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Abstract

The envelope model has gained significant attention since its proposal, offering a fresh perspective on
dimension reduction in multivariate regression models and improving estimation efficiency. One of its
appealing features is its adaptability to diverse regression contexts. This article introduces the integration
of envelope methods into the factor analysis model. In contrast to previous research primarily focused on
the frequentist approach, the study proposes a Bayesian approach for estimation and envelope dimension
selection. A Metropolis-within-Gibbs sampling algorithm is developed to draw posterior samples for
Bayesian inference. A simulation study is conducted to illustrate the effectiveness of the proposed method.
Additionally, the proposed methodology is applied to the ADNI dataset to explore the relationship between
cognitive decline and the changes occurring in various brain regions. This empirical application further
highlights the practical utility of the proposed model in real-world scenarios.

Keywords: Bayesian approach; envelope model; factor analysis; structural equation model

1. Introduction

The envelope model is initially introduced by Cook et al. (2010) as a technique for dimension reduction
in multivariate analysis. Cook et al. (2010) first proposed the response envelope model, which aims to
reduce the dimension of the response vector Y. The core concept of the method is to decompose Y into a
material and an immaterial part based on the assumption that certain linear combinations of Y, known
as X-invariant, remain unchanged regardless of variations in the predictor vector X. These X-invariant
linear combinations are considered immaterial to the regression and thus can reduce parameter space
in estimation. Expanding upon this idea, Cook et al. (2013) extended the approach to include the
dimensionality reduction in X within the context of multivariate regression, assuming the predictor
X is stochastic. This extension, known as the predictor envelope model, is closely related to the partial
least squares (PLS) method.

The envelope model has shown promising efficiency gains, which has prompted its extension into
various contexts, including the partial envelope model (Su & Cook, 2011), generalized linear model
(Cook & Zhang, 2015a), matrix-valued response model (Ding & Cook, 2018), sparse envelope model
(Su et al., 2016) and spatial envelope model (Rekabdarkolaee et al., 2020). However, applying Bayesian
methods to the envelope model has received limited attention compared to the frequentist framework
in previous literature. This fact is primarily due to the challenge posed by parameterizing the envelope
subspace within the Grassmann manifold space, where the basis of the envelope subspace is not unique.
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Nevertheless, considering the envelope model from a Bayesian perspective is highly meaningful, as
it allows for incorporating prior information into posterior inference without relying on asymptotic
assumptions.

Regarding Bayesian envelope models, Khare et al. (2017) first proposed a Bayesian approach for
analyzing response envelope models. They reparameterized the envelope model in a Steifel manifold
to ensure the uniqueness of the orthogonal basis and adopted the Bingham distribution as a prior
for the orthogonal basis matrix. However, this method is developed based on a specific design of
the response envelope model, and it may lose parameter conjugacy in other scenarios. Additionally,
the implementation of this method relies on sampling from the matrix Bingham distribution and the
truncated inverse Gamma distribution, which can result in a heavy computational burden. On the other
hand, Cook et al. (2016) developed a novel parameterization for the orthogonal basis matrix of the
envelope subspace, and this idea was further extended to the Bayesian framework by Chakraborty & Su
(2024). The proposed method does not rely on the Grassmann or Steifel manifold and can be applied to
various envelope model contexts, including the response and predictor envelopes. Meanwhile, Lee et al.
(2022) adopted the same technique and formulated the envelope model for Bayesian quantile regression.

Inspired by the successful application of the reparameterized envelope method, this study introduces
a factor analytic technique to the predictor envelope model, enabling dimension reduction for both
the response and predictor variables. Factor models, such as confirmatory factor analysis (CFA) and
exploratory factor analysis (EFA), are widely utilized statistical tools in fields such as psychology, educa-
tion, and social sciences. Over the past few decades, existing studies have demonstrated the effectiveness
of the factor model in capturing latent structures and reducing dimensionality by summarizing the
latent factors through multiple observed variables. Moreover, the joint modeling approach, also known
as the structural equation model (SEM), has shown high potential for adapting to various modeling
techniques. The joint model typically consists of two parts. The first part entails a factor analysis model
aggregating multiple observed variables into latent factors. This step captures the underlying structure
and interrelationships among the observed variables. The second part utilizes a regression model to
elucidate the association between the latent factors and the observed covariates of interest. It allows
for adapting various modeling techniques, enabling a flexible and versatile analysis. For example, Roy
& Lin (2000) used multiple longitudinal measures as outcomes to quantify a latent variable of interest
from different perspectives. They adopted a linear mixed model to study the effects of covariates on the
time-dependent latent variable. Pan et al. (2019) integrated latent variables into a proportional hazards
model to examine the observed and latent risk factors associated with the failure time of interest. Wang
etal. (2021) introduced a latent-on-image model to jointly analyze high-dimensional imaging data and
multiple clinical measurements in an Alzheimer’s disease (AD) study. They characterized the severity of
AD using various cognitive test scores as a latent factor in a CFA model and investigated the relationship
between changes in brain structure and cognitive decline using a functional data regression model.
Besides, researchers have developed plenty of methods to handle flexible data structure with a factor
model, including hierarchical and heterogeneous data (Lee & Song, 2004), missing data (Song & Lee,
2006), longitudinal data (Song et al., 2011).

Bayesian methods have been extensively applied to SEM topics because they emphasize individual-
level random observations and the estimation of first-order moment properties. This approach offers a
simpler alternative to the traditional approach of fitting the covariance structure. By focusing on the raw
individual-level data, Bayesian methods provide a flexible and intuitive framework for specifying prior
distributions, incorporating prior knowledge, and conducting posterior inference. Furthermore, the
hierarchical representation of the model, combined with efficient Markov chain Monte Carlo (MCMC)
algorithms, allows for a straightforward statistical inference and accommodates highly complex models.
For instance, Wang et al. (2016) integrated a mixture representation of the quantile regression model
(Kozumi & Kobayashi, 2011; Yu & Moyeed, 2001) into SEM, moving beyond the usual assumption of
normal errors. Feng et al. (2017) incorporated the Bayesian version of Lasso (BLasso) and adaptive Lasso
(BaLasso) to quantile SEM, enabling simultaneous estimation and variable selection in this context.
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This study is motivated by a real-world data analysis of AD. A comprehensive understanding of
the relationship between changes in brain structure, cognitive function, and the progression of brain
disease is critical for accurate diagnosis and prevention of brain-related disorders. In the context of
brain degeneration, it is often a global process that affects multiple regions rather than being confined
to specific areas. Therefore, understanding the interdependencies among different regions of interest
(ROIs) is crucial. The Envelope method, which we employed in this study, allows us to investigate and
uncover these interdependencies among ROIs. By examining the relationships among various brain
regions, we aim to identify the most informative ROI or combination of ROIs that can provide valuable
insights into the underlying mechanisms of brain diseases.

The main contribution of this article is to formulate a novel envelope approach within the context
of Bayesian SEM. Introducing the envelope model to the structural component of SEM serves a dual
purpose. On the one hand, the envelope model eliminates immaterial variation in the data, thereby
enhancing estimation efficiency. This enhancement is particularly valuable when confronted with high-
dimensional candidate predictors (e.g., neuroimaging phenotypes derived from MRI data), of which
only a small subset are genuinely influential so that high-dimensional predictors can be projected to
a reduced subspace. On the other hand, grouping latent variables from multiple observed surrogates
also represents a form of dimension reduction, especially pertinent in situations, where the correlation
among multivariate responses arises from the shared underlying mechanism of reflecting the same latent
construct from varying perspectives (e.g., cognitive impairment is manifested by multiple cognitive
tests together in the ADNI study). Therefore, the proposed Bayesian Envelope SEM (BESEM) offers a
novel perspective on concurrent dimension reduction for both response variables and predictors. This
is achieved by employing factor analysis in the domain of latent variable modeling for the former and
integrating an envelope structure into the structural equation for the latter. Even in scenarios, where a
lower-dimensional envelope subspace does not exist, the proposed method seamlessly degenerates to a
standard SEM without compromising parameter estimation accuracy. To our knowledge, this work is the
first to introduce envelope methods to the SEM framework. We restrict the estimation of the envelope
space to an orthogonal basis, which greatly reduces the computation efficiency. The derived posterior
distributions are proved to be proper even with non-informative priors. A simple block Metropolis-
within-Gibbs MCMC algorithm is presented to facilitate posterior sampling. The proposed Markov
chain is shown to be ¢-irreducible and aperiodic, ensuring the convergence of MCMC samples.

