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Abstract

The Stable Roommates problems are characterized by the preferences of agents over other agents
as roommates. A solution is a partition of the agents into pairs that are acceptable to each other
(i.e., they are in the preference lists of each other), and the matching is stable (i.e., there do not
exist any two agents who prefer each other to their roommates and thus block the matching).
Motivated by real-world applications, and considering that stable roommates problems do not
always have solutions, we continue our studies to compute “good-enough” matchings. In addition
to the agents’ habits and habitual preferences, we consider their networks of preferred friends
and introduce a method to generate personalized solutions to stable roommates problems. We
illustrate the usefulness of our method with examples and empirical evaluations.
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1 Introduction

The Stable Roommates problem (Gale and Shapley 1962) (SR) is a matching problem

(well-studied in economics and game theory) characterized by the preferences of an even

number n of agents over other agents as roommates: each agent ranks all others in strict

order of preference. A solution to SR is then a partition of the agents into pairs that

are acceptable to each other (i.e., they are in the preference lists of each other), and

the matching is stable (i.e., there exist no two agents who prefer each other to their

roommates and thus block the matching).

Motivated by real-world applications, variations of SR have been investigated. For

instance, students may find it difficult to rank a large number of alternatives in strict order

of preference. With such motivations, SR has been studied with incomplete preference

lists (SRI) (Gusfield and Irving 1989), with preference lists including ties (SRT) (Ronn

1990), and with incomplete preference lists including ties (SRTI) (Irving and Manlove

2002). In this study, we focus on SRTI.

As first noted by Gale and Shapley (1962), unlike the well-known Stable Marriage

problem (SM), there is no guarantee to find a solution to every SR problem instance (i.e.

there might be no stable matching). In real-world applications, the preference lists are
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often too short or empty (e.g., for freshmen students). Thus, for SRI and SRTI instances,

it gets harder to find a stable matching: students who are not in the preference lists of

each other are considered unacceptable to each other, and thus they cannot be matched.

In such cases, we still need to find a matching that is “good-enough.”

To find good-enough matchings, existing approaches consider more general variations

of SR. For instance, Almost SR (Abraham et al. 2005) aims to find a matching that

minimize the total number of blocking pairs (i.e., pairs of agents who prefer each other

to their roommates). Gärdenfors (1975) consider “popularity” instead of stability and

aims to find a matching that maximizes the number of agents who are better off in

this matching compared to other matchings. Thakur (2021) introduces the property of

“majority stability” to find a matching preferred by more than half of all agents over

other matchings. Aziz et al. (2023) generalize the idea of majority stability by proposing

“k-stability” which aims to find a matching preferred by at least k out of the n agents.

To relax restriction of popularity, Kavitha and Vaish (2023) consider the notion of “semi-

popularity” to find a matching which is undefeated by a majority of matchings. Afacan

et al. (2016) introduce the notion of “sticky stability” to accommodate appeal costs in

school placements and allow priority violations when the rank difference between the

claimed and the received objects are less than a certain threshold. In all these studies,

every stable matching (if one exists) is also one of the targeted matchings, but not vice

versa.

We propose a different (but orthogonal) approach to find good-enough solutions by

extending the preference lists of agents with “suitable” candidates identified by further

available knowledge. For instance, in our earlier work (Fidan and Erdem 2021), we have

introduced knowledge-based methods for SRTI that identify suitable candidates by con-

sidering the habits (e.g., smoking, studying) of students, the preferences over the habits of

their roommates, and the preferences and the constraints of the colleges (e.g., to increase

diversity and inclusion). We have observed the usefulness of this approach in computing

not only good-enough matchings that are stable with respect to extended lists, but also

more personalized, more diverse, and/or more inclusive matchings.

In this study, motivated by the promising results of our earlier studies and further

observations we have made in real-world applications with the help of different parties

involved, we propose a new method to further extend preference lists to be able to find

a matching when there is no stable matching. In particular, based on the observations,

students often make new friends by meeting friends of their friends; our method extends

the preference lists further by considering the networks of agent’s preferred friends. At

this point, the curious reader may think rightfully that not every student would agree

with the preference lists of their friends, but actually many of the students do prefer as

roommates a preferred friend’s friend if they cannot be assigned to any of their preferred

friends. Indeed, according to a poll survey, as shown in Figure 1, conducted with 101

students at Sabanci University, the majority (75.2%) of the participants have expressed

their preference of a roommate from the preference lists of their friends, if they cannot

be assigned to any of their preferred friends. Hence, based on these results, extending the

preference lists, based on their networks of preferred friends, is beneficial to align with

student’s expectations for assigning a roommate. Based on this observation, our method

further extends the preference list of an agent x by including every agent y who is not
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Imagine that you’re about to start a new semester at the university, and you
apply for a double room in a dormitory. You know that some of your friends
will apply for a double room as well, so you also specify a list of your friends
that you would like to roommate with. After the dormitory system collects
all applications, it will try to find the “best” roommate for every applicant
considering their preference lists, and place the applicants in double rooms.

However, finding a “best” roommate for each applicant is a challenging task,
and there is a chance that the dormitory system cannot match you with any
of your friends on your preference list. In that case, would you prefer to
roommate with someone from the preference lists of your friends?

(a) Yes, I prefer this.

(b) It does not matter, anyone will do.

