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ABSTRACT

The paper presents an extension of the classical Cramer-Lundberg ruin theory:
the famous upper bound for the ruin probability with an infinite time horizon
can be extended in a certain sense to the short and middle term case. Furthermore,
a relation between the average values of lifetime and ruin amount is given.
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1. INTRODUCTION

In order to assess the financial stability of an insurance portfolio, one usually
utilizes the notion of "mathematical ruin". Ruin being the phenomenon by which
a portfolio passes from the state "to be" to the state "to be no longer", actuaries
have naturally sought to measure the danger of such a passage by its "probabil-
ity". Numerous studies have unfortunately shown that the notion of "ruin
probability" is not easy to handle, in theory as well as in practice. This difficulty,
and it seems to be a major one, requires the search for another quantifier of
the notion of ruin than that of probability.

The present article recalls firstly the notion of the ruin "counter-utility",
proposed elsewhere, and which represents a more elaborate measure of danger
than that of "probability". The ruin counter-utility takes into account three
characteristics of ruin, that is:

the probability of its occurrence
the size of the ruin amount
the time of its occurrence.

The counter-utility is the greater, the larger the ruin amount, and is the smaller
the more distant the event. The notion of counter-utility depends very closely
on that of utility; in a certain way it reverses its properties.

Secondly, the article shows that the celebrated upper bound of the ruin
probability, indicated by Lundberg, valid in an infinite time horizon, can be
generalized to the case of a finite time horizon. For this purpose the future
should not be separated in two distinct periods, the considered period, and the
one left out, but should be considered in its totality with a progressive attenuation
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of what occurs, by a phenomenon similar to fog, limiting vision to a certain
horizon (time-stumping phenomenon).

By means of this new approach to the ruin problem it is easier to acquire,
without mathematical complications, some knowledge of the seriousness of ruin
in a limited time horizon.

The considered portfolios will be characterised by the following symbols:

X
fix)
M{a)
P
PE

R,
T
It

<A
z
z,
g«U)
u(x)
Q{x)
U(Z)
a
b

e

aggregate claim amount
density function of X
moment generating function of X
total risk premium per annum of the portfolio
Esscher premium of the portfolio
risk reserve, at time t
time elapsed until the first ruin
probability of the first ruin at time t
ruin probability in the future
amount of the first ruin
amount of the first ruin, at time t
density function of Z,
utility function
counter-utility function
ruin counter-utility
risk aversion coefficient
time stumping coefficient
time horizon

The article considers, for means of simplification, portfolios that are stationary
in time and create independent total claim amounts, and is based on exponential
utility and counter-utility functions. Under these assumptions, the results are
valid for an arbitrary process, not necessarily Poisson.

i

2. CLASSICAL RESULTS OF THE RUIN THEORY |

The classical ruin theory is dominated by two notions: security margins and ruin j
probability. Here are some known properties:

1

Security Margins

The zero utility principle

under the hypothesis of an exponential utility function u (x), leads to the following i
formula for the premium P, margin included: (

(1) eaP
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THE RUIN PROBLEM

where

M(a) = jVx -f(x)-dx

which is equivalent to

(2) P =-In M(a).
a

Ruin Probability

The ruin probability (first ruin, with t an integer)

(3) 0 = Z f gt(z)'dt
( = 1 Jo

is limited by Lundberg's upper bound

(4) i//<e~aR°.

The coefficients a in (2) and (4) are identical.

3. THE NOTION OF COUNTER-UTILITY

The notion of utility is borrowed from economics: it allows the determination
of preferences between many situations.

The notion of counter-utility is derived from that of utility; it adds, for insurance
purposes, a possibility to measure singularity considered situations.

Let Y be a random variable. The expression

U(Y) = ^u{y)-f{y)-dy

in which the function w(y) satisfies

(5) u(y)>0; u'(y)>0, i

is called the counter-utility of Y. The function «(y) is the counter-utility function.
It is to be noted that the requirement M"S=0 is the reverse of «"«0, which

the utility function is subjected to. U(Y) can be used to measure a risk: in
U(Y), the big values of Y are weighted overproportionally.

The exponential function

satisfies our exigences. The coefficient a is called the risk aversion coefficient.
The relation (1) expresses that, on the basis of an exponential counter-utility

function, there is equivalence between the counter-utility of the premium P
(left-hand term) and that of risk X (right-hand term):

eaP=M(a).
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This last relation formalises the "counter-utility equivalence principle between
premium and risk". Through this interpretation of (1), the notion of counter-
utility replaces that of utility and the counter-utility equivalence principle that
of the zero utility principle.