The remainder of the article is organized as follows. Section 2 outlines the envelope model and defines
BESEM. Section 3 discusses the Bayessian inference. Section 4 presents simulated experiments, showing
the efficiency gains of BESEM compared to conventional Bayesian SEM approaches. In Section 5,
we apply BESEM to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study to explore new
insights into the relationship between cognitive decline and different brain regions. Technical details
are provided in the Supplementary Material.

2. Model description
2.1. Review of envelope model
In this section, we provide a brief overview of the envelope idea proposed by Cook et al. (2010). This

idea was initially developed to reduce the regression coeflicients in the multivariate linear regression
model given by

Y=p+pX+e, (1)

where Y € R”, X € R? represent the response and predictor vector, respectively, g € R” and p ¢ R”?
are the intercept and coefficients, and € € R" is the error term with a zero mean and a positive definite
covariance matrix X.

The response envelope model aims to decompose the response variable Y into a material part and an
immaterial part based on the assumption that X-invariant linear combinations of Y exist. Specifically,
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let £ be a subspace of R', P¢ is the projection onto £ and Qg =1, — P¢, where I, is the identity matrix
of size r. The response envelope seeks to find the minimal subspace £ that satisfies the following two
conditions:

(i) QeY|X~QcY, where ~ denotes equality in distribution and
(ii) PeY 1L QsY|X.

These two conditions stipulate that the distribution of Q¢Y is not influenced by X nor by P¢Y,
indicating that the dependence of Y on X is concentrated only in P¢ Y, which is referred to as the material
part. Then, Q¢Y is the immaterial part. Cook et al. (2010) showed that (i) and (ii) are equivalent to the
following two conditions:

(") Bcé&, where B =span(B) and

(ii') Y= PgZPg + QgZQg.

Condition (ii") states that & is a reducing subspace of . Combined with condition (i"), the
X-envelope of B, denoted by Ex(B), is defined as the smallest reducing subspace of X that contains
span(p). The existence of the Z-envelope of B was discussed by Cook et al. (2010).

Let u = dim(Ex(B)), T € R™* and Ty € R™® be the orthogonal bases of & (B) and & (B),

respectively. Here, & (B) is the orthogonal complement of & (B). Model (1) can be parameterized
in terms of &5 (B) as follows:

Y=p+TdX+e, Z=TOT" +TQl;, )

where d € R**? is the coordinates of B with respect to T, and we have B = I'd. The matrices Q € R**"
and Qo € R~ are positive definite and specify the covariance structure of the material and
immaterial parts. For a fixed u, the total number of parameters required for the model (2) is

u(u+1) (r—u)(r-u+1)
2 " 2
r(r+1)
T
If u < r, the efficiency gains of the envelope are possible compared to the standard multivariate linear
regression model (1). If u = r, the envelope model degenerates into the linear regression standard model.
The predictor envelope model is built on a framework similar to the response envelope model,
aiming to reduce the dimensionality of X. To accommodate a stochastic predictor X with mean p,
and variance Zx, model (1) is modified as follows:

Y=p+p" (X—py)+e, 3)

where ¢ is independent of X and not necessarily normally distributed. To decompose X into its material
and immaterial parts, we assume there is a subspace S € R? that satisfies the following conditions:

(a) cov(Y,QsX|PsX)=0 and
(b) cov(PsX,QsX) =0.
These conditions indicate that QX is uncorrelated with both PsX and Y, while all the information

in X that is linearly related to the regression is captured by PsX. It has been shown that these conditions
are equivalent to the following ones (Cook et al., 2013):

(@) B'eS, and
(b') S is a reducing subspace of Zx,

r+pu+u(r—u)+

= r+pu+

where B’ = span(B”). The intersection of all subspaces satisfying these two properties is referred to as
the Zx-envelope of B, denoted as &5, (B'). Let m = dim &z, (B') ), and @ € R”*™ be a orthogonal basis
of &, (B"). Then, the predictor envelope model is formulated as

Y=p+c @ (X-py)+e,  Zx=OAD" + DAy, 4)

https://doi.org/10.1017/psy.2025.10027 Published online by Cambridge University Press


https://doi.org/10.1017/psy.2025.10027

Psychometrika 5

where B = ®c, ¢ € R™" is the coordinate of B with respect to ®, @ € R?*®~™ is an orthogonal basis of
&s (B'), and A and A, are positive definite matrices.

Considering that reducing the dimensionality of complex covariates is often of great interest in
efficiently quantifying the relationship between the latent outcomes and a set of predictors in SEM, in
the following section, we focus on the aspect of predictor dimension reduction to describe the proposed
methodology.

2.2. BESEM

We introduce the envelope approach in the context of SEM. Let Y € R” be the observed response
vector like the previous representation. In addition, we let X € R? be the vector of random predictor
variables with mean gy and variance Zx, and 5 € R? be a vector of latent variables that are expected to
be formulated from the observed variables in Y. A standard SEM can be defined as follows:

Y=puy+An+e,

T (5)

n=p,+B (X-py)+9,
where A € R™? is the unknown factor loading matrix, py € R" and p, € R? are intercepts, B € RP* is the
unknown coefficient of interest, and & and 8 are independent error terms. We assume € ~ N(0,Z;) and
8 ~ N(0,%5), where Z, is a diagonal matrix with diagonal elements {afk}zz »and Zs is a positive definite
matrix.

The first equation in (5) represents the link between the observed outcome variables Y and the latent
variables #, characterized by a CFA model. The second equation in (5) is a structural equation to assess
the effects of the covariates of interest X on #.

To reduce the dimensionality of X with an envelope structure and decompose X into its material and
immaterial parts, we assume there is a subspace S € R” that satisfies the following conditions:

(a) cov(7,QsX|PsX)=0 and
(b) cov(PsX,QsX) =0.
These conditions indicate that QsX is uncorrelated with both PsX and #, while all the information

in X that is linearly related to # in the SEM is captured by PsX. The conditions (a) and (b) are equivalent
to the following two conditions (Cook et al., 2013):

(@) B’ €S8, where B =span(f”) and
) Sisa reducing subspace of Zx.

Therefore, we aim to find the smallest subspace that satisfies (a) and (b’), or equivalently, the
intersection of all reducing subspaces of £x that contains B’, which is the Zx-envelope of B’, denoted
as &, (B').

Let m = dim (€z, (B')), and ® € R”*™ be a orthogonal basis of &g, (B). Then, the SEM model (5)
can be formulated as the following envelope SEM:

Y=puy+An+e,
n=p,+c' ® (X-py)+8, (6)
Tx = OAD” + DA D,

where B = ®c, c e R4 is the full rank coordinate of B with respect to @, ® € R”*(?~™ i an orthogonal
basis of £ _(B8’). The matrices A ¢ R™*" and Ao € R=m*(P=m) are positive definite. When m = p, the
proposed envelope model is equivalent to a standard SEM.
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2.3. Reparametrization of BESEM

For a fixed m, the envelope &, (B') is defined on a p x m Grassmann manifold, which implies that the
specification of the basis @ is not unique. We can reparameterize the envelope model to address this
issue and identify a unique orthogonal basis in an Euclidean space (Cook et al., 2016).

Let @ be an arbitrary basis of s, (B'). We define @; as the first m rows of ®. Without loss of
generality, we assume that @, is nonsingular (otherwise, we can reorder the rows in X). The remaining
p—m rows of ®@ are denoted as @,. ® can be expressed as follows:

_ q)l _ Im _ Im _
D= |:¢2:| = |:(D2d>1—1:|¢1 = [A]‘Dl =C4 Py, (7)

where A = ®,®;! ¢ R®=™)*M s an unconstrained matrix, and C4 = (Im,AT)T is also a basis of &, (B').
It has been shown that A depends on @ only through span(®): suppose ® is a different basis of
Es (B') and O € R™™ is a full rank matrix, such that ®" = ®O, then ®; = ®,0, ®, = ®,0, and
A" = ®,007'®; = A (Su et al,, 2016). Therefore, there is a one-to-one correspondence between
AeRP™™*m and & (B'). Furthermore, the orthonormal basis of & _(B’) can be expressed as
®=d(4) = Ca (CLCA) .

