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The aim of this work is to analyse the formation mechanisms of large-scale coherent
structures in the flow around a wall-mounted square cylinder, due to their impact on
pollutant transport within cities. To this end, we assess causal relations between the
modes of a reduced-order model obtained by applying proper orthogonal decomposition
to high-fidelity simulation data of the flow case under study. The causal relations are
identified using conditional transfer entropy, which is an information-theoretical quantity
that estimates the amount of information contained in the past of one variable about
another. This allows for an understanding of the origins and evolution of different
phenomena in the flow, with the aim of identifying the modes responsible for the
formation of the main vortical structures. Our approach unveils that vortex-breaker modes
are the most causal modes, in particular, over higher-order modes, and no significant
causal relationships were found for vortex-generator modes. We validate this technique by
determining the causal relations present in the nine-equation model of near-wall turbulence
developed by Moehlis et al. (New J. Phys., vol. 6, 2004, p. 56), which are in good
agreement with literature results for turbulent channel flows.
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1. Introduction

With the rise of population in urban areas, understanding how pollutants remain trapped
within metropolitan regions is of increasing importance. Recently reported as the largest
environmental health risk in Europe (Lelieveld et al. 2019), air pollution is a major cause
of premature deaths and disease. Therefore, predictive models for air-quality control
are relevant to provide protection from excessive pollutant concentrations. The essential
need to address sustainable development from an urban perspective is enshrined in
the 2030 Agenda (United Nations 2015) through the sustainable development goals 11
and 13, on sustainable cities and climate action, respectively. However, the available
models are unable to provide the required spatio-temporal accuracy to reproduce
the pollutant-dispersion patterns within cities (Torres, Le Clainche & Vinuesa 2021).
Improved prediction and assessment techniques are needed urgently to address these issues
and promote urban sustainability in the near future (Vinuesa et al. 2015). In this study, we
propose an information-theoretic analysis through causality metrics of a reduced-order
model (ROM) of the flow around a wall-mounted square cylinder to gain further insight
into the underlying mechanisms defining the flow, shedding light on new possibilities
for future urban-flow control research. Note that although the considered flow case is
significantly simpler than that in an urban environment, the focus here is in the arch
vortices, which are present in the analysed flow and have an important role in pollutant
transport in cities (Monnier et al. 2018; Lazpita et al. 2022).

The flow around this type of environment is generally found to be turbulent. Due
to the wide range of spatio-temporal features present in such a high-dimensional
nonlinear chaotic system, these flows are challenging to analyse. However, the presence
of similar flow characteristics across a plethora of fluid flows has revealed the
presence of dominant processes that constitute the basis of various types of flow.
Modal-decomposition techniques offer the possibility to analyse nonlinear and chaotic
dynamics, and create ROMs by defining a low-dimensional coordinate system for
capturing dominant flow characteristics. Proper orthogonal decomposition (POD) (Lumley
1967) and dynamic mode decomposition (DMD) (Rowley et al. 2009; Schmid 2010)
are two modal-decomposition methods based on linear algebra that have been used
widely to extract the dominant spatio-temporal features in fluid flows. Balanced POD
(BPOD) (Rowley 2005), spectral POD (SPOD) (Towne, Schmidt & Colonius 2018),
higher-order DMD (HODMD) (Le Clainche & Vega 2017) and spatio-temporal Koopman
decomposition (STKD) (Le Clainche & Vega 2018) are several successful variants of
POD and DMD for analysis of turbulent flows. These techniques have been assessed
in the context of simplified urban flows in the recent works of Lazpita et al. (2022)
and Martínez-Sánchez et al. (2023). They analysed the near-wake flow of finite square
cylinders, which can be described as a combination of four main vortices (Hunt et al.
1978; Wang & Zhou 2009): the tip (or roof) vortex, the spanwise vortex, the base vortex
(a streamwise vortex formed near the cylinder base with close interaction with the wake)
and the horseshoe vortex, which forms around the obstacle. The well-known arch vortex
can be then described as a combination of the first three (Sakamoto & Arie 1983; Tanaka
& Murata 1999; Wang et al. 2006; Wang & Zhou 2009), resulting in a vortical structure
forming on the leeward side of a wall-mounted obstacle that consists of two legs and one
roof. The flow rotates in the spanwise direction in the former vortex features, and in the
wall-normal direction in the latter one. This vortex has been studied extensively by the
fluid mechanics community, both experimentally (Hunt et al. 1978; Oke 1988; Becker,
Lienhart & Durst 2002; AbuOmar & Martinuzzi 2008; Zajic et al. 2011; Kawai, Okuda &
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Causality in a square cylinder

Ohashi 2012; Zhu et al. 2017; Monnier et al. 2018) and numerically (Sohankar, Norberg &
Davidson 1999; Saha, Biswas & Muralidhar 2003; Vinuesa et al. 2015; Amor et al. 2020;
Torres et al. 2021), due to its implications in urban environment phenomena, i.e. pollutant
dispersion, air quality, heat propagation and impact on pedestrian comfort (Oke 1988).

The flow around these wall-mounted obstacles is also strongly three-dimensional.
Martinuzzi & Tropea (1993) compared to the characteristics of the flow around
two-dimensional and three-dimensional obstacles of different width-to-height ratios,
and highlighted their three-dimensionality as a result of flow separation. As the flow
encounters the obstacle initially, a recirculation bubble formed on the windward side of
the cylinder induces an adverse pressure gradient that thickens the incoming boundary
layer, which then produces a shear layer around the obstacle (Becker et al. 2002; Wang
& Zhou 2009). Simultaneously, a horseshoe vortex progressively gets wider around the
two sides of the cylinder, a fact that accelerates the flow close to the obstacle due to the
favourable pressure gradient induced by the geometry (Hunt et al. 1978). A separated wake
is then formed downstream of the obstacle with a self-sustained oscillation process and a
downward motion from the top of the obstacle, which is responsible for the widening of
the wake (Straatman & Martinuzzi 2003; Vinuesa et al. 2015).

The topology of the near-wake flow consists of free-end downwash flow, spanwise shear
flow and upwash flow from the wall, which relate to the tip, base and spanwise vortices
(Wang & Zhou 2009). The formation of the arch vortex is produced as a result of the
previous flow features, and they are closely related to the symmetric shedding modes,
which induce an arch-type structure even on the instantaneous field (Zhu et al. 2017). Using
various modal-decomposition methods, Lazpita et al. (2022) assessed the characteristics of
the arch vortex and documented the generation and destruction mechanisms of this vortex
based on the resulting spatio-temporal modes, which were classified as vortex-generator
and vortex-breaker modes, respectively. As a result, they suggested that the arch vortex
may be connected with the dispersion of pollutants in urban environments, where its
generation leads to an increase in their concentration. Other studies (Bourgeois, Noack &
Martinuzzi 2013) also employed reduced-order modelling techniques for generalised phase
averaging and for construction of three-dimensional velocity fields from two-dimensional
particle image velocimetry data.

Here, we focus on the previous classification to develop an ROM applying POD on
a very simplified urban-flow database consisting of a single building-like obstacle. The
principle of causal inference, a core idea in many scientific disciplines but rather scarce
in the field of fluid mechanics, is then used to further analyse the causal interaction of
the resulting modes. Since the temporal evolution associated with the aforementioned
modes is typically known, the quantification of causality among temporal signals has
drawn the most attention. Time correlation between a pair of signals can usually provide a
simplified approach for the quantification of causality. However, this method lacks the
directionality and asymmetry that is required to estimate the causes and effects of a
given set of events (Beebee, Hitchcock & Menzies 2009). The first notions of causality
can be tracked back in physics to the work of Sommerfeld (1914), and in mathematics
to Sokhotski (1873) and Plemelj (1908), which were brought together by Kronig (1942)
and Titchmarsh (1948). Causality was then quantified by Wiener (1956) and Granger
(1969) as a statistical test for evaluating the ability of one time series to predict another.
Nevertheless, standard Granger causality tests originally assumed a functional form in
the relationship among the causes and effects that were implemented by fitting linear
autoregressive models (Wiener 1956; Granger 1969), which is not the ideal coupling
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when dealing with strongly nonlinear systems (Barnett, Barrett & Seth 2009). To tackle
this issue, recent works are focusing on an information-theoretical framework for the
estimation of causality, namely transfer entropy (Schreiber 2000) and information flow
(Nichols, Bucholtz & Michalowicz 2013). Those quantities require from a method to assess
the conditional dependency of the variables (Shannon 1948), which is a computationally
expensive task involving long time series (Hlavácková-Schindler 2011). However, recent
progress in entropy estimators using discrete and insufficient databases has made the use
of transfer entropy computationally feasible (Kozachenko & Leonenko 1987; Kraskov,
Stögbauer & Grassberger 2004; Gencaga, Knuth & Rossow 2015). Taking everything
into account, identifying cause–effect interactions between events or variables remains
an ongoing challenge. We used transfer entropy as a metric to quantify causality in this
case, but appropriate metrics to capture causal relationships between quantities remain to
be established (e.g. Reichenbach 1956), particularly given the large number of parameters
whose configuration is critical in the observed causation.

