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Abstract

A detailed exploration is presented of the integration of human–machine collaboration in governance and policy
decision-making, against the backdrop of increasing reliance on artificial intelligence (AI) and automation. This
exploration focuses on the transformative potential of combining human cognitive strengths with machine compu-
tational capabilities, particularly emphasizing the varying levels of automation within this collaboration and their
interactionwith human cognitive biases. Central to the discussion is the concept of dual-processmodels, namely Type
I and II thinking, and how these cognitive processes are influenced by the integration of AI systems in decision-
making. An examination of the implications of these biases at different levels of automation is conducted, ranging
from systems offering decision support to those operating fully autonomously. Challenges and opportunities
presented by human–machine collaboration in governance are reviewed, with a focus on developing strategies to
mitigate cognitive biases. Ultimately, a balanced approach to human–machine collaboration in governance is
advocated, leveraging the strengths of both humans and machines while consciously addressing their respective
limitations. This approach is vital for the development of governance systems that are both technologically advanced
and cognitively attuned, leading to more informed and responsible decision-making.

Policy Significance Statement

The importance of human–machine collaborations for developing governance systems that are both techno-
logically advanced and cognitively attuned is examined. A framework is provided and discussed that explores
varying levels of automation in such collaboration and how they interact with human cognitive biases, focusing
on dual-process models of thinking and their influence on decision-making when integrated with AI systems.
This approach emphasizes the transformative potential of combining human cognitive strengths with machine
computational capabilities while also addressing their respective limitations. This could lead to more informed,
responsible, and efficient decision-making processes, making it highly relevant for policymakers aiming to
optimize governance in the age of AI.

1. Introduction

Human–machine collaboration (HMC) is increasingly becoming a pivotal aspect of various sectors,
driven by advancements in artificial intelligence (AI) and automation (Geng and Varshney, 2022): In
healthcare, AI assists doctors in diagnosing diseases with greater accuracy (e.g. IBM’s Watson for
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Health). In finance, algorithms perform high-frequency trading, significantly impacting market dynam-
ics. Autonomous vehicles in transportation, such as those developed byWaymo, illustrate the shift toward
more complex, safety-critical domains (Ignatious et al., 2023) This trend underscores a broader societal
and technological evolution, where human expertise is augmented by machine capabilities, often leading
to enhanced efficiency, decision accuracy, and innovation. In the industrial context, this trend has already
significantly transformed decision-making structures, leading to the emergence of human–machine
collaborative systems (Bhandari, 2021). For instance, Döppner et al. (2019) described a compelling case
of HMC within the air cargo industry, providing a vivid illustration of how such partnerships can evolve
and function effectively in real-world scenarios. The paper details the integration of a sophisticated
decision-support system (DSS) into theworkflow of unit load device (ULD) dispatchers, illustrating a key
transition from a technology-supporting to a collaborative environment. This transition not only enhanced
the efficiency and accuracy of operations but also reshaped the roles and skills of the human workforce,
emphasizing adaptability and strategic oversight. Döppner et al.’s (2019) exploration of the mutual
learning curve between humans and machines, where each influences and adapts to the other’s capabil-
ities, is particularly instructive and suggested potential scenarios in which the integration of AI and
automated systems could similarly transform traditional practices in governance and policy decision-
making.

