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THE VANISHING OF POINCARE SERIES

by R. A. RANKIN

(Received 4th September 1978)

1. Introduction

Every holomorphic modular form of weight k > 2 is a sum of Poincare series; see, for
example, Chapter 5 of (5). In particular, every cusp form of even weight k g 4 for the full
modular group F(l) is a linear combination over the complex field Cof the Poincare series

Gk(z, m) = ̂ l(cz+drkexp{27TimT(z)}. (1.1)
T

Here m is any positive integer, z e H={z e C: Im z>0} and

H: a
The summation is over all matrices

with different second rows in the (homogeneous) modular group, i.e. in SL(2, Z). The
factor I is introducted for convenience.

When k = 4, 6, 8,10 and 14, the space Ck of cusp forms has dimension zero, so that, in
each of these five cases, Gk{z, m) vanishes identically for all positive integers m. We write

fik = dim Cfc.

Then fik>0 for k = 12 and all even fcS16. In fact (5, Theorem 6.1.2), for k^4,

TI ]
 if

- ^ l - 1 if fc = 2(modl2).

(1.2)

(1.3)

( l i m g fik) span the space Ck, so that, in

for lgmS/u*. (1.4)

It follows that fj.k = O(k) for large k.
Moreover, when fik = l, the series Gk(z,

particular,

Gk(z, m)^

See, for example, Theorem 6.2.1 of (5).
The object of the present paper is to consider whether (1.4) can be extended to values

of m greater than fik, when k is large.
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It may be noted that, since, as shown in §6.3 of (5),

G12(z, m) = c12mnr(m)A(z), (1.5)

where A is the discriminant function, r(m) is Ramanujan's coefficient, and c12 is a positive
constant, more information is available in this particular case. For Lehmer has shown that
r(m) 7-̂ 0 for

I < m g l l 3 740 230 287 998

and, accordingly, Gi2(z, m)f^0 for these values of m; see §6.6 of (5). Formulae similar to
(1.5) hold also for Gk(z, m) when k = 16, 18, 20, 22 and 26.

We prove the following theorem.
Theorem 1. There exist positive constants ko and B, where B>4 log 2, such that, for all

even k s fc0 and all positive integers

m^k2exp{-B\ogk/\og\ogk}, - (1.6)

the Poincare series Gk(z, m) does not vanish identically.
Note that the theorem remains true for arbitrary e > 0 and suitably large k0 if the

right-hand side of (1.6) is replaced by k2~E.
The proof uses sharp estimates for the magnitude of Kloosterman sums. If cruder

approximations are used, it is easy to replace k2~" by the weaker k3/2. The method can also
be applied to Poincare series belonging to congruence subgroups of the modular group.

Some additional results concerning the vanishing or non-vanishing of particular
subsets of Poincare series are obtained in §6.

Throughout the paper Au A2,..., B\, B2,... denote positive absolute constants; in
particular, these parameters do not depend upon the weight k.

2. Preliminaries

It is convenient to follow Petersson (3) and introduce the function

gk(z, m) = mk-'Gk(z,m). (2.1)

We shall always assume that m and k are positive integers, the latter being even. Write

gk(z,m)= E ck(r, m)e2™\ (2.2)
r = 1

where z e H. Then it is known that

or, m + /7r(,-ij 2- A-il ;f, U-^;

where 5r? m is the Kronecker delta, Jk_! is the Bessel function of the first kind, and
S(r, m; q) is the Kloosterman sum

S(r,m;q)= f exp (— (rh+ nih')); (2.4)
h=i •• q >

(<!,<?)= 1

here hh'= l(mod q). See (4) or Theorem 5.3.2 of (5); (2.3) is a particular case of a result
first proved by Petersson in 1931.
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Since S(r, m; q) = S(m, r; q), it is clear that

ck(r, m) = ck(m, r). (2.5)

Moreover, since, by (6.2.7) in (5),

(9k(z, r), gk(z, m)) = <okck(r, m), (2.6)

where the left-hand side denotes the Petersson inner product and o)k is positive, it follows
that ck{r, m) is real and that

ck(m, m ) s o .