Fig 1. A poll survey given to a set of students at Sabanci University, to find out whether the
student prefers as roommate (a) someone from the preference lists of their preferred friends, or

(b) anyone.

in x’s preference list but “k-connected” to x (i.e., x and y are connected by a chain of k

PFOAF – preferred friend of a friend – relations).

Also, based on our interviews (cf. the two interviews presented in the supplementary

material accompanying the paper at the TPLP archive) we consider that some students

may request not to be matched with some other students (e.g., previous roommates who

they could not get along). Our method utilizes this knowledge about “forbidden pairs”

as well, while identifying suitable candidates to extend the preference lists.

We illustrate the benefits of utilizing different types of knowledge to extend the pref-

erence lists, with examples. Also, we implement our method by utilizing the expressive

languages and efficient solvers of Answer Set Programming (ASP) (Niemelä 1999; Marek

and Truszczyński 1999; Lifschitz 2002; Brewka et al. 2016), and evaluate its usefulness

by a comprehensive set of experiments.

2 Preliminaries

In this study, we consider the definitions of SRTI (Erdem et al. 2020) and its knowledge-

based extentions (i.e., Personalized-SRTI) (Fidan and Erdem 2021), as well as the ASP

formulations to solve these problems, as in our earlier studies.

2.1 SRTI: Stable roommates problem with ties and incomplete lists

Let A be a finite set of agents. For every agent x∈A, let Ax ⊆A\{x} be a set of agents

that are acceptable to x as roommates. For every y in Ax, we assume that x prefers y as

a roommate compared to being single.

Let ≺x be a partial ordering of x’s preferences over Ax where incomparability is tran-

sitive. We refer to ≺x as agent x’s preference list. For two agents y and z in Ax, we

denote by y≺x z that x prefers y to z. In this context, ties correspond to indifference

in the preference lists: an agent x is indifferent between the agents y and z, denoted by

y∼x z, if y �≺x z and z �≺x y. We denote by ≺ the collection of all preference lists.
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Amatching for a given SRTI instance is a functionM :A �→A such that, for all {x, y} ⊆
A×A such that x∈Ay and y ∈Ax, M(x) = y if and only if M(y) = x. If agent x is

mapped to itself, we then say he/she is single.

A matching M is blocked by a pair {x, y} ⊆A×A (x �= y) if the following hold: both

agents x and y are acceptable to each other, x is single with respect to M , or y≺x M(x),

and y is single with respect to M , or x≺y M(y).

A matching for SRTI is called stable if it is not blocked by any pair of agents.

We can declaratively solve SRTI using ASP as described in our earlier work (Erdem

et al. 2020). The input I = (A,≺) of an SRTI instance is formalized by a set FI of facts

using atoms of the forms agent(x) (“x is an agent in A”) and prefer2 (x, y, z) (“agent x

prefers agent y to agent z, i.e., y≺x z”). For every agent x, for every y ∈Ax, we also add

facts of the form prefer2 (x, y, x) to express that x prefers y as a roommate instead of

being single. We recursively define the transitive closure of this preference relation:

prefer(x, y, z)← prefer2(x, y, z).

prefer(x, y, z)← prefer2(x, y, w), prefer(x, w, z).

and acceptability of agents:

accept(x, y)← prefer(x, y, ).

accept(x, y)← prefer(x, , y).

accept2(x, y)← accept(x, y), accept(y, x).

(1)

The output M :A �→A of an SRTI instance is characterized by atoms of the form

room(x, y) (“agents x and y are roommates”). For every agent x, exactly one mutual

acceptable agent y is nondeterministically chosen as M(x):

1{room(x, y):agent(y), accept2(x, y)}1← agent(x).

← room(x, y), not room(y, x).

and the stability of the generated matching is ensured:

← block(x, y) (x �= y).

where atoms of the form block(x, y) describe the blocking pairs.

2.2 Personalized-SRTI: SRTI with personalized criteria

Let B be a finite list 〈b1, b2, . . . , bk〉 of criteria. For every bi ∈B, let Ci be a finite list

〈ci1, ci2, . . . , cim〉 of its choices for bi, ordered with respect to a “closeness” measure.

Let f be a function that maps an agent x∈A and a criterion bi ∈B to a positive

integer j (1≤ j ≤ |Ci|), describing the choice cij of the agent x. For every agent x, x’s

(preference) profile Px = 〈f(x, b1), f(x, b2), . . . , f(x, bk)〉 characterizes its choices of for

each criterion in B, respectively.

Every criterion in B may have a different importance for each agent. For that, we

introduce a weight function w that maps an agent x∈A and a criterion bi ∈B to a non-

negative integer such that w(x, bi) denotes the importance of the criterion bi for x∈A. For
every agent x∈A, let us denote by the weight list Wx = 〈w(x, b1), w(x, b2), . . . , w(x, bk)〉
the respective weights of criteria in B for x.
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Table 1. A Personalized-SRTI instance, characterized by a set of
students x, and their extended preference lists ≺′′

x

≺x ≺′
x ≺′′

x

Student x (given) (inferred) (extended)

a 〈e〉 〈b〉 〈e, b〉
b 〈e〉 〈〉 〈e〉
c 〈b〉 〈{a, e}〉 〈b, {a, e}〉
d 〈b〉 〈〉 〈b〉
e 〈d〉 〈〉 〈d〉

For every agent x∈A, with a profile Px and a weight listWx, let us denote the criteria of

the same weight u> 0 and the agent x’s choices for them, by a nonempty set Eu of tuples:

Eu = {(f(x, πi), πi) | u=w(x, πi)> 0, πi ∈ {b1, b2, . . . , bk}}. Then, for every agent x∈A,
we define a sorted profile P

′
x for x, with respect to Px and Wx: P

′
x = 〈Eu1

, Eu2
, . . . , Eum

〉
where m≤ k, and, for each i (1≤i<m), ui >ui+1.