The Counter-Utility of Risk

In order to estimate the risk situation of a portfolio, we consider the risk reserve,
more exactly the value

R, = -R,

which is representative of the danger (a positive danger if the risk reserve is
negative and inversely), the counter-utility of this R, is, at time t and for an
exponential counter-utility function:

aT -f.in-dr.

For t - 0, the risk reserve has a known value; therefore

If the premiums are determined by the zero utility principle, or by the counter-
utility equivalence principle, it can be easily shown that the counter-utility of
the risk situation is constant in time:

t = 1 2 3

therefore

(6) */(#,) = <raR°.

The value of Lundberg's upper bound (4) of the ruin probability i/r is thus equal
to the counter-utility of the risk situation of the portfolio at the beginning of
time, and, because of the constancy of this counter-utility in time, equal to the
counter-utility of the risk situation at time t (always under the hypothesis of a
counter-utility equivalence between premium and risk).

The Counter-Utility of Ruin

If Z, represents the ruin amount (first ruin), at time t, it can be shown without
difficulty that the counter-utility of the ruin situation for all future years, gen-
eralizing (3):

= 1 fV-g,(
r = l Jo

(7) U(Z) = I e"-g,(z)-dz
r = l Jo

is equal to the value of the counter-utility of the risk situation:

(8) 7 7 7 ^ R
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Thus the counter-utility U(Z) of the ruin situation for the entire future, the
counter-utility U(Rt) of the risk situation at t, notably when t = 0, and the upper
bound of the ruin probability according to Lundberg are identical.

4. INCREASING COUNTER-UTILITY PRINCIPLE

The formulae and properties stated so far are known.
The greater part of the following is new. The model referred to above can be

generalized (always under the hypothesis of a stationary process and of an
exponential utility function) in view of studying the equilibrium and the ruin
conditions in the short and medium term.

The Counter-Utility of Risk

In reality, for a given aversion coefficient, premium P and risk X are not entirely
equivalent. The relation (1) opens up three cases

eaP%M(a)

corresponding successively to an over-taxed premium, a premium equivalent in
counter-utility and an under-taxed premium. We transform this last relation into
an equation by the introduction of a supplementary factor

(9) eaP = M(a)-e~\

The coefficient b measures the level of under-taxation of risk X by premium P.
The coefficient b is positive in the case of under-taxation, which we will deal
with later. Under these conditions, it can be easily shown that the counter-utility
of the risk situation is no longer constant in time, but evolves as follows:

(10)

Given the initial value of U(R0) according to (8), we have

(11) R b

which generalises (6).
An under-taxed premium {b > 0) leads therefore to an increase of the risk

counter-utility, an over-taxed premium (b <0) to a decrease.
The recurrent relation (10) defines the increasing counter-utility principle (or

decreasing if b < 0).
The evolution of a portfolio with a constant counter-utility, seen under point

3 by the application of the zero utility principle, corresponds to the limit case
b = 0 between the two cases b > 0 and b < 0.

Formula (10) has an undoubtedly intuitive meaning.

The Counter-Utility of Ruin

In the case of an under-taxed portfolio (related to the counter-utility equivalence
principle) it can be shown that if the definition (7) of the ruin counter-utility is
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generalized by the introduction of the factor e~b, such that

(12) C/(Z)= £ «-»•'• f eaz • g,(z) • dz,

( = 1 Jo

then the ruin counter-utility keeps its standard value (8)

(13) R

In expression (12), the coefficients a and b are bound by relation (9). The
introduction of the factor e~b ' in (12) has the following meaning. The factor
e~bt (b>0) reduces the weight of future ruins in U(Z): the more distant the
ruin the greater the reduction of U(Z). This corresponds to a "time stumping"
phenomenon. The coefficient b is the time stumping coefficient and e~b the
stumping factor.

For an aversion coefficient leading to the equivalence in counter-utility between
premium and risk, the stumping coefficient b vanishes and (12) is identical to (7).

The expression e~a R° according to (13) is thus a practical measure of the risk
situation of a portfolio: it takes into account by means of the risk coefficient a
the size of the ruin amount, and by means of the stumping coefficient b, the
imminence of the ruin. The notion of ruin counter-utility (12) can thus be used
to measure the financial equilibrium of an insurance portfolio. This notion is
more elaborate than that of ruin probability, which only considers the alternative
"to be or to be no longer".

5. FINITE TIME HORIZON

A second interpretation of formula (12) leads to an estimation of the risk situation
of a portfolio limited to a finite time horizon.

