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We investigate the linear instability of flows that are stable according to Rayleigh’s
criterion for rotating fluids. Using Taylor–Couette flow as a primary test case, we
develop large-Reynolds-number-matched asymptotic expansion theories. Our theoretical
results not only aid in detecting instabilities previously reported by Deguchi (Phys.
Rev. E, vol 95, 2017, p. 021102(R)) across a wide parameter range, but also clarify the
physical mechanisms behind this counterintuitive phenomenon. Instability arises from
the interaction between large-scale inviscid vortices and the viscous flow structure near
the wall, which is analogous to Tollmien–Schlichting waves. Furthermore, our asymptotic
theories and numerical computations reveal that similar instability mechanisms occur in
boundary layer flows over convex walls.

Key words: high-speed flow, Taylor-Couette flow, critical layers

1. Introduction
Flows deemed unstable by Rayleigh’s stability criterion of rotating fluid flows (Rayleigh
1917) are often simply referred to as centrifugally unstable flows. Taylor–Görtler vortices
are textbook examples of flows generated by such instabilities (e.g. Drazin & Reid 1981).

The derivation of the Rayleigh criterion relies on two assumptions: axisymmetry and
the inviscid nature of the flow. However, the criterion is known to reasonably align with
Navier–Stokes-based stability analyses for general perturbations. An illustrative example
comes from the stability analysis of Taylor–Couette flow, where the Reynolds numbers Ri
and Ro pertain to the rotation speeds of the inner and outer cylinders, respectively. In the
Ro–Ri parameter plane shown in figure 1, the shaded region becomes stable according
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Figure 1. Stability of Taylor–Couette flow for the radius ratio η= 5/7. The red curve is the neutral curve.
When the cylinders are co-rotating (Ri Ro > 0), the most unstable modes are axisymmetric. In contrast, for the
counter-rotating case (Ri Ro < 0), the majority of the neutral curve is determined by non-axisymmetric modes.
The shaded region is stable according to the Rayleigh’s stability criterion, and bounded by the Rayleigh line
Ri = Ro/η and Ri = 0.

to the Rayleigh criterion. One of the boundaries of this region, known as the Rayleigh
line, accurately predicts the onset of Taylor vortices at large enough rotation rates (Taylor
1923; Lewis 1928). The other boundary corresponds to the case where the inner cylinder
is fixed and the outer cylinder is rotated. In Drazin & Reid (1981), this flow is introduced
as an example of a flow that is always linearly stable, along with plane Couette flow and
Hagen–Poiseuille flow.

Near the latter Ri = 0 line, non-axisymmetric disturbances, for which the Rayleigh
criterion cannot account, become most unstable. Nevertheless, subsequent physical scaling
arguments (Esser & Grossman 1996), detailed numerical eigenvalue analysis (Meseguer
2002), and asymptotic theory (Deguchi 2016) all agreed on the conclusion that this type of
linear instability cannot extend into the Rayleigh stable parameter region, supporting the
belief that diffusion and/or non-axisymmetry act as stabilising mechanisms.

It was therefore widely unexpected when Deguchi (2017) numerically found linear
instability across the Ri = 0 line; following Ayats et al. (2020), we refer to this mode
as the D17 mode. This mode, also characterised by its non-axisymmetric nature, appears
at very high Reynolds numbers, making numerical computations challenging. Although
the instability in the centrifugally stable regime has indeed been detected by multiple
independent numerical codes, there are still some opinions questioning its existence, as
the underlying physical mechanism remains elusive. The primal aim of this paper is to
establish beyond doubt the origin of the D17 mode. Our idea is to employ the matched
asymptotic expansion analysis, which has a long history of elucidating various shear flow
instabilities. In this approach, the largeness of the Reynolds number is rather a favourable
effect for constructing mathematically rational approximate solutions and clarifying the
physical instability mechanism.

Not much is known about the properties of the D17 mode, but one notable characteristic
is its longer wavelength compared with classical instabilities in Taylor–Couette flow.
The mode therefore disregards the short-wavelength-type stability criteria (Billant &
Gallaire 2005; Kirillov & Mutabazi 2017), which apply to non-axisymmetric disturbances.
Deguchi (2017) speculated on possible similarities between the D17 mode with Tollmien–
Schlichting (TS) waves because they both appear in inviscidly stable shear flows and have
long wavelengths. Brockmann et al. (2023) recently analysed spiral Poiseuille flow and
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reported that the TS wave instability evolves continuously into the D17 modes. However,
while TS waves usually exhibit longer wavelengths with increasing Reynolds numbers, the
wavelength of the D17 mode in Taylor–Couette flow remains nearly constant. Furthermore,
even in parallel flows where linear instability does not occur, the D17 mode can still
manifest by incorporating Rayleigh-stable effects. This is evident in the narrow-gap limit
of Taylor–Couette flow where the governing equations closely resemble those for plane
Couette flow. The above numerical facts indicate that directly applying the well-known TS
wave asymptotic theory developed by Tollmien (1929); Schlichting (1933) and Lin (1955)
to the D17 mode is not possible.

If the new asymptotic theory for Taylor–Couette flow proves successful, it could also
serve as a guide to demonstrate the existence of similar instabilities in other, more
practically significant flows. Of particular interest is the boundary layer flow over a
curved wall. The Görtler vortex, which occurs when the wall surface is concave, has
been intensively studied by many researchers (Görtler 1941; Hall 1982, 1983, 1988;
Saric 1994). While, when the wall is convex, Floryan (1986) showed that the flow is
inviscidly stable applying Raylegh’s theorem. Moreover, local stability analysis based on
the Orr–Sommerfeld equation has traditionally indicated no instability in this scenario,
thus limiting detailed examination. The recent work by Karp & Hack (2018) therefore
sought a transition route to turbulence that does not rely on linear modal instabilities of
the basic flow. Their research is motivated by experiments of boundary layer flows over a
wall with convex and concave regions (e.g. Kalburgi et al. 1988; Benmalek & Saric 1994).
However, to the best of the authors’ knowledge, there are no detailed experimental studies
focusing exclusively on convex surfaces.

The rest of the paper is structured as follows. In § 2, we study the narrow-gap limit of
Taylor–Couette flow. In this limit, the eigenvalue problem governing stability is greatly
simplified, making it ideal for presenting the essence of the asymptotic structure. Our
analysis will reveal both similarities and differences between the TS and D17 modes.
Section 3 extends the theoretical results to fully wide-gap Taylor–Couette flow. In § 4,
we demonstrate that a similar theory can be applied to boundary layer flow over a convex
wall. Finally, in § 5, we draw some conclusions.

2. Narrow-gap Taylor–Couette flow

2.1. Formulation of the problem
Consider incompressible fluid flow with kinematic viscosity ν between two co-axial
cylinders of dimensional inner and outer radii r∗

i and r∗
o . We choose the cylinder gap,

d∗ = r∗
o − r∗

i , as the length scale. The arrangement of the cylinders is hence uniquely
determined by the radius ratio η= r∗

i /r∗
o � 1. The diffusive time scale, (d∗)2/ν, is the

conventional choice for describing Taylor–Couette flow. Using the associated velocity
scale, ν/d∗, and the pressure scale, ρ∗ν2/(d∗)2, where ρ∗ is the fluid density, the
dimensionless velocity v and pressure p fields are governed by the Navier–Stokes
equations

∂t v + (v · ∇)v = −∇ p + ∇2v (2.1)

and the divergence-free condition ∇ · v = 0. Due to the use of the viscous scale, the
Reynolds number does not appear in the diffusion terms. Instead, the normalised angular
velocities of the cylinders define the two conventional Reynolds numbers. In non-
dimensional cylindrical coordinates (r, θ, z), the no-slip boundary conditions at the
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cylinder walls are prescribed as

v(ri , θ, z)= (0, Ri , 0), v(ro, θ, z)= (0, Ro, 0), (2.2)

where ri = η/(1 − η) and ro = 1/(1 − η). The Reynolds numbers and the dimensional
angular velocities of the inner and outer cylinders, Ω∗

i and Ω∗
o , are related through

Ri = Ω∗
i r∗

i d∗

ν
, Ro = Ω∗

o r∗
o d∗

ν
. (2.3)

As is well known, the laminar circular Couette solution can be written as (u, v, w, p)=
(0, Ro rΩ(r), 0, R2

o

∫ r r∗Ω2(r∗)dr∗), where the scaled angular velocity has the analytic
form

Ω(r)= A + B/r2 (2.4)

with the constants

A ≡ 1 − η2a

1 + η
, B ≡ a − 1

1 + η
r2

i , a ≡ Ri

ηRo
. (2.5)

The Rayleigh line corresponds to a = η−2. The Rayleigh stable region is thus written as
a ∈ [0, η−2], and it includes the solid-body rotation a = 1.