Some representative examples in which the previous information-theoretical approaches
were applied in turbulent flows are the works of Cerbus & Goldburg (2013), Tissot
et al. (2014), Liang & Lozano-Durán (2016) and Lozano-Durán, Bae & Encinar (2020).
More recently, Lozano-Durán & Arranz (2022) proposed a non-heuristic definition of
causality rooted in the principle of conservation of information that generalises previous
information-theoretic approaches in a consistent manner. The reader is also referred to
the work of Srivastava (2021) for an extensive review of the roles that the principles
of causality and passivity have played in various areas of physics and engineering. In
this project, we focus on the causal relations reported by Lozano-Durán et al. (2020) of
energetic eddies in wall-bounded turbulence. These results are compared with the causal
relations obtained through transfer-entropy estimators for the low-dimensional model for
turbulent shear flows developed by Moehlis, Faisst & Eckhardt (2004). The aim of this is to
validate the proposed method with causal interactions that we expect to see in advance. Our
ultimate goal is to quantify the causality among the large-scale structures driving the flow
dynamics in urban environments, with the purpose of identifying the modes responsible
for the creation of the arch vortex and understanding the origins of various phenomena in
the flow.

The paper is organised as follows. The methodology for quantifying causal interactions
among signals is presented in § 2. The causal relations present in the nine-mode model for
turbulent shear flows are discussed in § 3. The description of the numerical simulations
carried out to obtain the urban-flow database is presented in § 4, together with a summary
of the main flow mechanisms. The ROM built upon the previous database is depicted in
§ 5, and the causal relations among their corresponding modes are discussed in § 6. Finally,
the conclusions of our study are presented in § 7.

2. Methods in causality

We use the framework provided by information theory (Shannon 1948) to quantify
causality among different temporal signals. The central quantity for causal assessment
of the signals is the Shannon entropy, which is defined as

H(X) = −
∑
x∈X

PX(x) log PX(x), (2.1)

where X is the random discrete-valued variable under consideration, X represents
its associated support set, and PX(x) denotes its probability density function (p.d.f.).
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Causality in a square cylinder

This quantity measures the amount of uncertainty present in variable X. In our study, X and
Y represent the temporal evolution of a given quantity of the flow, e.g. the velocity field or
the time signal associated with a single mode of an ROM. Using the same principle, the
amount of randomness in a given pair of variables (X, Y) can be quantified using the joint
entropy, namely

H(X, Y) = −
∑
x∈X

∑
y∈Y

PXY(x, y) log PXY(x, y), (2.2)

where Y represents another random discrete-valued variable, and PXY is the joint p.d.f.
between X and Y . The joint entropy is useful to estimate the amount of uncertainty on Y
remaining after having observed X, which is defined as conditional entropy,

H(Y|X) = H(X, Y)− H(X). (2.3)

Within this framework, we define causality from X to Y as the decrease in uncertainty
of Y knowing the past state of X. This is formulated through the principle of transfer
entropy (Schreiber 2000), which exploits the time asymmetry of causation (the cause
always precedes the effect) by using the definition of conditional entropy, i.e.

TX→Y(�t) = H(Yt+�t|Yt)− H(Yt+�t|Xt, Yt), (2.4)

which can be expressed in terms of Shannon entropies as

TX→Y(�t) = H(Yt+�t, Yt)− H(Yt)− H(Yt+�t,Xt, Yt)+ H(Yt,Xt), (2.5)

where Yt+�t represents a forwarded time-shifted version of Y with lag �t relative to the
past time series Xt and Yt. Therefore, it can be stated that X does not cause Y if and only if
H(Yt+�t|Yt) = H(Yt+�t|Xt, Yt), i.e. when TX→Y = 0. This is considered as an important
tool to analyse the causal relationships in nonlinear systems (Hlavácková-Schindler 2011).
An important property of transfer entropy when compared to classical time correlation
approaches (Jiménez 2013) is the asymmetry of measurements, i.e. TX→Y /= TY→X ,
which allows us to quantify the directional coupling between systems. One can interpret
this quantity as a measure of the dominant direction of the information flow, which
indicates which variable provides more predictive information about the other variable
(Michalowicz, Nichols & Bucholtz 2013).

Due to the discrete nature of the signals, the computation of (2.5) is performed
numerically through estimations of the p.d.f. of each signal and their corresponding
entropy values using the k-nearest-neighbour entropy estimator. This method, introduced
by Kozachenko & Leonenko (1987), yields an entropy estimation that can be written as

Ĥ(X) = ψ(N)− ψ(k)+ log cd + d
N

N∑
i=1

log ε(i), (2.6)

where N is the number of finite samples, and ψ(·) represents the digamma function. The
parameter d represents the dimension of x, and cd is an expression that depends on the type
of norm used to calculate the distances, which represents the volume of a d-dimensional
unit ball (for the L∞-norm, cd = 1). Finally, ε(i) is the distance of the ith sample to its kth
neighbour. The reader is referred to Kozachenko & Leonenko (1987) and Kraskov et al.
(2004) for a more detailed discussion of the previous entropy estimator.

967 A1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.423


Á. Martínez-Sánchez and others

In the present work, a set of n time-varying signals is analysed such that it can be
arranged into an n-component vector defined by

V(t) = [V1(t),V2(t), . . . ,Vn(t)]. (2.7)

Using this nomenclature, the transfer entropy in (2.4) can be defined with X = Vi and
Y = Vj as

Ti→j(�t) = H(Vj(t +�t)|V �i(t))− H(Vj(t +�t)|V(t)), (2.8)

where V �i represents the vector V but without the component i. This definition was
introduced in Lozano-Durán et al. (2020). It generalised the definition of Schreiber
(2000) to multiple variables, which results in a causal map with the cross-induced
cause-and-effect interactions between each signal, where the terms Ti→i are set to zero.
Furthermore, to assess these interactions, we normalise every causal effect Ti→j using the
L∞-norm.

Apart from the measurement asymmetry feature, another relevant property of transfer
entropy is that it accounts for only direct causal interactions, excluding intermediate ones,
i.e. if Vi → Vj and Vi → Vk are unique causal relations, then there is no cause interaction
Vj → Vk (Duan et al. 2013). Furthermore, transfer entropy is invariant to transformation
of the signals since it is based exclusively on their associated p.d.f.s (Kaiser & Schreiber
2002).

3. A low-dimensional model of the near-wall cycle of turbulence

In this section, we analyse the causal relations present in a low-dimensional model for
turbulent shear flows developed by Moehlis et al. (2004). The aim of this is to verify
the ability of the proposed method to identify causal interactions that we expect to
see a priori. In particular, the causal relationships identified between the modes of the
low-dimensional model of the near-wall cycle of turbulence are contrasted with literature
results for turbulent channel flows (Lozano-Durán et al. 2020). The model is based on
nine Fourier modes and describes the flow between two free-slip walls subjected to a
sinusoidal body force. A detailed overview of this model and the employed parameters is
given in Appendix A. The ODE model described there was used to obtain 600 sets of time
series of the nine amplitudes, each with time span 4000 time units and time step 0.01 time
units.