2. HMC in the public sector

A number of authors have argued that the integration of HMC in government organizations can lead to
efficiency gains, improved decision-making, and enhanced work processes (Callahan and Holzer,
1997; Pi, 2021; Reis et al., 2019). Mikhaylov et al. (2018) envisioned a transformative impact on public
service delivery, and identify AI’s potential to streamline processes and deliver more personalized and
efficient public services. Krafft et al. (2020) described how AI’s capability to process vast amounts of
data rapidly and accurately enables more informed policy decisions. However, to fully integrate AI in
public services and achieve mature HMCs, a number of challenges need to be addressed, such as
managerial complexities inherent in cross-sector collaborations essential for AI implementation,
including aligning goals among public, private, and non-profit entities and establishing shared
knowledge standards (Ahn and Chen, 2020; Pi, 2021). A notable obstacle in this process is the
discrepancy in AI understanding between researchers and policymakers, with policy documents often
framing AI in human-centric terms, diverging from the technical definitions favored by researchers
(Krafft et al., 2020). To address this, a number of authors have underlined the need for a common
understanding of AI that is grounded in technical reality, yet also practical for policy development
(Mikhaylov et al., 2018; Valle-Cruz et al., 2019). A key argument of this article is that developing a
better understanding of the nuances of automation and autonomy within HMC, and how they relate to
strengths and weaknesses in human decision-making, can potentially help address this, and as such
pave the way for more effective and transparent integrations of AI in governance (see also, Mikhaylov
et al., 2018; Valle-Cruz et al., 2019).

Leveraging Simmler and Frischknecht’s (2021) influential taxonomy of levels of automation, we
will begin by exploring the interplay between automation levels and human decision-making biases.
Subsequently, a cognitive framework inspired by dual-process models of thinking is introduced to
further explore this interaction within governance systems. The utility of this framework will be
demonstrated through a number of policy examples (e.g. urban development, traffic management) that
highlight its potential to mitigate a series of cognitive biases. Overall, the argument is made that such a
cognitive framework can begin to address the aforementioned discrepancy in AI understanding
between researchers and policymakers, and help integrate theoretical insights with practical consider-
ations. The approach outlined suggests a nuanced synergy between human cognitive capabilities and
computational power of machines, carefully considering their respective constraints. Although cer-
tainly no panacea, the framework could be a useful tool for policymakers striving to refine HMCs in the
public sector.
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3. Levels of automation

HMC involves the interactive work of human operators and intelligent automation within the same
workspace. This collaboration is often facilitated by the design of computer agents that mediate between
human-computer interaction and automated plan reasoners (Allen and Ferguson, 2002). This can take
various forms, including different levels of assistance and automation (Bao et al., 2023). Simmler and
Frischknecht (2021) developed a taxonomy of the levels of automation and technical autonomy in HMC
built around two dimensions: automation and autonomy (see Table 1). Automation pertains to the extent
to which a machine can operate independently of human input, while autonomy refers to the system’s
capacity for independent decision-making and learning.

1. Offers decisions (Level 1): Here, themachine acts as a DSS, offering options for the human operator to
choose from. For example, a GPS navigation system proposes routes, but the driver decides which one
to take.

2. Executes with human approval (Level 2): The machine selects an action and executes it upon
receiving human approval. An illustration of this is a thermostat system that suggests temperature
adjustments based on weather forecasts but requires homeowner confirmation.

3. Executes if no human vetoes (Level 3): The system acts unless the human operator vetoes it.
Automated spam filters in email services, which filter messages unless manually overridden, exem-
plify this level.

4. Executes and then informs (Level 4): The machine acts independently but informs the human
afterward. An example is a security system in a building that locks doors at a set time and notifies
security personnel.

5. Executes fully automated (Level 5): The highest level of automation, where the machine operates
entirely independently, without human intervention or notification. Autonomous drones used for
geographical surveys in remote areas represent this level.

Understanding this taxonomy can provide valuable insights, by offering a lens throughwhich to analyze and
formulate strategies around the integration of AI and automation in various contexts, and how it affects
decision-making structures and (human) roles. An example of Level 1 automation can be found in medical
imaging, where AI systems can outperform human doctors at spotting cancers and other pathologies.
However, the final decision still rests with the human doctors who use AI as a diagnostic and research
support tool. This setup allows doctors to focusmore on treatment regimens and nurturing the doctor-patient
relationship (Coppola et al., 2021). The development of semiconductor chips showcases a Level 3 integra-
tion of AI and human expertise. In a simulated environment designed to test process engineering, Coppola
et al. (2021) revealed that adopting a hybrid approach—initiating with human-directed algorithms and
subsequently transitioning to autonomous computer operations—halved the costs of reaching performance
targets when compared to exclusive reliance on human designers. As detailed by Kanarik et al. (2023), this