2.2. Narrow-gap limit
Now we derive the reduced problem valid at the narrow-gap limit η→ 1. We introduce a
small perturbation parameter δ = √

1 − η and expand

(u, v, w, p)= (u+, δ−1v+, w+, p+)+ · · · , (Ro, Ri )= δ−1(Re, a Re)+ · · · . (2.6)

Changing the coordinates as y = r − ri , x = δ−1θ and only retaining the leading-order
terms, we get

(∂t + v+∂x + u+∂y +w+∂z)u
+ − v+2 = −p+

y + (∂2
y + ∂2

z )u
+, (2.7a)

(∂t + v+∂x + u+∂y +w+∂z)v
+ = (∂2

y + ∂2
z )v

+, (2.7b)

(∂t + v+∂x + u+∂y +w+∂z)w
+ = −p+

z + (∂2
y + ∂2

z )w
+, (2.7c)

∂xv
+ + ∂yu+ + ∂zw

+ = 0, (2.7d)

and the boundary conditions

(u+, v+, w+)= (0, Re, 0) at y = 1, (2.8a)

(u+, v+, w+)= (0, a Re, 0) at y = 0. (2.8b)

The limiting process here is essentially that used by Hall (1982, 1983, 1988) for the Görtler
vortex problem, and the final set of equations is often referred to as the boundary region
equations. The laminar circular Couette flow now becomes a linear profile

(u+, v+, w+, p+)= (0, Re vb(y), 0, Re2 pb(y)), vb(y)= (1 − a)y + a. (2.9)

The last term on the left-hand side of (2.7a) is the Görtler term, representing the deviation
from the plane Couette problem.
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Stability of the basic flow to infinitesimal perturbations can be analysed by writing

(u+, v+, w+, p+) = (0, Re vb(y), 0, Re2 pb(y))
+ (û(y), v̂(y), ŵ(y), Re p̂(y)) exp(iα(x − Re ct)+ ikz)+ c.c.(2.10)

and linearising (2.7). Here, c.c. denotes the complex conjugate. To ease notation, we shall
drop the hats after substitution. Eliminating the pressure and the axial velocity component,
we arrive at the coupled equations

Lv + v′
bu = 0, L(u′′ − k2u)+ 2vbk2v = 0, (2.11)

involving the linear operator L= iα(vb − c)− Re−1(∂2
y − k2). The prime denotes

differentiation with respect to y. The above equations and the boundary conditions
u = u′ = v = 0 imposed at y = 0 and 1 constitute an eigenvalue problem for the complex
growth rate c = cr + ici . From the symmetry of the system, it is sufficient to consider
positive scaled azimuthal wavenumber α and axial wavenumber k. The flow is unstable if
ci > 0.

The following mathematical facts are immediately apparent.

(i) Squire’s theorem does not hold due to the presence of the Görtler term.
(ii) If k = 0, the stability problem is equivalent to that for plane Couette flow. Therefore,

the well-known proof by Romanov (1973) can be applied, showing that no instability
exists.

(iii) The parameter range a ∈ [0, 1] corresponds to the Rayleigh stable case. In this
regime, the flow is stable if α = 0, i.e. the flow is axisymmetric. As remarked in § 1,
the Rayleigh criterion assumes the flow to be inviscid. However, even if we include
the viscous terms, we can still show the absence of instability, as the proof by Synge
(1938) for Taylor–Couette flow is still valid for the narrow-gap limit equations.

It follows that for the Rayleigh stable case a ∈ [0, 1], instability is impossible if either α
or k is zero.

In the rest of § 2, we focus on the stationary inner cylinder case a = 0 for simplicity.
The eigenvalue problem (2.11) can be numerically solved by the Chebyshev collocation
method. With increasing Re from zero, an instability emerges at (Re, α, k)= (2.831 ×
107, 0.978, 1.350), as reported by Deguchi (2017); see figure 2. Like many other shear
flows, the size of the instability region in the wavenumber plane expands as the Reynolds
number increases further. However, in the current eigenvalue problem, the flow becomes
unstable only within a very narrow region, making detection of this instability through
numerical computations extremely difficult.

Figure 3(a) shows the neutral curve for α= 0.978, with the corresponding phase speed
depicted in figure 3(b). The two branches of the neutral curve emanating from the
aforementioned critical point exhibit large-Reynolds-number asymptotic characteristics
somewhat similar to TS waves. Indeed, we shall see in §§ 2.3 and 2.4 that the asymptotic
structure of the perturbation near the wall bears similarities to that studied by Tollmien
(1929); Schlichting (1933) and Lin (1945, 1955). For this reason, we adopt the terms upper
and lower branches in figure 2 so that they preserve this analogy. The red dashed curves
in the figures are the asymptotic results to be derived in §§ 2.3 and 2.4. For the lower
branch, a reasonably accurate asymptotic approximation is obtained for a fairly wide range
of Re. In contrast, the upper branch exhibits a wiggle, and only beyond this point does
the asymptotic result provide a good approximation. These features were also observed in
neutral curves of TS waves in channel flows and boundary layer flows (see Drazin & Reid
(1981), for example).
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Figure 2. Linear instability found in the narrow-gap Taylor–Couette flow problem (2.11) for the stationary
inner cylinder case a = 0.The magenta bullet indicate the wavenumber pair (α, k)= (0.978, 1.350) at which
the instability first emerges at Re = 2.831 × 107. The cyan dashed and black solid curves are the neutral
curves for Re = 2.9 × 107 and 108, respectively. The crosses are found by the large-Re asymptotic result
(2.16). The dash-dotted line is k = (5π/8

√
2)α found by the analysis of the Kummer’s function. In the inset,

K = k − (5π/8
√

2)α is used to illustrate the structure of the unstable regions clearly.

The phase velocity c provides important insight into the structure of the eigenfunctions
because a thin vortex layer, known as the critical layer, typically forms around the region
where the base flow speed matches c. The magnitude of c drops with increasing Re, as
seen in figure 3(b), suggesting that if there is a critical layer, it should be sitting around
y = 0, where the base-flow velocity is small. The radial eigenfunction u for the lower
branch, shown in figure 4, indicates that there is indeed some structure near the inner
cylinder, while the perturbation does not diminish in the core region away from the wall
surface. The nature of the interaction between the core flow and the near-wall layer will
naturally be revealed by the method of matched asymptotic expansion. Our theory will
also demonstrate that constant wavelengths are necessary to maintain the core structure.
Thus, as seen in figure 3(a), the wavenumber does not decrease with increasing Re, unlike
TS waves.

2.3. Lower branch asymptotic analysis
Let us start by analysing the lower branch, which has a relatively simple asymptotic
structure. We fix α at a positive constant throughout the analysis. When Re is
asymptotically large, the majority of the fluid layer is occupied by an inviscid core region,
while near the inner cylinder (y = 0), a thin viscous wall layer of thickness O(ε) emerges
(see figure 5a). Since we have set a = 0, within the boundary layer, the size of vb is O(ε).
Therefore, the advective effect of O(ε) and the viscous effect of O(Re−1ε−2) in the
operator L in (2.11) balance when ε = Re−1/3. This wall layer thickness is typical of
critical layers, where the phase speed of the wave matches the base flow speed.

Using the small parameter ε, we expand k = k0 + εk1 + · · · and c = εc1 + · · · . The
overall structure of the asymptotic problem is as follows. First, the leading-order inviscid
core problem determines k0. Then, at the next order, the core flow is coupled with the wall
layer problem to yield the dispersion relation linking c1 and k1. In the neutral case, c1 and
k1 can be solved explicitly.
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 1.32

 1.34

 1.36

 1.38

 1.40

 1.42

 1.44

 1.46

107 108 109 1010 1011

107 108 109 1010 1011

k

(a)

(b)

Upper branch

Lower branch

10−2

10−3

10−4

c

Re

Re

Upper branch

Lower branch

Figure 3. (a) Neutral curve of the narrow-gap Taylor–Couette flow problem (2.11) for α = 0.978, a = 0 and
(b) the corresponding phase speed c. The full numerical stability results are shown by the black solid curves.
The dashed curves are the large-Re asymptotic results (2.28), (2.30) and (2.45). The blue dotted line in panel
(a) is the leading-order approximation k = 1.442 obtained by (2.16). The numerical resolution is verified using
up to 3000 Chebyshev modes.