The time series evolutions for all nine amplitudes in the model are then used to
determine the causal interactions between each of the modes. The key results of this work
are shown in figure 1, which contains the causal relations among the nine modes. The
transfer entropy in (2.8) was estimated using time lag �t = 0.01 and nearest-neighbour
parameter k = 4. Whereas the latter has been demonstrated to produce consistent results,
keeping the computational cost at an optimised level (Kraskov et al. 2004), varied causal
interactions may be derived for different values of�t. In the present example, time lags in
the range �t ∈ [0.01, 0.1] were tested and no significant discrepancies were observed. A
more detailed discussion of the impact of this parameter on causation is provided in § 6.

The map should be read as causative variables on the horizontal axis versus the
corresponding effects on the vertical axis. In a single visual, several flow mechanisms can
be identified. The causal connections a2 → a6 and a2 → a9 represent how the streaks have
an effect on the streamwise vortex modes and the modification of the basic profile. This
causal interaction is consistent with the lift-up mechanism, where the streak amplitude
is amplified through the wall-normal momentum transport (Orr 1907). The causality
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Causality in a square cylinder

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
Cause

E
ff

ec
t

Figure 1. Causal map for the low-dimensional model for turbulent shear flows proposed by Moehlis et al.
(2004). Red scale colours denote causality magnitude normalised using the L∞-norm. Modes are numbered
from 1 to 9 and represent the basic profile, streaks, downstream vortex, spanwise flows, normal vortex modes,
three-dimensional mode and modification of basic profile, respectively. The map is the result of the averaging
of 600 time series sets with a time lag corresponding to a one-snapshot lag, i.e. �t = 0.01.

a6 → a4 is then associated with the generation of rolls, motivated by the influence of
normal vortex modes on the spanwise flow. The most noticeable link arises from the
cause-and-effect interaction a2 ↔ a4, which results in an instability of the mean flow in
the spanwise direction. All of these causal relations are analogous to those reported by
Lozano-Durán et al. (2020) in turbulent channel flow. Therefore, these findings suggest
that using the nearest neighbours entropy estimator to quantify transfer entropy, it is
possible to extract the most relevant causal interactions between modes of a highly
nonlinear system. The following sections will focus on the application of this entropy
estimator to the flow around a wall-mounted obstacle.

4. Numerical simulations and flow description

This section presents the analysis of the flow around a wall-mounted square cylinder,
following several similar studies (Torres et al. 2021; Atzori et al. 2022; Martínez-Sánchez
et al. 2023), with the difference being that in this case the inflow boundary layer is laminar.
This database was obtained through direct numerical simulation using the open-source
numerical code Nek5000 (Fischer, Lottes & Kerkemeier 2008), which is based on the
spectral element method, to solve the incompressible Navier–Stokes equations:

∇ · u = 0,
δu
δt

+ (u · ∇)u = −∇p + ν ∇2u,

}
(4.1)

where u(x, y, z, t) represents the velocity field, ν is the kinematic viscosity, and p
denotes the pressure, which includes the constant-density term. Here, x, y and z denote
the streamwise, wall-normal and spanwise directions, respectively. The geometrical
domain comprises a single wall-mounted square cylinder, as depicted in figure 2,
with width-to-height ratio b/h = 0.25 and a Reynolds number based on freestream
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Incoming flow

z
x

hy

Figure 2. Instantaneous visualisation of the flow around a wall-mounted square cylinder considered here. The
instantaneous vortical structures identified with the Q-criterion are shown with an isosurface of +10 (scaled
in terms of U∞ and h). Structures are coloured with the streamwise velocity, which ranges from −0.79 (dark
blue) to +1.23 (dark red). Dark grey represents the bottom wall, whereas light grey indicates the building-like
obstacle.

velocity and obstacle width 500. All dimensions are normalised with the height of the
obstacle h, and every velocity component is normalised with the freestream velocity
U∞. We consider a spectral element mesh of 100 935 hexadral elements with a six-point
Gauss–Lobatto–Legendre quadrature, leading to 21.8 million grid points, to solve the scale
disparity of the flow. Additional details on the numerical scheme and employed resolution
can be found in a similar study (Atzori et al. 2022).

As we focus on the flow near the obstacle, the following region is extracted from the
computational domain: −1 ≤ x/h ≤ 5, 0 ≤ y/h ≤ 2 and −1.5 ≤ z/h ≤ 1.5. Using this
reduced domain, we consider 10 000 three-dimensional instantaneous fields to perform
the modal decompositions. The previous fields were spectrally interpolated from the
original spectral element method mesh to another one with resolution (Nx,Ny,Nz) =
(300, 100, 150). All temporal parameters are expressed in convective time units, i.e. a
ratio between the freestream velocity U∞ and the height of the obstacle h. The time
step between snapshots is constant, �ts = 0.005, which yields a database spanning a
total of 50 time units. This temporal resolution is enough to capture accurately the low-
and high-frequency flow mechanisms identified in the literature (Martínez-Sánchez et al.
2023).

Some of the characteristics of the highly three-dimensional flow around a finite
wall-mounted cylinder (Hunt et al. 1978; Martinuzzi & Tropea 1993) are displayed in the
instantaneous vortical structures of figure 2. Here, a horseshoe vortex extends around the
two sides of the obstacle and into the wake. This vortex affects many of the flow structures
around the cylinder, including the vortex-shedding mode, the shear-layer dynamics and the
width of the wake (Rao, Sumner & Balachandar 2004; Vinuesa et al. 2015). As a result,
this vortex also has an impact on the near-wake region and thus on the arch vortex formed
on the leeward side of the obstacle (Wang et al. 2006; Wang & Zhou 2009). The large
range of scales characteristic of turbulent flows in urban environments is also shown in
figure 2, where the vortical structures within the wake exhibit a wide range of sizes and
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Causality in a square cylinder

energy contents. The formation of the previous vortices and wake arises as a consequence
of a fixed separation location prescribed by the sharp cylinder edges, whose associated
separated shear layer can be noticed around every windward edge of the obstacle.

5. Reduced-order model for urban flows

Modal decomposition is a mathematical method for identifying essential energy
and dynamic characteristics of fluid flows. These spatial features of the flow are
known as spatial modes, and they are usually ranked in terms of the energy
content levels or characteristic growth rates and frequencies driving the flow motion.
These modal-decomposition techniques are generally used to create a low-dimensional
coordinate system that reflects successfully the main characteristics of the flow. These
structures are crucial not only for flow analysis, but also for reduced-order modelling and
flow control. In this section, we discuss POD, which is used to generate a low-dimensional
model of the flow around a finite square cylinder, representative of a simplified urban
environment.

POD (Lumley 1967) is a modal-decomposition technique that has been employed
traditionally in the fluid mechanics community. It seeks to decompose a set of data for
a particular field variable into the fewest feasible modes (basis functions) while capturing
the largest amount of energy. This process implies that POD modes are optimal in
minimising the mean square error between the signal and its reconstructed representation.
The low-dimensional latent space provided by the POD modes is attractive for interpreting
the most energetic and dominant patterns within a given flow field. Let us consider a vector
field q(ξ , t), which may represent e.g. the velocity or the vorticity field, depending on a
spatial vector ξ and time. In fluid flow applications, the temporal mean q̄(ξ) is usually
subtracted to analyse the fluctuating component of the field variable,

x(t) = q(ξ , t)− q̄(ξ), t = t1, t2, . . . , tk, (5.1)

where x(t) represents the fluctuating component of the vector data with its temporal
mean removed. This representation emphasises the idea that the data vector x(t) is being
considered as a collection of snapshots at different time instants tk. If the m snapshots are
stacked into a matrix form, then we obtain the so-called snapshot matrix X :

X = [x(t1), x(t2), . . . , x(tm)] ∈ R
J×K, (5.2)

where J represents the number of points in x, y and z. Note the similarity between this
matrix and the definition provided in (2.7). In this case, we differentiate between the
snapshot matrix X ∈ R

J×K , which is used for the modal-decomposition analysis, and the
matrix V ∈ R

n×K , which is employed for the causality analysis. The objective of the POD
analysis is to find the optimal basis to represent a given set of data x(t). This can be solved
by finding the eigenvectors Φ j and the eigenvalues λj from

CΦ j = λjΦ j, Φ j ∈ R
J, λ1 ≥ · · · ≥ λN ≥ 0, (5.3)

where C denotes the covariance matrix of the input data, defined as

C =
K∑

i=1

x(ti) xT(ti) = XX T ∈ R
J×J . (5.4)

The size of this matrix depends on the spatial degrees of freedom of the problem. The
POD modes are derived from the eigenvectors of (5.3), with the eigenvalues reflecting
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Figure 3. (a) Eigenvalues λm and (b) cumulative sum of the eigenvalues
∑i=m

i=1 λi, spectrum normalised with
the total energy of the eigenvalues

∑M
i=1 λi. The mode number is denoted with m, and the solid red line

represents the amount of energy contained within the first 10 modes.

how well each eigenvector Φ j represents the original data in the �2 sense. This allows us
to categorise modes according to the amount of captured kinetic energy when the velocity
fields are the data analysed, which enhances the assessment of the most prominent patterns
in a given flow field.