For every agent y ∈A\Ax (i.e., y is not acceptable to x), y is choice-acceptable to

x if there exists some criterion bi ∈B where w(x, bi)> 0 such that f(y, bi) = f(x, bi).

For every agent x with a sorted profile P
′
x = 〈Eu1

, Eu2
, . . . , Eum

〉 (m≤ k), for every two

agents y and z that are choice-acceptable to x, the agents y and z are choice-equal for

x relative to the first j sets Eu1
, Eu2

, . . . , Euj
in P

′
x (denoted y=x z|j) if j = 0, or j > 0,

y=x z|j−1, and, for every (f(x, πi), πi)∈Euj
, f(x, πi) = f(y, πi) = f(z, πi).

We say that x prefers y to z with respect to a sorted profile P
′
x (denoted y≺′

x

z) if, for some j > 0, y=x z|j−1, and |{πi| (f(x, πi), πi)∈Euj
, f(x, πi)=f(y, πi)}| >

|{πi| (f(x, πi), πi)∈Euj
, f(x, πi)=f(z, πi)}|.

A criteria-based personalized preference list ≺′
x is a partial ordering of x’s preferences

over A′
x with respect to a sorted profile P

′
x, where incomparability is transitive. An

extended preference list ≺′′
x is obtained by concatenating ≺x and ≺′

x, depending on the

importance given to these two types of lists. Personalized-SRTI is then characterized

by (A,≺′′
) where A is a finite set of agent, and ≺′′

is the collection of the extended

preference list of each agent x ∈ A.

Example 1.

Suppose that a set {a, b, c, d, e} of freshman students applies for an accommodation

at a dormitory by filling out a questionnaire, like the one shown in Table 4 of (Fidan

and Erdem 2021). The roommate questionnaires request from the students to provide

their preferences over others, for example by considering first impressions if they have

a chance to meet. Table 1 shows preferences ≺x of these students, extracted from these

questionnaires. Here, the SRTI instance I = (A,≺) does not have a stable matching since

there is no pair of students who are acceptable to each other.

So, let us identify some suitable candidates relative to the habits (e.g., smoking, study-

ing) of students and their priorities and preferences over the habits of their roommates,

and then extend the preference lists by including these suitable candidates. The ordering
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≺′
x of the suitable candidates is shown in Table 1. Considering the aggregate preference

list ≺′′
x=≺x +≺′

x, the Personalized-SRTI instance I ′ = (A,≺′′
) does not have a stable

matching.

3 k-Personalized-SRTI: Personalized-SRTI with k-connection

Students often meet other students through mutual friends, for example, the friends of

their friends, and sometimes get along with each other. Based on this observation, we

propose a new method to further extend preference lists to be able to find a matching

when there is no stable matching.

In particular, for every agent x, our method extends the preference list of x by including

every agent y who is not already in x’s preference list but “k-connected” to x (i.e., x and

y are connected a chain of k PFOAF – preferred friend of a friend – relations).

Let us introduce the relevant definitions and notation to make this idea more rigorous.

3.1 Defining k-acceptable pairs with respect to ≺x

Let A+
x be a set of acceptable agents to x∈A, and A−

x be a set of unwanted agents by

x∈A. Note that A+
x ∪A−

x ⊆A. Let A− be a set of unwanted pairs, that is A− = {{x, y} :
x∈A−

y , y ∈A}. If an agent x states y as acceptable or unwanted, then we say that y is

known by x.

Let Kx be a set of agents known by x. We assume that A+
x ∪A−

x =Kx. We denote by K

the set of pairs of agents who are known by each other, i.e., K = {{x, y} : x∈Ky, y ∈A}.
Note that K does not require that agents mutually know each other.

A k-acceptability graph is an undirected graph GA = (V, E), where every vertex x∈ V
uniquely denotes an agent in A, and every edge {x, y} ∈E denotes pairs of agents that

know each other and none of them is unwanted by the other: {x, y} ∈K \A−. The

curious reader may notice that the “known by” relation is not symmetric but the graph

GA is undirected (since it includes an undirected edge to denote one-sided known but

non-unwanted pairs). We construct GA = (V, E) a bit more generously based on the

following assumption: if a student x is known by another student y, and neither student

finds the other one unwanted, then the pair {x, y} ∈E regardless of y is known by x.

This assumption is reasonable and allows more possibilities for good-enough matchings.

Indeed, a student x might state someone y in their preference list without being listed in

return because the other student y has not provided any preferences; in such cases, it is

reasonable to assume that x is not unwanted by y and it is possible that y might include

x in their list if they provide their preferences.