In the inviscid core region, we expand the flow field as

u = u0(y)+ εu1(y)+ · · · , v= v0(y)+ εv1(y)+ · · · . (2.12)

Substituting (2.12) into (2.11), retaining only the leading-order terms and eliminating v0,
we have the single second-order ordinary differential equation

Lu0 = 0, L ≡ ∂2
y + k2

0

(
2
α2y

− 1
)
. (2.13)

A similar manipulation at the next order yields the inhomogeneous version of the
equation

Lu1 = −
{

4k2
0c1

α2 y2 + 2k1k0

(
2
α2 y

− 1
)}

u0. (2.14)

From the no-penetration condition at the wall, we impose u0(1)= u1(1)= u0(0)= 0.
However, it will turn out from the boundary layer analysis that u1(0) cannot be zero, so we
denote this displacement velocity as Ud = u1(0).
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1
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(u
−
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Figure 4. Comparison of the eigenfunctions between the linearised Navier–Stokes computations (lines) and
asymptotic predictions (symbols). (a) Comparison of results without scaling the wall-normal coordinate.
The solid and dashed curves are the real and imaginary parts of the lower branch neutral eigenfunction
at (Re, α, k, a)= (1010, 0.978, 1.434, 0). The points are the leading-order core solution u0 with (α, k0)=
(0.978, 1.442); see (2.15). Note that u0 attains its maximum value of 0.1523 at y = 0.3698, and u is normalised
to have the same property. (b) Comparison in terms of the viscous wall layer scaling. The points are U0 − Y ,
where U0 is the leading-order wall-layer solution (2.22) with (α, k0, k1, c1)= (0.978, 1.442,−14.9, 2.31) and
Y is the stretched coordinate Y = Re1/3 y. Note that the eigenfunction is neutral, and thus the real part of the
asymptotic solution approaches Ud as Y → ∞.

(a)

x x

y = 1

y = 0

Inviscid core layer

O (Re−1/3)

O (Re−1/3) O (Re−1/5)

O (Re−2/5)

Viscous wall layer

Viscous critical layer

Stokes layer

Inviscid core layer

(b)

Figure 5. Sketch of large-Re asymptotic structure of (a) the lower branch type and (b) the upper branch type.
A Stokes layer of thickness O(Re−1/2) exists near y = 1, but it is omitted.

The no-slip conditions at the outer cylinder (y = 1) are satisfied through a Stokes layer
of thickness O(Re−1/2). However, this layer is passive and does not need to be analysed.

The leading-order core system is an eigenvalue problem for the eigenvalue k2
0. The

solution can be written down using Kummer’s function of the first kind M :

u0(y)= ye−k0 y M(γ, 2, 2k0 y)

M(γ, 2, 0)
, γ ≡ 1 − k0

α2 . (2.15)

The boundary condition at y = 1 is fulfilled only when

M(γ, 2, 2k0)= 0. (2.16)

The crosses in figure 2 are obtained by looking for the smallest positive k0 that satisfies
(2.16) for each γ . For a small α, the approximation
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k0 ≈ 5π

8
√

2
α (2.17)

is available, thanks to the property of the Kummer’s function (Abramowitz & Stegun
1965). Both results are useful for estimating the wavenumber region where instability
might occur. For α= 0.978 used in figure 3(a), the prediction by (2.16) gives k0 ≈ 1.442,
which is shown by the blue dotted line in the figure. Also, the leading-order core solution
(2.15) agrees very well with the numerically obtained neutral eigenfunction, as depicted
in figure 4(a). Note that to simplify the subsequent analysis, we have normalised the
eigenfunction imposing u′

0(0)= 1.
Within the viscous wall layer, we use the stretched variable Y = y/ε, and expand the

wall-normal and streamwise velocity components as

u = εU0(Y )+ · · · , v = V0(Y )+ · · · , (2.18)

respectively. Here, the normalisation u′
0(0)= 1 and the existence of the displacement

velocity u1(0)= Ud imply that U0 ∼ Y + Ud for large Y to match the boundary layer
solution to the core solutions. While at Y = 0, of course, V0,U0 and U ′

0 must vanish to
satisfy the no-slip conditions. Substituting (2.18) and the Taylor expansion vb = λy + · · ·
into (2.11), the leading-order equations are obtained as

(iα(λY − c1)− ∂2
Y )V0 + λU0 = 0, (2.19)

(iα(λY − c1)− ∂2
Y )U

′′
0 = 0. (2.20)

From (2.9), λ is simply unity when a = 0; however, for our later purposes, we will carry
out the calculations while keeping the general λ. The change of the variable ξ = σY + ξ0
with the constants ξ0 = −σc1/λ and σ = (iλα)1/3 transforms (2.20) to Airy’s equation for
∂2
ξU0:

(ξ − ∂2
ξ )∂

2
ξU0 = 0. (2.21)

After some algebra, the solution satisfying the boundary conditions can be found as

U0 = σ−1
[
ξ + 1

κ(ξ0)

(−ξκ(ξ)− Ai′(ξ)+ Ai′(ξ0)
)]
. (2.22)

For large Y , the magnitude of the functions κ(ξ)= ∫∞
ξ

Ai(ξ̌ )dξ̌ and Ai′(ξ) rapidly
diminish. Therefore, referring to the aforementioned matching condition, the displacement
velocity is found as

Ud = Ai′(ξ0)

σκ(ξ0)
− c1

λ
. (2.23)

This is the only information we need for the dispersion relation in the wall layer analysis.
Hence, we do not solve (2.19) to find V0.

The dispersion relation readily follows from the solvability condition for the
inhomogeneous equation (2.14). The adjoint solution is merely u0 because the
homogeneous equation (2.13) is self-adjoint. Multiplying (2.14) by u0 and integrating from
0 to 1, ∫ 1

0
u0Lu1dy = −

∫ 1

0

{
4k2

0c1

α2 y2 + 2k1k0

(
2
α2 y

− 1
)}

u2
0dy. (2.24)
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The left-hand side becomes Ud after integration by parts and using (2.13). Therefore, k1
and c1 are now linked by

− 1
(λα)1/3

i5/3Ai′(ξ0)

κ(ξ0)
+ c1

(
I1 − 1

λ

)
+ k1 I2 = 0, (2.25)

where

I1(α)= 4k2
0

α2

∫ 1

0

u2
0

y2 dy, I2(α)= 2k0

∫ 1

0

(
2
α2y

− 1
)

u2
0dy, (2.26)

and ξ0 = i7/3(λα)1/3c1/λ.
If the mode is neutral (i.e. c1 is purely real), the imaginary part of (2.25) yields

�
{

i5/3Ai′(i7/3s)

κ(i7/3s)

}
= 0, s = (λα)1/3c1/λ. (2.27)

A real root of this function can be found at s = s0 ≈ 2.2972 (Miles 1960). Setting λ= 1,
the following approximation is obtained for the lower branch shown in figure 3(b):

c = 2.2972(0.978Re)−1/3. (2.28)

The real part of (2.25) can now be solved for k1:

k1 = q0 + s0(1 − I1)

α1/3 I2
, q0 = i5/3Ai′(i7/3s0)

κ(i7/3s0)
≈ −1.00. (2.29)

The integrals (2.26) can be worked out numerically after substituting u0 found in (2.15).
For α= 0.978, using k0 = 1.442 estimated before, the right-hand side of (2.29) can be
computed as approximately 14.9. Therefore, we have the asymptotic result

k = 1.442 − 14.9Re−1/3 (2.30)

used in figure 3(a). The wall layer solution (2.22) is compared with the numerical neutral
solution in figure 4(b).

2.4. Upper branch asymptotic analysis
The analysis for the upper branch is more complicated, and thus the neutrality of the
perturbation is assumed from the beginning to facilitate discussion. The critical difference
to the lower branch is that the majority of the wall layer becomes inviscid. Viscosity acts
within two thinner sublayers: the critical layer sitting in the middle of the inviscid zone
and the Stokes layer adjacent to the wall (see figure 5b).