We applied POD using the singular value decomposition method (Sirovich 1987) on the
database presented in § 4. Figure 3 shows the eigenvalues λm, and the cumulative sum of
eigenvalues

∑i=m
i=1 λi normalised with the total energy of the eigenvalues

∑M
i=1 λi, where

m is used to identify the mode number. Note that using 10 linearly superposed modal
functions, 30 % of the total energy can be represented, which is enough to characterise
the large-scale structures driving the main dynamics in this type of flow (Xiao et al. 2019;
Lazpita et al. 2022).

Using this ten-mode model, we use the distinction of the flow mechanisms responsible
for arch vortices in urban fluid flows performed in our previous work (Lazpita et al. 2022)
to perform a similar classification. This division focuses on the identification of two main
types of modes: vortex-generator modes (G) and vortex-breaker modes (B). The naming
of these modes is purely associated with the shape of their associated structures, which
is covered extensively in the works of Lazpita et al. (2022) and Martínez-Sánchez et al.
(2023). The major structures and vortices are produced by the G modes; therefore, they
are related to the mechanism that could create the horseshoe and arch vortices. Note that
G modes typically exhibit a smaller energy content than B modes, and are found in the
low-frequency region of the spectrum. The major flow structures could then be broken by
the B modes, which are also responsible for the dynamics of the turbulent wake. In contrast
to vortex-generators, B modes are present in the high-frequency region of the spectrum.

Since regions of strong recirculation have already been proved to increase concentration
of passive scalars (Zhu et al. 2017), G modes, which are related to these prominent
recirculation areas, could be related to high-pollutant-concentration areas (Monnier et al.
2018). Conversely, B modes could be connected with reduced-pollutant-concentration
regions as they are responsible for the destruction mechanisms of the main spatio-temporal
structures. Readers are referred to Lazpita et al. (2022) and Martínez-Sánchez et al. (2023)
for a detailed discussion of the previous modes.

The three-dimensional structures characteristic of these two types of modes are
represented in figure 4 for the present database. The vortex-breaker mode is shown in
figure 4(a). This type of mode is represented by the first two POD modes shown in figure 3.
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Figure 4. Three-dimensional isosurfaces of the streamwise velocity of (a) the vortex-breaker modes (B mode
with a = b = 0.3), and (b) the vortex-generator modes (G mode with a = 0.5 and b = 0.1). Velocity values
are normalised using the L∞-norm. Isovalues employed are given by aUmax (red) and bUmin (blue).
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Figure 5. From upper left to lower right on two top rows: the first ten POD modes at y/h = 0.75 for the
streamwise component of the velocity. Contours are normalised with the L∞-norm and range between −1
(blue) and +1 (red). Bottom: power spectral density (PSD) scaled with the Strouhal number St = fh/U∞ of the
temporal coefficients associated with the corresponding POD modes, where f is the characteristic frequency of
each mode. The PSD is calculated using N = 8192 (213) samples and window overlap 50 %. Modes denoted as
G* represent harmonics of vortex-generator modes.

Therefore, the vortex-breaking process is identified as the most energetically relevant mode
present in the flow field. This result is in line with Lazpita et al. (2022), who showed
the agreement between the first two POD modes and the vortex-breaker modes identified
using various modal-decomposition techniques, in terms of both frequency behaviour
and spatial resemblance. Here, the streamwise turbulent wake consists of high-velocity
coherent clusters on both sides of the obstacle wake, which are also related to the
vortex-shedding phenomenon present in the flow past bluff bodies. This is also shown
in the two-dimensional contours in figure 5, where the spatial structure of the two modes
is observed to be the same, except for a shift in phase: they are both antisymmetric with
respect to the z-axis, and they represent the vortex-shedding phenomenon with identical

967 A1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.423


Á. Martínez-Sánchez and others

frequency, St = 0.45. This is evidence that the modes represent a wave-like periodic
structure of the flow. In fact, since the POD modes are real, two modes are needed to
describe a flow structure travelling as a wave (Rempfer & Fasel 1994). Note that the POD
method creates a low-dimensional coordinate system by linearly superposing orthogonal
modes derived from data representing the turbulent flow. The POD modes capture the
dominant features of the flow, some of which may arise as a result of the various underlying
nonlinear interactions that characterise a turbulent flow. Consequently, there might be
multiple modes with similar but not identical energy contributions. This could lead to
minor variations in the magnitude of B modes, as illustrated in figure 3.

A similar analysis can be conducted using the third POD mode, whose associated
structures are representative of G modes. In figure 4(b), we show that this mode is
connected with the main vortex-generation mechanisms identified in Lazpita et al. (2022).
A large-scale streamwise structure, characteristic of this type of mode, is found just after
the obstacle. This dome-like feature surrounds and interacts with the arch vortex by
restricting its expansion (Martínez-Sánchez et al. 2023).

The rest of the modes are depicted in figure 5, where the spatial modes for the
streamwise velocity fields are shown. An additional analysis of the temporal coefficients
associated with these modes is conducted in the frequency domain through the fast
Fourier transform method (Cooley & Tukey 1965). This enables classifying the time
coefficients associated with each spatial mode into low- and high-frequency phenomena,
whose features are decisive for the vortex-generating and -breaking processes, respectively.
Remarkably, these results show that the vortex-breaking process present in the first two
most energetic modes is dominated by a single peak frequency St = 0.45. Modes 3
and 4 are denoted as vortex-generator modes since their associated peak frequencies
appear in the low-frequency region of the domain (St = 0.05 and 0, respectively) and
their associated spatial structures, depicted in figures 4 and 5, show how a dome-like
structure encloses the near-wake region of the flow. This behaviour is similar to that of
the time-averaged field, thus it suggests that these modes could be the reason for the
generation of such structures. Higher-order modes, i.e. modes 5–8, are also present in
the low-frequency range of the spectrum. However, their flow features start to exhibit
fluctuating features in the wake. These modes may then be regarded as G modes that are
harmonics of the previous G modes with dominant frequencies St = 0.05, 0.15 and 0.2.
However, these modes are the result of nonlinear interactions, hence they can be regarded
as hybrid (H) modes (which is the case for modes 9 and 10), whose interaction with each
other is expected to be extracted from the causality analysis.

6. Results and discussion

Using the previous ten-mode model, we apply the procedure discussed in § 3 to extract
the causal interactions between the different flow mechanisms. To do that, we use the
time coefficients associated with each of the POD modes, and we arrange them into
a ten-component vector as in (2.7). Prior to the assessment of the causal results, the
quantification of causality using (2.8) requires the definition of a certain fixed time
delay, �t. In this study, we seek the time lag that produces the maximum causal
inference between the variables, which we denote as�tmax. Despite the inherent change in
transfer-entropy behaviour for varying �t values, defining the summation of every causal
relationship as a global measure, i.e.