Based on (Chen et al.,, 2020, Lemma 1), we can construct a basis of E)fx(B') by forming the

matrix Dy = (—A,Ip,m)T. Likewise, we can obtain an orthonormal basis as ®¢(A) = D4 (DEDA)_%.
Accordingly, (5) can be written as

Y=puy, +An+e,

q:yn+cT(D(A)T(X—yX)+8, ®)

where X ~ N (py, ®(A)AD(A) " +®o(A)A®o(A)").

2.4. Model identification

The measurement equation in (8) is not identified because, for any nonsigular matrix B, we have
An = ABB 'y = A'yy, where A" = AB, and ' = B™'z is still random latent variables. Imposing
identification constraints on the measurement equation is necessary to establish identification. One
commonly used approach, as described in Song & Lee (2012), is to define A in a non-overlapping
structure with a fixed nonzero element in each column. Here is an illustrative example: consider a
scenario with p = 6 observed variables and g = 2 latent variables. In this case, the first four observed
variables are associated with the first latent factor, while the remaining two are related to the second
latent factor. Let Aj denote the (j,k)th element of A. A non-overlapping structure of A can be defined
as follows:

AT |1 A2 A5t A 0 0

00 0 0 1Asl|

In the above structure, the elements with values 1 and 0 are known parameters with fixed values, while
the Ajs’ represent the unknown parameters that need to be estimated. Therefore, the total number of
parameters that need to be estimated is

K(m)=r+(r—-q)+r+q+mq+p+(p—m)m
(D) Gom)eme) o)

r+q(q+22m+1)+P(P2+3).

=3
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2.5. Envelope dimension selection

Determining the optimal dimension of the envelope space is an essential step before estimating the
envelope model. Various information criteria, such as the Akaike information criterion (AIC), Bayesian
information criterion (BIC), and the deviance information criteria(DIC), have been widely used in
previous research. Information criteria offer a trade-oft between model fit and complexity, with lower
values indicating better-fitting models. The dimension of the envelope space that minimizes the AIC,
BIC, or DIC can be chosen as the optimal dimension. However, there is no universally applicable
guideline regarding which information criterion performs best in all scenarios. The performance of
these criteria may vary depending on the specific characteristics of the data and the model under
consideration. Prior studies, such as Shen et al. (2023) and Khare et al. (2017); and Chakraborty
& Su (2024), have demonstrated that different information criteria have distinct performance in
various envelope model contexts. Therefore, we investigate the performance of several information
criteria, including AIC, BIC, DIC, and average weighted estimation (AWE), in determining the optimal
dimension of the envelope space in the context of BESEM by conducting an empirical experiment in
Section 4. Let @ be all the unknown parameters and L (data|8) be the likelihood, then L is the maximized
likelihood value of the model. The deviance is D(0) = —2logL(data|@). The values of AIC, BIC, DIC,
and AWE are calculated as follows:

AIC,, = —2-logL+2-K(m),
BIC,, = —2-logL +logn-K(m),
DIC,, = D(8) + 2pp,

AWE,, = —2-10g11+2-1<(m)-(%Jrlogn)7

where pp = Egaua [D] — D(Egjaaa [0]) = D - D(0) denotes the posterior mean deviance minus the
deviance evaluated at the posterior mean of the parameters.

This empirical analysis provides valuable insights into the relative performance of information
criteria and their suitability in specific scenarios of envelope models.

3. Bayesian inference

3.1. Prior distributions

Let 6 represent all the unknown parameters in model (8), and 6 = {py, A, Ze, Zo, h,» pix> A, Ao, ¢, A}
We define a joint prior density p(@) for the unknown parameters, which can be decomposed as
p(0) =p(uy, A Ze)p(Ze)p(Zs)p(u, )P (ux )P(A)p(Bo)p (clA,Zs) p(A).

We first specify some notations: ST*™ denotes the set of m x m symmetric positive definite matrices,
R denotes the set of vectors of length m with positive values, IW,,, (¥, v) represents the Inverse-Wishart
distribution with scale matrix ¥ € ST and degree of freedom v, 1G(a,b) represents the Inverse-
Gamma distribution, and MN, », (M, U,V) is the matrix normal distribution with the parameters
MeR"™ ™ UeSP ™, VeSpP*™,

The priors for the concerned parameters are defined as follows:

o LetAy = (yY,A), then for each k =1,...,r, where A;k represents the kth row of A, we assign a
joint prior to (Ayk,0%), given by p(Ay,0%) = p(Aylo)p(o%). Specifically,

[Ayk | O'ng] ~ Nq+1 (AOkaHOk)a aszk ~ IG(“OkabOk)a for k= L...m

where A, € RT* Hyy € Sfrqﬁ)x(qﬂ), aox > 0 and by > 0 are prefixed hyperparameters.
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» We adopt flat priors for the intercept terms yy and Ky

plux) <1, pu,) <1
o We assign the Inverse-Wishart distribution to A, Ao, and Xs:

A~ W, (‘P1,V1 ), A() ~ IWp_m (‘1’2,1/2)7 25 ~ IWq (‘1’5,1/0),

where W, € ST, W, e SPTX) g ST 4 s 1, v, > p-m—1, and vo > g 1, are
hyperparameters.
o We use matrix normal prior for ¢ and A:

[c]A,Zs] ~ MN g (M1 0(4) e M3,
A~ MN pomm (A0, K,L),

where M € ST, e e RP*1, A ¢ RE—mxm g e Sfrp*m)x(me), L € S™ are hyperparameters.

Vague (noninformative) priors are used in the numerical studies. Such vague priors are appropriate
choices widely adopted when limited information is available about the relationship between the latent
responses and a large number of covariates. However, the proposed method can also straightforwardly
accommodate prior knowledge once available. For instance, if we have prior information on the factor
loading matrix A in the form of Kpm,r, we can set the prior mean of the loading matrix as Ao = Kprim with
a relatively small prior variance matrix Hox. Similarly, if we possess prior knowledge on the potential
envelope subspace, i.e., é;,r,-or, we can determine the prior information for A, Xprim, through the one-
to-one correspondence in Equation (7) and set Ag = Kpm,r. In line with the methodology proposed by
Chakraborty & Su (2024), even partial prior information concerning E';n-m can be incorporated into
the proposed method. For example, assuming a candidate envelope dimension of m = 4 and we only
know about gpria, that it contains two independent unit vectors v; and v,. In such circumstances, we
can generate two random vectors from span(vi,v2)* as (vs,v4) = GoC(C'C)™"/2, where Gy ¢ RP*(~2)
is an orthonormal basis of span(vi,v2)* and C is a (p —2) x p matrix with each entry independently
generated from the standard normal distribution. Subsequently, the prior orthonormal basis can be
formulated as ®(A) prior = (V1,v2,3,V4) and Ao, can be derived through Equation (7).

3.2. Posterior analysis and sampling process

Let D = {X, Y} represent the collection of n independent observations of (X,Y), where X = (Xy,...,Xy)
andY = (Yy,...,Y,). Additionally, let# = (111, s ,nn) denote the matrix of latent variables. The Bayesian
estimate of 6 is commonly defined as the sample mean or mode of the posterior distribution p(6|D).
However, drawing samples from p(8]|D) can be challenging due to the presence of the latent variable #,
as p(0/D) may not have a closed form. We utilize the data augmentation technique proposed by Tanner
& Wong (1987) to address this issue. In this approach, we treat the latent variables 5 as missing data
and augment the observed data with them. Consequently, the posterior sampling procedure can be
constructed based on the complete data set and the joint distribution of [8,7|D]. Theorem 1 establishes
the propriety of the posterior density, and its proof is included in the Supplementary Material.

Theorem 1 (Posterior propriety). The posterior density p(0,q|D) is proper with respect to Lebesgue
measure on R x R x R}, x ST R x RF x S7X" 5 SP7m>*pm) o pmxa  Rp=m)xm o a.