Further, we deduce, as Petersson did (3), that gk(z, m), and therefore Gk(z, m) vanishes
identically if and only if ck(m, m) = 0. For this reason we use as our starting point the
formula

^ ^ ^ ^ ^ } (2-7)

3. Estimates of certain arithmetical functions

Kloosterman sums have certain additive properties from which corresponding proper-
ties of the coefficients ck(r, m) can be deduced. For example, from the formula

S(rp", mp»; q) = S(r, mp>>+»; q) + pS(rp^1, mp^1; q/p), (3.1)

which holds for any prime p and positive integers q, r, m, p, fj. satisfying

p\q, p*r, p*m,

we easily deduce that, under the same conditions,

ck(rp», mp») = ck(r, mpp+») + p^1 ck(rp"-1, mp^1). (3.2)

We use this result in §6.
Further, if (qu q2) = l, then

S(u, v; qxq2) = S(u, vq\\ qt)S(u, vq\; q2), (3.3)

where <7i<7i= l(mod q2) and q2q2= l(mod q,). The estimation of S(r,m;q) therefore
reduces to the estimation of S(r, m; p"), where p is a prime and n is a positive integer.

From Lemma 8 of Estermann's paper (1), and from the proof of his Lemma 9, we
deduce that

\S(r,m;pn)\^2ap(n+h)l2 (podd), (3.4)

where ph = (r, m, p") and

a=0 (h=n), a = l (h<n).

When p = 2, we have, similarly,

| S(r, m;2")\^23a/2.2{n+h>/2, (3.5)

where 2h = (r, m, 2"). This result improves slightly Lemma 3 of (1) (where \a is replaced by
\a) and is easily deduced by a more efficient application of Lemma 2 of that paper.
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From (3.3, 4, 5) we easily deduce

Lemma 3.1. Let d = (q, r, m). Then
n, (3.6)

where

<o(n) = X <o(p) (p prime),
p\n

and where a>(2) = § and «(p) = l(p > 2).
It is easy to deduce from the Prime Number Theorem that there exists a positive

constant B] > log 2 such that

2"( n )g exp (.B\l°g*) = : M(x) for n ̂  x, (3.7)
Moglog 2x/

where x § 2 .
Now let, for any real A,

**(«)= I ^ (3-8)
d>0

We shall require upper bounds for ao(n) and a_^(n). It is easily deduced from the Prime
Number Theorem that

<7o(m)^M(m) for m§=2, (3.9)

and that, for some B2> 2,

" n°m (ma 2). (3.10)

4. Bessel functions

Write
(4.1)

We shall assume that fcSl6 so that i /g l5 ; as fractional powers of v will occur it is
convenient to write

<r=v-
m. (4.2)

We obtain upper bounds for Jv(vx) valid for all v § 15 and all x^O. These/involve various
positive constants (independent of v and x), which we denote by Alt A2,....

Lemma 4.1. For all x § 0 and v s 15,

Proof. The upper bound is, in fact, valid for i»gl. We start from Poisson's integral

J»(vx)= r / h w • u cos (vx cos 0) sin2"0dO;
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see formula (5) on p. 48 of (7). Hence

from which the required result follows, since, for v^l,

Now put
m, (4.3)

and write

x = secha (0<x^=l), x = sec/3 (xS l ) . (4.4)

Here a > 0 and 0 ^ / 3 ^ \TT. We also write

z = v(a-tanh a) ( 0 < x ^ l ) , z = i>(tan/? -/3) ( x ^ l ) . (4.5)

Then, since v^ 15, it follows easily that

z^3vtanh3a§3 (0<xSix,,), 0 ^ z < | (x , , : ix^l) (4.6)
and

The parameters a and /3 were introduced by Langer (2), but we have written v for his p and
replaced | £ | by z.

Lemma 4.2. For 0 < x ̂  1 and ^ ^ 15,

| / ,(wO|^
lA,o-2 (x^x^l). (4.9)

Proof. For xS=x,, we use formula (64) on p. 59 of (2). This express Jv{vx) as an
asymptotic series

Jv(v sech a) = — —,—-f7511 + M ~) f
(27ri'tanha)1/2 I \z / J

for large z; note that here "large" means "bounded away from zero". From this and (4.6)
we deduce (4.8).