∑
i,j Ti→j, allows us to establish a sensible value for

�tmax. The evolution of this parameter is depicted in figure 6 as a function of the time lag,
where �t is scaled in terms of the time step between snapshots �ts. Causalities are found
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Figure 6. Evolution of total causality
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ij Ti→j as a function of time lag �t. Note that �t is scaled in terms of
the time step between snapshots, �ts, and total causality is normalised with the maximum value obtained for
every �t, i.e. (

∑
ij Ti→j)max = 0.031.
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Figure 7. Causal map for the ten-mode model of the studied database. Red-scale colours denote causality
magnitude normalised with the L∞-norm. Modes are labelled per their mechanism. The colour map in (b) is
over-saturated to highlight the interactions of B modes with higher-order modes.

to be maximum for time lag �tmax = 0.1, which corresponds to a lag of 20 snapshots.
This value is comparable to the dynamics of the highest-frequency phenomena of the flow
(Martínez-Sánchez et al. 2023) and represents 5 % of the period of the vortex-shedding
modes.

The transfer entropy is then calculated using (2.8) with �tmax to obtain the
cross-induced cause-and-effect interactions between the modes. The corresponding causal
map is depicted in figure 7, where modes are labelled directly using the flow mechanism
that they represent according to § 5. The map shows a very high causal inference between
the first two modes compared to the rest of the relationships. The fact that these two modes
are representative of the same flow mechanism but with a slight shift in phase makes their
causal relationship evident. Causal inferences smaller in amplitude are also appreciated
between B modes and the highest-order modes, i.e. modes 7–10. To better assess these
interactions, the causal relationships between B modes are set to zero. The resulting causal
map is illustrated in figure 7(b), where we observe the high causal connections T2→10
and T1→10. Vortex-breaker modes are then regarded as the most influential mechanism in
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Figure 8. Causal map for the ten-mode model of the studied database for (a) only one B mode, and (b) no B
modes. Red-scale colours denote causality magnitude normalised with the L∞-norm. Modes are labelled per
their mechanism.

higher-order modes, which we denoted as hybrid modes. However, vortex-generator modes
(modes 3–6) do not have a direct causal inference over the rest of the modes.

Similar conclusions can be drawn if we decide to consider only one B mode, since
these modes represent the same flow mechanism, and their associated temporal evolution
is equivalent but with a π/2 phase shift. This mechanism propagates as a travelling wave
in a periodic fashion; therefore, two orthogonal modes in space are needed to represent its
dynamics. This leads to the causal map shown in figure 8(a), where only one B mode can
be noticed. This assumption produces effects similar to those found from modes 1 and 2
on higher-order modes. As seen in § 5, hybrid modes represent the interaction between B
and G modes as a result of a varied range of frequencies found in the spectrum of their
associated time coefficients. Therefore, TB→10 reveals that the vortex-breaking mechanism
drives the appearance of modes where shared features of both B and G modes are found.

Figure 8(b) depicts the eight-mode causal map obtained as a result of removing the
combined mode from the spectrum. Remarkably, a strong causal inference from mode
10 on mode 8, T10→8, is now appreciated. This proves that modes on which B modes
have large influence also cause the appearance of modes whose frequency behaviour is
harmonic of purely G modes. However, there is no sign that G modes are intimately related
to any of the aforementioned mechanisms. A schematic diagram depicting the main causal
interactions between each of the modes is presented in figure 9.

Therefore, understanding the dynamics underlying the vortex-breaking mechanism in
detail may be crucial for predicting the emergence of significant flow features in urban
environments, such as the arch vortex. These findings also suggest that B modes are
not only the most energetic modes in the flow field but also those responsible for the
appearance of modes that relate to the generation of the primary vortical structures.

6.1. Influence of higher-order modes
We extend our analysis to investigate the causal influence of higher-order modes on the
most energetic modes. The goal is to determine whether the large-scale structures of the
flow, contained in the leading modes, exhibit strong causal relations with smaller-scale
structures. To this end, we compute causal maps using a range of modes, from 10 to

967 A1-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.423


Causality in a square cylinder

Vortex-breaker (B)

Vortex-breaker (B)

Hybrid (H)

Hybrid (H)

Vortex-generator (G)

Figure 9. Diagram depicting the mutual inferences between modes due to the past states of the other modes.
Only those significant causal interactions are represented. Two vortex-breaker (B) modes, two hybrid (H) modes
and one vortex-generator (G) mode are shown, i.e. modes 1, 2, 10, 9 and 8, respectively.

40, and analyse the changes in the causal relations among them. Figure 10 illustrates
the corresponding causal maps computed with different numbers of modes. The map
computed with the first ten POD modes, shown in figure 10(a), corresponds to the case
analysed in the previous section. This causal map highlights the strong causal inference
observed between the most energetic modes of the system. As we increase the number of
modes under consideration, we observe subtle changes in the causal relationships.

For instance, in the causal map computed with 20 modes (figure 10b), we still observe
the strong causal trace of the large-scale structures. However, a higher causal inference is
noted in this case from mode 17 to mode 18, T17→18. Furthermore, these two modes have
a small impact on the first modes, similar in magnitude to the causal relation observed
between them in figure 10(a). This observation supports the idea that smaller-scale
structures can indeed have some influence over the more energetic modes, and should
not be disregarded when assessing the prediction capabilities of the system or developing
future control strategies. In the present study, the impact of smaller-scale structures on
the leading modes is not substantial; however, this consideration might become more
important in more complex systems, where these low-energy modes may play a prominent
role.

When moving to the causal maps computed using 30 and 40 modes, as shown
in figures 10(c) and 10(d), respectively, we can analyse the causal pattern of
even-higher-order modes on the large-scale structures. The latter represents an ROM that
accounts for more than 60 % of the total energy of the flow. In these cases, we observe
that the most significant causal relationships are found between the newly included modes
in each map, such as T27→29 in the thirty-mode map, and T32→31 and T39→36 in the
forty-mode map. Interestingly, no traces of causal relations are left for the first POD modes,
indicating that the leading modes are not affected when introducing these higher-order
modes. This observation implies that only causal interactions are observed for the newly
included modes, and suggests that it is sufficient to identify the most causal interactions
between the large-scale structures of the flow using the ten-mode model. Therefore, our
analysis supports the idea that the ten-mode model captures the essential dynamics and
causal relations among the large-scale structures in the flow.
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Figure 10. Causal map computed using (a) 10, (b) 20, (c) 30, and (d) 40 modes. Red-scale colours denote
causality magnitude normalised with the L∞-norm. Modes are labelled numerically in descending order
according to their energy contribution to the system.

6.2. Time correlation between time coefficients
In this subsection, we compare the previous results with those obtained using a simplified
approach for the quantification of causality, i.e. time correlation. This statistical metric
describes the magnitude of the relationship between a given pair of variables without
the directionality and asymmetry properties, which are required to estimate the causes
and effects of events. Additionally, high correlation between the variables does not
automatically mean that changes in one variable are caused by changes in the other
variable. Despite this, it is interesting to compare the results from both approaches since a
high causation emerges from some degree of correlation between variables, although the
opposite does not hold. To assess correlation, the following expression is used:

Cij(�t) = 〈Vi
′(t),Vj

′(t +�t)〉
‖Vi

′(t)‖ × ‖Vj
′(t)‖ , (6.1)

where Vi
′ and Vj

′ represent the fluctuating signals Vi
′ = Vi − V̄i, and 〈·〉 denotes the dot

product operation taken over the whole time history. Note that using this expression, it is
possible to deduce the symmetry property for correlation, i.e. Cij(�t) = Cji(−�t).