The core structure is identical to the lower branch case, but the wall layer thickness,
again denoted as ε, is different. Within the wall layer, the radial perturbation velocity is
O(ε) to leading order, and it is merely a linear profile. Since the critical layer appears
within the wall layer, the phase speed c must be O(ε). A displacement velocity induced
across the critical layer affects the next-order component of the wall layer radial velocity,
which is O(ε2). A displacement velocity is also induced by the Stokes layer, and it must
match to the contribution from the critical layer. The former velocity is proportional to the
Stokes layer thickness �, so we require  = ε2. Finally, by balancing the O(c) advection
term in (2.11) with the O(Re−1−2) diffusion term within the Stokes layer, we arrive at
the scaling ε = Re−1/5 and  = Re−2/5. The critical layer thickness ε̃ = Re−1/3 is indeed
thinner than the wall layer thickness ε.

We begin the formal asymptotic analysis by writing k = k0 + εk1 + · · · and
c = εc1 + · · · . Within the wall layer, the perturbation velocity components are
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expanded as

u = εU0(Y )+ ε2U1(Y )+ · · · , v= V0(Y )+ εV1(Y )+ · · · , (2.31)

where Y = y/ε. Substituting them into (2.11), the leading-order equations are
obtained as

iα(Y − c1)V0 + U0 = 0, (2.32a)

iα(Y − c1)U
′′
0 = 0, (2.32b)

and the next-order equations are

iα(Y − c1)V1 + U1 = 0, (2.33a)

iα(Y − c1)U
′′
1 + 2Y k2

0 V0 = 0. (2.33b)

For U0, we impose U0(0)= 0 to satisfy the non-penetrating condition on the wall. Also,
U0 ∼ Y + Ud as Y → ∞ to match the normalised core solution. Then, the solution to the
leading-order problem can be found as

U0 = Y, V0 = − Y

iα(Y − c1)
, (2.34)

which yields Ud = 0. The singularity that appears in V0 should be resolved within the
critical layer around Y = c1. Given V0, we can integrate (2.33b) twice to find

U1 = − k2
0
α2

{
(Y − c1)

2 + 4c1(Y − c1)[ln |Y − c1| + φ]
−2c2

1[ln |Y − c1| +ψ]
}
. (2.35)

The constants φ and ψ are unknown and may differ for Y > c1 and Y < c1. To distinguish
the constants in the former region from those in the latter region, we attach a subscript +
to the former and − to the latter. The constants φ+ andψ+ must be purely real to match the
core solution which is still inviscid at the corresponding order. The critical layer analysis
reveals that

φ− = φ+ − iπ, ψ− =ψ+ − iπ. (2.36)

This ‘logarithmic phase-shift’ may not be surprising to readers familiar with the
asymptotic analysis of shear flows. To find this shift, one needs to use the expansions

u = εc1 + ε̃ζ + O(ε2 ln ε)+ ε2Ũ1(ζ )+ O(εε̃ ln ε)+ εε̃Ũ2(ζ )+ · · · , (2.37a)

v = εε̃−1Ṽ0(ζ )+ Ṽ1(ζ )+ · · · , (2.37b)

valid when ζ = ε̃−1(y − εc1) is O(1). Equations (2.35) and (2.36) imply that

�(u)→ −ε2 6πc2
1k2

0
α2 as Y → 0. (2.38)

Within the Stokes layer, we write Z = y/ε2 and expand

u = ε2Ǔ0(Z)+ · · · , v = V̌0(Z)+ · · · . (2.39)

The no-slip boundary conditions are written as V̌0(0)= Ǔ0(0)= Ǔ ′
0(0)= 0. Substitution

of (2.39) to (2.11) yields the leading-order equations

(iαc1 + ∂2
Z )V̌0 = 0, (iαc1 + ∂2

Z )Ǔ
′′
0 = 0. (2.40)

1006 A13-11

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
.1

7.
17

9.
24

0,
 o

n 
09

 M
ar

 2
02

5 
at

 1
4:

07
:3

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

11
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.114


K. Deguchi and M. Dong

The solution of the second equation, which does not grow exponentially for large Z , can
be found as follows:

Ǔ0 = Z + e−q Z − 1
q

, q = (1 − i)

√
αc1

2
. (2.41)

The exponential part is negligible when Z is large. Thus, at the outer edge of the Stokes
layer,

�(u)→ −ε2 1
(2αc1)1/2

as Z → ∞. (2.42)

Matching (2.38) and (2.42), the scaled phase speed is found as

c1 = α3/5

21/5(6πk2
0)

2/5
. (2.43)

Here, we can use (2.16) to find k0, as the core analysis is identical to that for the lower
branch case, while the dispersion relation (2.29) simplifies to

k1 = −c1 I1

I2
(2.44)

because u1(0)= Ud = 0, as remarked just below (2.34).
Substitution of α = 0.978 and k0 = 1.442 into (2.43) and (2.44) gives c1 ≈ 0.198 and

k1 ≈ 1.89. The asymptotic approximations shown in figure 3 are thus obtained as

c = 0.198Re−1/5, k = 1.442 − 1.89Re−1/5. (2.45)

3. Wide-gap Taylor–Couette flow
The analysis presented so far can be extended to the full Taylor–Couette flow problem
introduced in § 2.1. The radius ratio η now takes the value between 0 and 1, and the rotation
ratio a defined in (2.5) is not necessarily zero.

Substituting

(u, v, w, p) =
(

0, Ro rΩ(r), 0, R2
o

∫ r

r∗Ω2(r∗)dr∗
)

+ (û(r), v̂(r), ŵ(r), Ro p̂(r)) exp(im(θ − Ro ct)+ ikz)+ c.c. (3.1)

into (2.1), linearising the equations and removing the hats, we have the well-known
eigenvalue problem:

Lu − 2Ωv + 1
Ro

(
u

r2 + 2imv

r2

)
= −p′, (3.2a)

Lv + (2Ω + rΩ ′)u + 1
Ro

(
v

r2 − 2imu

r2

)
= − im

r
p, (3.2b)

Lw= −ikp, (3.2c)

u′ + u

r
+ im

r
v+ ikw= 0. (3.2d)
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The no-slip conditions u = v =w= 0 are imposed at r = ri and ro. To compactly write
the equations, we introduced the linear operator L= im(Ω − c)− R−1

o (∂2
r + r−1∂r −

r−2m2 − k2). The physically realisable velocity field must have a 2π periodicity in the
θ -direction; therefore, m must be an integer.

Section 3.1 extends the lower branch type asymptotic analysis deduced in § 2.3 for
the narrow-gap limit case. In view of (3.2), it is clear that the suitable large asymptotic
parameter is Ro. Recall that Ω depends on the parameter a. We only study small
enough |a|, so that the non-zero rotation ratio effect preserves the asymptotic structure
studied in § 2.3. The angular velocity (2.4) of the circular Couette flow hence admits the
Taylor expansion Ω =Ω0 + aΩ1 + · · · , where

Ω0 = 1
1 + η

− r2
i

r2(1 + η)
, Ω1 = − η2

1 + η
+ r2

i

r2(1 + η)
. (3.3)

In § 3.2, the asymptotic results are compared with the full numerical solution of (3.2).
The extension of the upper branch theory in § 2.4 to the wide-gap case is straightforward,

but given its limited practical importance, we omit this discussion.

3.1. Lower branch asymptotic analysis

We introduce a small parameter ε = R−1/3
o that describes the thickness of the wall layer

near the inner cylinder. Note that this ε is not the same as that used in § 2.3; we will
clarify their relationship later. The rotation rate a is taken to be O(ε) so that a1 = a/ε is of
order unity. The azimuthal wavenumber m is held fixed, while the axial wavenumber and
the complex phase speed are written in the forms k = k0 + εk1 + · · · and c = εc1 + · · · ,
respectively.

In the inviscid core region, we expand

(u, v, w, p)= (u0, v0, w0, p0)+ ε(u1, v1, w1, p1)+ · · · . (3.4)

The terms appearing on the right-hand side are all functions of r . Substitution of those
expansions to (3.2) yields the leading-order equation for u0(r),

Lu0 = 0, (3.5)

and the next-order equation for u1(r),

Lu1 = k1 F2u′
0 − (c1 F0 + k1 F1 + a1 F3)u0. (3.6)

The differential operator L and the functions F0, F1, F2 and F3 depend on m, k0, η, as can
be found in the Appendix. The boundary conditions are u0(ri )= u0(ro)= u1(ro)= 0 and
u1(ri )= Ud , where Ud is the displacement velocity to be found by the wall layer analysis.

