J. Inst. Math. Jussieu (2025), 1-52
doi:10.1017/S1474748025000131

POSITIVE DENSITY FOR CONSECUTIVE RUNS OF SUMS OF
TWO SQUARES

NOAM KIMMEL®! AND VIVIAN KUPERBERG®?

L Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University,
Tel Aviv 69978, Israel
(noamkimmel@mail.tau.ac.il)
2 Departement Mathematik, ETH Ziirich, Rimistrasse 101, 8092 Ziirich, Switzerland

(vivian.kuperberg@math.ethz.ch)

(Received 26 June 2024; revised 22 March 2025; accepted 24 March 2025)

Abstract We study the distribution of consecutive sums of two squares in arithmetic progressions. We
show that for any odd squarefree modulus ¢, any two reduced congruence classes a; and a2 mod g¢,
and any 71,72 > 1, a positive density of sums of two squares begin a chain of r; consecutive sums of
two squares, all of which are a; mod g, followed immediately by a chain of r2 consecutive sums of two
squares, all of which are a2 mod ¢. This is an analog of the result of Maynard for the sequence of primes,
showing that for any reduced congruence class ¢ mod ¢ and for any r > 1, a positive density of primes
begin a sequence of r consecutive primes, all of which are a mod g¢.
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1. Introduction

The sequence of primes is known, by the prime number theorem in arithmetic progres-
sions, to be equidistributed among reduced congruence classes to any modulus ¢. To be
precise, for any modulus ¢ and for any reduced congruence class a mod g, let 7(z;q,a)
denote the number of primes p <z with p =a mod ¢ and let 7(z) denote the number of
primes p < z. Then
m(x)
m(z;q,a0) = ——=(1+0(1)).
¢(q)
Much less is known about analogous questions for strings of consecutive primes. Let p,
denote the sequence of primes in increasing order. For any M > 1, for a fixed modulus

q and any M-tuple a = [aq,...,ap] of reduced residue classes mod ¢, let w(x;¢,a) denote
the number of strings of consecutive primes matching the residue classes of a. That is,
define

m(x;q,a) ;== #{pp <T:ppyi—1 =a; (mod q) V1<i<M}.

Any randomness-based model of the primes would suggest that M-tuples of consecutive
primes equidistribute among the possibilities for a, as is the case when M = 1. That is,
one would expect that m(x;q,a) ~ % as & — 00. Lemke Oliver and Soundararajan [12]
provide a heuristic argument based on the Hardy-Littlewood k-tuples conjectures for
estimating 7(x;¢,a) which agrees with this expectation (although it also predicts large

second-order terms creating biases among the patterns).
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However, little is known about m(x;g,a) when M > 2. In most cases, it is not even known
that 7(x;q,a) tends to infinity as & — oo (i.e., it is not known that a occurs infinitely
often as a consecutive pattern in the sequence of primes mod ¢). If ¢(¢) =2 and a; #
a mod ¢ are distinct reduced congruence classes, then m(x;q,[a1,a2]) and 7(z;q,[az,a1])
must each tend to infinity as an immediate consequence of Dirichlet’s theorem for primes
in arithmetic progressions; Knapowski and Turdn [11] observed that if ¢(q) = 2, all four
patterns of length 2 occur infinitely often.

As for arbitrary ¢, Shiu [19] used the Maier matrix method to prove that for any constant
tuple a of any length, 7(z;¢,a) tends to infinity as x — co. That is, for any fixed reduced
residue class ¢ mod g, there are infinitely many arbitrarily long strings of consecutive
primes, all of which are congruent to ¢ mod ¢. This result was rederived by Banks,
Freiberg and Turnage-Butterbaugh [2] using new developments in sieve theory. Maynard
[14] showed further that a positive density of primes begin strings of M consecutive
primes, all of which are congruent to a mod ¢ — that is, that m(x;q¢,a) > m(x) whenever
a is a constant pattern.

It is not currently known that 7(z;¢,a) tends to infinity for any other case, leading to
the question of what more can be proven for other arithmetic sequences. In previous work
[10], the authors considered the sequence of integer sums of two squares. Let E denote
the set of sums of two squares and let E,, denote the increasing sequence of sums of two
squares, so that

E={a’*+b*:a,b€Z}={E,:neN}.

Let N(x) denote the number of sums of two squares less than z. A number n is in E if
and only if every prime congruent to 3 mod 4 divides n to an even power; that is, if n
factors as n = Hp p°, then e, is even whenever p =3 mod 4. For a modulus ¢ = Hp pr
and a congruence class a mod ¢, write (a,q) = prflg where f, <e, for all p. There are
infinitely many n € E congruent to ¢ mod ¢ if and only if the following two conditions
hold:

e for any prime p =3 mod 4, f, is either even or f, =e,, and
e if eg— fo > 2, then 2%27153mod4.

We will call a congruence class ¢ mod g E-admissible if it satisfies these conditions (i.e.,
if there exists a solution to z? + 4% = a mod ¢). For a modulus ¢, an integer M > 1, and
an M-tuple a=[ay,...,ap] of E-admissible residue classes mod g, let

N(z;q,a) :=#{E,<z:FEpi;-1=a; (mod q) V1<i<M}.

Just as in the prime case, one expects N(z;q,a) to tend to infinity for any tuple of E-
admissible residue classes, and in fact, one expects N(z;g,a) > N(x). In other words, one
expects N(x;q,a) to represent a positive proportion of sums of two squares. When the
modulus ¢ =1 mod 4 is a prime, David, Devin, Nam and Schlitt [3] develop heuristics for
second-order terms in the asymptotics of N(x;¢,a) analogously to [12]. Their heuristics
are based on the analog of the Hardy-Littlewood k-tuples conjecture in the setting of
sums of two squares, which was developed in [4]. For a of length 1, these second-order
terms are reminiscent of Chebyshev’s bias, and were considered by Gorodetsky in [7].
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The authors [10] proved that for any modulus g, for any 3-tuple of E-admissible residue
classes [a1,a9,a3],

lim N(z;q,[a1,a2,a3]) — co.
T—>r00

They also showed that for any odd, squarefree modulus ¢, for any residues a; and as with
(a;,q) =1, for any tuple of the form [aq,...,a1,a9,...,a2] (i.e., the concatenation of two
constant tuples with values a; and as),
lim N(z;q,la1,...,a1,a9,...,as]) — oo. (1)
Tr—r0o0
Note that this result does not extend to all E-admissible residue classes a1 and as.
In this paper, we strengthen (1) by proving the following theorem.

Theorem 1. Let ¢ > 1 be a squarefree odd modulus and let a1 and dy be reduced residue
classes modulo q. Let M > 1, and let a = [ay,...,ap] be a tuple of residue classes such
that for some 1 < My < M, a; = a1 whenever i < M and a; = da whenever i > My. Then
N(z;q,a) > N(z).

That is, any concatenation of two constant tuples appears with positive density among
consecutive increasing sums of two squares modulo q.

Remark. Again, this result does not extend to all E-admissible residue classes; @1 and
az must be relatively prime to ¢q. For squarefree odd ¢, in fact, all residue classes modulo
g are E-admissible. For fixed squarefree odd ¢, and for aj,d2 modulo ¢ such that if
p|(ds,q), then p =1 mod 4, we expect our proof to apply with only minor adjustments in
the computations of the technical results. We also expect that Theorem 1 extends with
essentially no new ideas to the case where ¢ is not squarefree, if substantially more care
is taken on the background lemmas on evaluating sums of two squares in Section 3.3.
Finally, our proof may apply essentially as written to the case where (d;,q) is divisible by
primes that are 3 mod 4. However, these should appear with a smaller (yet still positive)
density (for example, there are more sums of two squares that are 1 mod 3 than that are
0 mod 3), and it may be that understanding the case when ¢ is not squarefree is necessary
for understanding this case.

The proof of Theorem 1 follows along the same basic idea as Maynard’s result [14] that
constant tuples appear with positive density among consecutive increasing primes. This
work in turn expands on the work of Maynard [13], in which he shows that for any m,
for any large enough k, and for any P-admissible (that is, admissible in a precise sense
with respect to the sequence of prime numbers) k-tuple of linear forms {L;(n),...,Lx(n)},
there exist infinitely many n such that at least m of the L;(n) are simultaneously prime.
In [14], for a tuple {Li(n) =gn+ay,...,Lr(n) = gn+ay} where each L;(n) is chosen such
that L;(n) = a mod ¢ for all i, Maynard shows that for infinitely many n, at least m of
the L;(n) are simultaneously prime and the numbers in between the outputs of the L;(n)
have small prime factors (and thus are not themselves prime). He then averages over
many such tuples of L;(n) in order to obtain a lower bound of positive density.
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In the setting of sums of two squares, stronger sieving results are available than those
that are available in the prime case. McGrath [15] showed that for any m, for large enough
k, for any k-tuple {hq,...,ht} which is P-admissible, and for any partition of {hy,...,hs}
into m sub-tuples or ‘bins’, for infinitely many n, there exists an h; in each bin such
that n+ h; € E. Banks, Freiberg and Maynard [1] use a similar, but weaker, result in the
case of primes to show that a positive proportion of real numbers are limit points of the
sequence of normalized prime gaps, work which was refined in [17] and [16].

In order to prove Theorem 1, we strengthen the sieve result of McGrath [15] in the same
way that Maynard [14] had expanded his previous work [13]. Our paper is organized as
follows. In Section 2, we will state our sieve theoretic results and use them to prove
Theorem 1. In Section 3, we will prove the sieve theoretic results. Our notation and
setup is explained in Section 2.1, with an additional explanation of more technical sieve
notation in Section 3.1. Finally, in Section 4, we evaluate certain averages of ‘singular
series’ constants that appear in the proof of Theorem 1.

2. Statement of sieve results and proof of the main theorem

2.1. GPY sieve setup

Our argument will follow the Goldston—Pintz—Yildirim method for detecting primes in P-
admissible k-tuples, building off of work of Maynard [14], which uses a rather sophisticated
version of this method, and of McGrath [15], which develops a second-moment version of
this method for sums of two squares.

An P-admissible k-tuple of linear forms (¢1(n),...,¢,(n)) is one such that, for every
prime p, there exists some a mod p with £;(a) # 0 mod p for all 1 <i < k. Using the GPY
method, Maynard [13] showed that for all integers m > 2, there exists large enough &
such that for any P-admissible k-tuple of linear forms (¢1(n),...,f,x(n)), there are many

integers n > 1 for which at least m of the values ¢1(n),...,¢;(n) are simultaneously prime.
This statement follows from the construction of positive weights w(n) such that for
all z,

k
Z (Z 1p(4;(n)) —m+ 1) w(n) >0, (2)

z<n<2z \i=1

where 1p denotes the indicator function of the set P of prime numbers. The inequality (2)
implies that there exists a strictly positive summand, so that for some n with z <n < 2z,

k
Zb(&(n)) >m—1,

and thus, there are at least m primes among the values of £;(n).

We will require a version of this technique that is adapted in three different ways:
first, we will detect sums of two squares instead of primes; second, we will need a ‘second
moment’ adaptation to detect slightly more delicate patterns among the sequence of sums
of two squares; and third, we will exclude certain values of n so that we will be able to
average over many different k-tuples.
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We begin by defining a certain weighted indicator function of sums of two squares. For
any function f (say, the indicator functions 1p or 1g), in practice, applying the ‘second
moment’ adaptation requires an understanding of two-point correlations of the form

Y fn)fE(n).

rz<n<2z

Estimates for two-point correlations of the standard indicator function of sums of two
squares are not known, so we will instead make use of Hooley’s p-function, which was
first introduced in [8] and also used in this context by McGrath [15].