Given the complexity of the posterior distribution p(6,7#|D) and the challenge of directly sampling
from it, we propose a Metropolis-within-Gibbs sampler to draw posterior samples. The Gibbs sampler
allows us to generate samples for each element of 0 and 5 from their respective full conditional
distributions iteratively. The proposed MCMC sampler (Algorithm 1) for the case when envelope
dimension m € {1,...,p—1} can be found in the Supplementary Material.
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We also prove that the Markov chain generated by the proposed algorithm is ¢-irreducible and
aperiodic in Theorem 2, which ensures the convergence to its stationary distribution from almost all
starting states (Cinlar, 2013).

Theorem 2 (¢-irreducible and aperiodic). The Markov chain generated by the Metropolis-within-Gibbs
algorithm for the posterior sampling is ¢-irreducible and aperiodic.

4. Simulation

We design a simulation experiment to assess the performance of the BESEM methodology proposed
in this article. The data are generated using equations (7) and (8). We consider three dimensions
of the underlying envelope space, denoted as #rye, Which include values of 2, 4, and 6. Addition-
ally, we consider two different settings for the predictor dimension p, with values of 20 and 40.
The other parameters are fixed as follows: r = 6 and g = 2. To ensure identification, 1,1 and A4
are set to 1, while the remaining free elements of A are generated independently from a uniform
distribution Unif(-5,5). The elements of y,, py, and py are independently sampled from a uniform
distribution Unif(-10,10), and the elements of ¢ and A are drawn independently from uniform distri-
butions Unif(5,10) and Unif(0,5), respectively. The matrices A, Ag and £ are generated independently
from IW,,(500L,,m +2), IWp_pn(Ip—m,p — m +2), and IW,(1014,q + 2), respectively. The diagonal
elements of the error covariance matrix Z. are simulated from Unif(0.5,5). More specifically, we first
generate X from a multivariate normal distribution characterized by parameters py, A, A, and Ao
as mentioned before in Section 2.3. The error terms & and & are independently drawn from normal
distributions with zero mean and covariance matrix Z; and Z,, respectively. The latent variables # and
the corresponding observed responses Y are then generated according to Equation (8). The simulation
experiment considers different sample sizes, namely, 50, 150, 300, and 600. For each sample size, 100
replicated datasets are generated.

For model estimation and Bayesian inference, we consider vague priors on the unknown parameters
as follows:

(1) For the prior distributions of A and oszk, we set Ao = 0, Hor = 10001441, aor = 9, box = 4, for
k=1,...,r.

(2) For the prior distributions of A,A¢ and 25, the scale matrices ¥1, ¥, ¥s of the Inverse-Wishart
distributions are set to 10 times the identity matrix. The degrees of freedom are set to v; =
m,vy = p—m,and vo = q.

(3) For the prior distributions of ¢ and A, the prior covariance matrices are specified as 10° times
the identity matrix, and the prior means are set to zero.

We use the trace plots of three Markov chains starting from different initial values to check
convergence of the algorithm. Figure S1 in the Supplementary Material depicts the trace plots of several
randomly selected elements of 8, showing that the Markov chains mixed well within the initial several
thousand iterations. Therefore, we run the MCMC algorithm for 16000 iterations, with the first 8000
iterations as the burn-in stage. Four information criteria, AIC, BIC, DIC, and AWE, are employed for
model selection. Due to the presence of the latent factor, the complete likelihood can be represented as
an integration of p(0,|D) with respect to #, which can be complex. We use the importance sampling
approach to approximate the maximized complete data likelihood. In each replication, we calculate the
information criteria for different values of m ranging from 0 to p. The case where m = p corresponds to
the standard SEM method. The estimated envelope dimension, denoted as 7, is selected based on the
minimum criterion value.

The accuracy of the model selection is assessed by determining the percentage of correctly identifying
the true envelope dimension #rue. The selection rate results for the different settings of #mrue and p are
presented in Table 1. As the sample size n increases, the selected m tends to concentrate more on the
true envelope dimension e for all methods. The selection accuracy varies across different settings of
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Table 1. Percentages of estimated envelope dimension m that were selected by the AIC, BIC, AWE, and DIC methods in 100

replications
(@) Myye =2, p=20 (b) Mypye =2, p =40
n m<l m=2 m=3 m=4 m=5 m2>6 n m<l m=2 m=3 m=4 m=5 m>6
AIC 50 0.00 0.00 0.00 0.02 0.09 0.89 AIC 50 0.00 0.00 0.00 0.00 0.00 1.00
150 0.00 0.00 003 006 018 0.73 150 0.00 0.00 0.00 0.00 0.01 0.99
300 0.00 0.01 0.04 0.17 024 054 300 0.00 0.00 000 000 002 0098
600 0.00 0.07 011 011 0.16 0.55 600 0.00 0.00 000 004 012 0.84
BIC 50 0.00 0.02 0.02 015 0.24 0.57 BIC 50 000 0.00 0.00 0.00 0.00 1.00
150 0.00 021 019 019 0.21 0.20 150 0.00 0.00 0.00 0.00 0.02 0.98
300 0.00 0.26 021 023 017 0.13 300 0.00 0.00 0.01 0.03 015 0.81
600 0.00 032 028 012 0.12 0.16 600 0.00 0.00 0.08 014 016 0.62
AWE 50 0.00 088 0.10 0.01 0.01 0.00 AWE 50 0.00 0.00 0.00 0.00 0.09 0091
150 0.00 0.82 017 0.01 0.00 0.00 150 0.00 010 024 035 0.6 0.15
300 0.00 0.83 0.15 0.02 0.00 0.00 300 0.00 0.13 0.26 041 0.09 0.11
600 0.00 068 025 0.06 0.01 0.00 600 0.00 026 020 026 016 0.12
DIC 50 0.00 0.13 012 0.09 0.16 0.50 DIC 50 000 0.02 0.7 0.09 0.17 0.65
150 0.00 0.14 007 0.08 012 0.59 150 0.00 0.15 011 012 019 043
300 0.00 0.12 0.12 0.07 010 0.59 300 0.00 0.11 0.21 0.15 0.14 0.39
600 0.00 025 021 017 0.27 0.10 600 0.00 0.07 0.17 0.14 017 045
(¢) Myue =4, p=20 (d) Mywe =4, p=40
n m<3 m=4 m=5 m=6 m=7 m=>8 n m<3 m=4 m=5 m=6 m=7 m28
AIC 50 0.00 0.01 0.02 017 028 0.52 AIC 50 0.00 0.00 0.00 0.00 0.00 1.00
150 0.00 002 003 014 022 0.59 150 0.00 0.00 0.00 0.00 0.01 0.99
300 0.00 0.04 0.03 020 030 043 300 0.00 0.00 0.00 0.01 0.06 0.93
600 0.00 004 010 014 014 0.58 600 0.00 0.00 001 016 012 0.71
BIC 50 0.00 0.3 023 035 0.26 0.13 BIC 50 0.00 0.00 0.00 0.00 0.00 1.00
150 0.00 0.12 037 027 0.14 0.10 150 0.00 0.00 0.00 0.00 0.06 0.94
300 0.00 0.16 0.34 0.28 020 0.02 300 0.00 0.00 0.03 0.11 0.20 0.66
600 0.00 018 034 020 018 0.10 600 0.00 0.01 011 023 017 048
AWE 50 0.01 040 0.54 0.04 001 0.00 AWE 50 0.00 0.00 0.00 0.02 0.12 0.86
150 0.00 042 056 0.02 0.00 0.00 150 0.00 0.07 025 035 0.16 0.17
300 0.00 0.48 047 0.05 0.00 0.00 300 0.00 0.11 033 034 011 0.11
600 0.00 050 045 0.05 0.00 0.00 600 0.00 0.18 033 029 011 0.09
DIC 50 0.00 0.10 0.08 0.08 0.17 0.57 pIcC 50 000 005 016 014 0.12 0.53
150 0.00 0.08 009 0.08 0.09 0.66 150 0.00 0.13 0.12 018 0.15 0.42
300 0.01 0.10 0.08 0.10 0.09 0.62 300 0.00 0.13 013 021 011 042
600 001 009 014 008 017 0.1 600 0.00 0.11 015 008 014 0.52
(&) Myye =6, p=20 (f) Mywe =6, p =40
n m<5 m=6 m=7 m=8 m=9 m=>10 n m<5 m=6 m=7 m=8 m=9 m2>10
AIC 50 0.00 0.06 0.07 0.24 0.32 0.31 AIC 50 0.00 0.00 0.00 0.00 0.00 1.00
150 0.00 0.07 011 020 0.26 0.36 150 0.00 0.00 0.00 0.01 0.01 0.98
300 0.00 0.16 0.14 019 0.18 0.33 300 0.00 0.00 0.00 0.03 0.10 0.87
600 0.00 0.13 015 021 0.15 0.36 600 0.00 0.00 0.01 0.09 0.13 0.77
BIC 50 000 036 020 024 0.16 0.04 BIC 50 0.00 0.00 0.00 0.00 0.01 0.99
150 0.00 041 023 024 0.07 0.05 150 0.00 0.00 0.00 0.02 0.09 0.89
300 0.00 040 030 016 0.11 0.03 300 0.00 0.00 0.03 0.07 0.20 0.70
600 0.00 028 024 023 0.10 0.15 600 0.00 0.01 0.10 021 024 0.45
AWE 50 0.00 0.97 0.03 0.00 0.00 0.00 AWE 50 0.00 0.00 0.03 0.12 0.25 0.60
150 0.00 096 0.04 0.00 0.00 0.00 150 0.00 012 037 022 0.21 0.08
300 0.00 091 0.09 0.00 0.00 0.00 300 0.00 0.18 031 028 0.14 0.09
600 0.00 0.67 026 0.06 0.00 0.01 600 0.00 0.24 040 026 0.08 0.02
piIc 50 000 010 0.09 0.09 0.12 0.60 DIC 50 0.00 0.05 0.14 0.14 0.16 0.51
150 0.00 0.07 0.05 0.06 0.16 0.66 150 0.00 0.08 012 019 0.24 0.37
300 0.00 0.10 0.07 0.09 0.08 0.66 300 0.00 0.09 0.19 0.16 0.20 0.36
600 0.00 0.08 0.07 010 0.13 0.62 600 0.00 0.12 0.17 0.19 0.17 0.35
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Mirue, P> and the true parameter value, and all four methods can exhibit good or poor performance
in certain situations. However, among the four methods compared, the AWE method consistently
achieves the highest accuracy across all settings. It is important to note that all four methods tend
to overestimate the true envelope dimension. This overestimation has also been observed in previous
studies (Chakraborty & Su, 2024; Lee et al., 2022). In such cases, the cost of overestimating m may
involve losing some efficiency gained from dimension reduction, yet without introducing any bias in
parameter estimation, as no material information is lost. The encouraging finding is that despite the
fluctuating and dissatisfying selection rate, the overestimated models selected by AWE method still
perform comparably to the true envelope model, although there might be a slight loss in efficiency. This
assertion is supported by the estimation results of B, which is one of the main focuses of this analysis.