For xu^x^l, z is "small" by (4.6). We use formula (68) on p. 61 of (2), which shows
that

Jv{vsech a) = —I
7T \ tanh a

By Basset's formula on p. 172 of (7) for the modified Bessel function of the third kind,

Km(z) =
21/3r(|) f" cos zuduI f ° ° COS

Jo 0 ?2+l)5 / 6 >

so that
U 3 ® du

]Km{Z)l= zll3jir)o (u 2 + l ) 5 / 6 " (4z) 1 / 3 "

From this (4.9) follows, since tanh a Si a-2.
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Lemma 4.3. Forx ̂  1 and vs 15

(A2a
2 ( l g x g y j , (4.10)

\Uvx)\^
{A2a

3(x2-irm (y*^x). (4.11)

Proof. For the range I^XSEV,, we note from (4.7) that z is small and use formula
(66)(a) on p. 60 of (2). This gives

Uv sec |8) = (Y^J)m Ui/3(z) + J-m(z)}+ O(v~4'3).

Since J^(z) = O(z") for small z, (4.10) follows.
For i g ^ w e use formula (63) on p. 58 of (2), which shows that

since, by (4.7), z is large. From this (4.11) follows.
We now write Xo for the positive root of the equation

xexp{Kl-x2)3/2} = 2e-1, (4.12)

so that xo = 0-629 approximately. We use Lemma 4.1 in the range 0^x^xoandLemma
4.2for x o ^ x ^ l .

It is convenient to define functions /, F, g and G as described below. We define / on
[0, 1] as follows:

/(*)= A4 C T
3( l -*V1 / 4exp{-:Ul-x2)3 / 2}(xo^xSixJ, (4-13)

U22

The positive constants A3 and A4 are chosen to make /continuous on [0, 1]; note that they
are independent of v. Moreover f(x), and therefore xU2f(x), increase for O ^ x g 1 and

fix)** F(x) (0Sjc<i), (4.14)

where F(x) = f(x) for 0 ̂  x ̂  xv and F(x) is defined for xv ̂  x g 1 by the second formula in
(4.13).

We define g on [0, °° [ by

(4.15)

Then g is continuous and g(x) increases for 1 ̂  x =s yv and decreases for yv S= x. Moreover

g(x)^G(x) (x>l), (4.16)
where

<r3x1/2
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From Lemmas 4.1, 4.2 and 4.3 we deduce

Lemma 4.4. A positive constant A5 exists such that

\jv(vx)\^Asf(x) for O ^ x ^ l (4.17)
and

\xU2Uvx)\^A5g(x) for x^l. (4.18)

5. Proof of Theorem 1

We consider the sum

~ S(m, m; q) (4irm\ . .

To estimate Sm we use Lemma 3.1 for values of

« < ^ = Q (5.2)

and the estimate

\S(m,'m;q)\^q, (5.3)

when ql^Q. We also put

d = (q,m), q = rd. (5.4)

Then

where

i^)| (5.6)
d | m r<O/d

and

<?SQ
.5.7,

In view of what is known about G]2(z, m), and since G]4(z, m) vanishes identically for
m>0, we may assume that A: > 16, so that v g i 5 . We may also assume that

It is then easily checked that

1) 877

[ r T ^ r T5 (5-8)

Accordingly, by (3.7) and (5.6),

« f # Z '̂2rd, (5.9)
d<O
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where, for d \ m and d<Q,

by (4.18).
But, by the properties of the function g,

O fo/d

-
a Ji

dh

Qa3 f" x'3/2dx
d I (x2-l)1 /4

2 ( 2 T T ) 5 / 2 ma-9

r2(i) d
Hence, by (5.9) and (5.10),

d<Q

Also, by (5.7), (4.17) and (4.14),

S»m= I
qSO

<?ao
f{Qlq)

f(Qlu)

Now, by (4.13),

where

and

x~2F(x) dx =
Jo

Ii= i ° cr3x-2{hexYdx
Jo

+ A4/2,

(5.10)

(5.11)