Within the wall layer near the inner cylinder, the suitable expansions are

(u, v, w, p)= (εU0, V0,W0, εP0)+ · · · , (3.7)

where the terms on the right-hand side are functions of Y = ε−1(r − ri ). Within the layer
where Y is of order unity, the base-flow angular velocity (2.4) behaves like Ω = ε(λY +
ba1)+ · · · with the constants

λ≡Ω ′
0(0)=

2
ri (1 + η)

, b ≡Ω1(0)= 1 − η. (3.8)

After some manipulations, from the leading-order problem, we can find that U0(Y )
satisfies

(im(λY + ba1 − c1)− ∂2
Y )U

′′
0 = 0 (3.9)
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Figure 6. Asymptotic results obtained by numerically solving (3.5). (a) Dependence of the leading-order axial
wavenumber k0 on the azimuthal wavenumber m for η= 0.99 (red), 0.8 (green), 5/7 (blue), 0.5 (pink), 0.1
(black), 0.01 (orange). (b) The red and green curves are the results for η= 0.99 and 0.8, respectively, shown in
the δ m–k0 plane. The circles are the narrow-gap limit results assuming (k0, δ m)= (k0, α).

which, after re-reading m, (c1 − ba1) as α, c1, coincides with (2.20). Therefore, we can
reuse the narrow-gap result to obtain the displacement velocity

Ud = − i5/3Ai′(ξ0)

(λm)1/3κ(ξ0)
− c1 − ba1

λ
, ξ0 = i7/3(λm)1/3(c1 − ba1)

λ
. (3.10)

To solve the inhomogeneous problem (3.6), we use the inner product 〈 f, g〉 ≡ ∫ ro
ri

f gdr .
The homogeneous problem (3.5) is not self-adjoint, so we introduce the adjoint problem

L†u† = 0, u†(ri )= u†(ro)= 0, (3.11)

where the operator L† is given in the Appendix. The solution u†(r) of this problem with
the normalisation (û†)′(ri )= 1 can be uniquely determined. Taking the inner product of
u† and (3.6), we obtain the dispersion relation

Ud + 〈u†, F0u0〉c1 − k1〈u†, F2u′
0 − F1u0〉 + a1〈u†, F3u0〉 = 0, (3.12)

where Ud(m, η, c1, a1) is given in (3.10).

3.2. Numerical analysis
The wide-gap version of the asymptotic results requires numerical work to extract
useful information. First, the leading-order problem, (3.5) and the associated boundary
conditions, needs to be solved. The two boundary conditions can be satisfied only when
specific values of k0(m, η) are taken. The admissible values of k0 for various η are
summarised in figure 6(a). Only integer values of m are physically relevant, though real
values of m can be used in numerical computation without issue. If the perturbations
are assumed to be neutral, the next step is to find c1(m, η, a1) from the imaginary part
of (3.12). Then the real part of (3.12) can be used to compute k1(m, η, a1) after some
numerical integrations. The dependence of k1 on a1 is perfectly linear, as shown in
figure 7(a) for the case m = 1.
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Figure 7. Dependence of k1 on a1 for the neutral modes computed by (3.12). (a) Results for wide-gap
configurations. The azimuthal wavenumber is fixed at m = 1. (b) Results for narrow-gap configurations. The
azimuthal wavenumber is varied as m = 0.978/δ to observe the convergence to the narrow-gap results with
α = 0.978 (circles). In the narrow-gap results, we set (δ1/3k1, δ

1/3a1)= (k1, a1).

Now, let us explore the connection between the numerical analysis presented in this
section and the narrow-gap limit analysis discussed in § 2.3. Recall that in the latter
analysis, we required Re = δ Ro = √

1 − η Ro to be large to define the small parameter
ε = Re−1/3. Here, the overline is added to distinguish from ε = R−1/3

o defined in § 3.1;
likewise, we use k0, k1, c and c1 to denote the corresponding quantities that appeared in
§ 2.3. The two wavenumber expansions k = k0 + εk1 + . . . and k = k0 + εk1 + . . . imply
the equivalence k0 = k0 and k1 = δ1/3k1. Of course, to observe the convergence to the
narrow-gap result, we must set α= δ m because the wavenumber α is defined on the
variable x . Also, from the growth rate equality iαRec = im Roc, we expect c1 = δ−5/3c1
to hold. Moreover, we write a1 = δ1/3a1 because, with this and the above rescaling, in the
limit η→ 1, the dispersion relation (3.12) reduces to

− 1
α1/3

i5/3Ai′(ξ0)

κ(ξ0)
+ c1(I1 − 1)+ k1 I2 + a1

(
1 − I1

2

)
= 0, (3.13)

where ξ0 = i7/3α1/3(c1 − a1). This is precisely a generalisation of (2.25) for non-zero
rotation rates. The convergence of k0 to the narrow-gap result as η→ 1 is graphically
evident in figure 6(b). Figure 7(b) depicts the similar excellent convergence to the narrow-
gap result for the a1–k1 relation. The narrow-gap result in this figure was produced by
(3.13) for m = 0.978/δ, so the value of k1 at a1 = 0 corresponds to the lower branch
asymptotic curve seen in figure 3(a).

The dispersion relation (3.12) can also be used for non-neutral modes. Figure 8 presents
the scaled growth rate computed by the asymptotic analysis. Panels (a) and (b) are the
results for η= 5/7, m = 2, which are used by Deguchi (2017). The value of k0 is found as
1.651 from (3.5), and the variation of c1i = �(c1) on k1 for a1 = 0 can be found by (3.12)
as the circles in panel (a). The solid curves represent the full Navier–Stokes computations
based on (3.2), which, as expected, converge to the asymptotic results as Re increases. To
compare the results, we plotted R1/3

o ci against R1/3
o (k − k0); recall the scaling described

just above (2.12). The flow becomes unstable when k1 ≈ R1/3
o (k − k0) is smaller than −20,

with the growth rate reaching its maximum around k1 = −46.0. Fixing k1 at this value and
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Figure 8. The scaled growth rate. In panels (a) and (b), the wide gap η= 5/7 is used with m = 2. The red, green
and blue curves are the linearised Navier–Stokes results for Ro = 109, 1010 and 1011, respectively. The symbols
are the asymptotic results. (a) a = 0; (b) k = k0 + R−1/3

o k1 with (k0, k1)= (1.651,−46.0). The circles are
computed by the wide-gap formula (3.12). Panels (c) and (d) are similar results but for the narrow gap η= 0.99
with m = 0.978/δ. (c) a = 0 with (k0, a1)= (1.442, 0); (d) k = k0 + R−1/3

o k1 with (k0, k1)= (1.15,−10). The
asymptotic computation uses the narrow-gap limit formula (3.13) with α = 0.978.

varying a1 results in panel (b). An increase in the rotation rate has a stabilising effect. To
observe the convergence in the Navier–Stokes results, we set k = k0 + R−1/3

o k1.
Figures 8(c) and 8(d) compare the linearised Navier–Stokes results for η= 0.99 (curves)

with the narrow-gap asymptotic results (circles). Again, we choose α = 0.978 used in § 2
for the asymptotic computation. Thus, k0 is found as 1.442 by (2.16), and in panel (c),
where c1i is plotted against k1 for a1 = 0, the neutral point k1 ≈ −14.9 recovers the
approximation (2.30). In the Navier–Stokes computations, the choice η= 0.99 implies that
the suitable azimuthal wavenumber is m = 0.978/δ = 9.78. The asymptotic convergence of
the numerical data (δ−5/3 R1/3

o ci , δ
1/3 R1/3

o (k − k0)) towards (c1i , k1) computed by (3.13)
is reasonable, considering that there are now two factors causing errors: the finiteness
of δ and Re−1. Even if we choose the closest integer value of m = 10, the result does
not differ significantly. Panel (d) shows the similar comparison, but now the rotation rate
is varied for fixed k1 = −10. Overall, we can observe the similar trend as the wide-gap
case. Figure 9 illustrates a comparison between the eigenfunction of the linearised Navier–
Stokes equations (3.2) and the solution of the asymptotic problem. All the above results
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Figure 9. Comparison of the eigenfunctions between the leading-order asymptotic predictions (symbols) and
the linearised Navier–Stokes results (lines) with Ro = 1010, 1011, 1012 and 1013. The parameters are η= 5/7,
a = 0, m = 2 and k = 1.65, where the mode is unstable. Red, real part; green, imaginary part. (a) Comparison
in terms of the inviscid core scaling. (b) Comparison in terms of the viscous wall layer scaling.

unequivocally demonstrate the convergence of the Navier–Stokes computation towards the
asymptotic results.