We say that agents x and y form a k-connected pairs if there exists a path of length

k that connects x and y in GA. Let us denote by P k
GA

the set of all k-connected pairs in

GA, and, for simplicity, we will refer to it as P k throughout the remainder of the paper.

Example 2.

Consider the running example. Let us denote a pair {x, y} of students in A by xy. Suppose

that b states that d is unwanted A−
b = {d}. Then, A− = {bd}. The k-acceptability graph

GA = (V, E) is defined as follows: V = {a, b, c, d, e} and E = {ae, bc, be, de}. According
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Table 2. A k-Personalized-SRTI instance, characterized by a set of students x, sets A−
x of

unwanted students as roommates, and the k-extended lists ≺k′′
x of preferred students as

roommates for k= 1 and k= 2

Unwanted sets and preference lists

Student x A−
x ≺x ≺′

x ≺1
x ≺1′′

x ≺2
x ≺2′′

x

a 〈e〉 〈b〉 〈e, b〉 〈d〉 〈e, b, d〉
b {d} 〈e〉 〈c〉 〈e, c〉 〈c, a〉 〈e, c, a〉
c 〈b〉 〈e, a〉 〈b, e, a〉 〈b, e, a〉
d 〈b〉 〈e〉 〈b, e〉 〈e, a〉 〈b, e, a〉
e 〈d〉 〈{a, b}〉 〈d, {a, b}〉 〈{a, b}, c〉 〈d, {a, b}, c〉

to the k-acceptability graph GA = (V, E), k-connected pairs for k= 1, 2, 3 are defined as

follows: P 1 = {ae, bc, be, de}, P 2 = {ad, ab, bd, ce}, and P 3 = {ac, cd}.

3.2 Breaking ties in ≺′
x by considering k-connected pairs

Let Ix be a set of agents that are inferred as acceptable to x as roommates, that is

Ix = {y : y ∈≺′
x}. If an agent x is indifferent between y and z in Ix, then this tie is broken

by considering k-connected pairs according to the following rule: if there exists a value k

such that {x, y} ∈ P k, and there is no l such that {x, z} ∈ P l for l≤ k, then y≺′
x z.

Example 3.

Consider the running example. According to ≺′
c, student c is indifferent between student

a and e. We can break this tie by considering k-connected pairs: e≺′
c a since there exist

a value k= 2 such that ce∈ P 2 and ac /∈ P 2, but ac∈ P 3.

3.3 Defining the k-extended preference lists ≺k′′
x

Let Ox be a set of agents that may be acceptable to x, that is Ox = {y : y ∈A\(Kx ∪ Ix)}.
Let≺k

x be a partial ordering of x’s preferences over Ox where incomparability is transitive.

For two agents y and z in Ox, y≺k
x z if {x, y} ∈ P i and {x, z} /∈ P i, but {x, z} ∈ P k for

some 0< i< k. Note that for every y ∈Ox, y ∈≺1
x if {x, y} ∈ P 1.

Considering k-connected pairs , we define ≺k′′
x =≺′′

x +≺k
x as a k-extended preference list .

Note that ≺k′′
x is the same as ≺′′

x when k= 0. Let us denote by ≺k′′
the collection of the

k-extended preference lists of each agent x∈A.
Example 4.

For the running example, Table 2 shows k-extended preference lists for each student, for

k= 1 and k= 2. Students a and c may be acceptable to b by Ob = {a, c} . Since bc∈ P 1,

ab /∈ P 1 and ab∈ P 2, c∈≺1
b and c≺2

b a.

A k-Personalized-SRTI instance is an SRTI instance characterized by a set A of agents,

a set A− of pairs of agents (denoting which agents are forbidden for which), and a

collection ≺k′′
of the k-extended preference lists of each agent x∈A. A solution to a

k-Personalized-SRTI instance is defined in the following section, as “k-stable matchings.”
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Table 3. A k-Personalized-SRTI instance, characterized by a set of students x, sets A−
x of

unwanted students as roommates, and the k-extended lists ≺k′′
x of preferred students as

roommates for k= 1 and k= 2

Unwanted sets and preference lists

Student x A−
x ≺x ≺′

x ≺1
x ≺1′′

x ≺2
x ≺2′′

x

a 〈b〉 〈d〉 〈f〉 〈b, d, f〉 〈f, c〉 〈b, d, f, c〉
b 〈f, e〉 〈{a, c}〉 〈f, e, {a, c}〉 〈{a, c}, d〉 〈f, e, {a, c}, d〉
c {e} 〈b〉 〈d〉 〈b, d〉 〈d, a〉 〈b, d, a〉
d 〈c〉 〈b〉 〈c, b〉 〈c, b〉
e 〈c〉 〈a〉 〈c, a〉 〈c, a〉
f 〈a〉 〈c〉 〈a, c〉 〈b〉 〈a, c, b〉

3.4 Defining k-matchings with respect to ≺k′′
y

We say that x is k-acceptable to y if x∈≺k′′
y . If an agent x is k-acceptable to y and y is

k-acceptable to x, then x and y are called k-mutually acceptable.

A k-matching for a given k-Personalized-SRTI instance (A, A−,≺k′′
), is a function M :

A �→A such that, for all {x, y} ⊆A×A where x∈Ay
+ ∪ Iy ∪Oy and y ∈Ax

+ ∪ Ix ∪Ox,

M(x)=y if and only if M(y)=x.