If, in expression (12), we replace the ruin counter-utility at t, that is

f eaz-gt(z)-dz
Jo

by the length of the period (1 year) during which the said ruin might occur,
expression (12) becomes

E €"" • 1 (b>0)

whose signification is that of the future (up to infinity) subjected to the stumping
process mentioned above.

Let us designate by 0 this value, which we will call the "time horizon". Because

2 -w, 1
be - 1
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we find for the period 6:

(14) e=-J—
e - 1

or inversely

b_e+i
e '

The greater the stumping coefficient b the shorter the horizon; this is a natural
property of a stumping phenomenon.

If one accepts the notion of "time horizon", then expression (12) measures
the ruin counter-utility in a "finite time horizon 0". The interpretation of
expression (12) by means of the time horizon allows us to formulate an extension
of the Cramer-Lundberg's theory when considering the short and medium term.
The formula considers the entire future until infinity, but reduces the "weight"
of future events in function of their distance in time, just as the discount
phenomenon with regards to payments in a distant future.

6. RUIN AMOUNT AND PORTFOLIO LIFETIME

The method used above to estimate the financial equilibrium of insurance
portfolios allows developments in various directions. Here follows what can be
deduced from e.g. relations (12) and (13) about the ruin amount and portfolio
life-time if ruin occurs.

In expression (12) g,{z) is the density function of the first ruin amount Z( at
time t. The expression

(15) i f eaz-"'• gt(z) • dz
1=1 Jo

becomes the conditional density of amount Z, at t, (under the hypothesis that
the ruin occurs) which takes into consideration the size of the ruin (by the factor
eaz) and the distance in time of the occurrence of the ruin (by the factor e~bt).

Let us define

(16) E * ( Z \ T < o o ) = £ f z-g*(z)-dz
( = 1 Jo

and

(17) E*(T\T<oo)=i t\ gf(z)-dz
r = l Jo

as the "mathematical expectations" of, respectively, the first ruin, amount Z
and the portfolio life-time T, if ruin occurs, calculated with the modified densities
gt(z).
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These two mathematical expectations are related!
Indeed, expressions (12) and (13) lead to the equality (18)

(18) e~aR0= £
1=1

By logarithmic derivation with respect to a of the last equation (we are reminded
that b is related to a by (9)), we have, after some elementary algebraic
simplifications:

(19) -Ro = -b'{a)-E*(T\T«x>)+E*{Z\T<°o).

By also taking the logarithmic derivative of (9) with respect to a, we find that

that is

b\a) = [In M(a)]' -P.

The first term of the right-hand expression is in fact

_M\a) \x -eax -f(x)-dx
(20) \\ii in. yu/j ~ , , / s ~ e ax r, \ ,

M{a) \e -f(x)-dx
which is equal to the Esscher premium corresponding to the aggregate claim
amount X. Thus

Relation (19) becomes therefore

-Ro = -(PB-P) • E*(T\T<oo) + E*(Z\T<oo)

or

(21) = (PE-P)-E*(T\T«x>).

This formula can be interpreted as follows: left-hand expression: Ro +
E*(Z\T<oo) is, at the time of ruin, the average total loss of the company;
right-hand expression: (PE —P). E*(T\T < oo) is, at the time of ruin, the average
deficit in premiums in respect to the level of the Esscher premium and accumu-
lated during the portfolio's life-time. It is to be noted that these are not average
values in the usual statistical sense, but averages in the sense of the counter-utility
theory, by means of the modified densities gf(z) which take into account the
phenomena of risk aversion and time-stumping. That a relation should exist
between the company's total loss and the deficit in premium is not unnatural.
It is perhaps surprising that this relation is that simple.

In practice it is clear that it is not at all easy to calculate the expectations
E*(Z\T<oo) and E*(T\T«x>). Formula (21) allows at least an estimation of
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one if there is a hint of the value of the other. It seems that the estimation of
E*{T\T<oo) is less tricky than that of E*{Z\T<oo) to which many authors
have applied themselves.

7. A NUMERICAL EXAMPLE

Given a portfolio with the following characteristics:

Risk X (millions of francs)
Claim Amount

1 year
X

80
90

100
110
120

Prob(*-x)

0.1
0.2
0.4
0.2
0.1

E(X) = 100
Var {X) = 120

1 + 2e9Oa +4el00a + 2enOa +e12Oa).

Finance

Risk premium P = 110
Initial risk reserve Ro = 25

Ruin

In the present example the annual surplus can only take values which are multiples
of 10, and the initial risk reserve is 25, so that an eventual ruin amount will
always be: Z = z0 = 5. In order to simplify, we will designate by q, the probability
of the first ruin at T:

(22) f g,(z)dz=qt.
Jo

Probability of the First Ruin

A direct calculation, by repeated convolutions, gives the following values for
the probabilities of the first ruin for f = 1, 2, 3 , . . . .