Figure 1 and Tables 2 and 3 display the root mean squared error (RMSE) and bias of the estimated
for two specific settings of M. and p. The plot includes the selected model with 7, the true model with
Mirue> and the standard SEM for two settings of miue and p. The explicit values of the RMSE and bias
of several selected elements in B are presented in Tables 2 and 3, respectively. The figure and the tables
demonstrate that the envelope model can achieve efficiency gains and significantly reduce the RMSE and
bias compared to the standard SEM. This improvement is particularly pronounced when the sample size
is small. The performance for the other settings is similar, and the figures are not presented. Increasing
the number of replications, e.g., to 200, only slightly reduced the RMSE and bias of the f estimates
further. Figure S2 in the Supplementary Material provides detailed variations observed in the estimated
P elements under the scenario of m = 2, p = 40 to illustrate this marginal improvement from additional
replications. Moreover, as the sample size increases, the selected model in the envelope model tends
to behave similarly to the true envelope model, and their performance in terms of RMSE becomes
almost indistinguishable. Regarding the estimation of the latent factor matrix, Table 4 shows that all
three methods perform well with small RMSE values, and there is no noticeable difference among them.
This suggests that the SEM can incorporate the envelope structure in the structural equation without
compromising the accuracy of the measurement equation. The results for the other settings exhibit
similar performance and thus are not reported.

The enhanced estimation accuracy of BESEM gained from the underlying envelope space is further
corroborated through a comparison with SEM utilizing BLasso, a widely employed regularized SEM
approach (Feng et al.,, 2015). Table S1 and Figure S3 in the Supplementary Material present the bias and
RMSE of the B coefficients estimated by the proposed BESEM, standard SEM, and SEM with BLasso.
Notably, BESEM exhibits minimal bias and RMSE, standard SEM shows the highest bias and RMSE,
whereas SEM with BLasso falls in between.

We conduct several additional simulations to evaluate further the robustness of the proposed method
in dimension selection and parameter estimation. The first one considers the scenario, where the lower-
dimensional envelope subspace is non-existent, i.e., m = p. The second one examines the validity of the
proposed method in terms of violating the normality assumptions on the distribution of predictors by
generating X from heavy-tailed and skewed distributions. Additionally, we perform prior sensitivity
analyses with respect to different choices of hyperparameters. Performance of the proposed method is
stable across the scenarios. Detailed setups and results are provided in the Supplementary Material.

In summary, the envelope model, including the selected model and the true model, outperforms
the standard SEM model, especially in estimating . While information criteria may exhibit limitations
in terms of selection rate, it is noteworthy that as the sample size increases, the selected model within
the envelope model framework can approximate the true model closely. This observation highlights
the feasibility of the AWE method in selecting appropriate envelope models and maintaining their
effectiveness in estimating the parameter of interest efficiently.

To obtain the results reported in Table 1 using the proposed method, the computational time per
replication ranges from about 1 min to a maximum of approximately 17 min on a Linux machine
running R with a CPU block speed of 2.60 GHz. The actual timing depends on the specific combination
of sample size, predictor dimension, and envelope dimension. Detailed results are summarized in
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Figure 1. The RMSE of the estimated elements of B for two cases in simulation.
Note: x-axis: coordinate of B. y-axis: value of RMSE.
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Table 2. The RMSE of estimated elements in f for two cases in Simulation
(@) Mere =2, p=20
Method Envelope m Envelope Mirye SEM
n 50 150 300 600 50 150 300 600 50 150 300 600
P11 0.0952 0.0494 0.0269 0.0226 0.0568 0.0326 0.0224 0.0166 2.7929 1.6482 0.8245 0.2910
Bi3,1 0.2243 0.1023 0.0650 0.0419 0.1361 0.0817 0.0591 0.0492 1.6694 0.8369 0.5374 0.3805
B2 0.1040 0.0497 0.0309 0.0212 0.0777 0.0460 0.0312 0.0217 1.6624 0.8231 0.4722 0.3380
Bis,2 0.0826 0.0685 0.0345 0.0256 0.0843 0.0558 0.0403 0.0241 2.0392 0.7557 0.4977 0.4065
(b) Mirye =2, p=40
Method Envelope m Envelope Mye SEM
n 50 150 300 600 50 150 300 600 50 150 300 600
Bs.1 0.3311 0.1278 0.0639 0.0419 0.1793 0.1117 0.0609 0.0514 3.4134 1.0059 0.6798 0.4462
Bis.1 0.2064 0.0805 0.0616 0.0483 0.0786 0.0426 0.0337 0.0195 6.3355 1.5865 0.9877 0.6866
Bso,1 0.3365 0.0681 0.0537 0.0319 0.1210 0.0676 0.0449 0.0384 5.1997 1.5765 0.9637 0.5868
Bi,2 0.1630 0.0610 0.0363 0.0236 0.0832 0.0537 0.0362 0.0262 4.0754 0.9764 0.5194 0.4569
Bas,2 0.1244 0.0436 0.0305 0.0249 0.0892 0.0480 0.0366 0.0256 3.9930 1.2857 0.7239 0.6305
B32,2 0.1735 0.0594 0.0353 0.0309 0.0964 0.0612 0.0352 0.0280 3.2580 0.7964 0.6118 0.4324
Note: Displayed are several randomly selected elements in B.
Table 3. The bias of estimated elements in B for two cases in simulation
(@) Miye =2, p=20
Method Envelope m Envelope Miye SEM
n 50 150 300 600 50 150 300 600 50 150 300 600
P11 —0.0038 0.0025 —-0.0025 0.0047 —0.0084 —0.0073 —0.0004 —0.0035 —0.0069 0.0887 —0.0571 —0.2859
P31 0.0196 0.0035 —0.0101 —0.0001 —0.0083 0.0095 0.0004 0.0045 —0.1245 0.1159 —-0.0516 —0.0472
Br.2 —0.0054 0.0000 —0.0036 —0.0022 —0.0022 —0.0087 —0.0038 —0.0029 -0.0516 —0.0532 0.0351 -0.3362
Bis,2 —0.0045 —0.0041 0.0058 —0.0005 —0.0006 0.0032 0.0024 0.0018 0.2290 0.0346 —0.0659 —0.4060
(b) Mypye =2, p =40
Method Envelope m Envelope myye SEM
n 50 150 300 600 50 150 300 600 50 150 300 600
Bs,1 —0.0303 0.0201 -0.0004 0.0001 0.0294 0.0092 0.0033 0.0111 -0.0807 0.1157 0.0380 -0.0399
Pis,1 0.0325 -0.0121 0.0013 0.0121 -0.0181 -0.0070 —-0.0096 0.0031 0.5396 0.2090 —0.0989 -0.0599
B30,1 0.0121 0.0005 —0.0058 —0.0062 —0.0355 —-0.0070 —0.0030 —0.0104 —0.4623 0.0628 —0.1453 -0.0381
B1,2 —0.0114 0.0103 -0.0073 —-0.0009 —-0.0105 0.0008 —0.0035 0.0001 0.1144 -0.1341 0.0061 0.0582
Bas,2 —0.0024 —-0.0065 —-0.0014 —0.0044 —0.0146 —0.0002 —0.0053 —0.0037 0.0876 —0.3007 —0.0536 0.0771
B32,2 —0.0067 —0.0028 —-0.0021 0.0029 -0.0250 0.0054 —0.0007 —0.0025 —0.2587 0.0071 -0.1480 -0.0596