The p function is defined by

p(n) = ra(n)t(n), 3)

where 79(n) is the representation function of n, given by
ra(n) i= #{(z,y) € Z* : 2 +y* = n} (4)

d—1

Y e
d|n
d odd

and

B o u(a) _loga o
t(n) =tge, (n):= E (1 logv> , (v=2a"). (5)
a<v
pla=>p=1 mod 4

Here, 6, is a fixed small constant with 6; < 1/18; for example, Hooley takes 6; = 1/20.
Moreover, gs is the multiplicative function defined on primes via

g2(p) = {

Using the indicator function p, McGrath [15] uses a second-moment bound to prove
the existence of sums of two squares in different ‘bins’ of the same tuple. To state this
precisely, fix M,k > 1, and let K denote the product K = Mk. Let ¢ > 1 be a fixed odd
integer, and fix a tuple H* of size K such that 4|h;, (hs,q) =1, and for £;(n) = gn+ h;,
the tuple of linear forms {{1(n),...,¢x(n)} is P-admissible (indeed, McGrath’s result is
phrased as requiring the tuple to be P-admissible, not E-admissible). Suppose further
that we have a fixed partition H = By U---U By where |B;| = k for all i. McGrath showed
that there exists a real number v > 1 and a nonnegative weight function w(n) such that
for all sufficiently large z,

Z u? — Z <Z p(¢(n)) —u) w(n) > 0. (7)

rz<n<2zx i=1 \leB;

ifp=1 (mod 4)
ifp=3 (mod 4).

_1
P

(6)

D= DN
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The positivity of the left-hand side of (7) implies that for all sufficiently large z, there
exists some n with x <n < 2z such that

o 2
Z (Z p(£(n)) —u) <u?

i=1 \leB,;

If for any bin B, there is no £ € B; with £(n) € E, then }_,_p p({(n)) =0, and thus,

u® < (Z p(f(n)) —u> <> (Z p(f(n)) —u> <u?,

LeB; i=1 \leB;

a contradiction. Thus, in particular, the inequality (7) implies that for all sufficiently
large z, there exists an n with x < n < 2z and such that for every bin B;, there exists an
¢ e B; with {(n) =gn+h € E.

Our aim is to combine this second-moment version of the GPY sieve setup with the
goal of excluding certain values of n for each tuple H* in order to be able to average
over many different tuples. In particular, we will choose weights w(n) such that for any n
making a positive contribution to the left-hand side of (7), ¢;(n) does not have any ‘small’
prime factors p = 3 mod 4 for any of the ¢;, and for any b < nv/logz which is not in H
(i.e., b+ h;), the integer gn +b is divisible exactly once by some ‘small’ prime p = 3 mod 4.
These may seem like artificial constraints to place on the values n, but in fact, n that
do not satisfy these constraints are exceptionally rare; intuitively, although it cannot be
proven explicitly, the weights w(n) place emphasis on those n where all ¢;(n) € E (or
close to it), and values gn+b that are outside of the tuple are unlikely to be sums of two
squares. In [14], Maynard takes advantage of a similar device to average over different
subsets H*, which allows him to prove a lower bound of positive density on the tuples he
is counting.

Our precise setup is as follows. As in the setup of Theorem 1, we let g be a fixed odd
squarefree modulus, and we also fix the parameters M and two congruence classes a;
and dy modulo ¢, as well as M; with 1 < M; < M. We will consider tuples of length
K, where K = kM, split into bins of size k. We define integers ai,...,ax as follows.
For ¢ with 1 <i < Mik, we let a; be the smallest positive integer with a; = a3 mod ¢
and a; = 1 mod 4, whereas for ¢ with M 1k+1 <: < K, we let a; be the second-smallest
positive integer with a; = da mod ¢ and a; =1 mod 4 (that is, a; —4q is the smallest such
positive integer). The values of a; for M1k+1 <i < K are shifted by ¢ to ensure that
a;, < ai, whenever 1 <43 < M1k < iy < K. Note that there are only two distinct values
for the a;, but for ease of notation, we define K values a;, even though these values are
repetitive.

Then, for any tuple of integers b = (b, ...,bx) with b; =3 mod 4 and 3 <b; < g\/@
for all i, we will define the K-tuple £ = L(b) = {£;(n)}X, of linear forms given by

4i(n) :=qn+a; + qb;. (8)

Here, n is a positive constant to be set later. Note that the constraints on a; and b;
modulo 4 imply that whenever n =1 mod 4, we also have ¢;(n) =1 mod 4.
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We will ultimately average over many different choices of b. Our average will be taken
over b lying in a slightly restricted set of tuples B, where we define

b1=3
B:=<{b=(by,...,bx)|b; =3 mod 4, 3<b; < ;—q\/loga: V2 <i< Mk . (9
;—q\/logx <b; < g\/logx VMik<i<K
The key consequence of this definition (along with the definition of the a;’s) is that for

any n, £;, (n) <¥;,(n) whenever 1 <i; < Mk and M1k+1<iy; < K.
As described above, we will write £ = By U---U By, where

Bi = {é(i,l)k+1(n),...,éik(n)}. (10)

The B;, which we refer to as bins, partition the tuple £ into M bins, each of size k.
For certain real numbers £,n > 0 (to be fixed later), a certain real number u, and a
nonnegative weight function w, (L), we consider a sum of the shape

M 2 K
> [U2—Z<Zp(f(n))—U> —2:1 Yo=Y 156 (Y (n)u? |wa (L),

z<n<2z i=1 \l€B; j= p<zt b<n+/logzx
p=3 mod 4 [(b)g[,
pl;(n)

(11)

where S(€) is the set of integers such that for all primes p < 2¢ which satisfy p =3 mod 4,
either p{n or p?|n. We write £()(n) := gn+b, so that the final sum in (11) is a sum
over b < ny/logz such that /() & £. A choice of weights w, (£) such that (11) is positive
implies that for some n with x < n < 2z,

M 2 K
u2 - Z (Z p(ﬂ(n)) - u) - Z Z U2 - Z 15(5)(5(1))(71))11,2 > 0,

i=1 \l€B; =1 p<at b<n+/logz
p=3 mod 4 AQr74
ple;(n)

which in turn implies that

for each i, there exists a linear form ¢ € B; with p(¢(n)) # 0, and thus, {(n) € E;
for each j, with 1 < j < K, £;(n) is not divisible by any prime p < 2° with p =
3 mod 4; and

e for each b < ny/Iogz with £®) not in £, we have £(*) (n) ¢ S(€), so there exists some
prime p < 2§ with p = 3 mod 4 such that p|[¢(?)(n).

In order to take advantage of this positivity argument, we will need to evaluate the
sums over n appearing in (11). These evaluations are accomplished in Theorem 2, which
we state in the next section before completing the proof of Theorem 1.

2.2. Conventions and notation

Before stating our main sieve theorem and presenting the proof of Theorem 1, we first
fix some notation and conventions that we will use throughout the paper. An index for
key quantities appears after the references.
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All asymptotic notation, such as O(+), o(+), <, and >, should be interpreted as referring
to the limit x — co. We will use Vinogradov f < g to mean f = O(g); that is, |f| < Cyg
for some absolute constant C. Any constants are absolute unless otherwise noted. For all
sums or products over a variable p (or p’), the variable p will be assumed to lie in the
prime numbers; all other sums and products will be assumed to be taken over variables
lying in the natural numbers N>; unless otherwise specified.

Recall that the squarefree odd modulus ¢ is fixed throughout. We denote g = ¢ 4¢3,
where ¢; is a product of primes that are 1 mod 4 and g3 is a product of primes that are
3 mod 4.

Let 65 > 0 be a fixed positive real number such that 0 < 61 +605 < 1/18, and let R = z92/2,
Letting Dy = ny/logz for a constant 1 > 0 to be fixed later, we define

w= ][ » (12)
p<Do
p=3 mod 4

ptq

Note that gsW is the product of all primes p < Dy which are 3 mod 4. This definition of
W differs from that of McGrath [15] because, while the value of Dy is much larger than
that used by McGrath, it is not divisible by any primes p =1 mod 4.

We denote by A the Landau—Ramanujan constant, given by

n L0 ) e

p=3 mod 4 p=1 mod 4

N

We also make use of a normalization constant B, defined as
B A ¢(qsW)(log R)/? 2A P(qsW)(log R)*/?
I'(1/2)\/L(1,x4) g W ™ asW '

Here, x4 denotes the nontrivial Dirichlet character modulo 4. Finally, we will denote by
V' the constant given by

v= 1] <1+(2pi1)2)z1.016. (15)

p=1 mod 4

(14)

For K-tuples in N we will use the notation that a boldface letter such as d represents
a tuple d = (dy,...,dk), whereas a non-boldface d represents the product of the entries
Hfil d;. Given tuples d and e, we will let [d,e] denote the product of the least common
multiples Hfil[di,ei], let (d,e) denote the product of the greatest common divisors
Hfil(dhei), and let d|e denote the K conditions that d;|e; for 1 <i < K.

2.3. Statement of the main sieve theorem

We are now ready to state our main sieving theorem, which we will use in the next section
to deduce Theorem 1.

Theorem 2. Fiz b € B and let L(b) be the fized K-tuple of linear forms {€;(n)}X | given
by (8). Let vy be a fived residue class modulo W such that for all € € L, (L(vp), W) = 1.
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Then there exists a choice of nonnegative weights wy, (L) >0, as well as a constant Lk (F),
such that

K K
Wy (L) < (liogggo) H 4 (16)

and the following estimates hold:

a) Let S1(vg) be the sum defined by

Sl(Vo) = Z wn(ﬁ)

n=1 mod 4
n=vo mod W

Then

By

4w

S1(vo) = (1+0(1)) Lk (F). (17)

b) Let Sém)(uo) be the sum defined by

S we) = Y plm(n)wa(L).

Then

4oy [R8 BK o
S () = (14 0(1) —L=E2 L (F). (18)

(m+2)VKW
c) Let Séml’mz)(uo) be the sum defined by
Sy W) = DD plluns ()b () (£).
r<n<2x
n=1 mod 4

n=vgp mod W

Then

(mama) 64712%81( T
S3 (o) < (1 +0(1))mVLK(F)’ (19)

where V is the constant defined in (15).
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d) Let Sﬁm)(uo) be the sum defined by

S )= Y pllm(n)wa(L).

r<n<2x
n=1 mod 4
n=vg mod W

Then
- 8120 (182 +1) BYa |
S (vo) = (14 0(1 (1+>L F).
4 ( 0) ( ( )) (7T—|—2)\/EW A (2p—1)2 K( )
p=1 mo
pta
(20)
e) Assume that &€ > 0 satisfies £ < %, and let Sém)(Vo) be the sum defined by
Sém)(yo) = Z Z wy (L).
m<n§2dz4 p<zf
n=1mo =3 mod 4
n=vo mod prwm(n)
Then Sém)(l/()) satisfies
m K2 2 BK
S w) < S B L), (21)

02 W

f) Let vy be a congruence class modulo GsW? such that (£(v1),q3W?) is a square for all
Le L. Fix3<b<nlogx and a constant £ with 0 <& < 1/4. Let Séb) (v1) be defined

by
b
sV = Y 150 (P ()wa(L).
z<n<l2z
n=1 mod 4
n=vi modq§W2
Then
~1/2 K
®) T a2 log Lu(F 92
P <x e (3)  (g) P @)

This theorem is key in all of our computations and will be proven in Section 3. In the
remainder of this section, we derive our main result as a consequence of Theorem 2.

2.4. Proof of Theorem 1

The goal of this subsection is to prove Theorem 1 as a consequence of Theorem 2 and
the evaluations of the linear functionals therein.
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We will consider an average of E-admissible tuples £ = £(b) = {¢;(n)}X ,, given by (8),
over the set B (defined in (9)) of K-tuples b. We consider the sum

-y 5 5 PL%(ZMW)_U)Q 23

beB v1 mod g3 W2 r<n<2z teB;
L=L(b)E-admissible (£(v1), W)=1VLeL n=v1 mod q§W2

K
DD DRGNS 1s<g><£<”><n>>u2]wn<c>.

=1 peat b<nylogw
p=3 mod 4 ¢(®) ar
plli(n) €® (1),q2W?)=0

For technical reasons involving the final sum, we will initially sum over congruence classes
modulo ¢g2W? instead of modulo W. However, note that the condition that (¢(r1),W) =1
is determined only by the congruence class of 1 mod W, so this is in some sense really a
sum over congruence classes modulo W.