Table 1. Levels of automation with their main featuresa

Level Description Explanation

1 Offers decision Technical component suggests options and the human decides
2 Executeswith human approval Technical component acts after human approves
3 Executes if no human vetoes Technical component acts unless human vetoes
4 Executes and then informs Technical component acts independently and human is informed

about the actions carried out
5 Executes fully automated Technical component carries out actions independently without

informing human
aAdapted from Simmler and Frischknecht (2021)
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hybridmodel embodies a dynamic inwhich themachine operates autonomously unless human intervention
is deemed necessary, with the initial human input being critical for optimizing the system’s effectiveness.

No doubt this taxonomy is useful, but it also illustrates an issue already highlighted: AI researchers
tend to focus on mostly technical functionality and rational behavior, and often fail to relate it to human
cognition, with its strengths and frailties. For instance, AI is often seen as “the ultimate enabler” for
automating decision-making tasks in various domains, but it is not a simple substitute for human decision-
making. Rapid advances in machine learning have improved statistical prediction, but prediction is only
one aspect of decision-making (Goldfarb and Lindsay, 2022). As AI becomes a more integral part of
decision-making processes, conflicts will likely arise when human knowledge and experience conflict
with the information provided by AI systems, leading to breakdowns in trust and decision-making
processes. All this is further exacerbated by the fact that AI notoriously fails in capturing or responding to
intangible human factors that go into real-life decision-making, such as ethical, moral, and other human
considerations that guide the course of business, life, and society at large (McKendrick and Thurai, 2022).
A potential way to address this is by relating such taxonomies tomodels of cognitive processes involved in
the type of human decision-making typical for governance and policy (Van Rooy, 2023).

4. Human decision-making

Governance is a complex and risky decision-making process, where irrational public risk perceptions and
overconfident expert predictions can lead to ineffective decision-making (Hardaker et al., 2009). Research
has demonstrated how policy decision-making and governance can be significantly affected by cognitive
biases, particularly those associated with so-called Type I thinking (Berthet, 2021; Kahneman, 2013).
Cognitive biases are described as systematic, universally occurring tendencies in human decision-making
that may lead to inaccurate or suboptimal outcomes (see Table 2 for examples). They have been shown to
affect the outcome of deliberations and can have substantial effects on society and human wellbeing
(Korteling et al., 2023).Understanding and addressing cognitive biases is essential for improving the quality

Table 2. Cognitive biases affecting system 1 thinking

Cognitive bias Description

Anchoring The tendency to rely too heavily on the first piece of information encountered when
making decisions.

Confirmation The inclination to favor information that confirms existing beliefs and to undervalue
information that contradicts them.

Availability Judgments of likelihood or percentages based on ease of recall (greater “availability” in
memory) rather than on actual probabilities.

Overconfidence The propensity to be more confident in one’s own abilities, such as driving, teaching, or
spelling, than is objectively reasonable.

Automation The predisposition to favor suggestions from automated decision-making systems and
to ignore contradictory information made without automation, even if it is correct.

Status quo A preference for the current state of affairs, with alternatives perceived as a change from
the baseline.

Omission bias The tendency to favor an act of omission (not doing something) over one of commission
(doing something), due to the perception that harmful consequences are more severe
when caused by action rather than inaction.

Hindsight The inclination, after an event has occurred, to see the event as having been predictable,
despite there having been little or no objective basis for predicting it.

Out-of-the-loop The state of being uninformed about the operations of a system, which can occur when
automation is used extensively, and human operators become less involved in the
active monitoring of system performance.
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of policy decision-making and governance. The emergence of HMC and AI-driven decision support
systems has added an additional layer of complexity, and indeed urgency, to this issue (Van Rooy, 2023).