Instability occurs for all values of η ∈ (0, 1), if Ro is large enough. This is demonstrated
in figure 6, where the case of a stationary inner cylinder case (a = 0) is shown. Of
particular interest from an application point of view is the extent to which the D17 mode
can penetrate into the Rayleigh stable region, i.e. how much we can increase the rotation
rate a before the flow completely stabilises. Figure 7 shows that the lower branch type
instability always exists as long as a is O(R−1/3

o ). The upper branch type survives a bit
larger a of O(R−1/5

o ). When a reaches O(1), the stability is determined by the inviscid
problem similar to (3.5), but with a critical layer located away from the walls (Drazin &
Reid 1981; Billant & Gallaire 2005; Caillol & Maslowe 2007). This type of instability may
appear when the wavenumbers are fixed and the Reynolds number is increased. For the
narrow-gap limit case, taking long wavelengths k = O(Re−1) and α= O(Re−1) leads to
another large-Re asymptotic limit of instability for a = O(1), However, this limit, similar
to that considered by Cowley & Smith (1985), cannot be realised for wide gaps, since
m must be an asymptotically small non-zero number. Continuing the neutral curve for
general a using (3.2) is a computationally challenging task, so we do not pursue further
investigation.

4. A boundary layer flow over a convex wall
Here we consider a near-wall boundary layer flow influenced by weak wall curvature.
Rational analysis of this problem in the high-Reynolds-number asymptotic limit was
established by Hall (1982, 1983, 1988) for concave wall cases. Our theory developed in
the previous sections applies when the wall is convex and the magnitude of the Görtler
number G, as defined by Hall, is sufficiently large. To demonstrate this, here we employ
the simplest set-up: the asymptotic suction boundary layer (Hocking 1975; Milinazzo &
Saffman 1985; Fransson & Alfredsson 2003).
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In this flow configuration, the boundary layer thickness remains unchanged downstream
due to suction from the wall. Therefore, the complexity associated with non-parallel
effects, such as those present in the Blasius boundary layer, can be avoided.

4.1. Asymptotic suction boundary layer
The generalised version of the instability theory for the asymptotic suction boundary layer,
incorporating the effect of wall curvature, can be naturally derived from Taylor–Couette
flow by writing the boundary conditions as follows:

v(ri , θ, z)= (−S, Ri , 0), v(ro, θ, z)= (−ηS, Ro, 0). (4.1)

Here, S represents the non-dimensional suction velocity on the inner cylinder, which
introduces a uniform radial cross-flow; the same flow configuration was studied by Gallet
et al. (2010). The base flow solution can be found to be (u, v, w)= (−(ri/r)S, RorΩ, 0),
with the function Ω(r) in the azimuthal component modified as

Ω = Ar−ri S + B/r2, A = 1

r1−ri S
o

1 − η2a

1 − η2−ri S
, B = ri

ηa − η1−ri S

1 − η2−ri S
. (4.2)

The associated stability problem is governed by (3.2), but the linear operator must include
the cross-flow effect as L= im(Ω − c)− R−1

o (∂2
r + (ri S/r)∂r + r−1∂r − r−2m2 − k2).

If we take large values of S, the base flow develops a boundary layer near the inner
cylinder. For simplicity, we set a = 0. Then, it is easy to check that as S → ∞, the base
flow behaves as

v∼ Roro

r
+ O(S−1) if r − ri = O(1), (4.3)

v∼ Ro

η
(1 − e−y)+ O(S−1) if y = S(r − ri )= O(1). (4.4)

This observation suggests that the boundary layer thickness is O(S−1).
To clarify the connection with the standard boundary layer analysis, we apply the

following manipulations.

(i) Replace the length scale with one based on boundary layer thickness, using y and
the wavenumbers β ≡ S−1k and α≡ m/Sri .

(ii) Denote (v, u, w) as (ux , uy, uz) to express the equations in the familiar form used
the boundary layer analysis. Also, rewrite ηp as p.

(iii) Redefine the Reynolds number as Re ≡ Ro/ηS, and write uxb ≡ riηΩ and C = riηc.
This Reynolds number is naturally defined by the free stream velocity at the edge of
the boundary layer and the boundary layer thickness.

These transformations recast the stability problem into

Lux +
(
2

uxb

Sri
+ r

ri

duxb

dy

)
uy − ri

r2SRe
uy + 1

SRe

(
ux

Sr2 − 2iriαuy

r2

)
= −iα

ri

r
p, (4.5a)

Luy − 2
uxb

Sri
ux + ri

r2SRe
uy + 1

SRe

(
uy

Sr2 + 2iriαux

r2

)
= −dp

dy
, (4.5b)

Luz = −iβp, (4.5c)

iα
ri

r
ux + duy

dy
+ uy

Sr
+ iβuz = 0, (4.5d)
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where L= iα(uxb − C)− Re−1(∂2
y + (ri/r)∂y + S−1r−1∂y − (ri/r)2α2 − β2). No asy-

mptotic approximations have been made at this stage, provided that Ω defined in (4.2) is
used. Therefore, together with the no-slip conditions on the cylinder walls, the linearised
problem remains valid throughout the entire annular region.

If S is large, the stability problem may be simplified to

Lux + u′
xbuy = −iαp, Luy = −p′ + guxbux , (4.6a)

Luz = −iβp, iαux + uy
′ + iβ uz = 0, (4.6b)

where L= iα(uxb − c)− Re−1(∂2
y + ∂y − α2 − β2), uxb = 1 − e−y and g = 2/Sri . The

primes denote derivatives with respect to y. At y = 0, the no-slip conditions ux =
uy = uz = 0 are imposed, and we assume the perturbations vanish as y → ∞. The
above boundary layer problem, formulated near the inner cylinder wall, constitutes an
‘intermediate reduced system’, as the magnitudes of the terms in (4.6) are not strictly
balanced. To find the correct reduced system, a detailed asymptotic analysis in § 4.2 is
required. Nonetheless, the same reduced problems are obtained whether the asymptotic
analysis begins with (4.6) or (4.5), indicating that the former equations, despite their
simplicity, include all the essential terms for the asymptotic reduction.

It should also be noted that the intermediate reduced system, excluding the Görtler
term proportional to g, has the similar structure as the local stability problem of general
boundary layer flows. The constant g is the parameter that represents the ratio of the
boundary layer thickness to the radius of curvature of the wall. If the wavelengths are
assumed to be comparable to the boundary layer thickness, the Görtler term is often
omitted in the local stability studies. However, when the streamwise wavelength becomes
sufficiently long, this term begins to significantly influence stability, as we shall see shortly.

In the context of the current parallel boundary layer problem, when the Görtler term
is absent, (4.6) reduces to the Orr–Sommerfeld and Squire equations for the asymptotic
suction boundary layer, where the onset of the instability is well known to occur
at (α, β, Re)= (0.15547, 0, 27189); see Hocking (1975); Drazin & Reid (1981). The
mechanism of this instability is essentially of the TS wave type. Note also that Görtler
vortex type instabilities appear when G = gRe2 is an O(1) negative number, akin to Hall’s
(1983) work on growing boundary layers. In this case, we need to recover several terms we
omitted from (4.5). As noted earlier, those terms do not affect our analysis that follows.

Figure 10 shows the neutral spanwise wavenumber β and phase speed c as the
Reynolds number is varied, with the streamwise wavenumber fixed at α= 0.0036. The
red solid curves are computed by the intermediate boundary layer approximation (4.6)
with g = 2 × 10−4; the flow becomes unstable in the region between them. The neutral
curves closely match the green circles, which are the neutral points computed using the
full linearised Navier–Stokes equations (4.5d) with S = 50.25. In the linearised Navier–
Stokes computation, the radius ratio of the cylinders are chosen as η= 0.995, resulting in
g = 2(1 − η)/Sη≈ 2 × 10−4. The value of the azimuthal wavenumber is m = 36, which
corresponds to α≈ 0.0036. The Reynolds number, as mentioned earlier, has been rescaled
as Re = Ro/ηS.

