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Abstract. We prove the Léwner-Heinz inequality, via the Cordes inequality,
for elements a, b > 0 of a unital hermitian Banach *-algebra A. Letting p be a real
number in the interval (0,1], the former asserts that @’ < b” if a < b, @’ < b” if a < b,
provided that the involution of A4 is continuous, and the latter that s(a’b?) < s(ab)’,
where s(x) = r(x*x)"/? and r(x) is the spectral radius of an element x.
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1. The Lowner-Heinz inequality (Heinz [6], Lowner [8]) asserts that bounded
operators 4, B on a Hilbert space such that O < 4 < B necessarily satisfy 47 < B’
for any p € (0, 1]. This matter has received much attention from mathematicians
because not only is it so beautiful in itself but also it plays a crucial role in various
stages of operator and operator algebra theory.

It is known that some classes of Banach *-algebras have a canonical order and
the power zP operates at least to their positive elements with positive spectra.
Therefore the question arises: whether the Lowner-Heinz inequality remains true for
positive elements of such Banach *-algebras.

However, some care must be taken in view of the fact that the power
z# (p € (0, 1)) may operate only on restricted positive elements of Banach algebras.
Actually, Katznelson’s square root theorem [7] asserts that, if 4 is a unital abelian
semisimple Banach algebra, the complex conjugation z~ operates on 4 and the
square root z'/?> operates on any element a € A with o(a) C [0, +00), where o(a) is
the spectrum of a, then A is isomorphic to A, the Gelfand representation of A.
Hatori [5] showed, further, that if 4 is a Banach function algebra on a compact
Hausdorff space X and the power z” (p € (0, 1)) operates on any element a € 4 with
o(a) C [0, 400), then 4 coincides with the Banach algebra C(X) of all complex-
valued continuous functions on X.

We shall give an answer to the question in Theorem 2 below, together with
giving in Theorem 1 a generalized version of the Cordes inequality [2, Lemma 5.1]
(cf. Furuta [3]). The method employed is essentially due to Pedersen [9].

A Banach *-algebra A is said to be hermitian if the spectrum of any self-adjoint
element of 4 consists of real numbers, whereas an a € A4 is self-adjoint if and only if
a* = a. Hermitian Banach *-algebras have their own canonical order. Any C*-algebra
is hermitian. Any group algebra of an abelian group, of a compact group, and any
measure algebra of a discrete group is known to be hermitian.

We assume in what follows that a Banach *-algebra A is hermitian. We assume
also that A is unital in order to simplify the discussion, the unit is denoted by e;
while the involution on 4 may be discontinuous in norm.
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2. We start by recalling the following definitions: @ > 0 means that « is self-
adjoint and the spectrum of a consists of non-negative real numbers, while a > 0
means @ > 0 and 0 & o(a); a > b means that a — b > 0, while a > b means ¢ — b > 0.
a* for a € A with o(a) C (0, +00) means exp(xloga), where log is the principal
branch of the complex logarithm.

Itis known that, ifa, b € 4A,thena, b >0 implies a+ b > 0 ([1, Lemma 41.4]),
and @ >0, o >0 implies that aa > 0. In addition, we have the following facts.

REMARK 1. If'a, b € A, then a > 0, b > 0 implies that a+ b > 0.

Proof. By the assumption there exists an A > 0 such that ¢ — e > 0 and so
a+b—xe=(a—Xre)+ b >0.Hence, a+ b > re, which implies a + b > 0. QED

REMARK 2. If a, b € A, then either 0 < a < b or 0 < a < b implies b > 0.
Proof. This is immediate from the preceding remark. QED

It is known, by the Shirali-Ford theorem [11], that 4 is necessarily symmetric;
namely, for any a € A4, the spectrum of a*a consists of non-negative real numbers.
(See [1, Theorem 41.5] and [4], [10].)