Here, w, (L) are the weights given by Theorem 2 for the E-admissible set £ = L(b).
For fixed £, the term in the square parentheses in (23) is positive only if the following
conditions all hold:

(i) for each ¢ with 1 <i < M, there exists some ¢ € B; with p(¢(n)) # 0, or equivalently
with ¢(n) € E;
(ii) for each £ € £, £(n) has no prime factors p with p < ¢ and p = 3 mod 4; and
(iii) for all other /) ¢ £ with b < ny/logz, and (£®)(n),¢3W?) a square, /) (n) has a
prime factor p with p < ¢, p =3 mod 4, and p||¢/(®) (n).

This has two crucial implications. One is that no n can make a positive contribution from
two different tuples L, since if n makes a positive contribution for any £, then the values
£(n) are uniquely determined as the integers in [gn,qn + n/logz] which are

(i) congruent to 1 mod 4,
(ii) congruent to a1 mod ¢ if they lie in [gn + a1,qn+ a1 + (1/2)v/logz], or congruent
to da mod ¢ if they lie in [gn+ax + (1/2)v1ogx,qn+ ax + /log x|, and
(iii) not divisible to an odd power by any primes p < ¢ with p =3 mod 4.

The second observation is that if n makes a positive contribution for a tuple £, then
since for all /() ¢ £ with b < ny/logz, /) (n) = gn+b & E, we have that the sums of two
squares appearing in £ (of which there is at least one in each bin) must be consecutive
sums of two squares.

Also, if n makes a positive contribution, then none of the ¢;(n) can have any prime
factors p = 3 mod 4 which are less than z¢, so each ¢;(n) can have at most O(1/£) prime
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factors p = 3 mod 4. In particular, this implies by (16) that

K K K
w, (L) < (ILO§§O> 11 1< (12?1%) exp(O(K/¢€)), (24)

i=1 p|ti(n)
p=3 mod 4

for any pair n and £ making a positive contribution to (23).
We now evaluate the sum in (23). To begin with, we can swap the order of summation
for the various different terms to get

K
S= Y l > (u2(1—M)51(u0)+2uZs§m>(uo)

beB vo mod W m=1
L=L(b) adm. (L(vo),W)=1VLEL

M K K )
DI MU SEEITS D SELCY)

=1 e'mlyé'mg €B; i=1 (25)
mi#Ema
2 2 : 2 : (b)
—Uu SG (1/1 )‘| 5
v1 mod q§W2 b<n+/logx
(L(11), W)=1VLeL gL

™ (v1),¢2W?)=0

where the sums Sl(uo),S’ém)(Vo),Séml’m2)(Vo),Sim)(uo),Sg)(Vo) and Séb)(ul) are in the
notation of Theorem 2.

We now wish to use our estimates from Theorem 2. For the sum Séb) (v1), we will require
a more careful analysis that takes the averaging over b,vq,b into account. Specifically, we
require the following lemma, which is proven in Section 4.2.

Lemma 3. With the notation above,

> > S 5P

beB v1 mod g3 W2 b<n+/logz
L=L(b) adm. (y(,,) W)=1VeeL Mgr

® (v1),¢2w?)=0

g3 )K n* (logw)K_§$
¢(a3))  a3a%~" (log Dy)™

< V207 T L (F) (

where the implied constant depends only on K.
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Applying the estimates (17), (18), (19), (20) and (21) from Theorem 2 to (25), we get

BXg 9 1 K 4 lliggf
S > (14o0(1)) Li(F) wW(1—M)~+2u )y —F——
W Z Wéw 1 ;www

eB
L= L(b) adm. (e(yo) W) 1

log R logR [ logx
oy i (R7) g o o (joes 4 1) I (1+ ! )
by imen, (THPK (T+2VE (2p—1)?

m=1 p=1 mod 4

mi#ma pla1
K
KZ 2
wo(ffan) e S Y % s
=1 V1 mo 2 b<n+v/logx
L= ﬁ(b) adm. (g, )d q%)lill Se?wgz:g

veieLl (Z(b)(ul),ngQ):D
(26)

We now use Lemma 3 to evaluate the last triple sum, and simplify using the facts that
logR = %log:c and logv = 60, logx, which gives

S > (1+0(1)) Z o Be, | A=)  8urVE/B:/20,

4 T+2

eB vg mod W
L= L(b) adm. ({(vg), W)=1VLeL

R e ), SR (G 01) (1 @)

2 (m+22K = (m+2)

27-3+2 20-1/2,% 1 ] " n* (logx)K_%
—0(PK*¢) | ~0 | w10y LK(F)(¢<q3>> BT (log Do) )
o

We will make the change of variables

4 0y _
=——\/ U
T+2V 260 ’
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so that the sum above simplifies to

BKI' m 2 92
S >(1+o0(1)) > ) | =7 Lx(F) (m) o

beB vo mod W
L=L(b) adm. (£(vo), W)=1VLeL

M +8VEKa—32V (AI; + 1) ~ 0,0, (VE) =0 (u?K?¢?)

1) u2§_1/29%—1L (F)( qs3 )K 77K (10g$>1(—%aj
2 K o(a3))  a3a%~" (QogDo)* )"

We then set @ = 16‘F to maximize the expression above, so that (recalling that K = Mk)

Kx
s>(1+o)| X S BW (F)

beB vo mod W
L=L(b) adm. (Z(VU) W)=1VeeLl

(7712) (29921> 32(kw/_v>—091,92 (\/f()_o(uszgz)

—0 (w202 7'L (F>< r )K 7 logn)"
2 " olas))  a39%~" (ogDo)™ " )

Recall that V =~ 1.016 < 2, so for a given M, we can pick k large enough in terms of M,
0, and 65 so that the quantity

e (222) (5) (82 ) om0

will be positive. We can then pick the constant ¢ to be a small enough multiple of K4
so that the term O ( ’K 352) will be negligible (for example, smaller than 100) Note that

this is consistent with the constraint from the evaluation of Sém that £ < &
By Lemma 21, the sums over b and 1 are bounded below by

S S sk (Z)K_l(loga:)I(?lW<¢(VVm>K.

beB vo mod W
L=L(b) adm. (£(vy), W)=1VLEL
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Thus, by definition of B,
BXz (n)K_1< as )K (loga)~*
1> - xT.
w 2 2 " \q d(gz))  (log Do)®

beB vo mod W
L=L(b) adm. (£(vp), W)=1VLeL

Returning to S, we have that

g N N e (al LA (loga)*~*
ZK <q> <<z><q3>> w )( " 100 ) (log Do)X
+O U2§_1/29§_1LK(F)< qs )K ,',]K (lOg,’L‘)K*%x
? $(g3)) 43957 (logD)® ")

We can now set the parameter 1 to be sufficiently small (in terms of K,M,01,05,£) such
that the big-O term will be negligible, which implies that

N g\ (loga) 2
S>> 1,05 - . 27
K,M,01,02,§,m (q> (¢(q3)> (1OgD0>K €T ( )

Equation (24) implies that

1 K
S<KH#{E,<x:E,yi—1=a; mod ¢Vl <i< M} xexp(O(K/E)) (looggﬁ ) )
0

which along with equation (27) and the fact that log R = %logaz, implies that

K—1 K

; 1 q3 T
#{E, <z:E, i1 =a;mod gV1 <i < M} >>g 0,006, () ( ) )
{ +i—1 } >k, M, 01,00,6,n p 5(05) Togs

This completes the proof.

3. Proofs of sieve results

The goal of this section is to prove Theorem 2. Throughout, fix n > 0 and let £ =
{li(n)}1<i<x be a fixed tuple of linear forms ¢;(n) = gn+ a; + qb;, where gb; < ny/logx
for all 4. Let v be a congruence class modulo W such that (£(vp),W) =1 for all £ € L.

This section will be organized as follows. In Section 3.1, we introduce notation that
will be used throughout, and define the sieve weights wy,(L). Sections 3.2 and 3.3 contain
lemmas and computations that will be used throughout the proof of Theorem 2; the
estimate (16) is proven in Lemma 8. Finally, equations (17), (18), (19), (20), (21) and
(22) are proven (respectively) in Sections 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9, which completes
the proof of Theorem 2.

3.1. Sieve notation and setup

We begin by fixing some notation in preparation for defining the weights w,, (£). Recall
that W is the product of primes p = 3 mod 4 satisfying p < Dy and (p,q) = 1. In particular,
this means that if a prime p = 3 mod 4 satisfies p|¢;(n) and p|¢;(n) for  <n < 2z and for
two distinct linear forms ¢;,¢; € £, then plgsW. Let Dx C Z* denote the set of K-tuples
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d = (d;) such that for all 4, (d;,¢g3W) =1, such that (d;,d;) =1 for all i # j, and such that

each d; is divisible only by primes congruent to 3 mod 4.

Let F:[0,1]% — R be a smooth function defined as follows. Let Rx = {(x1,...,7x) €

[0,1]% : Zf;xz < 1}. Define F(ty,...,tx) as

K
F(ty,....tx) =] Jo(Kt),
i=1
where
1 .
gy=q T L=
0, otherwise.

Note that F' is supported on the set Rg.

(28)

(29)

We are now ready to define the sieve weights w, (L), which are nearly identical in
structure to the multi-dimensional Selberg sieve weights used in, among other papers,

[13] and [15]. We define

wn(ﬁ):< Z )\d)Q,
diien)

where

K 2
w(r) logry logrk
Ad = d;)d; F Yo .
d (HM( ) ) Z o(r) <logR log R
i=1 rel'D€’<‘
di TVl

logry logrg
yp = F ey
logR logR

We will write

where F' is a function defined in (28).

The results of our sieve evaluations will depend on the following functionals on F":

2
dl‘i

Li(F) ::/01"'/01[F($17---7$K)]21j\d/%,
b= [ [ [[ P

Licms,ms (F) :=/01---/01 Uol (/OlF(xh...,xK)j”:%> jﬂ%r ﬁ

=1
i#Emi,ma

e

(30)

Using the function F that is explicitly given by (28) and (29), we can evaluate each of
Li(F), L (F), and Li.m,,m,(F'); each of these will be a constant depending only on
K. More convenient, however, is using the following lemma, which relates each of these

values to Lg (F).
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Lemma 4 ([15], Lemma 6.4: Evaluation of sieve functionals). Let F(t1,...,tx) be given

by equation (28) and let Li(F), Li.m,(F), and Lg.m, m,(F) denote the functionals
defined in (33). Then for any mi,ma,

Liy(F) _ 7 [T Lsmme(F) _ (7 \* 1
= e an = .
Lig(F) 7m+2V K L (F) 7+2) K

3.2. Auxiliary lemmas for sieve weights

This subsection and the next collect various lemmas that will be used throughout our
estimates. To begin with, we present several lemmas concerning the sieve weights defined
in Section 3.1.

Lemma 5.

(i) Let r,s € Dk with s; =r; for all i # j and s; = Ar; for some A € N. Then for y,
and ys defined by (32), we have

log A
s = Yr K e -
Vs =¥ +O( logRy)

(ii) Let r,s € Dk with r=s and let A be the product of primes dividing r but not (r,s).
Then for yr and ys defined by (32), we have

log A
s — Yr K—— r s .
Ys =Y +0< 1OgR(y +y ))

Proof. Recall that y, = F(ll‘j)§§§7-.-,lf’fgré‘), where F(ty,...,tg) :== Hfilg(Kti) and

g(t) = 1+t for t <1 and g(t) = 0 otherwise. Given u,v > 0 with |u—v| < &, we have
1 1+0(Ke)
1+Ku 14+ Kwv
Let u; =logr;/log R, v; =logs;/log R and &; = v; — u;. In part (i), ¢; =0 for ¢ # j and
=log A/log R. Thus,

Klog A
1 _1+O< log%%)
1+Kv;  1+Ku;

Multiplying by [[;; 1/(1+ Ku;) gives the result for (i).
Now consider part (ii), and let t be the vector with ¢; = [r;,s;]. Applying part (i) to
each component in turn implies that

log ([ri,sq]) /si | log A
ysyt+O<K Z log R =y +0 KyslogR .