A pair {x, y} ⊆A×A (x �= y) is a k-blocking pair with respect to M if

i) x and y are k-mutually acceptable to each other,

ii) x is single in M , or y≺k′′
x M(x), and

iii) y is single in M , or x≺k′′
y M(y).

A k-matching M is called k-stable if there is no k-blocking pair with respect to M .

Example 5.

For the running example, we can find a 1-stable matching M1 = {a, bc, de}. This solution
is also 2-stable.

SRTI with k-connection ( k-SRTI) is a special case of k-Personalized-SRTI (A,≺k′′
)

where, for every agent x∈A,≺′′
x=≺x.

Proposition 1.

k-SRTI (and thus k-Personalized-SRTI) is NP-complete.

3.5 Observations about k-Personalized-SRTI

Observation 1

( k-stability is not monotone.) Consider the example shown in Table 3. Consider I =

(A,≺) as an instance of SRTI, and I ′ = (A,≺′′
) as an instance of Personalized-SRTI.

For both of them, there is no stable matching since there is no student who prefers each

other. Then, we consider I ′′ = (A, A−,≺1′′) as an instance of 1-SRTI. There are two

1-stable matchings: M1 = {ab, cd, e, f}, and M2 = {af, bc, d, e}. If we further consider

https://doi.org/10.1017/S1471068425100252 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100252


Finding Personalized Good-Enough Solutions to Unsatisfiable SR 9

Table 4. A k-Personalized-SRTI instance, characterized by a set of students x, sets
A−

x of unwanted students as roommates, and the k-extended lists ≺1′′
x of preferred

students as roommates for k= 1

Unwanted sets and preference lists

Student x A−
x ≺x ≺′

x ≺1
x ≺1′′

x

a 〈b〉 〈b〉
b 〈e, a〉 〈{c, d}〉 〈e, a, {c, d}〉
c 〈b, d〉 〈e〉 〈b, d, e〉
d 〈b, c〉 〈b, c〉
e 〈b〉 〈b〉

I ′′′ = (A, A−,≺2′′) as an instance of 2-SRTI, M1 is not a 2-stable matching but M2 is a

2-stable matching.

Observation 2

(A stable matching may not be a k-stable matching.) Consider the example shown in

Table 4. Consider the SRTI instance I = (A,≺), and Personalized-SRTI instance I ′ =
(A,≺′′

). For both of them, there is a stable matching: M = {ab, cd, e}. Then, for the

1-SRTI instance I ′′ = (A, A−,≺1′′), M is not a 1-stable matching since be blocks the

matching M . Hence, M1 = {be, cd, a} is a 1-stable matching.

4 Solving k-Personalized-SRTI using ASP

We formalize the input I = (A, A−,≺k′′
) of a k-Personalized-SRTI instance in ASP by a

set FI of facts using atoms of the forms agent(x) (“x is an agent in A”), unwanted(x,y)

(“agent x states that agent y is unwanted, i.e., y ∈A−
x ”), and kPrefer(x, y, z) (“agent x

prefers agent y to agent z by degree k, i.e., y ≺k′′
x z”).

Preferences of each agent in ≺x and ≺′
x. We use atoms of the forms prefer2 (x, y, z)

(“agent x prefers agent y to agent z, i.e., y≺x z”), iprefer(x, y, z) (“agent x prefers agent

y to agent z in terms of the criteria-based personalized preference lists y≺′
x z”), and

tie(x, y, z) (“agent x is indifferent between agent y and agent z”).

Recall that, based on the stated preferences of agents, we define acceptable pairs (cf.

rules (1)). Similarly, based on the inferred preferences by≺′
x, we define inferred acceptable

pairs:

inferred(x, y)← iprefer(x, y, ), not prefer2(x, y, ).

inferred(x, y)← iprefer(x, , y).

Defining k-acceptability graphs. Based on the stated unwanted agents, we define

unacceptable pairs:

not accept(x, y)← 1{unwanted(x, y); unwanted(y, x)} (x �= y).

Considering also the acceptable pairs, we define pairs of agents who know each other:

know(x, y)← 1{accept(x, y); accept(y, x); not accept(x, y)} (x �= y).
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After we define the edges in the k-acceptability graph:

edge(x, y)← know(x, y), not not accept(x, y) (x �= y).

we define k-connected pairs recursively:

connected(x, y, 1)← edge(x, y) (x �= y, k > 0).

connected(x, y, i+ 1)← connected(x, z, i), edge(z, y) (x �= y, i < k).

Breaking ties. Considering k-connected pairs , ties in ≺′
x are broken:

iprefer(x, y, z)← tie(x, y, z), connected(x, y, i), not connected(x, z, i).

Defining the k-extended preference lists ≺k′′
x . Based on ≺k

x, we define the concept of

may be acceptable agents y (y ∈A\(Kx ∪ Ix) and {x, y} ∈ P k) with degree k:

may accept(x, y, i)← not accept(x, y), not inferred(x, y),

not unwanted(x, y), connected(x, y, i).