Let a € A. Define

r(a) = inf[|a"]|"" and s(a) = r(a*a)"?;
the former is the spectral radius of a. Then we have

r(a) < s(a)

by [1, Lemma 41.2]; s is a B*-semi-norm (in fact a maximal B*-semi-norm) on 4 by
[1, Theorem 41.7, Corollary 41.8]; and so, it is continuous in norm [1, Theorem
39.3].

For convenience’ sake, we put for real r, and for A > 0 such that o(Aa) C (0, 1],

D = A_r<e+ 3 (;;)@_M)k), 1.2,
k=1

If a is self-adjoint, then a' % is self-adjoint, a”** and & * commute, {a!" ¥} con-

verges to " in norm and so, by the spectral mapping theorem, a{/** > 0, for any
sufficiently large n, while ¢" may not be self-adjoint.

THEOREM 1. Let a, be A. If a> 0, b > 0 and p € (0, 1], then

s(a’b’) < s(aby .

Proof. The inequality above is true when p = 1. Next, let A > 0 be chosen suffi-
ciently small. We put for any integer n > 0,

a, =al’** and b, =b/*".
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Then,

a,—a'?, b,—>b'? as n—o0

in norm. Hence
s(apb,)—> s(a'*b'/?), s(aibi)—w(ab) as n—»00.

Therefore, since

$(anbn) = r((anbn) (anbp))'* = 1(baalby,)'* = H(@b?2)'* < s(a?b?)'/?,

n-n

it follows that
s(a'?b'?y < s(ab)'>.

Next we assume that for p, ¢ € (0, 1],

s(a@b’y < s(aby’ and s(a?b?) < s(ab)!.
We put, for any integer n > 0 sufficiently large,
ay=dar’*", da, =d¥*" b, =br*" and b, =1
Then, a,, and 4, commute, b,, and b/, commute; also

and,—>a' P2 and b, —bPTV? a5 p—s o0

in norm. But we have

$(and, byb!) = r((and,bub,) (and, by )"* = r(b bud, dd, b,b')'* = r(b2d>d, b *)"/?

nnn nnn

< 9( 2 i ;2[)/2)1/2 <S(b2 2 l/zs(a/2b/2)1/2 S,(612})2)1/2L§,(a/2})/2)1/2.

so that
S(a(p+q)/2b(p+q)/2) < s(apb”)l/zs(aqb”)l/z.

Therefore,
S(a(p+q)/2b(p+q)/2) < s(ab)(”+q)/2,

by the assumption. Thus, according to the norm continuity of s, we know that the
inequality in Theorem 1 holds for any p € (0, 1]. QED
3. We assume hereafter that the involution on A4 is continuous in norm.

LEMMA. Let a, be A and pe(0,1]. If O0<a<b, then r(@b?)<1; if
0<a<b, thenr(@db=?) < 1.

Proof. Assume first that 0 < a < b. Then, by Remark 2 and the hermiticity of 4,
b is invertible and 0 < 5~ /2ab~'/? < e. This implies that
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S(al/zb—l/2) — r((al/Zb—l/2)*(al/2b—l/2))1/2 — r(b—l/Zab—l/2) < 1.
But by the spectral mapping theorem, o(a'/?) and o(h~'/?) lie in (0, +o0). Hence,

r(apbﬂ?) — r(bfp/Zapb*P/Z) — S(ap/ZbﬂJ/z) < S(al/bel/Z)p < 1.

Assume next that 0 < a < b. Then, in a similar way we obtain

Had’b™?) =< 1. QED

THEOREM 2. Leta, be A,andp € (0,1]. If0 <a < b, thena” < b’; if 0 <a < b,
then a’ < b’.

Proof. Since the involution is continuous in norm, b="/2a’b=7/ is self-adjoint
and so, by the preceding lemma, 0 < a < b implies e — b ?/>a?h~7/> > 0. Hence
we have @ <b”. Again, by the preceding lemma, 0 <a<b implies
e — b P?@?h=P/2 > 0. Hence we have o’ < b”. QED
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