The same holds for r and t, which implies (ii). O

The following lemma is a standard evaluation of sums of multiplicative functions that
appear frequently in sieve computations.
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Lemma 6. Let A1,As, L >0 and let v be a multiplicative function satisfying

) L

o<
- p Ay

and

’y(p) 1ogp 1 Z)
< E —_— 2 — ) <
L B log (w AQ
wp<z L

for 2 <w < z. Let g be the multiplicative function defined by g(p) = #’?p), and let G :
[0,1] = R be a piece-wise differentiable function. Then

S o (120) =, 5 a0 L 40 (e,EGumions) ),

d<z
where
yp)\ 1) 2
e =1T(1- 12 1—-
=11 ( p ) ( p)
p

and

Gmax = sup (|G(t)| + |G/(t)|> .

te[0,1]

Proof. This is [6, Lemma 4] with £ = 1. O

Using Lemma 6, we show the following lemma, which is similar to [14, Lemma 8.4].

Lemma 7. Let Q be a squarefree modulus of the form Q = gsWa with a = RO . Let f be
a multiplicative function with f(p) =p+ O(K), and let G: R = R be a smooth decreasing
function supported on [0,1].

Then for K sufficiently large, we have

u loge;

> Lo (125)
ecDg
(e,Q)=1

= (1+o0(1)) ((ﬁ(j)) : <;(;/;)K (lioslfo)mz (/tl,.wtxzoill__{[lG(ti)i%) .

Proof. We would like to apply Lemma 6 for each variable. However, the variables e; are
not independent, since e € D implies (e;,e;) =1 for ¢ # j. Our first task is to decouple
these variables with a negligible penalty.

Denote the sum evaluated in the lemma by

w?( loge;
eEZDK 1_[1 ( log R) '
(e,Q)=
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If p|(er,e;) for some 1 <r < j < K, then we must have p > Dy since (e,Q) = 1. Thus,
using also the fact that G is decreasing, we have that

> 56 (125)

ecNg j=1

(e,Q)=1

pl(eise;)
Z Hu e] (1oger+logp)G(logej—l—logp> ﬁ G(log@)
e i log R log R =1 log R
(e,Q)=1 £, J

< (p+O(K))™28.
Writing

K
u( loge; | ,u logn \ \ ¥
ZK 1_[1 U (logR> _< Z <logR>) ’
=1’ - (nG)=1

it follows that

K 1 S
s-5<5(5) S romE <x oo
2 p§0<p+0<f<>>2 * Dy

We now consider S’ in place of S and apply Lemma 6, where we take g(p) = ﬁ and
~v(p) = W for pt @ and g(p) =~v(p) =0 for p|@. For this, we need a bound on the
constant L from Lemma 6. If we did not have the restriction g(p) = v(p) =0 for p|@,
then using the prime number theorem in arithmetic progressions, we could take L to be
a constant, since

w<p<z
p=3 mod 4

It follows that in our case, we can choose L satisfying

L<glt Y logp+zloﬂ.

p<Do p p
p=3 mod 4

pla
The first sum is (1+0(1))3 log Dy. For the second sum, we have the bound

1
Zﬂ <Lk loglog R
plo b

since @ = RO and the sum is dominated by taking the smallest possible primes. This
implies that

1
LKk ilogDo +loglog R <k loglog R.
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We will write

AN
Q :Gmax'< Gt) )
o NG

where G ax is defined as in Lemma 6. Applying Lemma 6 successively K times, we get

K

K K ’
= (log R )b K\ o, (Scloslos R
5 F(1/2)K(1 gR) </t1,...,tK>oi1_[1G(tl)\/E> <1+; <€>0K< o R > )

c K dt, loglog R
= 7 __(logR)K/? / Gt) S (14 0k (22282
F(1/2)K(Og ) t17~--,tK20i1;|1: ( )\/E + k.G logR ’

where ¢, is given in Lemma 6 and satisfies

mon (=) 11 (13) =m0 (%) 5

pla

Combining our estimates completes the proof. O

Lemma 7 will be useful for many of our computations to follow. For now, we use it to
verify that the weights w,, (L) given in (30) are bounded above as in (16), which we show
in the following lemma.

Lemma 8. We have the bounds

(i)

K/2
ogR
4
[Aa| <k (1 gDo) ) (34)
(ii)
logR KK
wn(£) < <logDo> H 4
i=1 p|l;(n)
p=3 mod 4
(iii)
w, (L) < e R¥FOW, (35)

Lemma 8, (ii) is precisely (16), whereas (i) and (iii) will be used in our sieve estimates.

Proof. By our choice of y,, for any d € Dk, we have

K X d F lc;grl’.“’loogng
pal=114 2 505 = 5@ 2 (lggwd)l & )

i=1 reDk d|reDg
d|r
. . . . . log s
Since F' is decreasing in each argument, we can bound |A\gq| above by replacing each Tog X
: . logr; /d;
in the argument of F' with o; = %.
og R
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We now apply Lemma 7 with @ = dgsW, which gives

3 Floy,....ox) _ > #ﬁ (Koi)
ZOUNN-=SCCCT=

d|reDk

SCORCONC T |

Evaluating the integral gives

a dt; T K
/tl,...,tK>0;l_Il ( )\/E 2VK

Substituting this expression back into (36), we get that
hal < o(d)\ 21 [ logR \ K/ o (logR K/2
dl K d log Dg log Dg

for K > 4. This completes the proof of (34).
For the second claim, recall that

wn (L) = ( > )\d)Q <K ( g 1 )K#{d € Drc : d; | £i(n)}?

deDgk log DO
( log R ) K ﬁ A
K )
10g DO i=1 p|t;(n)
p=3 :nod 4

as desired.
For the third claim, note that since Aq is supported on d =d; ---dg < R, we have

2 2
logR \ 1
wn(L) <x <IOOggDO> ( Z 1) <<KR2+0(1)< Z dldK> <<KR2+0(1)_
d

di-dg <R 1dg <R

O

Finally, throughout our sieve arguments, we will make crucial use of [15, Lemma 6.6],
which we restate below for convenience.

Lemma 9. Let J C{1,...,K} (possibly empty) and p1,ps € PU{1} be fized. Write I =
{1,...,K}\ J. Define the sieve sum Sy p, pym =S5 p1,psm, f.g OY

S~]7P1,p2,m: Z )‘d)‘er([di’ei])Hg([djvej])a

d,e€eDk el jeJ
qsW,[d1,e1],...,[dKk,ek] coprime
P1ldm,p2lem

with weights A\g defined as in (30). If J = &, we define f(p) =1/p (and in this case,
there is no dependence on g in the sum). Otherwise, f and g are nonzero multiplicative
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functions defined on primes by

f(p)=;+0(p12)7 g(p)=plg+0<p13>7

and moreover, we assume that f(p) # 1/p. We write Sy for Sj1,1,m. Then for |J| €
{0,1,2}, we have the following:

(i) If me J, then
F?2 BE+l(loglog R)?
S propam <€ 02 (loglog &)
(p1p2/(p1,p2))

(ii) If m & J, then

F2 .. BE+l(loglog R)?
p1p2/(p1,p2) '

S71,p1.p2,m K
(iii) We have
Sy = (L+o(1)BEIL,(F),
where we write Lj(F) as shorthand for Ly jes(F), defined analogously to (33).

Remark. This is [15, Lemma 6.6] with g3 in place of W. Note also that the restriction

d,e € Dg in the definition of Sy p, p,,m does not affect the statement since Ag =0 for
d ¢ Dg.

3.3. Auxiliary lemmas for sums of two squares

In this subsection, we record several useful results on estimates of the functions p and rs.
To begin with, we have the following lemma, which is [15, Lemma 5.3], and will be used
in the proof of (18).

Lemma 10. Let (a,7) = (d,r) = 1, where d and r are squarefree, odd and < z°M). Then

r d
T o= 902D 1y Ry @),
n=a mod r
n=1 mod 4

d|n

where gy is defined as in (6), g1 is the multiplicative function defined on primes by

g1(p) =1-x(p)/p,

and
1 11
Ry(z;d,r) < ((rd)2 +x3)d22®.

The following lemma is nearly identical to [15, Lemma A.3] and will be used to prove
(19).
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Lemma 11. Let r be a modulus and suppose that (a,r) = (a+h,r) = (c1,r) = (ca,7) =1

and 4|h, where c1,co,r are squarefree and odd, and of size K 29U Then we have

g1(7)2T(h,c1,c2,7)

. 72w+ Ry(w;c1,02,7),

Y ra(n)ra(nth) =
n<z
n=a mod r
n=1 mod 4
ciln
c2|n+h

where

_ g2(c1)ga(c2) ce(h)(c1,t) (ca,t)x((c,t)]x((c3,t)]
F(h,01,6277") = 163 (t)g):_l tQ\I/(cl,t)\If(Cg,t) )
where W (u,t) := g2((u,t/(u,t))), cr(h) is the Ramanujan sum cy(h) =3 ¢ p) 1 (%)d, and

L a4
Ro(z;01,00,7) K 1210024 “Fcfcg a6 ",

The only difference between Lemma 11 and [15, Lemma A.3] is that the latter requires
the additional constraint that (ci,co) = 1. However, this constraint is not used in the
proof, which refers heavily to the proof of [18, Lemma 4]. Note that if (c¢1,c2) 1 h, then
the sum over ro(n)ra(n+ h) is empty; in this case, I'(h,c1,¢2,7) = 0 and the equation still
holds. One can see that I'(h,c1,c2,7) = 0 when (c1,¢2) 1 h by noting that I" is multiplicative
over primes p|[h,c1,c2,7] and that c;(h) = pu(t) whenever (¢,h) = 1. Then if any prime p
divides (c1,c2) but p1 h, the p-component of I'(h,c1,co,7) is 0.

The following lemma is [15, Lemma 5.5] and will be used in the proof of (20).

Lemma 12. Let (a,r) = (d,r) = 1, where d and r are squarefree, odd, and < z°M). Then

Z T%(n)iw ]ogx+A2+QZg5(p)—22g6(p) ‘/1:+OE(T$%+E>,

7n§w ol o
n=fmeda
" dln
where
(p) 15)1();—&)12) ff p=1mod4 () %%}H if p=1mod 4
g3 p) = ' g4 p) = .
gi(p)  ifp=3mod4 92(p) if p=3mod 4
@ptllogp  .p (P=1)’@p+Dlogp ¢
gs(p) :== pi-1 p=1modd g6(p) := { PTDTEPP=3p+1) if p=1mod 4
A5 if p=3mod 4 logp f p= 3 mod 4

and As is a constant given explicitly in [15, Lemma 5.5].

The following lemma is [15, Lemma 5.6], and will be used to prove (18), (19) and (20).
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Lemma 13. Let @ be a squarefree integer such that Q | Hp<(loglogm)3p and any prime p
dividing () is 1 mod 4. Define X, g, Z(%, and Zg(fé? as follows:

x

pla v

Xoa= Y M0
a<v
(a.Q)=1

pla=p=1 mod 4

(1) w(a@)p(®)gs([ab) . v, v
g N log —log —
" a;v g2(a)g2(b)[a,b] £, %%
(a,Q)=(b,Q)=1
plab=>p=1 mod 4
b)g4([a>b]) v v
7@ _ wla)pu( o Yo |
- ‘hb;v 92(a)g2(b)[a,b] &% gb,%gﬁ(p)
(a,Q)=(b,Q)=1
plab=>p=1 mod 4
Then
$Alog?
Ong)
Xm = 1+01 220 7
Q= (1+0(1)) 01 (0)
1
(1) g7(Q)10g§U ( 1 >
Z = 1+0]. 8A7 1+7 7and
wo =g 1 e
2(%
(@1og? .
73 = —(140(1))aA e 0820 <1+>7
I | S e
t@Q

where gy is the multiplicative function defined on primes by g7(p) =p+1.

Proof. The proof of this lemma is for the most part identical to the proof in Appendix B
of [15], so here we will restrict ourselves to highlighting the differences in the argument.