A good way to understand cognitive biases and their impact on human decision-making is by framing
them in Kahneman’s influential classification of fast (Type I) and slow (Type II) thinking (Kahneman,
2013) (see Table 3). It might be useful to clarify these concepts in some detail, for those unfamiliar with the
behavioral science literature: Type I thinking is instinctive and rapid, often operating at a subconscious
level. It is the kind of thinking we employ for quick decisions, such as catching a ball or answering
straightforward questions (e.g. how much is 2 + 2?). Central to Type I thinking are heuristics, which are
mental shortcuts or rules of thumb that our brains use to accelerate decision-making. While this mode of
thinking is efficient, it is also prone to biases and systematic errors in judgment. For instance, if you have
recently read about a robbery in your neighborhood, you might overestimate the likelihood of crime
occurring nearby. This is known as the availability heuristic or bias, where the probability of events is
judged based on how readily examples come to mind.

Type II thinking, in contrast to the rapid and instinctive nature of Type I thinking, is characterized by its
slower, more deliberate, and conscious process. It is the type of thinking we engage in when faced with
complex problems or significant decisions. For example, when solving a challenging math problem or
deciding between multiple job offers, Type II thinking comes into play. This analytical form of thinking
involves a thorough process of information evaluation. It requires one to carefully process the information at
hand, consider various options, and deliberate on the potential consequences of different choices. Ideally,
our interactionswithAI-driven systems should be structured in away that supports and even encourages this
analytical mindset at the appropriate times. This means providing users with ample information and the
necessary tools to conduct thorough data analysis, evaluate different options, and ultimately arrive at well-
informeddecisions. This is particularly vital in scenarios that are either high-pressure or inherently complex,
where the decision-making process requires more than just an instinctive response.

When conceptualizing HMCs, understanding the interplay between these two types of thinking can be
very useful in creating a balance between user friendliness and ease of use on the one hand, and support for
complex decision-making processes on the other (Van Rooy, 2023). This balance is crucial for effective
collaborations with AI systems, especially under pressure or in situations that demand a high level of
accuracy and thoughtfulness (AlKhars et al., 2019; Nurse et al., 2022). Essentially, this means creating
collaborations that (1) allow users tomake efficient, instinctive decisions when appropriate, minimizing the
cognitive load for routine tasks; but also (2) provide the necessary tools and information formore considered
and analytical decision-making when required (see Table 3). A good example of an application that
emphasizes the balance between Type I (intuitive) and Type II (deliberative) thinking is found in
autonomous vehicle interfaces: These systems are designed to allow drivers to make quick, intuitive
decisions based on dashboard displays and alerts (Type I thinking), while also offering the ability to engage
more deeplywith navigation settings and system checks for complex scenarios (Type II thinking). This dual

Table 3. Characteristics of system 1 and system 2 and application in AI design

Type Characteristics Key aspects Collaboration focus on:

Type 1 Does not require working
memory. Automatic
Instinctive and rapid,
operates subconsciously

Uses heuristics (mental
shortcuts), susceptible to
biases.

Aligning with users’ mental
models and cognitive maps for
intuitive interaction.

Type 2 Controlled, slow, limited
capacity and conscious

Involves careful processing of
information, evaluating
options, and considering
consequences.

Facilitate analytical mindset with
information and tools for data
analysis and decision-making,
motivate users to pay
attention.
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approach helps ensure safety by allowing for rapid responses to immediate driving conditions, while also
supporting thorough decision-making when navigating more complicated driving tasks or settings.

5. Enhancing decision-making through human–machine integration

The exploration of cognitive biases within the frameworks of Type I and Type II thinking offers valuable
insights into the complexities of human decision-making. Understanding these biases is crucial, not just for
identifying the limitations and strengths of human cognition, but also for shaping the way we interact with
technology. It is important to build HMCs in which both parties are “aware”, or at least reminded, of each
other’s strengths and weaknesses: Human decision-makers are vulnerable to cognitive biases, while
machines have difficulty handling new and dynamic contexts with incomplete information (Xiong et al.,
2022). Weser and Zhang (2010) also highlight the challenge of incomplete information in dynamic
environments and the difficulties in predicting future changes and maintaining a complete world model.
These challenges are further compounded by the limitations of information processing, as discussed by
Walton (2018), which can impact the effectiveness of AI and machine learning in these contexts. The
consequences of all of this arewell documented: Biased or unrepresentativeAImodels and poor data quality
have led to erroneous or unfair outcomes in a variety of domains (Aldoseri et al., 2023). In collaborations,
humanswould have to bemotivated at appropriate times to engage in Type II thinking and become aware of
limitations on the algorithmic side, rather than relying on its input as “the ultimate enabler”.