Figure 11 depicts the effects of the variation of the time lag on the temporal
cross-correlation between the time coefficients signals. Only those trends with a maximum
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Figure 11. Time correlation between a1 → a2 (red circles), a5 → a6 (black circles), a7 → a5 (squares) and
a9 → a8 (triangles), where am refers to the mth mode of the ROM. Note that ai → aj represents the expression
for time correlation Cij(�t) in (6.1). Only those trends with a maximum value above 0.4 are represented.

value above 0.4 are represented. The main conclusion from these results is the high
correlation observed between the first two modes. Remarkably, the correlation approaches
value 1 when �t/T1,2 = 0.25, where T1,2 represents the period of the oscillations of the
corresponding signals. This evolution confirms that the previous modes are representative
of the same flow mechanism with a phase shift of π/2 rad. This is in line with the causal
relations observed in the previous subsection, where these modes represented the largest
causation. A similar trend is also observed for modes 5 and 6, both G modes. In particular,
a high correlation is observed for the previous modes when C1,2 = 0. This means that
the influence of B modes on the correlation between variables is predominant for low �t
values, and it starts to decay for larger values of �t. Conversely, for higher-order modes,
their influence on the correlation with other variables starts to be more noticeable for large
values of�t (when compared to B modes). This results in an increased interaction activity
of modes 5 and 6, as correlation between modes 1 and 2 decays.

Furthermore, every signal discussed in this section exhibits a damped sinusoidal
behaviour with a frequency pattern similar to that observed in figure 5: B modes
are associated with high-frequency oscillations, whereas G modes are dominated by
low-frequency ones. This means that depending on the employed time lag, the correlation
between variables becomes reversed, which can be related to the fact that POD
modes are based on a linear relationship. A similar conclusion was drawn from the
transfer-entropy approach, where the modified values of the time lag produced different
cause-and-effect interactions especially between the first two modes. Besides, damped
waves are representative of poor correlations for increased values of the time lag, which
hinders the extraction of both correlation and causation trends between variables.

7. Conclusions and further discussion

In the present work, we analysed the formation mechanisms of large-scale coherent
structures in the flow around a wall-mounted square cylinder. We employed a database
obtained by means of a direct numerical simulation to solve the flow around a single finite
square cylinder of width-to-height ratio b/h = 0.25. Proper orthogonal decomposition
(POD) was then applied to the previous database to generate a reduced-order model
(ROM) with the ten most energetic modes, which represent 30 % of the overall energy
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of the flow. This model enables isolating the main mechanisms driving the dynamics
of the flow in terms of space and time. The previous modes were classified as
vortex-generator (G) and vortex-breaker (B) modes as a result of their spatial features
and associated frequency behaviour. We investigated the causal interactions between these
mechanisms, with the objective of understanding the origin and evolution of the various
three-dimensional topological patterns that precede the formation of the well-known
vortical structures found in this type of flow. To that end, we applied conditional transfer
entropy over the time coefficients associated with each of the POD modes. This approach
is based on an information-theoretical quantity that quantifies the amount of information
flowing from the past state of one variable to another. In particular, we identified B
modes as the most causative modes over higher-order modes, which we denoted as hybrid
(H) modes due to their shared features with B and G modes. The cases in which B
modes have large influence, i.e. H modes, were also found to drive the appearance of
modes whose frequency behaviour is harmonic of purely G modes. Also, no significant
causal relationships were observed for G modes, a fact that highlights the importance
of understanding the underlying dynamics of B mechanisms to predict the emergence of
significant flow features in urban environments. These results are in line with the previous
classification of modes and shed light on new possibilities for future urban-flow control
research. This includes active flow control targeting the modes responsible for generation
of large-scale structures that may increase pollutant concentration in cities. Furthermore,
the goal of the framework presented in this study for the estimation of causal interactions is
to highlight the structures that are most causal over the rest of the system modes. Therefore,
these structures should be the core of a posterior reduced-order-modelling process, which
can be posed as a problem of conservation of information (Lozano-Durán & Arranz 2022).

The tool employed for the quantification of causality was validated previously through
the analysis of the causal relations present in a low-dimensional model for turbulent
shear flows developed by Moehlis et al. (2004). We identified three main causal relations,
which were related to the lift-up mechanism, the generation of streamwise rolls, and the
mean-flow instability in the spanwise direction. All of them were in accordance with the
results reported by Lozano-Durán et al. (2020) for turbulent channel flows.

In concluding our work, we discuss the main limitations of the methods employed and
their potential applicability to more complex flows. Our ROM with ten linearly superposed
modes successfully represents the large-scale structures of the flow. It is important to
mention that in the context of the present work, the impact of the truncation on the
temporal dynamics does not appear to significantly affect the causality analysis. However,
in more complex flows, this truncation may be problematic, thus being able to develop
more compact ROMs (Solera-Rico et al. 2023) might be necessary. Based on previous
studies (Lazpita et al. 2022), we proved that the modes not included in the current ROM
likely have a minimal impact on the overall causal inferences of higher-order modes on the
large-scale structures of the flow. Nevertheless, it is essential to verify these results with
other models that include a larger number of modes. Alternative modal-decomposition
techniques, such as dynamic mode decomposition or Koopman mode decomposition,
could also be explored to efficiently represent the global flow dynamics. Our energy-based
truncation method is suitable for capturing large-scale structures in the wake of a finite
square cylinder. However, in more complex systems, such as jets, aerofoils, wakes and
mixing layers, the energy content of structures may not be an ideal criterion for truncation.
In these cases, feedback mechanisms resulting from upstream pressure propagation or
compressible acoustic effects might play a crucial role. One possible approach is to
employ ROMs based on resolvent analysis or nonlinear Galerkin methods, which can better
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account for these feedback mechanisms. Regardless of the choice of ROM or truncation
method, our causality analysis remains valid as long as the temporal history of the modal
components is available. This reinforces the versatility of our methodology, which can be
applied to various flow situations and modal decomposition techniques, provided that the
essential temporal information is accessible.

Moreover, the identification of causal interactions between variables remains an ongoing
challenge. Appropriate metrics have to be defined, especially given the vast number of
parameters whose selection is critical in the resulting causality. In particular, typical
operationalisations of causality estimators are based on a strong assumption that each point
in the time series of effects is influenced by a combination of other time series with a fixed
time lag. This is usually not the case in real-life systems, therefore a clear generalisation is
needed to relax the above assumption. More importantly, the notion of causality followed
here is based on Shannon statistical entropy and should therefore be interpreted as a
probabilistic measure of causality and not as the measurements of individual events.
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Appendix A. Overview of low-dimensional model for near-wall turbulence

In this appendix, we provide an overview of the low-dimensional model for turbulent
shear flows developed by Moehlis et al. (2004). The model is based on Fourier modes
and describes the flow between two free-slip walls subjected to a sinusoidal body force.
The essential elements of the model are nine modes vj(x), where v1 represents the basic
mean velocity profile, v2 the streaks, v3 the downstream vortex, v4 and v5 the spanwise
flows, v6 and v7 the normal vortex modes, v8 a three-dimensional mode, and v9 the
modification of the basic profile. All but one of the modes were already introduced by the
eight-mode model proposed by Waleffe (1997) for sinusoidal shear flow turbulence, with
some additional couplings between modes included in the case employed in this work.
An extra mode is also introduced in the model of Moehlis et al. (2004) to account for the
modification of the structure of the mean velocity profile, over which turbulent fluctuations
are known to have a significant impact. The instantaneous velocity fields can be obtained
by superposing the previous nine modes as

u(x, t) :=
9∑

j=1

aj(t) vj(x), (A1)

where the spatial coordinates are denoted by x, and t represents the time. The Galerkin
projection of the Navier–Stokes equations can then be applied onto this subspace to obtain
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a system of nine ordinary differential equations (ODEs) in time. Each ODE term exhibits
a linear term, several nonlinear terms (including the interactions between modes under the
shape qk(t) = ai(t) aj(t)), and a constant. Hence they can generally be written as

da(t)
dt

= L a(t)+ N q(t)+ c, (A2)

where a ∈ R
n represents the vector of mode amplitudes, q ∈ R

m is the vector of nonlinear
processes, L ∈ R

n×n and N ∈ R
m×n are the matrices of coefficients for the linear and

nonlinear terms, respectively, and c ∈ R
n is the vector of constants. The Reynolds number

is defined as a function of the channel full height 2� and the laminar velocity U0 at distance
�/2 from the top wall. The model used here corresponds to Re = 400, where � and U0 are
used as length and velocity scales, respectively. The domain size is Lx = 4π, Ly = 2 and
Lz = 2π, where x, y and z denote the streamwise, wall-normal and spanwise directions,
respectively. Over this domain, the ODE model was used to obtain 600 sets of time series
of the nine amplitudes, each with time span 4000 time units and time step 0.01 time units.
These sets of time series are the result of introducing a random perturbation to a4.