In general, the application of the Selberg—Delange method is identical to that described
in [15], with the same arguments applying for bounding, for example, relevant analytic
functions; the only change that need be made to McGrath’s arguments is replacing W
by an arbitrary @ (which must divide the W that McGrath uses) everywhere. Thus, by
following McGrath’s proof, we get that, for

and
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we have
Ki(GQ ot o [ lose)
z,Q — € )
I'(3/2)v/L(1,x4) (logu)%
which simplifies to the desired expression.
In the same manner, expressions for Z ( 22 and Z (2Q can be derived. O

3.4. Estimating S

In this section, we will prove Theorem 2, equation (17), which we restate in the following
proposition.

Proposition 14. Consider the sum Si(vy) defined by

Si(we) = > wn(L).
rz<n<2zx

n=1 mod 4
n=vg mod

Then

BE g
Si(ro) = (1 +0(1))WLK(F)'

Proof. We have

Siw)= Y wlL)= Y (de>2.

r<n<2z z<n<2z deDk
n=1 mod 4 n=1 mod 4
n=vop mod W n=vg mod W

By expanding the square and swapping the order of summation, we get that

> Aade > 1

d,e€Dgk r<n<2xc
gn+a;+qb;=0 mod [d;,e;]
n=1 mod 4
n=vro mod W

= > Mde ( H[djelﬁou))

d,e€Dk

Ade
4WZ d]+0 > Aade |

d,ecDy

where the second line follows from the first by the Chinese remainder theorem and the
observation that 4, W and the [d;,e;] are all pairwise relatively prime. In the notation
of Lemma 9, the sum in the main term is precisely the sum Sg = S 1,1,m, which by
Lemma 9 is equal to BX Ly (F).
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It remains only to bound the error term; We have

Z )\dA < Arna‘xu)I(P'
d,ecDy

We use (34) to bound Apax, and the bound
Dk| < mr(n) < R (37)
n<R

Since R = z%2/2 with 65 < we conclude

18’

Z Ade| KK, e R2te = pl2te o .%'1/18"_57
d,ecDxk

which is negligible. This completes the proof. O

3.5. Estimating ng)
In this section, we will prove Theorem 2, equation (18), which we restate in the following
proposition.

Proposition 15. For fired 1 <m < K, consider the sum S’;m)(uo) defined by
S wo)i= Y pllm(m)wa(L).

r<n<2zc

n=1 mod 4
n=vg mod W

Then

Ary [RBR By
ogv

(T +2)VKW

S5 (vo) = (1 +0(1)) 2" Ly (F).

Proof. By definition of p, we have that

ra(bm(n)) p(a) v
Pl (n) = )3 log (2).
logw st g2(a) (a)

pla=p=1 mod 4
a<v

Note that since a|f,,(n), which is relatively prime to ¢, we must have (a,q) = 1 for any
a in the definition of p(¢,,(n)). Since a is only divisible by primes that are 1 mod 4, the
only nontrivial constraint on « is that (a,q1) = 1. By expanding the definitions of w,, (L)
and p in the expression for S5 (m) (vp) and changing the order of summation, we get

pla) v
53" (v 10 =D ke ) @ % ST nalmn).  (38)
&V deeDi a<v 92 wen=os
(a,q1)=1 nlfl Ir;]lgccil 4
pla=p=1 mod 4 [d:e?] s ()i
allm (n)
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The parameter a is supported on integers whose prime factors are all 1 mod 4, whereas
by the definition of D, each [d;,e;] is only divisible by primes that are 3 mod 4. Thus,
the [d;,e;]’s and a are pairwise coprime. Also, all prime factors of each [d;,e;] are larger
than Dy, whereas each ¢b; < Dy, so each [d;,e;] is coprime to each gb;.

Thus, by Lemma 10, (applied with r = qW H#m[di,ei] and with d = a[d,,en]), we get

91 (W T, 100 ldiei]) g2 aldimsen])
Z 2 (ém(n)) - 2an Hz[dlvel] T

r<n<2x
n=1 mod 4
n=vo mod W
[dese)|£: (n)¥i
allm(n)

+ O, (((WR3U)1/2 —l—xl/S) v1/2x5> . (39)

Recall that v = 2%, R? = 2%, 6, + 60, < 1/18, and W <, 2° for all € > 0. Thus,

S§™ (o)
T Z A\ Z ,u(a) 1 v g1 (qW Hz;ém[d“el]) gQ(G/[dm’em]) +E
= og — )
logv dache dle = g2(a) a 2Wall,[di e
(a,q1)=1
pla=p=1 mod 4
where

1
‘E| < @ Z Ad e Z

d,ecDg a<v
pla=p=1 mod 4

log Ex%+(91+92)/2+€
g2(a) a

1 1 3 4 5 4
< )\IQHaX|DK|2,U1,3+(91+92)/2+6 L I3+(91+92)2+6 < 1,12+6 )

where we used use (34) to bound the Apax and (37) for |Dg].
It remains to consider the main term, which is given by

r @) o 9 (W i diei]) g2(aldmm )
logv Z Adde Z ng(E) 2Wall;[d;,ei]

d,ecDg a<v
(a,q1)=1
pla=p=1 mod 4

91 (Tgnldicd]) g2((dmsen)

wxgr (gW) pla), v
= )\ 1 -
2Wlogwv d; drte [L[di.ed] Z: a 8%
;€ K a<v
(a,q1)=1

pla=p=1 mod 4

The inside sum is exactly X, 4,, as defined in Lemma 13. Also, all primes dividing

m,€m| are congruent to 3 mo , 80 ga(|dm,em|) = 7——=—. We can thus rewrite the
[d ] 3 d4 ([d ]) a L 1 Wi h i hi

m;€m
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main term as

X:v qlﬂ—xgl q[[ gl dzyez 1
_— Ad e . 40
2W log v Z d H [di,ei] d ]2 o)

(&
d,ecDg i#=m s m

By Lemma 13, X, 4, = (1+0(1))341%Y " and by Lemma 9 applied with f(p) = 2 21(p)

g1(q)m P
and g(p) =1/p?,
Z )\d)\ H gl dz,ez 1 -9 :BK—HLK_ (F)(1+0(1))
(disei] ) ldmoem]® — 70 "
d,eeDg i#m
Then (40) can be rewritten as
W) 8Ay/1
Wxgl(q ) . 8 OngK+1LK.m(F)(1 _’_0(1))'
2Wlogv  g1(q1)m ’
By definition of ¢y,
g1 (sW)p(gsW) 1 1
o= =10 41
W =222 7Y\ D, (41)
1
Recalling also that B = %%(log}%ﬁ, we get
. /B bR
Sy (o) = (14 0(1)) ——r——Lrim (F),
which, along with the fact from Lemma 4 that Lk, (F) = 7:; LI\;(KF ), completes the

proof. O

3.6. Estimating S§m17m2)

In this section, we will prove Theorem 2, equation (19), which we restate in the following
proposition.

Proposition 16. For fired 1 < mqy,mo < K lying in the same bin of the tuple L, consider
the sum Séml’mz)(l/o) defined by

S (g) = 3 by (1)) (b (0) w0 (L)

n=1 mod 4
n=vg mod

Then

logv

(7 +2)2KW

I 64n° ({52 ) B*a
Sz () < (T+0(1))

VLg(F).
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Proof. We begin by expanding the definition of w,, (L) to rewrite Séml’m2)(uo) as

S:gml,m;\,)(yo): Z Ad e Z PUmy (1)) p(lmy(1)).

d,ecDk r<n<2zx
n=1 mod 4
n=vg mod W

Upon expanding the definition of p and changing the order of summation, the inside sum
over n is equal to

1 plap®d) v, v
———log—log —
log®v mbzq 92(a)g2(b) & a ¢ b
(ﬂ7‘11):@7(11):1
pla,b=p=1 mod 4

X Z T2(gn+ @m, + qbm, )T2(qn+ amy + g, ).

rz<n<2z
n=1 mod 4
n=vg mod W
[di,ei]|€i(n)Vi
al(gn+am, +qbm, )
bl (qn—+amy+qbms)

Since £y, (n) and £,,,(n) are always relatively prime to ¢, we must also always have
(a,q) = (b,q) = 1; since a and b are only divisible by primes congruent to 1 mod 4, this
is equivalent to the constraint that (a,q1) = (b,¢1) = 1. For the inside sum to be nonzero,

[d1,e1],...,[dk,ex], and W must all be pairwise coprime, and each of these must be
coprime to both a and b. Moreover, if any prime p divides (a,b), then p|q(bm, —bm, ). We
thus have
my.m AdA w(a)p(b) v,w
glmama) 0y = e ————log —log —
3 )= > log® a;y ga(@)g2(b) B0 8%

d,ecDgk
(a,91)=(b,q1)=1
pla,b=p=1 mod 4
X Z ro(n)ra(n+h),
Ly () <n<lmq (21)
n=1 mod 4
n=a mod ¢W Hi?ﬁml’m?[
aldmy em]n
b[de,em2Hn+h

where « is relatively prime to ¢W [, ,,,, ,.,[di€i] and b= q(bm, —bm, ).
We now apply Lemma 11 to estimate the inner sum, taking r = ¢W Hi;‘ém1 o dis€il,
¢1 = aldm,,em,] and ¢y = bldpm,,€m,]. Note that Lemma 11 does not require that ¢; and

¢o be relatively prime, but that the main term is 0 unless (c1,cq)|h. Thus,

mi,m AdAe p(a)p(b) v v
S( 1,m2) _ log —log —
P DR D N TR

(a,q1)=(b,q1)=1
pla,b=p=1 mod 4

di,ei)

2
92 (W Tt na96:011) goaldnrms ) gbldnnsns)
aw Hi;ﬁml,mg [dlﬁei] a[dmneml]b[dmzvemz]

X [772 qr
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a(h) (a,t)(b?) ([dmisem)st) X (([dmsem, )%, 1))
. 2 2 U(a,0)U(b1) II

U ([dm,,em, |t
(t!2qWHi¢m1,m2[di’ei]):1 1=1,2 ([ i€ L] )

1

+0 (x%Jrea%b% [dml,eml]% [dm2,em2]§>
+0 <x%+6 (qW H [di7ei]) %ab[dml,eml] [de,emz])] .
i#mi, mo

Taking absolute values and noting that dp,,,em, < R, the first error term is bounded
by

Noax Dic? (2803 RE 42370 B ) < XDk R,

Using (34) to bound Apax, (37) for D, and the fact that 61 + 62 <
error term is bounded by

18, we get that the

<o 16+2(01+02)+e <<x%+

which is negligible.
We return to the main term which, after some simplification, and recalling that go(p) = %
for p =3 mod 4, becomes

2
S(ml ;m2) (I/ ) ~ 7T2;Cg% (qW) Aq Hz‘;éml,mz 91 ([divei])
O Wlog? 2 A [dmsrm Pldmgma) 211, [ds,ei]
g v d,ecDx mir-mi m2s =M z;éml,mz 1,1

pla)pd), v, v ci(h)
PPN 160 2 log —
% ; ab B %% Z 2
(aylh;l,:(z’léh):l (624 Ty, m, [dis€i]) =1
pla,b=p=1 mod 4

([dmi7emi]7t>x(([dmi’emi}g’t)) (a,t)(D,1)
<1l U([em) U@t W00

(42)

i=1,2

The sum over ¢ is multiplicative, and can thus be written as a product 31 x X3, where
Y1 ranges over integers divisible only by primes congruent to 1 mod 4 and Y3 ranges over
integers divisible only by primes congruent to 3 mod 4. That is,

E _ Z Ct(h) H ([dmi’emi]vt)x(([dmwequth))
° 7 t? iz1.9 U ([dm,,em,]t) ’
p|lt=p=3 mod 4 ’
(t7QSWHi¢m1,m2 [divei]):l

and

B ct(h)  (a,t)(bt)
¥ = Z 2 W(a,t)¥(bt)’

t
(t,q1)=1
plt=p=1 mod 4

We have used the fact that in 335 we have (a,t) = (bt) = ¥(a,t) = U(b,t) =1, and in 3y
we have ([dm'ﬂemi}?t) =X (([d"li’emi]z?t)) = \I/([dmmemi]at) =1
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We begin by considering X3. Using the definition c;(h) = >, ¢ p)#(t/t1)t1, and
swapping sums and relabeling via to = ¢/t1, we get

Z tl:u(tQ) H ([dmi’emi]’tth)X(([dmi7€mi]27t1t2)).