Note: Displayed are several randomly selected elements in B.
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Table 4. The RMSE of estimated free elements in A for two cases in simulation

() Mirye = 2,p=20

Method Envelope m Envelope mirye SEM

n 50 150 300 600 50 150 300 600 50 150 300 600
M 0.0014 0.0008 0.0006 0.0003 0.0015 0.0007 0.0006 0.0004 0.0013 0.0007 0.0006 0.0008
Ay 0.0038 0.0019 0.0015 0.0011 0.0039 0.0021 0.0015 0.0010 0.0038 0.0021 0.0015 0.0014
A3 0.0044 0.0030 0.0017 0.0014 0.0047 0.0028 0.0019 0.0014 0.0051 0.0028 0.0018 0.0012
Ay 0.0041 0.0025 0.0015 0.0013 0.0044 0.0023 0.0017 0.0013 0.0047 0.0022 0.0015 0.0007

(b) Miye = 2, p = 40

Method Envelope m Envelope Mirye SEM

n 50 150 300 600 50 150 300 600 50 150 300 600
A 0.0027 0.0014 0.0011 0.0008 0.0029 0.0016 0.0011 0.0007 0.0028 0.0017 0.0009 0.0007
Ay 0.0027 0.0014 0.0012 0.0008 0.0030 0.0016 0.0011 0.0007 0.0027 0.0017 0.0010 0.0007
A3 0.0021 0.0012 0.0009 0.0006 0.0019 0.0012 0.0008 0.0006 0.0021 0.0011 0.0007 0.0006
Ay 0.0047 0.0023 0.0017 0.0011 0.0042 0.0024 0.0017 0.0010 0.0043 0.0023 0.0018 0.0010

Table S2 in the Supplementary Material. The code for implementing the preceding analysis is scripted
in R with Repp and is freely available in the Supplementary Material.

5. Real data analysis

We apply the proposed BESEM to analyze the ADNI dataset. The ADNI project, launched in 2004,
aims to advance research on the early detection, diagnosis, tracking, and treatment of AD and other
forms of cognitive impairment. It has become a widely recognized and extensively studied collection
of neuroimaging, clinical, and biomarker data related to AD. One crucial topic in the study of AD
and other dementia diseases is understanding the relationship between cognitive decline and changes
in brain structure. Previous studies have indicated that various brain regions are affected to different
extents in AD (Bartos etal., 2019; Jones et al., 2006). In our study, we integrate neuroimaging phenotypes
comprising volumetric and cortical thickness measures derived from MRI data. These measures capture
the structural characteristics of the brain across a moderate number of ROIs. We incorporate these
neuroimaging phenotypes into a regression model and utilize the envelope technique to gain new
insights into the relationship between brain structure and cognitive ability.

Clinical diagnostic tools, including neurological exams and cognitive and functional assessments, are
believed to reflect the degree of cognitive impairment and monitor disease progression (Albert et al.,
2013). Therefore, we regard cognitive impairment as a latent variable denoted by #. We consider five
different test scores from the ADNI study to assess cognitive impairment in various domains. The first
test score is the Mini-Mental State Examination (MMSE), a widely used screening tool that assesses
cognitive impairment from various cognitive domains, including orientation, attention and calculation,
recall, language, and visuospatial abilities. The second test score is the AD Assessment Scale-Cognitive
subscale 13 (ADAS13), which is specifically designed for use in clinical trials to measure cognitive
changes associated with AD. The scoring of ADAS13 is more complex than that of MMSE. Higher
ADASI13 scores indicate severe cognitive impairment. The third one is the Functional Assessment
Questionnaire (FAQ), which evaluates an individual’s functional ability to perform activities of daily
living such as dressing, bathing, grooming, eating, and managing finances. The final two test scores are
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derived from the Rey Auditory Verbal Learning Test (RAVLT), a neuropsychological test that assesses
verbal learning and memory. Specifically, we selected two measures from RAVLT: RAVLT Immediate
(RAVLT.immediate) and RAVLT percent forgetting (RAVLT.perc.forgetting). These two measures are
selected since they capture different aspects of episodic memory and have been shown to be closely
related to AD detection by previous research (Estévez-Gonzalez et al., 2003; Moradi et al., 2017).
To ensure consistency in interpreting the test scores, we reversed the MMSE and RAVLT.immediate
scores so that higher values indicate a severe impairment in cognitive function. Additionally, all five test
scores were standardized before conducting the analysis. These standardized test scores are denoted as
Y = (Y1,...,Ys)", as the response variables in equation (8).

The MRI brain imaging data were preprocessed by UCSF using Freesurfer methods, which involved
segmenting the T1 weighted images into small regions to define volumetric and cortical thickness
values. Detailed parcellation and quality control (QC) guidelines can be found on the LONI-ADNI
website. We followed the instructions provided by Szefer et al. (2017), and Greenlaw et al. (2017) and
include 56 derived neroimaging phenotypes. A description of these phenotypes can be found in Table 5.
The log-transformed values of the volumetric or cortical thickness measures serve as the predictors
X = (Xi,...,Xs6)" in the structural envelope model.

The original dataset from the ADNI-1 phase comprises clinical and imaging measurements from 800
participants, with missing data in both cognitive test scores and brain imaging data. After excluding
missing data, a total of n = 557 observations are retained in the analysis. Among these observations, 169
individuals are diagnosed with cognitive normal (CN), 271 have mild cognitive impairment (MCI), and
117 are diagnosed with AD. We apply the proposed BESEM method to this dataset, using a flat prior
similar to that described in Section 4.

The MCMC algorithm converges within the initial thousands of iterations, as shown by the trace plots
depicted in Figure $4 in the Supplementary Material. Therefore, a total of 20000 samples are drawn from
the conditional posterior density, with the first 8000 iterations discarded as the burn-in stage. The AIC,
BIC, DIC, and AWE methods were used to determine the optimal dimension of the envelope structure.
All these methods consistently indicate that the optimal dimension is m = 1. Therefore, the subsequent
estimation results using the BESEM method are based on the envelope model with a dimension of 1.

The point estimate of the factor loading A is (1.000,0.618,0.787,0.914,0.730)", with a negligible
standard error estimate for each element. The estimates of coeflicients B (Est), along with their standard
error estimates (SE), and 95% credible interval (CI) of the posterior samples, are displayed in Figure 2a
and Table 6. Notably, the inferior lateral ventricle and lateral ventricle for both hemispheres are found
to have a significant effect under the envelope structure, while the remaining ROIs exhibit minimal
impact, with estimated coefficients close to zero. This finding aligns with previous research by Bartos
et al. (2019), which suggests that the inferior regions of both lateral ventricles have the most significant
enlargements in individuals with AD.