Extending the preferences to define k-matching. Based on the preferences of each agent

in ≺x and ≺′
x, we define extended preferences in ≺′′

x :

ePrefer(x, y, z)← prefer2(x, y, z).

ePrefer(x, y, z)← iprefer(x, y, z).

ePrefer(x, y, z)← prefer2(x, , y), iprefer(x, z, ).

ePrefer(x, z, x)← iprefer(x, , z), not prefer2(x, z, )

Based on the preferences of each agent in ≺′′
x , we extend preferences by degree k

recursively:

prefer(x, z, x, j)←may accept(x, z, j) (x �= z, j < k+ 1).

prefer(x, y, z, j)← ePrefer(x, y, ), may accept(x, z, j).

prefer(x, y, z, j)← prefer(x, y, , i), not ePrefer(x, z, ), may accept(x, y, i),

may accept(x, z, j), not may accept(x, z, i) (x �= y, y �= z, i < j).

prefer(x, y, z, j)← prefer(x, , y, i), not ePrefer(x, z, ), may accept(x, y, i),

may accept(x, z, j), not may accept(x, z, i) (x �= y, y �= z, i < j).

Finally, we define the preferences of each agent in ≺k′′
x :

kPrefer(x, y, z)← ePrefer(x, y, z) (x �= y).

kPrefer(x, y, z)← prefer(x, y, z, i) (x �= y, i < k+ 1).

k-matching. A k-Personalized-SRTI instance is characterized by (A, A−,≺k′′
) where

A is a finite set of agent, A− is a finite set of unwanted pairs, and ≺k′′
is the collection

of the k-extended preference list of each agent x∈A. To solve a k-Personalized-SRTI

instance, that is to compute a k-matching, we utilize SRTI-ASP (Erdem et al. 2020) (as

briefly described in Section 2.1) using the atoms of the form kPrefer(x, y, z) instead of

prefer2 (x, y, z).
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5 Experimental evaluations

In our earlier work (Fidan and Erdem 2021), we have experimentally evaluated our ASP-

based method for Personalized-SRTI to better understand its scalability, usefulness, and

applicability by utilizing the domain-specific knowledge inferred from the agents’ habits

and habitual preferences.

In this study, we investigate the usefulness and the applicability of utilizing the knowl-

edge about the networks of the agents’ preferred friends. We design and perform two

types of experiments to study the following questions:

Q1 When there is no stable matching to a given SRTI instance or a good-enough

matching to its corresponding Personalized-SRTI instance that also considers the

agents’ habitual preferences, can we compute good-enough matchings considering

also the networks of the agents’ preferred friends?

Q2 Does it make sense to compute good-enough matchings by considering the networks

of the agents’ preferred friends?

In the first set of experiments (addressing Q1), we evaluate the usefulness of the

additional knowledge about the networks of the agents’ preferred friends from the com-

putational perspectives. We randomly generate instances and evaluate the results with

respect to objective measures (i.e., how many more instances can be solved with this

additional knowledge?).

In the second set of experiments (addressing Q2), we evaluate the usefulness of the

additional knowledge from the perspective of the users. We perform polls, surveys, and

interviews with students to obtain their feedback and use subjective measures to evaluate

the results.

The full encoding and benchmark instances are made available on the following GitHub

page: https://github.com/mugefidan/k-SRTI.git.

5.1 Experimental evaluation with objective measures

Benchmark instances. First we randomly generate SRTI instances using Prosser’s soft-

ware (SRItoolkit 2019) based on Merten’s idea (2005): (1) we generate a random graph

ensemble G(n, p) according to the Erdös-Rényi model (1960), where n is the required

number of agents and p is the edge probability (i.e., each pair of vertices is connected

independently with probability p); (2) since the edges characterize the acceptability rela-

tions, we generate a random permutation of each agent’s acceptable partners to provide

the preference lists.

Then, motivated by the real-world applications, (3) in each SRTI instance, we shorten

the given preference lists so as to contain the first 5 choices for each agent. Then, (4) we

populate each instance to a set of Personalized-SRTI instances by extending these lists by

including the choices inferred from the habitual preferences of agents: we consider 2 and

5 habitual criteria, randomly generate the importance of each criterion, and randomly

generate the habitual preferences of 20% and 50% of agents.

For each instance generated with the method above, we define its completeness degree

(c.d.) as the probability of an agent occurring in a preference list (i.e., the edge prob-

ability). We define the mutual acceptability rate (m.a.p.) of an instance as the ratio of
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Table 5. HMA instances: average completeness degree (c.d.) and average percentage of
mutually acceptability rate (m.a.p.)

2 criteria 5 criteria

SRTI 20% response 50% response 20% response 50% response
#agents

c.d. m.a.p. c.d. m.a.p. c.d. m.a.p. c.d. m.a.p. c.d. m.a.p.

40 0.073 0.965 0.085 0.915 0.092 0.837 0.1 0.911 0.207 0.757
60 0.048 0.96 0.054 0.9 0.058 0.82 0.073 0.864 0.132 0.736
80 0.037 0.952 0.041 0.892 0.044 0.824 0.062 0.829 0.101 0.727
100 0.03 0.954 0.033 0.895 0.035 0.82 0.049 0.835 0.075 0.732
150 0.02 0.957 0.021 0.898 0.023 0.821 0.032 0.821 0.044 0.738
200 0.015 0.955 0.016 0.895 0.017 0.821 0.024 0.81 0.029 0.752

the number of mutually acceptable pairs to the number of all possible pairs. Consider

the example shown in Table 2. For a given 2-Personalized-SRTI instance, there are 14

mutually acceptable pairs out of 16 possible pairs. There are two pairs, such as {a, c}
and {b, d}, that are not mutually acceptable. Hence, the mutually acceptability rate is
14
16 , which simplifies to 0.875.