5.1. A cognitive framework for HMC

Although research into the impact of incorporating intelligent machines on decision-making and decision-
makers is relatively new (Bhandari et al., 2021), several authors have made (similar) suggestions: Xiong
et al. (2022) highlighted the potential for superior performance by leveraging human and machine
capabilities, while Geng and Varshney (2022) emphasized the importance of integrating human cognitive
strengths with machine computational capabilities. More recent research collectively underscores the
enhanced decision-making outcomes achieved through strategic human–AI system integration that lever-
ages the complementary strengths of both, with frameworks suggesting that this synergy can surpass
individual human or AI capabilities (Lai et al,. 2022; Rastogi et al., 2022; Steyvers et al., 2022). Similarly,
VanRooy (2023) described howHMCneeds to consider how the interaction between humans andmachines
can either exacerbate or mitigate the impact of cognitive biases associated with Type I thinking. If we take
the Simmler and Frischknecht (2021) taxonomy as a starting point, we can examine how different cognitive
biases could impact different levels of HMC. Each level of automation presents unique challenges where
human cognitive biases can impact the effectiveness and safety of the system. Recognizing and mitigating
these biases is crucial for designing and managing HMCs. Table 4 summarizes strategies that can be
employed, from diverse option generation to designing algorithms for debiasing, and that can collectively
ensure more unbiased and informed decision-making. In the complex area of policy decision-making, these
strategies could play out in different ways. Here are illustrative examples for each level:

1. Offers decision-anchoring, confirmation bias, availability heuristic: Imagine a policy decision on
urban development. The technical system suggests several options, including building a new park,
a commercial center, or residential apartments. At this level, decision-makers are highly involved in
the selection process, making certain biases more likely: A policymaker might gravitate toward the
first option presented (anchoring bias) or choose an option that aligns with their preexisting beliefs
about urban planning (confirmation bias). They might also pick an option based on a recent event,
like a successful park inauguration they attended (availability heuristic). To counteract such
biases, the system could offer a diverse range of options and provide transparent algorithms that
explain how each option aligns with urban development goals (Khediri et al., 2021). Diverse
option generation combats anchoring by providing a broad spectrum of choices, reducing the
likelihood that the first option disproportionately influences the decision (George et al., 2000;
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Gong et al., 2017). Alternatively, Rastogi et al. (2022) demonstrated how applying time constraints
based on an AI system’s confidence level can also effectively reduce the impact of anchoring bias.
Algorithmic transparency can mitigate confirmation bias by allowing decision-makers to under-
stand how options are generated, encouraging them to consider alternatives they might otherwise
dismiss. Critical review sessions provide a structured environment to address availability bias by
ensuring decisions are not overly influenced by information that is more easily recalled but may not
be the most relevant.

Table 4. Level automation, most likely bias, and mitigation techniques

Level of
automation Most likely bias Mitigation techniques

1. Offers decision Anchoring
Confirmation
Availability

Diverse option generation: Ensure themachine presents a broad
spectrum of choices.
Algorithmic transparency: Make the decision process of the
machine transparent to highlight how options are generated.
Critical review sessions: Implement regular sessions where
decisions are reviewed and biases are identified and
discussed.

2. Executes with
human approval

Overconfidence
Automation

Risk communication: Clearly communicate the risks associated
with each option provided by the machine.
Regular training: Educate humans on the potential pitfalls of
overconfidence and automation biases.
Independent verification: Introduce a process where a third
party or an independent system verifies the decisions before
execution.