Appendix B. Assessment of statistical convergence

To provide a visual impression of the statistical convergence of the causal maps in figure 7,
we depict in figure 12 the values of causality magnitude using the complete dataset
(figures 12(a) and 12(c), equivalent to figure 7 in the main text), and a reduced dataset
by considering half of the temporal history of the signals (figures 12(b) and 12(d)). The
results indicate that variations in the causality magnitude of the most intense interactions
are below 15 %. Not surprisingly, a higher causal inference is observed in the reduced
dataset for the first mode over both hybrid modes when compared to the complete dataset.
As these modes are representative of the same flow mechanism, this transition in causality
is expected from the different temporal datasets. This means that the causal activity of
mode 1 (shifted in phase with respect to mode 2) is larger in the half the data considered
for this analysis, whereas mode 2 increases its activity in the second half of the temporal
data. Despite this, we can conclude that the temporal data employed for the urban-flow
model are sufficient, since these variations remain fenced within a maximum of 15 %
difference when considering half of the available temporal data, and yielded identical
physical conclusions.

In this appendix, we also present the convergence study that was performed to verify
that the 600 sequences employed in the causal map of the near-wall cycle of turbulence
(figure 1) were sufficient. In this case, as the differing initial conditions employed for
generating each of the 600 sequences resulted in different instances of the model, a
convergence study is needed to verify whether more sequences would be required to
obtain an accurate transfer-entropy calculation of the Moehlis et al. (2004) model. This
was performed by assessing the average �2 difference between five sets of m causal maps.
The completed procedure resulted in the convergence plot shown in figure 13. It clearly
indicates that by averaging the resulting transfer entropy over 120 sequences, the average
�2 difference between causal maps is below 10 % across all causal pairings. Given that
there are 72 unique causal pairings in a single 9 × 9 heat map, dividing the 10 % difference
across the entire matrix results in a 0.14 % difference on average across each individual
pairing. Therefore, it can be concluded that the 600 sequences were more than sufficient
to obtain a representative causal heat map of the Moehlis model under the conditions used
for its simulation.
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Figure 12. Causal map computed using (a,c) the complete temporal dataset, and (b,d) half of the temporal
history of the dataset. Red-scale colours denote causality magnitude normalised with the L∞-norm. The colour
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Figure 13. Convergence plot of transfer-entropy results for the low-dimensional model of the near-wall cycle
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967 A1-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.423


Á. Martínez-Sánchez and others

REFERENCES

ABUOMAR, M. & MARTINUZZI, R.J. 2008 Vortical structures around a surface-mounted pyramid in a thin
boundary layer. J. Wind Engng Ind. Aerodyn. 96 (6–7), 769–778.

AMOR, C., PÉREZ, J.M., SCHLATTER, P., VINUESA, R. & LE CLAINCHE, S. 2020 Soft computing
techniques to analyze the turbulent wake of a wall-mounted square cylinder. Adv. Intell. Syst. Comput.
950, 577–586.

ATZORI, M., TORRES, P., VIDAL, A., LE CLAINCHE, S., HOYAS, S. & VINUESA, R. 2022 High-resolution
large-eddy simulations of simplified urban flows. arXiv:2207.07210.

BARNETT, L., BARRETT, A.B. & SETH, A.K. 2009 Granger causality and transfer entropy are equivalent for
Gaussian variables. Phys. Rev. Lett. 103 (23), 238701.

BECKER, S., LIENHART, H. & DURST, F.J. 2002 Flow around three-dimensional obstacles in boundary
layers. J. Wind Engng Ind. Aerodyn. 90 (4), 265–279.

BEEBEE, H., HITCHCOCK, C. & MENZIES, P. 2009 The Oxford Handbook of Causation. Oxford University
Press.

BOURGEOIS, J.A., NOACK, B.R. & MARTINUZZI, R.J. 2013 Generalized phase average with applications to
sensor-based flow estimation of the wall-mounted square cylinder wake. J. Fluid Mech. 736, 316–350.

CERBUS, R.T. & GOLDBURG, W.I. 2013 Information content of turbulence. Phys. Rev. E 88 (5), 053012.
COOLEY, J.W. & TUKEY, J.W. 1965 An algorithm for the machine calculation of complex Fourier series.

Math. Comput. 19, 297–301.
DUAN, P., YANG, F., CHEN, T. & SHAH, S.L. 2013 Direct causality detection via the transfer entropy

approach. IEEE Trans. Control Syst. Technol. 21 (6), 2052–2066.
FISCHER, P.F., LOTTES, J.W. & KERKEMEIER, S.G. 2008 Nek5000: open source spectral element CFD

solver.
GENCAGA, D., KNUTH, K.H. & ROSSOW, W.B. 2015 A recipe for the estimation of information flow in a

dynamical system. Entropy 17 (1), 438–470.
GRANGER, C.W.J. 1969 Investigating causal relations by econometric models and cross-spectral methods.

Econometrica 37, 424–438.
HLAVÁCKOVÁ-SCHINDLER, K. 2011 Equivalence of Granger causality and transfer entropy: a generalization.

Appl. Math. Sci. 5 (73), 3637–3648.
HUNT, J.C.R., ABELL, C.J., PETERKA, J.A. & WOO, H.Y. 1978 Kinematical studies of the flows around

free or surface-mounted obstacles; applying topology to flow visualization. J. Fluid Mech. 86 (1), 179–200.
JIMÉNEZ, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25 (11), 110814.
KAISER, A. & SCHREIBER, T. 2002 Information transfer in continuous processes. Physica D: Nonlinear

Phenom. 166 (1-2), 43–62.
KAWAI, H., OKUDA, Y. & OHASHI, M. 2012 Near wake structure behind a 3D square prism with the aspect

ratio of 2.7 in a shallow boundary layer flow. J. Wind Engng Ind. Aerodyn. 104-106, 196–202.
KOZACHENKO, L.F. & LEONENKO, N.N. 1987 Sample estimate of the entropy of a random vector. Probl.

Peredachi Inf. 23 (2), 9–16.
KRASKOV, A., STÖGBAUER, H. & GRASSBERGER, P. 2004 Estimating mutual information. Phys. Rev. E

69 (6), 066138.
KRONIG, R.D. 1942 Algemeene theorie der diëlectrische en magnetische verliezen. Ned. T. Natuurk 9, 402.
LAZPITA, E., MARTÍNEZ-SÁNCHEZ, Á., CORROCHANO, A., HOYAS, S., LE CLAINCHE, S. &

VINUESA, R. 2022 On the generation and destruction mechanisms of arch vortices in urban fluid flows.
Phys. Fluids 34 (5), 051702.

LE CLAINCHE, S. & VEGA, J.M. 2017 Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Syst.
16 (2), 882–925.

LE CLAINCHE, S. & VEGA, J.M. 2018 Spatio-temporal Koopman decomposition. J. Nonlinear Sci. 28 (5),
1793–1842.

LELIEVELD, J., KLINGMÜLLER, K., POZZER, A., PÖSCHL, U., FNAIS, M., DAIBER, A. & MÜNZEL, T.
2019 Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard
ratio functions. Eur. Heart J. 40 (20), 1590–1596.

LIANG, X.S. & LOZANO-DURÁN, A. 2016 A preliminary study of the causal structure in fully developed
near-wall turbulence. In CTR Proceedings of the Summer Program, pp. 233–242. Stanford University.

LOZANO-DURÁN, A. & ARRANZ, G. 2022 Information-theoretic formulation of dynamical systems:
causality, modeling, and control. Phys. Rev. Res. 4, 023195.

LOZANO-DURÁN, A., BAE, H.J. & ENCINAR, M.P. 2020 Causality of energy-containing eddies in wall
turbulence. J. Fluid Mech. 882, A2.

LUMLEY, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio
Wave Propagation (ed. A.M. Yaglom & V.I. Tatarski), pp. 166–176. Nauka.