For comparison, we also present the results obtained using the standard SEM method in Figure 2b
and Table 7. Akin to the simulation study, the standard SEM was estimated using a Bayesian approach
on the subset of 557 subjects with complete measurements, ensuring a fair comparison with the
proposed BESEM. In line with standard Bayesian SEM practices, we assigned conjugate normal-inverse-
gamma priors to parameters in the measurement equation and vague normal-inverse-Wishart priors
to parameters in the structural equation to derive Bayesian estimates. These results demonstrate a
conspicuous deviation from those obtained using the envelope method. In this analysis, we exclude
regions with point estimates close to zero and those with 95% Cls that include zero and identify several
ROIs that exhibited significance in the regression model. The selected regions are marked with bold
text in Table 7. The selected significant regions do not exhibit consistency between the two brain
hemispheres. The fusiform and inferior temporal in the left hemisphere is shown to be more significant,
which aligns with the notion proposed by Galton et al. (2001). Meanwhile, we also found a significant
impact on the hippocampus volume in the left hemisphere but not in the right hemisphere. This finding
contradicts the conclusion in Barnes et al. (2005) and Yang et al. (2017), which suggests a preferential
association of the right hippocampus with AD. Such partial inconsistency with the existing literature
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Table 5. Imaging phenotypes defined as volumetric or cortical thickness measures of 28 x 2 = 56 ROIs

ID Measurement ROI

AmygVol Volume Amygdala

CerebCtx Volume Cerebral cortex
CerebWM Volume Cerebral white matter
HippVol Volume Hippocampus
InfLatVent Volume Inferior lateral ventricle
LatVent Volume Lateral ventricle

EntCtx Thickness Entorhinal cortex
Fusiform Thickness Fusiform gyrus
InfParietal Thickness Inferior parietal gyrus
InfTemporal Thickness Inferior temporal gyrus
MidTemporal Thickness Middle temporal gyrus
Parahipp Thickness Parahippocampal gyrus
PostCing Thickness Posterior cingulate
Postcentral Thickness Postcentral gyrus
Precentral Thickness Precentral gyurs
Precuneus Thickness Precuneus

SupFrontal Thickness Superior frontal gyrus
SupParietal Thickness Superior parietal gyrus
SupTemporal Thickness Superior temporal gyrus
Supramarg Thickness Supramarginal gyrus
TemporalPole Thickness Temporal pole

MeanCing Mean thickness Caudal anterior cingulate, isthmus cingulate, posterior cingulate, rostral
anterior cingulate

MeanFront Mean thickness Caudal midfrontal, rostral midfrontal, superior frontal, lateral
orbitofrontal, and medial orbitofrontal gyri, frontal pole

MeanLatTemp Mean thickness  Inferior temporal, middle temporal, and superior temporal gyri

MeanMedTemp Mean thickness Fusiform, parahippocampal, and lingual gyri, temporal pole and
transverse temporal pole

MeanPar Mean thickness Inferior and superior parietal gyri, supramarginal gyrus, and precuneus

MeanSensMotor ~ Mean thickness  Precentral and postcentral gyri

MeanTemp Mean thickness Inferior temporal, middle temporal, superior temporal, fusiform,

parahippocampal, lingual gyri, temporal pole, transverse temporal pole

Note: Each phenotype in the table corresponds to the two phenotypes for the left and right hemispheres.

is likely a consequence of multicollinearity among the covariates and overfitting to the noise or the
immaterial information in the multivariate regression problem, thereby raises doubts about the validity
of the results. It demonstrates that the standard SEM model may yield results lacking interpretability
or mask some significant associations in the setting of complex covariates that can be projected to a
reducing subspace. The estimation results of SEM with BLasso are also presented in Table S3 and Figure
S5 in the Supplementary Material for a comprehensive comparison. A similar pattern to the standard
SEM is observed. Moreover, in this dataset, the changes observed in different ROIs are not entirely
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(b) Standard SEM

Figure 2. Point and 95% interval estimates of each element of B for the ADNI study.
Note: x-axis: ID of each ROI, which aligns with the order in Table 5 (adjacent numbers represent the left hemisphere and right
hemisphere, respectively). y-axis: Estimated value. Red short line: the value of the estimated coefficient. Grey rectangle: 95% Cl.

independent, and a plain linear regression model may not adequately capture the interdependencies
among the covariates in such cases, further contributing to noisy and potentially misleading results.
In contrast, the BESEM method enhances the identification of important predictors and significantly
improves estimation efficiency. It better handles the challenges posed by high-dimensional covariates
and accounts for the interdependencies among ROIs, leading to more reliable and informative results.
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Table 6. Point estimates (Est), Standard Error Estimates (SE), and 95% Cls of the elements in 8 by BESEM method in

ADNI study
(a) Left hemisphere (b) Right hemisphere

ID Est SE 95% Cl ID Est SE 95% Cl
AmygVol —0.015 | 0.001 | (—0.0172, —0.0123) Amyg\Vol —0.014 | 0.001 | (—0.0169, —0.0121)
CerebCtx —0.002 | 0.000 | (~0.0027, —0.0019) CerebCtx —0.002 | 0.000 | (~0.0028, —0.0020)
CerebWM —0.004 | 0.000 | (—0.0048, —0.0035) CerebWM —0.004 | 0.000 | (—0.0047,—0.0033)
HippVol —0.027 | 0.002 | (—0.0315, —0.0225) HippVol —0.029 | 0.002 | (—0.0344, —0.0246)
InfLatVent 0.199|0.017 | (0.1657,0.2322) InfLatVent 0.228 | 0.019 | (0.1900, 0.2662)
LatVent 0.145|0.012 | (0.1211,0.1697) LatVent 0.143 ] 0.012 | (0.1193,0.1672)
EntCtx —0.018 | 0.002 | (—0.0213, —0.0152) EntCtx —0.020 | 0.002 | (—0.0231, —0.0165)
Fusiform —0.006 | 0.001 | (—0.0071, —0.0051) Fusiform —0.006 | 0.000 | (—0.0068, —0.0048)
InfParietal —0.008 | 0.001 | (—0.0097, —0.0069) InfParietal —0.006 | 0.001 | (—0.0073, —0.0050)
InfTemporal —0.010 | 0.001 | (—0.0115, —0.0082) InfTemporal —0.009 | 0.001 | (—0.0109, —0.0078)
MidTemporal —0.008 | 0.001 | (—0.0094, —0.0067) MidTemporal —0.008 | 0.001 | (—0.0089, —0.0063)
Parahipp —0.012 | 0.001 | (—0.0136, —0.0097) Parahipp —0.011 | 0.001 | (—0.0132, —0.0094)
PostCing —0.007 | 0.001 | (—0.0081, —0.0058) PostCing —0.006 | 0.001 | (—0.0073, —0.0052)
Postcentral —0.013 | 0.001 | (—0.0148, —0.0103) Postcentral —0.013 | 0.001 | (—0.0151, —0.0108)
Precentral —0.011 | 0.001 | (—0.0132, —0.0094) Precentral —0.013 | 0.001 | (—0.0147, —0.0105)
Precuneus —0.015 | 0.001 | (—0.0181, —0.0129) Precuneus —0.016 | 0.001 | (—0.0183, —0.0130)
SupFrontal —0.028 | 0.002 | (—0.0329, —0.0235) SupFrontal —0.029 | 0.002 | (—0.0344, —0.0245)
SupParietal —0.013 | 0.001 | (—0.0148, —0.0105) SupParietal —0.015 | 0.001 | (—0.0174, —0.0124)
SupTemporal —0.011 | 0.001 | (—0.0128, —0.0091) SupTemporal —0.012 | 0.001 | (—0.0145, —0.0104)
Supramarg —0.014 | 0.001 | (—0.0164, —0.0117) Supramarg —0.016 | 0.001 | (—0.0182, —0.0130)
TemporalPole | -0.013|0.001 | (—0.0153, —0.0109) TemporalPole | —0.014 | 0.001 | (—0.0164, —0.0117)
MeanCing —0.009 | 0.001 | (—0.0105, —0.0075) MeanCing —0.012 | 0.001 | (—0.0146,—0.0104)
MeanFront —0.009 | 0.001 | (—0.0108, —0.0077) MeanFront —0.010 | 0.001 | (—0.0114, —0.0081)
MeanLatTemp —0.012 | 0.001 | (—0.0137, —0.0097) MeanLatTemp —0.009 | 0.001 | (—0.0110, —0.0079)
MeanMedTemp | —0.011 | 0.001 | (—0.0132, —0.0094) MeanMedTemp | —0.008 | 0.001 | (—0.0095, —0.0068)
MeanPar —0.014 | 0.001 | (—0.0164, —0.0117) MeanPar —0.008 | 0.001 | (—0.0090, —0.0065)
MeanSensMotor | —0.013 | 0.001 | (—0.0156,—0.0111) MeanSensMotor | —0.014 | 0.001 | (-0.0163, —0.0116)
MeanTemp —0.013 | 0.001 | (—0.0152, —0.0108) MeanTemp —0.014 | 0.001 | (—0.0159, —0.0113)