3. Executes if no
human vetoes

Status quo
Omission

Default option rotation: Rotate default actions to prevent status
quo bias.
Active confirmation requirement: Require active
confirmation from humans for critical decisions, even in non-
veto scenarios.
Feedback Mechanisms: Provide feedback on the
consequences of non-intervention to highlight the impact of
omission bias.

4. Executes and then
informs

Hindsight
Automation

Post-decision analysis: Conduct analyses after decisions to
identify and learn from any hindsight biases.
Regular updates and summaries: Keep humans informed
regularly about automated actions to reduce complacency.
Critical questioning prompts: Implement prompts that
encourage humans to critically assess and question
automated actions.

5. Executes fully
automated

Out-of-the-loop
unfamiliarity

Periodic human engagement: Involve humans periodically in
the decision process to maintain familiarity.
Simulation training: Use simulations to train humans in
intervening and understanding automated systems.
System transparency reports: Provide regular reports on
system performance and decision logic to maintain human
understanding of the system.
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2. Executes with human approval—overconfidence, automation bias: Consider a policy on traffic
management. The automated system proposes to implement a new AI-driven traffic light control
system and awaits human approval. The policy maker, confident in their understanding of traffic
systems, might overlook potential risks or issues with the AI system due to overconfidence bias,
which stems from an excessive belief in their own insights, and dismisses external data. In contrast,
they might also show automation bias, where they rely too heavily on the system’s recommenda-
tions, assuming the automated decisions are more reliable than human judgment without critical
evaluation. To mitigate, clear communication of risks and regular training sessions on AI systems’
limitations could be implemented (Schemmer et al., 2022). Risk communication is essential here,
as it clearly delineates potential pitfalls associated with each option, addressing overconfidence by
ensuring decision-makers are aware of what could go wrong. Regular training helps make the
operators more cognizant of the limitations of both their judgment and the automated system, thus
reducing both overconfidence and automation bias. Independent verification by a third party or
system introduces an additional layer of scrutiny, which can help catch errors or biases that the
primary decision-maker might miss. Although not the focus of the current paper, it should be
obvious that explainable AI (xAI) will play a crucial role here. However, it is worth mentioning that
while xAI clarifies AI processes, it does not inherently correct for, and can in fact exacerbate
decision bias (Bertrand et al., 2022).

3. Executes if no human vetoes—status quo, omission bias: In a policy decision about environmental
regulations, the system automatically updates regulations based on new data unless vetoed. This
level’s default action approach makes it susceptible to status quo and omission biases. Policy
makers might prefer not to intervene, maintaining the status quo (status quo bias) or avoid making
an active decision due to fear of being responsible for potential negative outcomes (omission bias).
This can be mitigated by rotating the default options, forcing individuals to actively confirm their
choices, and providing clear alternatives to the default. By doing so, individuals are prompted to
engage in more deliberate decision-making processes, reducing the influence of default bias and
promoting a more thoughtful evaluation of options, disrupting the status quo bias (Sunstein, 2014;
Vargas and Lauwereyns, 2021). The requirement for active confirmation for critical decisions
ensures that omission bias is addressed by making inaction (not vetoing) a conscious choice rather
than a passive default. Feedback on the consequences of non-action can further highlight the costs
of omission bias, encouraging more active engagement.

4. Executes and then informs—hindsight, automation bias: In a health policy scenario, an automated
system implements a new vaccination strategy and informs policy makers postimplementation.
They might believe, in hindsight, that they anticipated the success or failure of the strategy
(hindsight bias), or they may not scrutinize the strategy assuming the system’s infallibility
(automation bias). Post-decision analysis and critical questioning prompts can be employed to
encourage reflective thinking (Goddard et al., 2012; Lyell and Coiera, 2017). Post-decision
analysis allows for reflection and learning from past actions, addressing hindsight bias by
highlighting discrepancies between expected and actual outcomes. Regular updates and summaries
keep decision-makers in the loop, reducing the out-of-sight, out-of-mind mentality that feeds
automation bias. Critical questioning prompts encourage a proactive mindset, urging decision-
makers to critically evaluate actions taken by the automated system.