2 =
° (t1t2)? U ([, €mi ), tit2)

t1,t2 p|t1t2:>pE3 mod 4 i=1,2
(t122,08W [ Titimy, my [direi])=1 ta]h

Any prime p|lh with p =3 mod 4 divides ¢sW, and ¢1|h must be co-prime with g3W,
so t1 = 1. Furthermore, t5 is squarefree due to the term p(t2), which implies that
U([dpm;,€m,],t2) = 1. Thus,

23 = Z ME:;Q) H ([dmwemi]atQ)X(([dmme'rrzi]27t2))

to plta=>p=3 mod 4 2 i=1,2
(t2,03W [ t1ny g [dis€i])=1

1 1
plasW Tldines] ~ F 7 ptaaWTn, iy ldied ©
p=3mod 4 P‘Hi:l,z[dmi’emi]
p=3 mod 4

Since g3W is the product of all primes congruent to 3 mod 4 smaller than Dy, we have

s= 11 (-5) I (I (1—1)_1 91 ([, )1 (s ema))

2 2
p>Dg p i;éml,WLQ p\[di,ei} p
p=1 mod 4
= (1+0(1))gl([dm1’em1])gl m276m2 H f dhel
i#my, ma
-1
where f(n)=][,, (1 - p%)
Plugging this back into (42), we get
85" (o)
_ mag} (qW) S dake I my,mo 93 ([disei]) £ ([disei) [Tic 291 ([dmisem,])
WIOg U 4eeDx N e L Hi¢m1,m2 (diei
pla)p(b), v, v ct(h) (a,t)(b,t)
———=log—log — .
DY W losglsr > 2 W(a,0)U(bt)
a,b<v (t qf)*l
a, b 1 »q1)=
(|a Zl=)>p( 1qlln)od 4 plt=p=1 mod 4

In the notation of Lemma 9, the sum over d and e (which is independent of a,b,t) is of
the form Sy for J = {mj,mz}, so that by Lemma 9, we get
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mzgi (qW)

Wlog?v
pla)ud), v v a(h) (at)(bt)
MAOEO) 156 U 1og Y .

. ; o loegley D 2 W(a,0)U(bt)

t
(a,q1)=(b,q1)=1 (t,q1)=1
pla,b=p=1 mod 4 plt=p=1 mod 4

Sz)(,mhmz)(’/o) BK+2LK;m1,m2 (F)

Switching the order of summation gives

g (qW)

glmma) B2 ey s (F .
3 (v0) Wlog? v Kima,ma (F) &
ci(h) p@)p®) (at)bt) | v, v
log —log —.
D VR Y ab W(anubD) Fa D
(t,q1)=1 a,q1 7:371}1 =1
plt=p=1 mod 4 p(|a,Z:)>p(51qm)od 4

Denoting the inner sum as ¥, (), we can write

Yo p(t) = < Z Mlogi) .

a<v
(a,q1)=1
pla=p=1 mod 4

The calculations from [9, Lemma 6] (along much the same lines as Lemma 13) imply that

L 2
8A 1 ta
S, () = Ct)logtvro| -2 ,
:b( ) <7Tg1(Q1) ( ) g <10g2v>>

where C(t) is the constant in [9, Lemma 6], given by

-1
II ( — %) if p|t and p =1 mod 4 implies p?|t
0 otherwise.
Note that in [9, Lemma 6], the Landau-Ramanujan constant is normalized as v/2A4, and

that the statements of [9, Lemma 5] and [9, Lemma 6] are missing another factor of v/2.
Plugging this estimate back into (43), we get

iy ms 64A%zgf (gsW) BX+2 ci(h)C3(t)
sy )~ BBy (Y o),

t
(t,q1)=1
plt=p=1 mod 4
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where
1 lee(R)|C () 1 |ce(h)]
Ex +
logw ; ¢ log? v ; ts
(t,q1)=1 (t,q1)=1
plt=p=1 mod 4 plt=p=1 mod 4
1 et (h)|
< logv Z 5

t
(t,q1)=1
plt=p=1 mod 4

From [9, Eq 15], we have that F <
n(logx)%. As for the main term, from [9, Eq 18], we have

> OE0 T (gt ()

1021;‘7—% (h), which implies F < % since h <

t 8
tgr)=1 Pk
p\t:(>pq§11) mod 4 p:1p£;10d 4
Thus,
S§m17m2)
64A2%2g? (@sW) BE+2 < 1 ( 1 1 ))
~ 1+ 1— — =) ) Loy (F).
Wlogw pﬁleb (2p—1)2 pi=t pf wms (F)
pElmIQnodTZ1
a1
The product over p®||(b,,, — by, ) is bounded above by V (defined in (15)), so that
2,2 K+2
(m1,ms) <1 1 64A%zgi (¢sW) B Lo P
557 () < (14+0(1) I TV L ().
Finally, using the identity that B = %%W as well as applying (41) and
Lemma 4 completes the proof. O

3.7. Estimating S\
In this section, we will prove Theorem 2, equation (20), which we restate in the following
proposition.

Proposition 17. For fizred 1 <m < K, consider the sum Sim)(uo) defined by

S = Y pPllm(n)wa(L).

r<n<2x
n=1 mod 4
n=vg mod W
Then
logR [ logx
S (vo) = (14 (1))87r g <10§v “) Bl <1+ ! )L (F)
V) = 0 —_—
4 0 (’/T-l-?) KW =i mod 4 (2p—1)2 K
pla1
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Proof. We first expand the definitions of w,(£) and p?(£,,(n)) and swap the order of
summation to write

b) v.w
S(m)( AdAe () log —log — 72 (U (n)).
oo, e X

(a,q1)=(b,q1)=1 n=1 rﬁgg 4

plab=p=1 mod 4 [dze?]lli (n)vi

[a,b]|€m (n)
(44)

The quantities W, [dy,e1),...,[dk,ex], ¢, and [a,b] must be pairwise coprime because of the

support of Di. We use Lemma 12 in order to evaluate the inner sum; we will apply
Lemma 12 with r = gW[],,,,[di.e;] and d = [a,b][dy,€5,]. The sum (44) can then be

written as
pl@ud) v v
Adde ————log —log —x 45
IOg Ya ék ¢ a;v g2(a)g2(b) “a "b (45)
p|ab:>;;z_1 mod 4
93(r)94(d)

log gz + Az + 2295(17) - 2296(]7) qr+ O, ((qz)%+92+6>

plr pld

rd

Taking absolute values, the error term from (45) is bounded by
<e Inax|DK|2 Q(qx) itbate L x4+2(92+01)+8

where we used (34) to bound the Apnax and (37) for |Dg|. This error term is negligible,
since 01 + 605 < %

We now evaluate the main term via a process that is identical to the one in [15,
Proposition 6.2, part (iv)]. Using the notation from Lemma 13, the main term of (45) is

g3(qW)BX qx

(1+0(1)) W10g2v

(z;};l logz —22(2) )LK;m(F).

Z,q1

By Lemma 13, this is equal to

g3(gW)BX gz 8Agr(q1)
Wlog?v  ¢(q1)g1(qr)

< 11 <1+(2pi1)2>L;{;m(F)

(I1+0(1)) v/1ogv(logx +logv)

p=1 mod 4
P‘T‘Il
84g3(qW)gr(q1) BX+log? v (}gii + 1) qz
aW¢(q1)g1(q1)log™ v
1
1+ ——— | L. (F).
< (+(2p1)2> Ko (F)
p=1 mod 4
i
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Recalling the definition of B and equation(41), we get that

S§™ (vo)
logR [ logz
_ gs(a1)gr(a1) 38"/ Toio <1°g”+1>x ( : >
= (1+0(1)) Sla)or (@) i pal;[m 1+(2p_1)2 Lim(F).
pta1

Observing that the factors dividing ¢g; cancel and applying the identity from Lemma 4

that Ly, (F) = :sz L\};%F) completes the proof. O

3.8. Estimating S’ém)

In this section, we will prove Theorem 2, equation (21), which we restate in the following
proposition.

Proposition 18. Let £ > 0 be a constant with £ < % For fired 1 <m < K, define
Sém)(yo) to be the sum

S )= Y ST wa(L).

r<n<2x p<z£

n=1mod 4 5=3 mod 4
n: p=3 mo
n=vg mod W Pl (1)

Then

K262 BK g

S(m)(l/o) < 77LK(F)
> 03 W

The proof of the proposition relies on the following lemma, which we state and prove
before turning to the main proof of Proposition 18.

Lemma 19. Define

oz Yulv .
T, 2 Fwew L eyl

u,veDg pluv
where
pfl ifp ‘ (u,v)
p(d)p(e)de !
op(u,v) = Z W =10 if pluv,pt(u,v) .
d|u, e|v ’ ;
e L et
Then

z [ e 2 \F log R\ ¥/?
r< X Lic(F).
<<W<r<1/2>) (IOgD0> x(F)
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Proof. First note that if u # v, then for some prime p, o,(u,v) =0, so these terms do
not contribute. Thus, for a fixed u € D,

[y low (0v)] Jop(uw)|\
ZT_H(Z o(w) )_1'

veEDk plu wWEDK
w; |pVi

This, along with the bound that yu,yy < y2 +y2, implies that

reg T g memisg 3 (Z o )

u veDk pluv ueDg veDk

ueD
By Lemma 7,
2 9 K ] 2 —y/2\ K log R K/2
> = X i o (kie) < (fam) (oeny) e
reDk reDx i=1 ) g L0
as desired. 0

We are now ready to prove Proposition 18.

Proof of Proposition 18. Expanding the square and swapping the order of summation

gives
Sém)(l/()) = Z Z )\d>\e Z 1.

p<x5 d,e€Dk r<n<2x
= n=1 mod 4
p=3 mod 4 n=vg mod W
[ds,ei][4i(n)
pllm(n)

By choice of vy mod W, if p|l,,(n), then p > Dy. Because of the support of D, if
Ad # 0 and Ae # 0, then any prime p = 3 mod 4 can divide at most one of the ¢;(n).
Thus, if p|l,,(n), then p{£;(n) for all ¢ # m, which implies that (d;e;,p) =1 for all
i 7 m. By the Chinese remainder theorem, the inner sum is of the form # +0(1), where
Q = AW [d,em,D] H#m[di,ei]. Note that Q < 4W R?2¢, and for any fixed Q, there are
O(731+4(Q)) choices of d,e,p giving rise to the modulus @. Thus, the error term from the
Chinese remainder theorem application and (34) makes a contribution that is

< Z T3t d(Q) Ay Ko R2xta® = 2218t
Q<AW R2z¢

which is negligible for & small.
The remaining term is given by

T 1 AdAeP
4w Z Z [dmae’m7p] Hz;ém [di7ei] '

D0<p<:1:£ d,eGDK‘
p=3 mod 4 (diei,p)=1ViF#m
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Expanding the definitions of A\g,\e and rearranging, this is

kS 1 ,u(d) ( )dep YrlYs
aw Z Z [dm,em,p] Hi;ém[diaei] r,s€Dx ¢(T)¢(5)

Do<p<zt p d,e€Dk

p=3 mod 4 (d'e“p):1Vi;£m d|r,els
Z z yrys Z ,u(d)u(e)dep (46)
4W Do<p<zt = 1r,Ss€DK ¢ d,ecDxk [dm’em’p] Hl?ém [di’ei}
p=3 mod 4 ( iei;ipl):llvwém

The inside sum is multiplicative over p’|rs; write o, (r,s,p) for the p’ component. If p’ # p,

then
p'—1 ifp'|(r;s)
p(d)p(e)dep |
\I,S, = = -1 f ! ! !
O'p (I‘ S p) Z [dm,€m7p] Hl;ﬁm[dmez] op |’I",p |57p ’|'(I',S)
d,e€Dk 0 otherwise,
di,e;|p’ Vi
d|r,e|s

where we recall that (r,s) =[], (ri,s;). If p" = p, then

(p—1)2%  if p|(T1m,8m)

w(d)u(e)dep .
Up(I',S,p) = Z ( ) ( ) = _(p_ 1) lf p|7am8m7pf (Tm,Sm) .
[dmveﬂ’mp] Hz;ﬁm [di?ei] .
S,eiDlz; 1 otherwise.
di—ey—1 Yitm
d|r,e|s

Let fu(r)=(r1,-..,rm/(Fm,p),...,7%) be the vector formed by removing a possible factor
of p from r,,. Then our expression (46) can be written as

S S S S

Dg <p<:E u,s€Dg I _
p=3 mod 4 (unup) 1 fulr)=u

p'|rs

We split the sum above into several parts. Let £; be the summands where p|u; for some
j #m, and let Xo be the summands where ptu; for all i. Define

Z ¢yuyv H lop (0, v) (47)

u veEDk
where
-y Hantde

d|u, e|v
dl,el\p Vi
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We will bound both ¥; and 35 in terms of 7, showing first that ¥; <« D%)T. We have

Y= 4W Z Z Z ¢ Z ¢—op ,S,D) Hap r,s,p).