We generate two sets of benchmarks, with respect to their m.a.p.: HMA instances have

high m.a.p. of 75% or more, while LMA instances have lower m.a.p..

For HMA instances, first, as described in steps (1) and (2) above, we generate SRTI

instances with 40, 60, 80, 100, 150, and 200 agents, with c.d. of 0.075, 0.05, 0.0375, 0.03,

0.02, and 0.015, respectively. Such low c.d. allow us to generate SRTI instances with

preference lists with approximate length 3.

In our earlier study (Erdem et al. 2020) that investigates the scalability of our approach

to solve SRTI problems, we have already generated benchmark instances using Prosser’s

software, as described in steps (1) and (2) above. For LMA instances, we start with those

instances with 40, 60, 80, 100, 150, and 200 agents, and with c.d. 0.25.

Then, in each benchmark set, for each number of criteria and the percentage of agents

who specify their habitual preferences, we populate each SRTI instance by generating 20

Personalized-SRTI instances, as described in steps (3) and (4) above.

The characteristics of each set of benchmarks are summarized in Tables 5 and 6.

Consider, for instance, the first row of Table 5 that describes average values for 20 HMA

instances with 40 agents. The SRTI instances (generated after steps (1), (2), and (3))

have an average c.d. of 0.073 and an average m.a.p. of 0.965. After step (4) where we add

knowledge about the habitual preferences of 50% of agents by considering 5 criteria, the

average c.d. increases to 0.207 while the average m.a.p. decreases to 0.757.

Experimental results. We have evaluated our method over these two sets of benchmarks

to understand the usefulness of adding knowledge about agents’ networks of preferred

friends.

When there is no stable matching to the seed SRTI instances, Figure 2 shows the com-

putational benefit of extending the preference lists by only suitable candidates obtained

from networks of preferred friends, considering 2-connected pairs (i.e., preferred friend of
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Table 6. LMA instances: average completeness degree (c.d.) and average percentage
of mutually acceptability rate (m.a.p.)

2 criteria 5 criteria

SRTI 20% response 50% response 20% response 50% response

#agents c.d. m.a.p. c.d. m.a.p. c.d. m.a.p. c.d. m.a.p. c.d. m.a.p.

40 0.127 0.52 0.138 0.532 0.157 0.563 0.156 0.571 0.241 0.624
60 0.085 0.346 0.092 0.366 0.102 0.421 0.114 0.45 0.183 0.544
80 0.063 0.259 0.068 0.287 0.076 0.349 0.086 0.382 0.135 0.494
100 0.051 0.205 0.054 0.236 0.061 0.319 0.072 0.35 0.105 0.461
150 0.034 0.134 0.036 0.168 0.041 0.268 0.047 0.29 0.065 0.411
200 0.025 0.102 0.027 0.135 0.031 0.238 0.036 0.267 0.045 0.377

Fig 2. Usefulness of 2-SRTI over SRTI.

a preferred friend): while only some HMA instances have good-enough matchings, almost

all LMA instances have good-enough matchings. This result is expected because, as the

preferences lists are extended, we have a higher number of mutually acceptable pairs,

and this allows exploring more number of potential matchings and thus increasing the

chances of finding a good-enough solution.

When there is no stable matching to the seed SRTI instances and no good-enough solu-

tion after extending the preference lists considering only the agents’ habits and habitual

preferences, Figure 3 shows that extending the preference lists by suitable candidates

obtained from networks of preferred friends is still useful.
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Fig 3. Usefulness of 2-SRTI over Personalized-SRTI: (top) 2 criteria and (bottom) 5 criteria.

In these experiments, the scalability of SRTI-ASP for k-SRTI is also observed

(Figure 4): computing good-enough matchings usually takes a few seconds on a machine

with Intel Xeon(R) W-2155 3.30 GHz CPU and 32 GB RAM.

5.2 Experimental evaluation with subjective measures

We evaluate the usefulness of the additional knowledge from the perspective of the users.

We design and perform poll survey and interviews with students to obtain their feedback

and use subjective measures to evaluate the results.
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Fig 4. Scalability of SRTI-ASP in computation time, for 2-SRTI over Personalized-SRTI: (left)
2 criteria and (right) 5 criteria. Legend as in Figure 3.

Online poll survey with students. The objective is to find out whether it makes sense to

match roommates considering the networks of preferred friends. It includes one question

to learn whether the students prefer to roommate with someone from the preference

lists of their preferred friends, when the dormitory system cannot match them with any

of their friends on their preference lists. The survey, shown in Figure 1, is conducted

online with 101 students at Sabanci University. In the end, 76 students prefer option of

extending their preference lists with their preferred friends’ preferences (i.e., option (a)

in the poll).

Interviews with students. The objective is to get more detailed information about

their poll answers and learn the underlying reasons of students’ answers. Face-to-face

interviews are conducted with 20 volunteers (8 female and 12 male) with diverse academic

backgrounds. Each interview session is done one-to-one, taking an average of 12− 15

minutes. Before the interview, each volunteer is informed about the objective and the

process of the interview, and their permission is requested for recording the interviews.