6. Conclusion and discussion

This article introduces a BESEM that incorporates a predictor envelope structure in the structural
equation, in conjunction with a factor model, to achieve dimension reduction. The response variables
are grouped into latent factors with a predetermined structure, allowing for dimension reduction
of multiple responses in the factor model. In the structural equation, the concerned predictors are
decomposed into two parts, the material part and the immaterial part. These two parts are independent,
with the immaterial part containing no information relevant to the latent factor. The presence of the
envelope structure, along with a small envelope dimension, can greatly reduce the number of unknown
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Table 7. Point estimates (Est), Standard Error Estimates (SE), and 95% Cl of the elements in B by standard SEM method

in ADNI study

(a) Left hemisphere

(b) Right hemisphere

ID Est SE 95% CI ID Est SE 95% Cl
AmygVol —0.030 | 0.061 | (—0.1493,0.0893) AmygVol —0.077 | 0.062 | (—0.1971,0.0430)
CerebCtx —0.156 | 0.140 | (—0.4363, 0.1105) CerebCtx 0.217 | 0.142 | (~0.0592, 0.5002)
CerebWM —0.172 | 0.118 | (—0.4033, 0.0584) CerebWM 0.291|0.121 | (0.0525,0.5241)
HippVol —0.296 | 0.080 | (—0.4514, —0.1396) HippVol 0.046 | 0.079 | (—0.1098,0.2016)
InfLatVent 0.035|0.072 | (—0.1083,0.1731) InfLatVent 0.014 | 0.066 | (—0.1155, 0.1449)
LatVent —0.013 | 0.087 | (—0.1829,0.1557) LatVent 0.006 | 0.081 | (—0.1532,0.1638)
EntCtx —0.268 | 0.414 | (—1.0912,0.5420) EntCtx —0.952 | 0.392 | (—1.7415, —0.1869)
Fusiform —2.665 | 1.241 | (-5.1143, —0.2328) Fusiform —1.243 | 1.412 | (-4.0161, 1.5097)
InfParietal 0.008 | 0.049 | (—0.0868, 0.1053) InfParietal 0.062 | 0.048 | (—0.0317,0.1538)
InfTemporal —3.557 | 1.709 | (—6.9172, —0.2254) InfTemporal —1.858 | 2.015 | (—5.7815,2.0930)
MidTemporal —1.083 | 0.917 | (—2.8919,0.7291) MidTemporal —0.468 | 1.034 | (—2.5246, 1.5601)
Parahipp —0.059 | 0.084 | (—0.2232,0.1042) Parahipp 0.006 | 0.084 | (—0.1557,0.1705)
PostCing —1.340 | 0.988 | (—3.2790, 0.5975) PostCing —0.344 | 1.101 | (—2.5441,1.8310)
Postcentral —1.134 | 1.158 | (—3.3929, 1.1335) Postcentral —1.460 | 1.086 | (—3.5695, 0.6496)
Precentral —1.318 | 1.042 | (—3.3820, 0.7286) Precentral —0.373 | 1.127 | (—2.5993, 1.8520)
Precuneus —0.068 | 0.066 | (—0.1972,0.0580) Precuneus 0.216 |0.069 | (0.0829,0.3505)
SupFrontal —0.004 | 0.052 | (—0.1066,0.0968) SupFrontal —0.218 | 0.052 | (—0.3199, —0.1172)
SupParietal 0.054 | 0.069 | (—0.0820, 0.1893) SupParietal —0.079 | 0.062 | (—0.1996, 0.0405)
SupTemporal —0.422 | 1.198 | (—2.8027,1.9450) SupTemporal —1.359 | 1.060 | (—3.4502,0.7165)
Supramarg —1.762 | 1.225 | (—4.1690, 0.6299) Supramarg —1.340 | 1.320 | (—3.9382,1.2594)
TemporalPole —1.796 | 1.236 | (—4.2305, 0.6222) TemporalPole —1.373 | 1.339 | (—4.0058, 1.2367)
MeanCing 0.035|0.050 | (—0.0652,0.1316) MeanCing —1.805 | 0.834 | (—3.4736,—0.1749)
MeanFront —0.001 | 0.050 | (—0.1000, 0.0979) MeanFront 4.497 | 3.663 | (—2.7019, 11.7353)
MeanLatTemp —0.094 | 0.082 | (—0.2560, 0.0664) MeanLatTemp 1.502 | 4.105 | (—6.6029,9.7027)
MeanMedTemp 0.049 | 0.079 | (—0.1018, 0.2038) MeanMedTemp | 5.914 | 2.759 | (0.5552,11.3317)
MeanPar 3.006 | 3.661 | (—4.0389, 10.1664) MeanPar 3.047 | 3.229 | (—3.2699,9.3676)
MeanSensMotor | 2.890 | 3.304 | (—3.5973,9.3247) MeanSensMotor | 1.386 | 1.967 | (—2.4794,5.2762)
MeanTemp —0.606 | 0.996 | (—2.5886, 1.3453) MeanTemp 3.377|1.626 | (0.2048, 6.5945)

parameters, leading to improved estimation efficiency. The application of the proposed model to the
ADNI dataset demonstrates its potential in identifying important covariates.

While there are still several areas of interest that warrant further investigation. First, there is a need
to develop an efficient method for selecting the envelope dimension. Currently, we approach this as a
model selection task and utilize information criteria to identify the optimal envelope structure, which
can lead to overestimated envelope dimension. A potential solution to mitigate this limitation involves
circumventing the selection of envelope dimension by developing a weighted average variant of the
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envelope estimator, using the information criterion values as potential weights (Eck & Cook, 2017).
Nonetheless, this approach may introduce theoretical and computational challenges, and we consider
it as a promising future direction that warrants continuing effort. Besides, employing information
criteria for envelope dimension can be time-consuming and computationally intensive. To address
this, Zhang & Mai (2018) proposed two unified approaches, full Grassmannian (FG) optimization
and 1 dimension (1D) selection, which provide theoretical justifications for selection consistency and
exhibit computational stability. Adapting this idea from a Bayesian perspective holds promise, and
we aim to develop a method that can simultaneously select the dimension and perform estimation.
Second, the substitution of the CFA model with an EFA model is worth exploring. This would relax the
assumption of a predetermined number of latent factors and instead allow the factor loading matrix to
be determined by both prior information and data. However, determining the number of latent factors
can be challenging, especially when it is linked to predictors with an uncertain envelope structure.
Third, intricate missing mechanisms can arise in multivariate regression while addressing missing data
within envelope models is an ongoing area of research with few established methodologies. We see
the accommodation of diverse missing mechanisms in the joint modeling of envelope and SEM as
a potential for further exploration. Lastly, it is worth considering the possibility of incorporating the
envelope structure into the multivariate variables (responses) in the measurement component of an
SEM. Cook & Zhang (2015b) introduced envelopes that simultaneously reduce predictors and responses
in a multivariate linear regression model, leading to significant improvements over traditional methods.
Therefore, we consider it a promising future direction to further extend the BESEM to incorporate an
envelope structure for the multivariate responses in the measurement component. For instance, if we can
appropriately separate the immaterial part of the response variables in the measurement equation and
group the material part into the latent factors, then it is possible to handle high-dimensional response
vectors in BESEM. Substantial efforts are required to achieve this advancement.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2025.10027.
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