(5.12)
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Hence

note that \exo<0-9. Also

/ (T\3 f 1

2~\x0' J,n

Accordingly, by (5.7) and (5.12),
2 2 , (5.13)

if m =s v2.
From (5.5), (5.11), (5.13) and (3.9) we deduce that

| Sm\^A6m
U2a6M(m)o--i(m) + Al0o-2M2(m) + A9ma12, (5.14)

provided that m ^ v2. We now restrict m further by taking it to satisfy (1.6) (recall that
k= v+1), where B>4Bi. The second and third terms on the right of (5.14) are then
clearly o(l) for large k, while the first term is, by (3.10),

k \(4Bl-B)logk
A % e X p l 21oglogfc (

It follows that

!&.!<£
for sufficiently large k. Hence, by (2.7), ck(m, m)>0 and this completes the proof of
Theorem 1.

6. Further results

We require the following lemma:

Lemma 6.1. (i) If ck(m, m) = 0, then ck(mn, mn) = 0 whenever (m, n)= 1.
(ii) Ifck(m, m) ̂  0 and p is any prime not dividing m, then, for each integer / xg l , either

(a) ck{mp*, mp^^O or (b) ck(mp'J'~i, mp/i+1)?^0.

Proof. By repeated applications of (3.2) we find, when p % m and / i g 1,

»= z ,
A=0

Similarly, when fj.^2,

A = 0
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Note that this is also trivially true when /x= 1. From these two formulae we deduce that,
when / x g l ,

ck(mp», mp») = p(k-1)lxck(m, m) + ck(mp^\ mp»+l). (6.1)

Thus, if cfc(m,m) = 0 and also ck(mp*~x, mp>1"1) = 0 for any /x=£l, then
gk{z,mp^'1) = 0 and so the right-hand side of (6.1) vanishes. It follows that
ck(mp*, mp1*) = 0. By induction on pt(/x = 1, 2, 3,...), we deduce that

ck(m, m) = 0=>ck(mp'i, mp») = Q forall /x^o,

and part (i) of the lemma follows from this.
Moreover, if ck(m, m)^0 , it follows from (6.1) that it is not possible for both

ck(mp*, trip1*) and c^mp**"1, mp'J'+l) to be zero. This gives part (ii).
From Lemma 6.1 and (2.5) we deduce

Theorem 2. (i) / / gk(z, m) = 0, then, for any positive integer n prime to m,

gk(z, mn) = 0.

(ii) Ifgk(z, m)p^0 and if pis a prime not dividing m and /LA ̂  1, then (a) gk(z, mp*)f^0,
or (b) gk{z, mp1-1)^ and gk(z, mp^)^Q.

As a corollary of part (ii) of the theorem we note that it follows that, if gk(z, m)^0,
then it is not possible for gk(z, mp*) to be identically zero for two consecutive positive
integers /x. •

Theorem 2(i) can also be deduced from the relation

gk(z,m)\Tn = gk(z,n)\Tm= I dk~xgk{z, mnld2); (6.2)
d\(m,n)

see equation (23) of (3), or Theorem 9.3.1 of (5). Here Tn and Tm are Hecke operators.
From (6.2) we also deduce

Theorem 3. For any positive integer m,

gk(z, m) = 0 ifandonly ifTm annihilates Ck.

Proof. That gk(z, m) = 0 implies that Ck \ Tm = 0 follows immediately from the first
equation in (6.2). Conversely, if Ck \ Tm = 0 then

gk(z, m) = gk{z, 1)| Tm = 0.

In conclusion, we remark that the formula (3.1) is related to the formula

S(m,n;q)= I ds[l,^-A (6.3)

quoted by Selberg (6). He mentions that the multiplicative properties of cusp form
coefficients such as r(n) can easily be deduced from (6.3), but gives no details. In this
connexion it may be of interest to record that the formula (3.2) was used by the author in
his Ph.D. thesis (1940) to prove multiplicative properties of this kind.
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7. Postscript

It is possible that recent work of N. V. Kuznetsov on the order of magnitude of partial
sums of the form

. I -S(m,n;c)
0<CSTC

may enable Theorem 1 to be improved. This is referred to in the preprint entitled
"Peterson's hypothesis for forms of zero weight and Linnik's hypothesis" (Akad. Nauk
SSSR, Khabarovsk, 1977).
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