In the interview, the following questions are asked in an appropriate order based on their

answers: “Why did you choose this option at the poll?”, “Can you say a little more

about . . .?”, “Did you have such an experience?”, “What if . . .”, “Why do you think

. . .?”. To provide concrete examples to illustrate the kinds of questions asked and the

kinds of responses gathered, two interview transcripts are included in the supplementary

material accompanying the paper at the TPLP archive.

Among the volunteers, 4 students have experienced to be roommates with a friend

of their friend, positively. At the beginning of the interview, 14 volunteers have chosen

option (a) of the poll, that is to be roommates with someone from the preference lists of

their preferred friends. During the interview, 4 of the volunteers who chose option (b) of

the poll, that is to be roommates with anyone, have changed their decision. According

to their final decisions, 18 volunteers choose option (a).

Table 7 shows the volunteers’ reasons for choosing option (a) of the poll, that is to

be roommates with someone from the preference lists of their preferred friends, and how

many of them give the same reason. For instance, most of the volunteers (16 out of 18)

indicate that they trust the person their friend prefers to be roommate with, instead of

someone they do not know anything about.
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Table 7. Out of 20 students, 14 students have chosen option (a), i.e., they prefer as
roommates someone from the preference lists of their preferred friends, compared to anyone.
The reasons they have provided for this decision, the number of students who have given the
same reason for their decisions before the interview and changed their minds during/after the

interview are also provided

#Students
Reasons for choosing option (a) before interview

(14)
during/after
interview (18)

comfortable/trustful 13 16
get along well (room environment) 8 10
get along well (personal characteristics) 8 10
similarity (scholarship status, department/class) 5 5
sincerity, toleration 4 5
mutual friend mediation (in case of disagreement) 3 4

Table 8. Out of 20 students, 6 students have chosen option (b), i.e., they prefer as
roommates anyone compared to someone from the preference lists of their preferred friends.
The reasons they have provided for this decision, the number of students who have given the
same reason for their decisions before the interview and changed their minds during/after the

interview are also provided

#Students

Reasons for choosing option (b) before interview (6) during/after interview (2)

my friend may have friends I don’t like 2 0
my friend’s friend is also my friend,
I could include them in the list if I wanted 1 0
at least match with someone 1 0
new people, new experience 1 1
clear boundaries, less emotional pressure 1 1

Table 8 displays the volunteers’ reasons for choosing option (b) of the poll, that is to

be roommates with anyone, and how many of them give this reason. There are 6 such

students, and 4 of them have changed their decision during the interview. For instance,

one volunteer have said “I may have some friends, who have friends I do not like, in

my preference list.” As a follow-up question, we have asked “What if the dormitory

system allows you to specify also the students you do not want to be matched with as

roommates?”, and the volunteer changed their preference from option (b) to option (a).

Experimental results: quantitative comparisons. Most of the students (75.2%) who par-

ticipated in the online poll survey have chosen option (a) at the poll survey. This result

illustrates that it makes sense to consider the preferred friends of preferred friends while

assigning roommates and extending the preference lists with suitable candidates accord-

ingly. On the other hand, only 10% of the volunteers in the interviews have chosen

option (b).
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Experimental results: qualitative comparisons. The reasons for choosing option (a),

obtained from the students significantly coincide. For instance, getting assigned to a

roommate from the preference lists of their preferred friends is preferable (compared to

random assignment) because they would be more comfortable and get along well with

each other. These results also indicate the usefulness of our knowledge-based approach

from the users’ point of view.

6 Discussions

Finding a solution to every SRTI instance cannot be guaranteed, and, to address this lim-

itation, we have introduced a knowledge-based method that extends the preference lists

of agents with “suitable” candidates. In our earlier work, we have introduced a method

for identifying such suitable candidates by considering the living styles and habitual pref-

erences of students (e.g., smoking, studying). However, it might not always be sufficient

to find such suitable candidates because of relevant but inaccessible knowledge about the

students, due to ethical and fairness concerns. For instance, it would not be appropriate

to ask questions in a roommate search questionnaire related to students’ political opin-

ions, although people with similar ideas tend to get along better. As also observed in our

surveys and interviews, the networks of preferred friends implicitly provide such valu-

able insights into potential compatibility between roommates, leading to personalized

good-enough matchings for roommates.

Motivated by the promising empirical results of our emerging application, we plan

to enrich our method with further types of relevant knowledge and deploy it at our

university.

As mentioned in the introduction, when an SRTI instance does not have a stable match-

ing, alternative approaches “relax” the notion of stability (e.g., almost stability, sticky

stability, popularity). Our approach of finding “good-enough” matchings by extending

preference lists is orthogonal to these approaches. Investigations of combining these two

different approaches is a part of our ongoing work.
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Aziz, H., Csáji, G. and Cseh, Á. 2023. Computational complexity of k -stable matchings. In
International Symposium on Algorithmic Game Theory, Springer, 311–328.

Brewka, G., Eiter, T. and Truszczynski, M. 2016. Answer set programming: An introduction
to the special issue. AI Magazine 37, 3, 5–6.

Erdem, E., Fidan, M., Manlove, D. and Prosser, P. 2020. A general framework for
stable roommates problems using answer set programming. Theory and Practice of Logic
Programming 20, 6, 911–925.
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