5. Executes fully automated—out-of-the-loop unfamiliarity: In a fully automated financial policy, the
system adjusts interest rates based on economic indicators without human input or information.
With no human intervention, the main risk is losing touch with the system’s operations. This could
lead to policy makers losing touch with the decision-making process (out-of-the-loop unfamiliar-
ity), impairing their ability to intervene during economic crises. Regular system performance
reports and simulation training for policymakers, to familiarize them with the system’s logic and
functionality, can maintain engagement and understanding of the system’s logic and functionality,
ensuring that human operators maintain the capability and confidence to intervene when necessary.
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(Green, 2022). Transparency reports on system performance and decision-making logic help
mitigate out-of-the loop unfamiliarity by keeping decision-makers informed about how decisions
are made, even if they are not directly involved in day-to-day operations.

5.2. Biases across automation levels: understanding susceptibility and mitigation

Table 4 thus highlights the most likely biases emerging from the characteristics of each automation level.
As a simple rule of thumb, the characteristics of the different levels of automation that make themmore or
less susceptible to specific cognitive biases are closely related to the degree of human involvement and
oversight in the decision-making process. As automation increases, the types of biases shift from those
influenced by direct human decision-making toward those related to overreliance on or underengagement
with automated systems (Cummings, 2004;Mosier and Skitka, 1999).More specifically, varying levels of
automation necessitate different degrees of human supervision, which in turn influences the likelihood of
certain cognitive biases while potentially mitigating others. In the initial stages of automation, where
machines provide decisions (Level 1) and execute actions subject to human approval (Level 2), human
participation plays a critical role in mitigating automation bias. However, this involvement can introduce
other biases: confirmation bias at Level 1, where operators may favor options that confirm preexisting
beliefs, and anchoring bias at Level 2, due to the cognitive load of approving from a set of complex
options, with the initial choice often unduly influential (DeKay, 2015). At Level 3, the dynamic shifts
slightly as the system acts unless explicitly vetoed by a human, which can mitigate automation bias.
However, this setup may inadvertently nurture overconfidence bias, where the presumption of the
system’s reliability could deter operators from actively questioning or intervening. This level of auto-
mation risks engendering a false sense of security in the system’s capabilities, potentially leading to
missed opportunities for critical evaluation or necessary intervention. Overall, automation bias tends to
increase as the level of automation rises, particularly in scenarios where systems execute actions
independently (Level 4) and without human oversight (Level 5). Hindsight bias is more likely at higher
levels of automation because the lack of their immediate involvement may lead individuals to believe,
after outcomes are known, that they would have predicted or made different decisions. This retrospective
certainty is less common at lower levels of automation, where decisions require active human input and
the consequences of those decisions are more directly observable. The diminished role of humans in
monitoring and intervening in the system’s operations also increase the risk of out-of-the-loop unfamili-
arity, where humans lose touch with how decisions are made and are not prepared to intervene effectively
in unusual or critical situations. This unfamiliarity is less of an issue at lower automation levels, where
human interaction with and oversight of automated processes help maintain an understanding of the
system’s functioning and decision-making logic.

