1

2

(logD0)
K

x,

which completes the proof of Lemma 3.

It remains to prove Proposition 22. To do so, we will make use of the following lemma.

Lemma 23. Let Ñp2(L,b) denote the number of congruence classes ν mod p2 such that
p | �(ν) for some � ∈ L or such that p | �b(ν) but p2 � �b(ν). Let Np(L,b) denote the number

of congruence classes ν mod p such that p | �(ν) for some � ∈ L or such that p | �b(ν).
Then

∏
p|W

1− Ñp2(L,b)/p2
(1−1/p)K+1

�K

∏
p|W

p>K+1

1−Np(L,b)/p
(1−1/p)K+1

,

where the implied constant depends only on K.

Proof. By definition, Ñp2(L,b) almost consists of all elements of a certain set of

congruence classes modulo p when lifted to Z/p2Z, with the possible exception of one
congruence class ν modulo p2 such that �b(ν)≡ 0 mod p2. In particular, this implies that

Ñp2(L,b) = pNp(L,b)−E,

where E is either 0 or 1. Thus,

∏
p|W

1− Ñp2(L,b)/p2
(1−1/p)K+1

≤
∏
p|W

1−Np(L,b)/p+1/p2

(1−1/p)K+1
,

since the numerator of each factor in the product is either unchanged or has increased.
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We can then rewrite the right-hand side as

∏
p|W

1−Np(L,b)/p+1/p2

(1−1/p)K+1
=
∏
p|W

p≤K+1

1−Np(L,b)/p+1/p2

(1−1/p)K+1

∏
p|W

p>K+1

1−Np(L,b)/p+1/p2

(1−1/p)K+1

≤
∏

p≤K+1

1−1/p

(1−1/p)K+1

∏
p|W

p>K+1

(1−Np(L,b)/p)
(1−1/p)K+1

(
1+

1

p(p−Np(L,b))

)

�K

∏
p|W

p>K+1

(1−Np(L,b)/p)
(1−1/p)K+1

∏
p|W

p>K+1

(
1+

1

p(p−K−1)

)
.

The second Euler product converges to a constant dependent only on K when extended

over all primes p >K+1, which completes the proof.

We are now ready to prove Proposition 22. This estimate is an analog of Gallagher’s
result [5] that the average value of the singular series constants appearing in the Hardy–

Littlewood k -tuples conjecture is 1. Our proof will closely follow Gallagher’s argument.

Proof of Proposition 22. We begin by applying Lemma 23 to bound the left-hand

side by

�K

∑
b∈B

L(b)adm.

∑
b≤η

√
logx

qn+b 
∈L

∏
p|W

p>K+1

1−Np(L,b)/p
(1−1/p)K+1

,

where Np(L,b) is the number of congruence classes ν mod p such that p|�(ν) for some

� ∈ L or such that p|�b(ν).
Let Δ(L,b) denote the product

Δ(L,b) :=
∏

1≤i1<i2≤K

(q(bi2 − bi1)+ai2 −ai1)
∏

1≤i≤K

(b− qbi−ai).

Thus, 1 ≤ Np(L,b) ≤ K +1, with equality on the right if and only if p � Δ(L,b). Define

a(p,Np) via

1−Np/p

(1−1/p)K+1
= 1+a(p,Np),

and for squarefree r, define aL,b(r) multiplicatively via aL,b(r) =
∏

p|r a(p,Np(L,b)), so
that

∏
p|W

1−Np(L,b)/p
(1−1/p)K+1

=
∑
r|W

aL,b(r).
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By the same reasoning as in Gallagher’s proof of equation (3) in [5], for a constant x to

be fixed later and for all ε > 0, we have

∑
b∈B

L(b) adm.

∑
b≤η

√
logx

qn+b 
∈L

∏
p|W

p>K+1

1−Np(L,b)/p
(1−1/p)K+1

(57)

=
∑
r≤x

∑
b∈B

L(b) adm.