967 A1-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2207.07210
https://doi.org/10.1017/jfm.2023.423


Causality in a square cylinder

MARTÍNEZ-SÁNCHEZ, Á., LAZPITA, E., CORROCHANO, A., LE CLAINCHE, S., HOYAS, S. &
VINUESA, R. 2023 Data-driven assessment of arch vortices in simplified urban flows. Intl J. Heat Fluid
Flow 100, 109101.

MARTINUZZI, R. & TROPEA, C. 1993 The flow around surface-mounted, prismatic obstacles placed in a fully
developed channel flow (data bank contribution). J. Fluids Engng 115 (1), 85–92.

MICHALOWICZ, J.V., NICHOLS, J.M. & BUCHOLTZ, F. 2013 Handbook of Differential Entropy. CRC Press.
MOEHLIS, J., FAISST, H. & ECKHARDT, B. 2004 A low-dimensional model for turbulent shear flows. New

J. Phys. 6 (1), 56.
MONNIER, B., GOUDARZI, S.A., VINUESA, R. & WARK, C. 2018 Turbulent structure of a simplified urban

fluid flow studied through stereoscopic particle image velocimetry. Boundary-Layer Meteorol. 166 (2),
239–268.

NICHOLS, J.M., BUCHOLTZ, F. & MICHALOWICZ, J.V. 2013 Linearized transfer entropy for continuous
second order systems. Entropy 15 (8), 3186–3204.

OKE, T.R. 1988 Street design and urban canopy layer climate. Energy Build. 11 (1), 103–113.
ORR, W. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part

II: a viscous liquid. Proc. R. Irish Acad. A 27, 69–138.
PLEMELJ, J. 1908 Ein ergänzungssatz zur cauchyschen integraldarstellung analytischer funktionen, randwerte

betreffend. Monatshefte Math. Phys. 19 (1), 205–210.
RAO, S.K., SUMNER, D. & BALACHANDAR, R. 2004 A visualization study of fluid-structure interaction

between a circular cylinder and a channel bed. J. Vis. 7 (3), 187–199.
REICHENBACH, H. 1956 The Direction of Time. University of California Press.
REMPFER, D. & FASEL, H.F. 1994 Evolution of three-dimensional coherent structures in a flat-plate boundary

layer. J. Fluid Mech. 260, 351–375.
ROWLEY, C.W. 2005 Model reduction for fluids, using balanced proper orthogonal decomposition. Intl

J. Bifurcation Chaos 15 (03), 997–1013.
ROWLEY, C.W., MEZIĆ, I., BAGHERI, S., SCHLATTER, P. & HENNINGSON, D.S. 2009 Spectral analysis of

nonlinear flows. J. Fluid Mech. 641, 115–127.
SAHA, A.K., BISWAS, G. & MURALIDHAR, K. 2003 Three-dimensional study of flow past a square cylinder

at low Reynolds numbers. Intl J. Heat Fluid Flow 24 (1), 54–66.
SAKAMOTO, H. & ARIE, M. 1983 Vortex shedding from a rectangular prism and a circular cylinder placed

vertically in a turbulent boundary layer. J. Fluid Mech. 126, 147–165.
SCHMID, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656,

5–28.
SCHREIBER, T. 2000 Measuring information transfer. Phys. Rev. Lett. 85 (2), 461.
SHANNON, C.E. 1948 A mathematical theory of communication. Bell Syst. Tech. J. 27 (3), 379–423.
SIROVICH, L. 1987 Turbulence and the dynamics of coherent structures part I: coherent structures. Q. Appl.

Maths 45 (3), 561–571.
SOHANKAR, A., NORBERG, C. & DAVIDSON, L. 1999 Simulation of three-dimensional flow around a square

cylinder at moderate Reynolds numbers. Phys. Fluids 11 (2), 288–306.
SOKHOTSKI, Y.V. 1873 On definite integrals and functions using series expansions. PhD thesis, St Petersburg.
SOLERA-RICO, A., VILA, C.S., GÓMEZ, M.A., WANG, Y., ALMASHJARY, A., DAWSON, S.T.M. &

VINUESA, R. 2023 β-variational autoencoders and transformers for reduced-order modelling of fluid flows.
arXiv:2304.03571.

SOMMERFELD, A. 1914 Über die fortpflanzung des lichtes in dispergierenden medien. Ann. Phys. 349 (10),
177–202.

SRIVASTAVA, A. 2021 Causality and passivity: from electromagnetism and network theory to metamaterials.
Mech. Mater. 154, 103710.

STRAATMAN, A.G. & MARTINUZZI, R.J. 2003 An examination of the effect of boundary layer thickness on
vortex shedding from a square cylinder near a wall. J. Wind Engng Ind. Aerodyn. 91 (8), 1023–1037.

TANAKA, S. & MURATA, S. 1999 An investigation of the wake structure and aerodynamic characteristics of a
finite circular cylinder: time-averaged wake structures behind circular cylinders with various aspect ratios.
JSME Intl J. Ser. B Fluids Therm. Engng 42 (2), 178–187.

TISSOT, G., LOZANO-DURÁN, A., CORDIER, L., JIMÉNEZ, J. & NOACK, B.R. 2014 Granger causality in
wall-bounded turbulence. J. Phys.: Conf. Ser. 506, 012006.

TITCHMARSH, E.C. 1948 Introduction to the Theory of Fourier Integrals. Clarendon Press.
TORRES, P., LE CLAINCHE, S. & VINUESA, R. 2021 On the experimental, numerical and data-driven

methods to study urban flows. Energies 14 (5), 1310.
TOWNE, A., SCHMIDT, O.T. & COLONIUS, T. 2018 Spectral proper orthogonal decomposition and its

relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867.

967 A1-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2304.03571
https://doi.org/10.1017/jfm.2023.423


Á. Martínez-Sánchez and others

UNITED NATIONS 2015 Transforming our world: the 2030 agenda for sustainable development. Tech. Rep.
A/RES/70/1. United Nations General Assembly.

VINUESA, R., SCHLATTER, P., MALM, J., MAVRIPLIS, C. & HENNINGSON, D.S. 2015 Direct numerical
simulation of the flow around a wall-mounted square cylinder under various inflow conditions. J. Turbul.
16 (6), 555–587.

WALEFFE, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883–900.
WANG, H.F. & ZHOU, Y. 2009 The finite-length square cylinder near wake. J. Fluid Mech. 638, 453–490.
WANG, H.F., ZHOU, Y., CHAN, C.K. & LAM, K.S. 2006 Effect of initial conditions on interaction between

a boundary layer and a wall-mounted finite-length-cylinder wake. Phys. Fluids 18 (6), 065106.
WIENER, N. 1956 The theory of prediction. Mod. Math. Engrs 1, 125–139.
XIAO, D., HEANEY, C.E., MOTTET, L., FANG, F., LIN, W., NAVON, I.M., GUO, Y., MATAR, O.K.,

ROBINS, A.G. & PAIN, C.C. 2019 A reduced order model for turbulent flows in the urban environment
using machine learning. Build. Environ. 148, 323–337.

ZAJIC, D., FERNANDO, H.J.S., CALHOUN, R., PRINCEVAC, M., BROWN, M.J. & PARDYJAK, E.R. 2011
Flow and turbulence in an urban canyon. J. Applied Meteorol. Climatol. 50 (1), 203–223.

ZHU, H.-Y., WANG, C.-Y., WANG, H.-P. & WANG, J.-J. 2017 Tomographic PIV investigation on 3D wake
structures for flow over a wall-mounted short cylinder. J. Fluid Mech. 831, 743–778.

967 A1-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.423

	1 Introduction
	2 Methods in causality
	3 A low-dimensional model of the near-wall cycle of turbulence
	4 Numerical simulations and flow description
	5 Reduced-order model for urban flows
	6 Results and discussion
	6.1 Influence of higher-order modes
	6.2 Time correlation between time coefficients

	7 Conclusions and further discussion
	Appendix A. Overview of low-dimensional model for near-wall turbulence
	Appendix B. Assessment of statistical convergence
	References