Do<p<zt z;ﬁm u,s€Dg p "rs
p=3 mod 4 (uz‘,z) 1 f“(r)_“ p'#p

Given u, there is only one vector r such that fy,(r) =u; namely, r = u. Thus,

21:% Z Z Z ysyu »(1,8,p) Hop u,s)

D0<p<’1' z;ém u,seDg P |ué
p=3 mod 4 (Umﬁp) 1 p'#p
plui

Denote by u’ the vector obtained from u by removing all factors of p. Then ¢(u) =

(p—1)¢p(u') and op(u,s,p) = o, (W',8,0) = L((Sm,p))d((Sm,p)), which is independent of u
because we already require (um,p) = 1. Thus,

_Z Ys Yu
El_msezmez»(s) 2 Z ¢ stsn) [1 ovtels) 3 525

Do<p<z* p'lu's ueD;/(
p=3 mod 4 p’;ép u—u

By Lemma 5, we have yy, =y (140 (Kf)). By assumption, K¢ < 1, so (recalling that
the weights y, are nonnegative), yu < Yy and

S 1 Yuw ’ ,
BEFE-D 2 5T Y mmn 2 gy tsol I sl

s€Dk Do<p<zt u' €Dk p'lu’s
p=3 mod 4 plu; p’#p

To bound ¥, we now further split it into subsums. First, let T} consist of all those
terms with s such that p{s; for all 4. In this case, o,(u’,s,p) =1, so

T1<<%(K—1) 3 =) 3 ¢S y“’) /ll_[/’|0p/(u/,s)|.

Do <p<t SED
p=3 mod 4 ptsi Vi Mu Vz

Dropping the requirement that p{s;, ptu; only increases Tj. The sum over p is then
independent of the rest of the expression and converges to a constant that is < Dio,
which in turn implies that 77 < Do KT where T is defined in (47).

Now counsider T5, the terms s in ¥; such that p|s; for some i # m. In this case,
op(u';s,p) =1, so

Ty < < (K —1)? >

w
Do <p<x5

Z yz Z yu’ H|apus

p( SED
p‘él pJ(u VZ p 7ﬁp

Let s’ be the vector obtained by removing the factor of p from s. Once again, ys < ys,
SO

T2<<%(K—l)2 Z N Z ys, Z yu, H|apus

Do<p<a*
p=3 mod 4 ;DJ[SI VZ pJ(u Vz
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Once more, we can remove the constraints that pts; and p{u) and evaluate the sum over
p to get that Th < %zT.
0
Finally, consider T3, the subsum of 3; with those s such that p| s,,. In this case,

op(u',s,p) = —(p—1). A similar computation gives
yS/ Yu’ 1
ZES DY 2 Z Il | LIRS
w2 ey 2 5y
Do<p<zx u €Dy p’|u’s
p=3 mod 4 p’(s Vz pm/l Vi

Thus, [$] < 11+ T+ T3 < T
Now consider Y5, given by

X Ys Yr
B Ly 2o 2 o LLoven)

Do<p<z® = wscDk p'lrs
p=3 mod 4 (’U«up) 1vi fu(r)—“

[t

Observe that for fixed u,;s € D with ptu; for all 4,

Jp(I‘,Sap) ((Sm,p))(b((sm,p)) B p;l _
,.;K o(r) o(u) (1 p_l) (48)
fu(!'):u

We substitute yr = yu + (Yr — yu) into Xy. By (48), the y, do not contribute, leaving only
the contribution from (y, —yy). The only terms remaining have r # u, so that p|r,,. Thus,

N, = 4W Z Z ys yr Z/u Ho_p r,s,p).

Do<p<x r s€Dg p'|rs

p=3mod4  Plrm
By running the same argument for s and a tuple v obtained from s by removing a factor
of p from s, (including bounding the terms where p|v; for some i # m by £ o T using
identical arguments to the bound on ¥1), we can also replace ys by ys — yy- By Lemma
5, we have
(logp)*

r— Yu s Yv uvK277
(Yr —Yu) (Ys — Yv) < Yuy (log )2

S0 Yo is given by

(yr*yu)(ys*yv) K2T
DD D GrE | %/(r,s,p)+0( B >

Do<p<azt r,s€Dg p'|rs
p=3 mod 4 P|(Tma9m)

x K2 logp lop(r,s,p)] K2T
<5 L (o) 5w et 3 ST

Do<p<zt u,veDg p'|uv TI‘ SEE}(
= =1 / = 3
p=3 mod 4 (uv,p) p'#£p P il
r;=u;Vi#m
s;=v;VigEm
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The sum over r and s is equal to ¢(u) é(v)~!

zK? 1 [/ logp 2 yuyv KZT
by o z
2w p(logR> 2 G H"”’ WYty
D0<p<a:E u,veDg
p=3 mod 4 (uv,p)=1 p;ep
a K¢ Yuy e,
— A — K22 T.
< i ;3 O] H|o—p uv|+ L o 5 Do
u, p

Altogether, we get that S(m)(uo) < ( + ID< )T The contribution from the £- term

vanishes as x grows large. The quantity T is evaluated in Lemma 19, giving

_ K K/2
(m) rK2€2 [ e /2 log R
5 0) < \ vy ) \iogny)  Lx(E):

From the definition of B and Mertens’ theorem, we get

e—/2 K log R K/2 g
r(1/2) log Dy ’

which completes the argument. O

3.9. Estimating Séb)

In this section, we will prove Theorem 2, equation (22), which we restate in the following
proposition.

Proposition 20. Let vy be a congruence class modulo gaW? such that (((v1),q3W?) is
a square for all £ € L. Fiz 3 <b<n\/logx and consider the linear form £®)(n) := qn +b.
Fiz a constant & with 0 < & < 1/4, and define

b
P = Y e m)uwa(L),
z<n<2x
n=1 mod 4
n=r1 mod ng2

where S(&) is the set described in (11). Then

—1/2 =
) Ty (O Oel) T Lr

Proof. We will apply Selberg’s sieve to bound the function 1g(¢)(¢(n)), while also
evaluating the sum over sieve weights w,,(L£). We begin by defining the additional sieve
weights.
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Recall that S(£) denotes the set of integers such that for all primes p < z& with p =
3 mod 4, either p{n or p?|n. Thus, for each prime p =3 mod 4, with Dy < p < 2%, we
sieve by the set A, of integers  <n < 2z such that p| £(n) but p?{¢(n). The sieving set
A, has density function

p

L_ L p»>Dyand p=3mod4
glp)=17? .
0 otherwise.

We extend both g(p) and A, multiplicatively to squarefree d, so that
Iral == |Aq — g(d)z| < 7(d).

We will use the upper bound Selberg sieve

1see) (£( Z wt () Asl,
fle(n)

where

Z Ado e

/\1 [do,eo]=f
and \q is a sequence of weights defined as follows. Define ‘diagonalizing vectors’ Yr, Via

N 1 if (ro,q3W) = 1,79 < 2%, and p|ro = p =3 mod 4
Yro = .
0 otherwise,

and define Ay, to be

Ay == 1 y”] . (49)

By Mobius inversion, we also have the relation that

Vi = lro)a(r) Y 2u0),

roldo 0
Note that )\:10 is supported on squarefree dy with (do,qsW) =1, do < x¢, and dy only
divisible by primes congruent to 3 mod 4. Also, with this choice,

- 1 Elogx
SR DR R ey 0

ro<x
(ro,qsW)=1
plro=p=3 mod 4
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For what follows, we will fix the notation that
K+1
st =T (1-521),
pln

and define further ‘cross’-diagonalizing vectors

AaAg, o(d
e = (o) (ror) 3 22000 () 1)
r|d 0
roldo
(do,d)=1

which satisfy the inverse relation that

~ dOd dd yrr
,\d>\d0: Fen Hldod)ady Z - 0 (52)

d0|7o
(ro,m)=1

We are now ready to apply Selberg’s sieve, which gives that

(b)
Se (1) < > AoAesAade > [ Afdo, o]
1 do,ep,d,e r<n<2x
[di,e:]]4i(n)
pldoeo=pl|£(n)
n=1 mod 4
n=r; mod q%VV2

1 Ty xg([do,eo))
=7 2 Madedade +O(r(do.ca]) ).
12 do,eo,d,e n <4Q§W2Hf<_1[di,ei]
(doeg,de)=1

The contribution from the O(7([dy,eg])) term satisfies

1 ~ - o 1 <

o > PaollAeolAalXelT([doseo]) < BFFD —5 Y [\g, |1 Ao |7 ([doseo]).
1 do,eo,d,e 1 dp,e
(d()oeo,ode)zl o

~ ~ ~ ~ 2
By construction of A; and \g4,, we always have that [Ag,|/| 1] < ﬁ. Thus, this term

contributes <, R?Tex%+e <« x02+26+2¢ which is negligible since ¢ < 1/4.
The remaining ‘main’ term is given by

z ~ - Ad e
— TS Nhgldee)) S =t (53)
~ 2 doNeod 0,0 174
4q§W2/\1 do,eq o d,e€Dg Hi:l[di’ei]
(do,eo,%W):l (de,doeo):1
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Substituting the formula (52) for AgAg, into (53), we get that (53) is equal to

_ z 3 pu(dod)p(eoe)dgdegeg([doseo))
443 WX, dechr [d,e]p(do)g(eo)
d ,€0

(dies,djej)= 1 V0<i<j<k
% Yr,roYs, so

d%s G (ToT) du= (505)

do|ro,e0lso
_ z E : Yr,roYs, so
- ~ 2
A@W2N, o lcp. Qe (1o7)dur (s08)

(ro\:(i’f;):l
p1(dod) p(eoe)dgdegeg([do, eo))
) d§|s [d,e]¢(do)¢(eo0) '

do|ro, eolso
(diei,dje;)=1V0<i<j<k

The inner sum is multiplicative over p | rsrgsg, where the pth factor is given by

p—1 plri,plsi,i>1

b
o,(r,8,m0,50) = { P71 L plro.pls L,
-1 p‘ri,p|sjal7éjala]20
0 p divides exactly one of rrg and ssg.