∑
b≤η

√
logx

qn+b 
∈L

aL,b(r)+OK,ε(η
K(logx)K/2(xη logx)ε/x).

The inner sums over b ∈ B and b are equal to∑
(Np)p

∏
p|r

p>K+1

a(p,Np)
{∑′

1+O((η
√
logx)K−1)

}
,

where each (Np)p is a vector with positive integer entries for each prime p|r with p >

K +1, and where
∑′

denotes the number of ways to choose values b2, . . . ,bK and b,

not necessarily distinct, such that each bi ≡ 3 mod 4, such that 1 < qbi ≤ η
2

√
logx for

2≤ i≤ jM , such that η
2 < qbi ≤ η

√
logx for jM +1≤ i≤K, such that b≤ η

√
logx, and

most crucially, such that b1, . . . ,bK,b occupy precisely Np congruence classes modulo p for

each p|r. Recall that b1 = 3 is fixed for all b ∈ B.
By the Chinese remainder theorem, for r ≤ η

√
logx,

∑′
=

{(
η
√
logx

8qr

)K−1(
η
√
logx

r

)
+O

(
η
√
logx

r

)K−1
}
×
∏
p|r

(
p−1

Np−1

)
σ(K,Np),

where σ(K,Np) denotes the number of surjective maps from {1, . . . ,K} onto {1, . . . ,Np}.
Thus, the inner sum is(
η
√
logx

8qr

)K−1(
η
√
logx

r

)
A(r)+O

((
η
√
logx

r

)K−1

B(r)

)
+O

(
(η
√
logx)K−1C(r)

)
,

where

A(r) =
∑

(Np)p|r

∏
p|r

a(p,Np)

(
p

Np

)
σ(K,Np),

B(r) =
∑

(Np)p|r

∏
p|r

|a(p,Np)|
(

p

Np

)
σ(K,Np), and

C(r) =
∑

(Np)p|r

∏
p|r

|a(p,Np)|.

One can show via a combinatorial argument (identical to the one performed in [5]) that

A(r) = 0 whenever r > 1. Also by the same arguments as in [5], we have B(r)≤Cω(r) rK

φ(r)

and C(r)≤ Cω(r) r
φ(r) for a suitable constant C.
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Altogether, we get that∑
b∈B

L(b) adm.

∑
b≤η

√
logx

qn+b 
∈L

∏
p|W

p>K+1

1−Np(L,b)/p
(1−1/p)K+1

=

(
η
√
logx

8q

)K−1

(η
√
logx)+O

⎛
⎝(η

√
logx)K−1

∑
r≤x

Cω(r)r

φ(r)

⎞
⎠

+O(ηK(logx)K/2(xη logx)ε/x)

=
(η
√
logx)K

(8q)K−1
+OK,ε,q((η

√
logx)K−1/2+ε),

choosing x= (η
√
logx))1/2. This completes the proof.
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Index of Notation

Averaging argument

�b(n), 7

�i(n), 6
η, 8

b, 6

B, 6
L,L(b), 6
ξ, 7

Bi, 7

bi, 6
K, k, 6

S(ξ), 7

u, 7
Main problem setup

E, 2

ã1,ã2, 3

ai, 3
M,M1, 3

N(x), 2

N(x;q,a), 3
q, 3

q1,q3, 7

Sieve parameters
λd, 15

DK , 14

θ2, 8

B, 8

D0, 8

F, 14

g(t), 15
Lk(F ),Lk;m(F ),Lk;m1,m2

(F ), 15

R, 8

RK , 14

W, 8
wn(L), 15
yr, 15

Sums of two squares
Xx0

, 22

Z
(1)
x,Q, 22

Z
(2)
x,Q, 22

Ψ(u,t), 21

ct(h), 21

χ4, 8

ρ(n), 5
yθ1, 5

A, 8

g1(n), 21
g2(n), 5

g3(n),g4(n),g5(n),g6(n), 21

g7(n), 22
r2(n), 5

t(n), 8

V, 8

v, 5
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