The long-term ruin probability tj/ is

(23) iA = I q, = 0.002 446.
1=1
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TABLE 1
RUIN PROBABILITIES

t

(1)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Ruin

(2)

0.000 000
0.000 000
0.001 000
0.000 600
0.000 360
0.000 206
0.000118
0.000 068
0.000 039
0.000 023
0.000 013
0.000 008
0.000 005
0.000 003
0.000 002
0.000 001
0

Probabilities

Accumulated

(3)

0.000 000
0.000 000
0.001 000
0.001 600
0.001 960
0.002 166
0.002 284
0.002 352
0.002 391
0.002 414
0.002 427
0.002 435
0.002 440
0.002 443
0.002 445
0.002 446
0.002 446

Conditional
Ruin

Qt

(4)

0
0
0.4088
0.2453
0.1472
0.0842
0.0482
0.0278
0.0160
0.0094
0.0053
0.0033
0.0020
0.0013
0.0008
0.0004
0

probabilities

Accumulated

(5)

0
0
0.4088
0.6541
0.8013
0.8855
0.9337
0.9615
0.9775
0.9869
0.9922
0.9955
0.9975
0.9988
0.9996
1.0000
1.0000

First Case: Classical Theory, Infinite Time Horizon

Premium P = 110 and risk X are equivalent in counter-utility, in the sense of
relation (1), for a =0.2004494. According to (8), ruin counter-utility U(Z),
risk counter-utility U(R,) and Lundberg's upper bound of the ruin probability
are identical

(24) U(Z) = U(R,) = e ° = 0.006 663.

As the ruin amount is constant by nature (Z = zo = 5), the integral in (7) can be
written because of (22)

f eaz-g,(z)-dz=eaz°\ gt(z)-dz=eaz°-qt.
Jo Jo

Expression (7) therefore becomes
OO

LJ \£>) — e ' 2 ^ *?(

from which we can conclude that

« U(Z) e~aR° 0.006 663

We find the value obtained by direct calculation, according to (23).
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Second Case: Extended Theory, Finite Time Horizon

If we fix the horizon 6 (Table 2, first column), the columns (2), (3) and (4) give,
respectively, the values of the aversion coefficient a, the stumping coefficient b
and the stumping factor e'b. We find in column (5) the value of the ruin
counter-utility, according to the formulae (12) or (13):

e
(i)

3
5

10
00

a
(2)

0.239 340
0.225 743
0.214 008
0.200 449

TABLE 2
RUIN COUNTER-UTILITIES

b
(3)

0.287 68
0.182 32
0.095 31
0.000 00

e~b

(4)

0.750 00
0.833 33
0.909 09
1.000 00

U(Z)
(5)

0.002 520
0.003 540
0.004 747
0.006 663

The above table states that the improvement of the measure U(Z) chosen to
estimate the financial security of a portfolio is not radical when we bring forward
the infinite horizon to a 10-year horizon, for example; the reduction is more
appreciable if we switch to a horizon of 5 or 3 years. This is conform to the
known property which states that if ruin occurs, it usually occurs in the near
future. A comparison between the ruin probabilities accumulated over a period
of t years (table 1, column 3) and the ruin counter-utilities in a horizon of 6
years (table 2, column 5) gives the following:

t
Years

3
5

10
oo

TABLE 3
COMPARISON BETWEEN RUIN PROBABILITIES AND RUIN

COUNTER-UTILITIES

Accumulated Ruin
Probabilities

0.001 000
0.001 960
0.002 414
0.002 446

e
Years

3
5

10
oo

Ruin Counter-Utility
with Horizon 6

0.002 520
0.003 540
0.004 747
0.006 663

It can be stated that, for a common period t = 6, the ratios between the two
measures of ruin (probability and counter-utility) are rather stable.

Relation (21) between Average Ruin Amount and Average Portfolio Life-Time,
if Ruin Occurs

The portfolio under consideration generating constant ruin amounts {Z = zo = 5),
the conditional probabilities gf(z) (in the sense of the counter-utility theory)
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12 AMSLER

are reduced, for b = 0 (that is without stumping phenomenon) to the usual
conditional probabilities (Z takes only the value z0 = 5)

/

OO

1=1

The calculation of E(T) on the basis of the probabilities in Table 1, column 4,
gives us

E(T\T«x>)= 4.407.

The direct calculation of the Esscher premium according to (20) gives us

PE= 116.803.

The relation (21)

is verified, because

25+ 5 = (116.803-110)- 4.407.
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