The product HP‘T,STOSO op(r,8,70,50) is O unless 77y = ssg. Then using the bound
Yr,roUs,s0 < Yp.r T3 5, We see (by symmetry) that (53) is

yrro
d |op(r,8,70,80)]
4q2W%z; Ty 2= 1Ll

S, S0
S8S0— ’l"r’()

y”“ Ktp-1 (K p2—1>
4q3W2/\12; +(r70) H( i

—1
plr plro

K+ -2

2
2
————3 > Urn L1 #

—1)2
4q3W2>\1 r,70 plrro 1)

plrro

2
€ Yr,ro
< = ’ . (54)
4(]§W2>\12 r,ro Hp\rro (p+O(K))

In order to estimate this sum, we wish to express yy », in terms of y, and y,,. This is
very similar to the computation done in [14, Proposition 9.4]. Writing y, , as in (51) and
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using the definition of Aq in (31) and g, in (49), we get

AaAg, (d
Yr.ro = (r0T) o (To1) Z %f(o)
r|d 0
T‘Qldo
(do,d)=1
= p(ror) e (ror) Z (do) Z yfo Z Z
roldo do ‘f r|d d|f
(d>d0)71
yfyfo
ror ). (ror) d) (o).
= p(ror)du=(ro fz; 5o () doz;i 1(d)(do)
ro|fo,r|f rolda,rd
d()lfo,d‘f
(d,do)=1

The inner sum is 0 unless every prime dividing one of f and fy but not the other is a
divisor of r7¢; in that case, the inner sum is +1. Thus, using the fact that y, > y¢ (since
F is decreasing), as well as the fact that y;, > y7,, we get that

Yr,r <¢w*(7"07“)yry; Z Z M
o v 2 SRl

7ol fo r|f

(fo,asW)=1ffo/(f,fo)?|rro

Let fo=roflgo and f; =r;flg; for 1 <i < K, where f/ = f;/(fi,rro) is the largest divisor
of f; that is relatively prime to rrg. In particular, go | » and g; | ro for 1 <i < K. Since
ffo/(f,fo)? | rro, we must have f} = Hfil f1. Thus, vy, is bounded by

1 1
2 ) 25
gi|roV1<i<k

< g (ror)untir, [ (H@_Kl)z)H(H(pf—(n)H(H(pil))'

p>Dg plro plr
p=3 mod 4

Yr,ro = < P (TOT)yryro ¢(To7’) o ¢2(f )

The first product is < Ok (1). By the definition of ¢+, we then have

N K K+1 1 K+1
yr,ro<<yryroH(1+ 1) (1_ P )H<1+ 1) (1_ D )a

plro plr

which in turn implies that y, », < yr¥r, because both products are < 1.
Plugging this into (54), we get that

IR b
SG ( )<< Q§W2)\~12 < rogiﬁ HP|T0(p+O ) (rEZD:K HP|T p+0( ))> (55)

(7"07W):1
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Recalling that yy, = 1 for g <z and (rg,q3W) = 1, we have

y;OZ << (é—logx)l/Q
L, (p+O(K)) ~\logDo )

TOSIE
(ro,q3W)=1

We can bound the sum over r using Lemma 7. From the definition of L (F), we then get

Ve 2 \5  1og R \ K/
rezD:K [ (p+O(K)) < (F(1/2)> <logD0> Lk (F).

Using these estimates as well as the bound (50) on A, equation (55) becomes

log Dy [ Elogx 1/2 logR K/2
S - Li(F
6 (1) <k @3W? Elogz \ log Dy log Dy K (F)

K1
x _1/20_1/2 logR 2 Lo(F
< q§W2£ 2 <logDo x (),

as desired. O

4. Singular series estimates

We now prove several computational lemmas providing bounds on sums over E-admissible
tuples £ = L(b) for b € B. We begin with an average that appears in the sums over the
terms S7(vp) through Sém)(yo) in the proof of Theorem 1, before turning to bounding
S (1) different values of b

s (v1) on average over different values of b.

4.1. Averaging over B and 1

Lemma 21. In the notation of Section 2,

3 S sk (Z)K_l(loga:)K?l (¢(WW>>KW

beB vop mod W
L=L(b) adm. (£(vy),W)=1VLeL
Proof. We first consider the number of b € B that will produce an admissible tuple £(b).
If £(b) is not admissible, then there is some prime p < K, p =3 mod 4, p{ ¢ such that
[Lre 2wy ¢(n) is always divisible by p. In order to prevent this situation, we can consider
only those b for which each b;, i > 2 satisfies ¢+ a; + ¢b; Z 0,1 mod p for all p < K,
p=3mod 4, pt2q. Having excluded two congruence classes for each prime p, together
with the linear form corresponding to by, the tuple £(b) cannot cover all of the congruence
classes mod p.
Thus, for each 2 <i < K, we can choose b; from a set of size

2
SEq\/logx H (lp) >k g\/log:c
p|W

2<p<K
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while ensuring that the resulting b is admissible. It follows that there are at least >
(2)1{_1(10g95)(K_1)/2 choices of b € B with £(b) admissible.

For each b with £(b), we now consider the sum over . For fixed b, this is bounded
by

s QR (-8) ()

vo mod W p|W
(U(vo), W)=1VLeL 2<p<K p>K

which, along with the number of choices of b yielding admissible tuples, completes the
proof. O

4.2. Averaging over Séb)(vl)

In this section, we will analyze the sum over Séb)(m) terms appearing in the proof of
Theorem 1, and in particular provide the proof of Lemma 3. To begin with, the Séb)(ul)
sum can be bounded via Theorem 2 by

> > > 57m) (56)
beB Y1 Mo 2 b<n+/logzx
L=L(b) adm. (Z(ull),W)d:‘/ll/WGL Er?+b€%

(qu1+b,W?)=0
K-—1

R () RGN SED SR VI
4 080 beB b<n+/logx vy mod W?
L=L(b) adm. gn{bdl (£(vq),W)=1VLEL
(qu1+b,W2):D

Our next task is estimating the sums over b,b and v;. The constraints on ; mod W? are
multiplicative, so we can understand them separately for each p | W. For a fixed p | W, let
N,2(L,b) denote the number of congruence classes ¥ mod p? such that p | £(v) for some
¢ € L or such that p| ¢*(v) but p?{£°(v). Then we have, for fixed £(b) and fixed b, that

" dW)\ T 1 1= N2 (L,h) /p?
> =TIwr - Vet =wr (27 er[V(l_l/(mK)fp

v1 mod W? p|W
(b(v1),W)=1VLeL
(qu1+b,Ww?)=0

The remaining sum over b and b is bounded in the following proposition.

Proposition 22. We have

1—N~pz L,b)/p? Viogz)X
Z Z H q (L,b)/p (nvlogr)

K ’
f]_/p)KJrl (Sq)Kfl
beB  p<n /I p|W
L(b)adm.” gubgt

where the implied constant depends only on K.
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Plugging this estimate into (56), we have

XZ 2 > s

be v1 mod W? b<n/logx
(b) adm. (g(vy),W)=1VeL  qn+bgLl
(qui+b,W?)=0

x 12— log R N p(W)E+ (ny/logx)
Y L(F)¢ 120 1/2 W2
<K gz w(E)E 0, log Do WHE+L - (8¢)K—1

Using the fact that

oW) _ a3
W 6(gs)

and that log R = 6;logx, we get

D 2. > S

beB v1 mod W2 b<n+/logz
L=L(b) adm. (¢(11),W)=1VLEL  qn+bgL
(qri+b,W?)=0

g3 )K“ 7S (loga)*
) q

$7
o(gs 30571 (log D)™

(logDQ)_1

< €Y7 T L (F) (

which completes the proof of Lemma 3.
It remains to prove Proposition 22. To do so, we will make use of the following lemma.

Lemma 23. Let sz (L,b) denote the number of congruence classes v mod p* such that
p| L(v) for some € € L or such that p | (*(v) but p* 1 £°(v). Let N,(L,b) denote the number
of congruence classes v mod p such that p | £(v) for some £ € L or such that p | £°(v).
Then

L,b) 1 N,(L,b
H((/p KH7>/P

Ty (= 1/p)RH (1—1/p)K+1"
p>K+1

where the implied constant depends only on K.

Proof. By definition, N;,z (L£,b) almost consists of all elements of a certain set of
congruence classes modulo p when lifted to Z/p?Z, with the possible exception of one
congruence class ¥ modulo p? such that ¢*(v) =0 mod p?. In particular, this implies that

N,2(L,b) = pN,(L,b) — E

where F is either 0 or 1. Thus,

I 1(—1\62(/371))/192 11 1— N, (£,b)/p+1/p*

VL S VLS

p|W p|W

since the numerator of each factor in the product is either unchanged or has increased.
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We can then rewrite the right-hand side as

oW (I—1/p)f+t oW (1—1/p)K+1 i (1—1/p)K+1
p<K+1 p>K+1
1-1/p (1—Ny(£,b)/p) 1
Spggﬂﬂ*/p)’{“ 1|_v[V (1-1/p)K+ <1+p<pr(£,b)))

p>K+1

»(£,0)/p) 1
— 14— .
K H 1—1/p e 1|_v[v -k 1)
P
p>K +1 p>K+1
The second Euler product converges to a constant dependent only on K when extended
over all primes p > K + 1, which completes the proof. O

We are now ready to prove Proposition 22. This estimate is an analog of Gallagher’s
result [5] that the average value of the singular series constants appearing in the Hardy—
Littlewood k-tuples conjecture is 1. Our proof will closely follow Gallagher’s argument.

Proof of Proposition 22. We begin by applying Lemma 23 to bound the left-hand
side by

»(L,0)/p

<K Z Z H 1_1/pK+1’
beB  p<ny/logz p|W
L(b)adm. gntbgl p>K+1

where N,(L,b) is the number of congruence classes ¥ mod p such that p|¢(v) for some
¢ € L or such that p|¢®(v).
Let A(L,b) denote the product

A(Lb) := H (q(biy = bi,) + ai, —as,) H (b—gbi —a;).

1<iy<ig<K 1<i<K

Thus, 1 < Np(L£,b) < K +1, with equality on the right if and only if p{ A(L,b). Define

a(p,Np) via
- Np/p
— =1 N,
(1-1/p)K+t +a(p,Np),
and for squarefree r, define ac () multiplicatively via ag ,(r) = lera(p,Np(E,b)), SO
that

1— N, (L,b
|| Ry /(p)K)ff =2 _acs(r):

p|W r|W
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By the same reasoning as in Gallagher’s proof of equation (3) in [5], for a constant z to
be fixed later and for all € > 0, we have

1-Ny(L,b)/p
> X I e (57)
beB b<n\/10gaj p|W
L(b) adm. gnibgl p>K+1

=3 Y Y acu(r) + Ok, (0" (log )</ (anlog x)* fx).

r<z beB  p<nlogz
L(b) adm. gn4bgL

The inner sums over b € B and b are equal to

2 1L« (.Ny) {32 1+ 0((v/loga)* 1)}

Np)p  plr
p>K+1

where each (N,), is a vector with positive integer entries for each prime p|r with p >
K +1, and where Z denotes the number of ways to choose values bs,...,bx and b,

not necessarily distinct, such that each b; = 3 mod 4, such that 1 < ¢b; < Z+/logx for
2 <i < jM, such that < gb; < ny/logx for jM +1 <1i < K, such that b < ny/logz, and
most crucially, such that by,...,bx,b occupy precisely N, congruence classes modulo p for
each p|r. Recall that by = 3 is fixed for all b € B.

By the Chinese remainder theorem, for r < n+/logz,

() () o))

where o(K,N,) denotes the number of surjective maps from {1,...,K} onto {1,...,Np}.
Thus, the inner sum is

(o) (o)

8qr

<I] (]f;p_11> o(K,N,),

plr

B<r>> +0((nV/Iog)*'C(n)),
where

- % Tatm () ) (K.N,),

(N )p\r p‘

= > [[lae.nN, ( )(KN),and

(Np)p|r pIT

> lawn

(Np)p|r pIT

One can show via a combinatorial argument (identical to the one performed in [5]) that
A(r) =0 whenever r > 1. Also by the same arguments as in [5], we have B(r) < C«(") %
and C(r) < C*) PIE)
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Altogether, we get that

1-N,(£,b)/p
Sy e

beB  p<nylogz p|lW
L(b) adm. gn+4bgl p>K+1

/ K-1 w(r)
<7781;)gx) (ny/1ogz)+ 0O | (n logx)K*IZC !

+0(n" (logz)*/?(znlogx)® /)

_ (ny/logz)¥

(SQ)K—I +OK757q((’I’} IOgI)K71/2+€)’

choosing = = (ny/logx))'/2. This completes the proof. O
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