In the figure, the black dashed curve represents the result for the pure asymptotic suction
boundary layer case (g = 0). Comparing the black and red curves reveals that even small
variations in g can cause significant changes in the shape of the neutral curve. At the large-
Reynolds-number regime, the effect of wall curvature generates a new ‘D17’ instability in
a narrow band of β. The asymptotic behaviour of the D17 modes can be explained by
the lower and upper branch theories, analogues to those discussed in § 2, with the lower
branch elaborated in § 4.2.
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Figure 10. Linear stability of the asymptotic suction boundary layer. The streamwise wavenumber is fixed
at α = 0.0036. (a) The red solid curves represent the neutral curves for the convex wall case g = 2 × 10−4,
with stable/unstable regions indicated by the labels. These results are computed using the intermediate reduced
equations (4.6) within the boundary layer. The green circles show the same results, but they are computed
using the full linearised Navier–Stokes equations (4.5d) with S = 50.25. The black dashed curve corresponds
to the flat wall case g = 0. The blue dash-dotted curve is the asymptotic result given by (4.19) for g = 2 × 10−4.
(b) Phase speed of the neutral modes for g = 2 × 10−4.

For spanwise-independent perturbations, we can theoretically show that the stability
remains unchanged from the g = 0 case. Therefore, the unstable region at g = 2 × 10−4

represents a mixture of the TS mode and the D17 mode. Varying β from zero along
the red curve illustrates a smooth transition from TS waves to D17 modes, with the
Reynolds number reaching the minimum value Re = 3.01 × 107 at β = 0.0467. Note that
this Reynolds number is not a critical value, as it is not optimised across all wavenumber
pairs. Clearly, for any value of g, the critical Reynolds number cannot fall below 27 819,
which occurs at β = 0. We have confirmed that the critical Reynolds number remains at
this value for g = 2 × 10−4. In general, for relatively large α, small values of g have no
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significant impact on stability. Numerical computations were necessary to verify this, as
Squire’s theorem does not hold for g �= 0.

4.2. Lower-branch asymptotic analysis
Here, we conduct a lower-branch-type matched asymptotic expansion analysis for the
stability problem (4.5). The key assumptions in the asymptotic analysis, in addition to
the largeness of S, are Re � 1 and g � Re−2. The second condition is satisfied at the
high-Reynolds-number limit if g> 0 is held constant.

The analysis proceeds along the same lines as in § 2.3. An inviscid main layer emerges
at which y = O(1), while the no-slip conditions are satisfied via the viscous wall layer of
thickness O(ε)with ε = (gRe2)−1/6 � 1. Those regions are somewhat similar to the main
deck and lower deck of the triple-deck theory, respectively, but a structure like the upper
deck does not emerge. Using the small parameter ε, we expand the spanwise wavenumber
and the phase speed as β = β0 + εβ1 + · · · and C = εC1 + · · · , respectively. Also, we
rescale the streamwise wavenumber as α = g1/2α0.

In the main layer, we write⎡
⎢⎣

ux
uy
uz
p

⎤
⎥⎦=

⎡
⎢⎣

ux0(y)+ εux1(y)+ · · ·
g1/2(uy0(y)+ εuy1(y)+ · · · )
g1/2(uz0(y)+ εuz1(y)+ · · · )

g(p0(y)+ εp1(y)+ · · · )

⎤
⎥⎦ . (4.7)

Substituting (4.7) into (4.5) (or (4.6)), the leading-order equations can be combined to
yield

Luy0 = 0, L = ∂2
y − β2

0 − u′′
xb

uxb
+ β2

0

α2
0

u′
xb

uxb
. (4.8)

While, as expected, the next-order equations yield the inhomogeneous equation

Luy1 = C1

uxb

(
u′′

y0 − β2
0 uy0 − β2

0

α2
0

u′
xb

uxb
uy0

)
+ 2β0β1

(
1 − 1

α2
0

u′
xb

uxb

)
uy0. (4.9)

The non-trivial solution of (4.8) satisfying uy0 = 0 at y = 0 and uy0 → 0 as y → ∞ can
be found as

uy0 = λ−1uxbe−β0 y (4.10)

only when

β0 = 2α2
0 . (4.11)

The constant λ represents the value of u′
xb at y = 0, and the factor λ−1 in (4.10) normalises

u′
y0 = 1 at y = 0. Note that when the sign of g is negative (i.e. in the case of a concave

wall), constructing a non-trivial solution becomes impossible.
The solvability condition of the inhomogeneous equation (4.9) then determines the

dispersion relation. The far-field condition uy1 → 0 as y → ∞ remains unchanged from
the leading-order problem. Near the wall, however, the effect of the displacement velocity
from the viscous wall layer must be accounted, such that uy1 = Uyd at y = 0. The constant
Uyd can be found by the wall layer analysis.

The viscous wall layer expansions are
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⎢⎣

ux
uy
uz
p

⎤
⎥⎦=

⎡
⎢⎣

Ux0(Y )+ · · ·
g1/2(εUy0(Y )+ · · · )
g1/2(Uz0(Y )+ · · · )

g(εP0(Y )+ · · · )

⎤
⎥⎦ . (4.12)

The no-slip conditions are Ux0 = Uy0 = U ′
y0 = 0 at Y = 0. The leading-order wall-normal

component Uy0 satisfies the equation

(iα(λY − C1)− ∂2
Y )U

′′
y0 = 0, (4.13)

which is the same equation as (2.20). Therefore, the displacement velocity Uyd =
limY→∞ Uy0 − Y is obtained as

Uyd = − i5/3Ai′(ξ0)

(λα0)1/3κ(ξ0)
− C1

λ
, ξ0 = i7/3(λα0)

1/3C1

λ
. (4.14)

Multiplying (4.10) by the inhomogeneous equation (4.9) and applying integration by
parts, we obtain a dispersion relation similar to (2.25):

− 1
(λα0)1/3

i5/3Ai′(ξ0)

κ(ξ0)
+ C1

(
I1 − 1

λ

)
+ β1 I2 = 0, (4.15)

where

I1 =
∫ ∞

0

4β0u′
xb − u′′

xb

λ2 e−2β0 ydy, I2 =
∫ ∞

0

4uxbu′
xb − 2β0u2

xb

λ2 e−2β0 ydy, (4.16)

and ξ0 = i7/3(λα0)
1/3C1/λ. For the neutral disturbances, the result simplifies to

C1 = λs0

(λα0)1/3
, β1 = q0 + s0(1 − λI1)

(λα0)1/3 I2
, (4.17)

where q0 is the number defined in (2.29), and recall that s0 ≈ 2.2972.
So far, we considered a general uxb(y), allowing the results to be applicable to other

boundary layer flows. The specific outcomes for the asymptotic suction boundary layer are
obtained by setting uxb = 1 − e−y and λ= 1. For example, the integrals in (4.17) can be
solved analytically, resulting in

C1 = s0

α
1/3
0

, β1 = 8α4
0 + 6α2

0 + 1

α
1/3
0

(
q0 − 4s0α

2
0

4α2
0 + 1

)
. (4.18)

For the parameters used in figure 10, the leading-order wavenumbers are obtained as
(α0, β0)= (0.255, 0.130), and we have the approximations

β = 0.130 − 3.31g−1/6 Re−1/3, C = 3.62g−1/6 Re−1/3, (4.19)

plotted by the blue dash-dotted curves. When the Reynolds number is large, these
analytical results provide an excellent approximation for the ‘lower branch’, which appears
as the upper branch in figure 10(a). Figure 11 examines the complex phase velocity
C = Cr + iCi near this branch. As noted in § 3, predicting the asymptotic behaviour of
the non-neutral modes requires using the full dispersion relation (4.15). As the Reynolds
number increases, the numerical data ((β − β0)/ε,C/ε) converges to the asymptotic
result (β1,C1). The points where Ci becomes zero correspond to (4.19). Figure 12
compares the eigenfunctions at those neutral points. Once again, we observe clear
convergence of the numerical results to the leading-order asymptotic solution.
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Figure 11. Asymptotic convergence of the phase speed for α = 0.0036, g = 2 × 10−4. The curves are computed
by (4.6). The points are the asymptotic result (4.15). (a) Real part; (b) imaginary part.
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Figure 12. Comparison of the eigenfunctions at the lower-branch neutral point at (Re, g, α, β)= (1012,

2 × 10−4, 0.0036, 0.130 − 3.30ε). The solid and dashed curves are the real and imaginary parts of uy computed
by (4.6). The symbols are the corresponding asymptotic predictions. (a) Comparison in the core scaling.
The symbols are the leading-order solution uy0 found in (4.10). (b) Comparison in the wall-layer scaling.
The symbols are Uy0 − Y , where Uy0 is obtained in the same manner as in the derivation of (2.22).