Although certain biases are more commonly associated with specific levels of automation, it is not
impossible for a specific bias to manifest itself across different levels in slightly different ways.
Confirmation bias, for example, can influence decisions across the board, from actively selecting among
machine-provided options at lower levels to uncritically accepting automated decisions at higher levels,
always favoring information that aligns with pre-existing beliefs. Overconfidence in one’s judgments or
the system’s accuracy might lead to overlooking errors at initial levels, where human input is significant
and persist as automation increases, assuming infallibility of machine operations. Automation bias can
start as a subtle preference for automated suggestions, even when human control is prevalent, and evolve
into an overreliance on fully automated systems, underestimating the need for oversight. This underscores
the complex interplay between human cognitive tendencies and automation levels, while also highlight-
ing the importance of tailored mitigation strategies. Although certain mitigation strategies are more
optimally aligned with specific levels due to the nature of human–machine interaction at those stages,
some of these strategies are adaptable and can be applied across various levels. For instance, at the first
level wheremachines offer decisions (Level 1), the use of diverse option generation combats anchoring by
providing a broad array of choices, preventing the undue influence of the first option. As we move to
higher levels, such as when machines execute and then inform humans of their actions (Level 4), the
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strategy shifts to post-decision analysis, encouraging reflection and learning from past actions, addressing
the same anchoring bias in a context where initial impressions could still unduly influence retrospective
judgment. Similarly, to counteract automation bias at a level where the machine executes actions with
human approval (Level 2), regular training about the system’s capabilities and limitations keeps human
operators critically engaged, reducing reliance on automated suggestions. In contrast, at the highest level
of automation (Level 5), where machines operate fully independently, periodic human engagement
through simulation training is essential to maintain familiarity with the system’s operations, ensuring a
critical stance toward automation persists.

6. Discussion

Some of the illustrative examples above dealing with higher automation levels, seem for the moment to be
solidly situated in the future. However, while not exactly matching the fictional scenarios, the use of AI in
banking mirrors the concept of “Executes Fully Automated” in financial policy, where decisions are made
based on data analysis without human intervention, potentially leading to “out-of-the-loop unfamiliarity” if
notmonitored properly (Agarwal et al., 2021).Already,we have seen policy failures that can be placed at the
“Executes Fully Automated” level, where the technical component carries out actions independently
without informing humans: In both the Dutch childcare allowance scandal (Van de Vijver and De Raedt,
2023) and the Robo Debt scandal in Australia (Rinta-Kahila et al., 2023), automated systems were used to
detect and act without proper oversight on suspected benefit fraud, leading to serious consequences for the
affected individuals. The use of algorithms in the detection of fraud led to issues such as racial profiling,
discrimination against certain groups, and the impositionof exorbitant debts on individuals, oftenwith lower
incomes or belonging to ethnic minorities (D’Rosario and D’Rosario, 2020; Monarcha-Matlak, 2021).
These scandals highlight the risks associated with the “Executes Fully Automated” level of automation,
where the technical component acts independently without informing humans, leading to out-of-the-loop
unfamiliarity and the potential for serious harm when human intervention is required in unexpected
situations or system failures. This evolution calls for an urgent need to establish clear frameworks to
identify where the final decision-making authority lies, be it with humans or machines, and to implement
corresponding mitigation strategies. Such frameworks should not only pinpoint the decision-makers, but
also include strategies to mitigate the risks of biases inherent in HMCs.

Our analysis of the complexities observed inHMCwithin governance led us to focus predominantly on
enhancing Type II thinking. The necessity for enhanced Type II thinking became apparent through our
analysis, as it addresses the kind of oversight failures exemplified by, for instance, the Robodebt and
childcare scandals, which were attributed to insufficient scrutiny. However, future research could also
explore scenarios where Type I thinking is equally crucial, such as in dynamic environments like
emergency response systems, where rapid and instinctive decision-making can be vital. Examining such
contexts could provide a more comprehensive understanding of how to balance intuitive and analytical
processes to optimize decision-making in various automated systems.

HMC thus emerges as a key factor in the transformation of decision-making paradigms in the landscape
of governance and policy making. The benefits of such HMC are extensive, from offering improved
efficiency, a decrease in cognitive workload for routine tasks, to a strengthened approach to intricate and
high-stakes decisions. However, the integration of HMC in governance is not without its challenges, and
careful considerationmust be given to the potential biases in human andmachine decision-making. Insights
from behavioral science can be useful in optimizing these collaborations, suggesting that aligning AI
systems with human cognitive processes can reduce errors, enhance user experience, and promote more
effective and harmonious HMCs. The impact on policy and governance from such collaborations is
anticipated to be significant, necessitating a concerted effort from policymakers and AI technologists alike.
Together, theymust strive to developHMCs that transcend themere sum of their individual parts, achieving
a synergy where the combined effect is greater than the contributions of each component.
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