5. Conclusion
By employing matched asymptotic expansion analysis at high Reynolds numbers, we
investigated the physical mechanism underlying the D17 mode instability, explaining
why it displays distinct properties compared with classical centrifugal instabilities. Our
asymptotic predictions closely match numerical results across different flow configurations
at finite Reynolds numbers, demonstrating the robustness of our theoretical approach.

Taylor–Couette flow has played a central role throughout the paper, providing a
canonical framework for studying the instability mode. In § 2, we examine the narrow gap
limit, assuming the inner cylinder to be stationary, which leads to a system that is neutrally

1006 A13-23

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
.1

7.
17

9.
24

0,
 o

n 
09

 M
ar

 2
02

5 
at

 1
4:

07
:3

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

11
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.114


K. Deguchi and M. Dong

stable according to Rayleigh’s stability criterion. We conducted an asymptotic analysis for
both the upper and lower branches of the neutral curve. Notably, the structure of the lower
branch theory is relatively straightforward and appears to provide a good approximation
across a wide range of Reynolds numbers. In § 3, we expanded the lower branch theory to
study full Taylor–Couette problem. The D17 mode instabilities occur in both Rayleigh-
stable and Rayleigh-unstable scenarios, and this finding is consistent across all radius
ratios. In § 4, we introduced a radial cross-flow to the Taylor–Couette flow, forming an
asymptotic suction boundary layer near the inner cylinder. This flow configuration serves
as a simple prototype for boundary layer flow over a convex wall. The curvature of the wall
results in the most unstable mode identified in high-Reynolds-number computations being
oblique, which is consistent with the asymptotic analysis.

Our numerical results indicate that the D17 mode instability exists only within a very
narrow wavenumber range. This phenomenon, elucidated through asymptotic analysis,
likely explains why this mode has remained undetected for so long. The first step in our
theoretical study involves determining the inviscid core structure, which reveals that, at
leading order, non-trivial modes can only arise around a specific curve in the wavenumber
plane. While the unstable region forms around this curve, its width is asymptotically
narrow. The next-order analysis shows that this region is bounded by what we refer to as
the upper and lower branches of the neutral curve, a terminology derived from the analysis
of TS waves (Tollmien (1929); Schlichting (1933) and Lin (1945, 1955)).

To derive the dispersion relation, it is necessary to analyse both the inviscid core and
the viscous wall layer near the inner cylinder. The boundary layer structure is similar to,
but not identical to, that of TS waves. The D17 mode cannot be identified by considering
inviscid theory alone because the instability requires the presence of a viscous boundary
layer. However, the viscous wall layer theory alone is insufficient, as the three-dimensional
characteristics of the D17 mode are dictated by the inviscid core structure.

The theoretical framework developed here can be extended to more general boundary
layers over a convex wall, including those exhibiting spatial growth. These boundary layer
problems typically satisfy the condition for the critical layer to appear near the wall, where
the tangential component of the base flow vanishes. Noting that the solution (4.10) can
also be applied to these general cases, we see that another important requirement – the
existence of an inviscid core neutral mode – is guaranteed. For small wall curvature,
the properties of the instability at low Reynolds numbers may be indistinguishable from
the TS wave in the flat wall case. However, at sufficiently high Reynolds numbers,
the D17 mode, characterised by low frequency, short spanwise wavelength, low phase
speed and an oblique nature, emerges. In boundary layer transition, it is known that the
turbulent transition process depends on external factors. The discovery that even weak
wall convexity influences the characteristics of unstable modes may be important for
controlling laminar flow over an aeroplane wing, as, depending on the flow conditions,
the D17 mode should be accounted for. Furthermore, the fact that the streamwise
length scale of the D17 mode is long, but remains shorter than the non-parallel spatial
development scale of the base boundary-layer profile, is interesting from the perspective
of receptivity theory. The D17 mode has the potential to interact with free stream acoustic
or vortical waves and extended surface imperfections, such as roughness, similar to the
high-Reynolds-number asymptotic theories by Ruban (1984) and Goldstein (1985).

Finally, we note that this paper primarily focused on cases where the flow is nearly
marginally stable according to Rayleigh’s criterion. While this assumption simplified the
theoretical discussion, the precise range of parameters where the D17 mode occurs remains
undetermined. Identifying this range is important for the experimental detection of the D17
mode, which has yet to be observed. The subcritical bifurcation of nonlinear travelling
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waves reported by Ayats et al. (2020) complicates addressing this issue. An asymptotic
approach could facilitate the parameter study of nonlinear states. We speculate that the
formulation of the theory may require nonlinear critical layer analysis, similar to that
developed by Caillol & Maslowe (2007).
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Appendix. Operators and functions in the asymptotic analysis of wide-gap Taylor–
Couette flow
The operators and functions in (3.5) and (3.6) are defined as

L = ∂2
r +

(
3m2 + k2

0r2

r(m2 + k2
0r2)

)
∂r +

(
−m2

r2 − k2
0 + 1

r2 + 6k2m2 + 4k4
0r2

m2(m2 + k2
0r2)

+(−3m4 + k2
0m2r2 + 2k4

0r4)Ω ′
0

m2r(m2 + k2
0r2)Ω0

− Ω ′′
0

Ω0

)
,

(A1a)

F0 =
(

4k2
0r(3m2 + 2k2

0r2)Ω0 + (−3m4 + 3k2
0m2r2 + 4k4

0r4)Ω ′
0

m2r(m2 + k2
0r2)Ω2

0
− Ω ′′

0

Ω2
0

)
, (A1b)

F1 = 2k0

(
4

m2 − 1 + 2m2

(m2 + k2
0r2)2

+ 2r [m4 + (m2 + k2
0r2)2]Ω ′

0

m2(m2 + k2
0r2)2Ω0

)
, (A1c)

F2 = 4k0m2r

(m2 + k2
0r2)2

, (A1d)

F3 = (3m4 − k2
0m2r2 − 2k4

0r4)(Ω ′
0Ω1 −Ω0Ω

′
1)

m2r(m2 + k2
0r2)Ω2

0
− Ω ′′

1
Ω0

+ Ω1Ω
′′
0

Ω2
0
. (A1e)

The standard adjoint theory for second-order ordinary differential equations can be used
to find the adjoint problem (3.11) with the operator

L† = ∂2
r −

(
3m2 + k2

0r2

r(m2 + k2
0r2)

)
∂r +

(
−m2

r2 − k2
0 + 1

r2 + 6k2
0m2 + 4k4

0r2

m2(m2 + k2
0r2)

+(−3m4 + k2
0m2r2 + 2k4

0r4)Ω ′
0

m2r(m2 + k2
0r2)Ω0

− Ω ′′
0

Ω0

)
−
(

3m2 + k2
0r2

r(m2 + k2
0r2)

)′
.

(A2)

1006 A13-25

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
.1

7.
17

9.
24

0,
 o

n 
09

 M
ar

 2
02

5 
at

 1
4:

07
:3

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

11
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.114


K. Deguchi and M. Dong

REFERENCES

ABRAMOWITZ, M. & STEGUN, I.A. 1965 Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. Dover Publications.

AYATS, R., DEGUCHI, K., MELLIBOVSKY, F. & MESEGUER, A. 2020 Fully nonlinear mode competition in
magnetised taylor-couette flow. J. Fluid Mech. 897, A14.

BENMALEK, A. & SARIC, W.S. 1994 Effects of curvature variations on the nonlinear evolution of görtler
vortices. Phys. Fluids 6, 3353–3367.

BILLANT, P. & GALLAIRE, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal
instabilities. J. Fluid Mech. 542 (1), 365–379.
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