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1. Introduction. Several definitions of a semigroup of quotients have been pro-
posed and studied by a number of authors. For a survey, the reader may consult
Weinert's paper [8]. The motivation for many of these concepts comes from ring theory
and the various notions of rings of quotients. We are concerned in this paper with an
analogue of the classical ring of quotients, introduced by Fountain and Petrich in [3].

We recall that a ring Q with identity is a classical ring of left quotients of its subring
R if every non-zero-divisor in R has an inverse in Q and every element of Q may be
written as a~*b, where a, b are elements of R. Here a"1 is the inverse of a in the group of
units of Q, that is, aa~l =a~xa = 1. In the definition of a semigroup of left quotients,
given in Section 2, we concentrate on inverses within arbitrary subgroups of a semigroup
and not just inverses within the group of units. Thus semigroups of quotients need not
have an identity. Following the terminology for rings, we say that if Q is a semigroup of
(left) quotients of its subsemigroup S, then 5 is a (left) order in Q.

It is a natural question to ask for characterisations of orders in particular classes of
semigroups. The main theorem of [3] characterises orders in completely 0-simple
semigroups; in this paper we consider the corresponding problem for Clifford semigroups.

It is clear from the definition that the notion of a semigroup of left quotients extends
that of a group of left quotients, where G is a group of left quotients of a subsemigroup 5
if every element of G can be written as a~lb, where a, b eS. We recall from [1] that a
semigroup 5 has a group of left quotients if and only if 5 is right reversible and
cancellative.

We remind the reader that a Clifford semigroup is an inverse semigroup with central
idempotents. However, Theorem IV.2.1 of [5] gives an alternative description of Clifford
semigroups as semilattices of groups, which enables us in Section 3 to describe left orders
in Clifford semigroups in terms of semilattices and left orders in groups.

Our result bears a superficial resemblance to Theorem 3.4 of [6], which states that a
cancellative semigroup S which is a semilattice Y of left reversible semigroups Sa is
embedded in a semilattice Y of groups Ga, where, for each a eY, Ga is the group of right
quotients of Sa. However, the essential difference is that Osondu considers only those
orders S which are themselves cancellative. If 5 is a semilattice Y of left reversible
semigroups Sa, a eY, then it is easy to see that S is left reversible. So if in addition 5 is
cancellative, then 5 has a group G of right quotients. The purpose of [6] is to study the
relationship between the group G and the groups of right quotients Ga of Sa, a e Y.

It is well known that, up to isomorphism, rings of left quotients of a given subring are
unique and, correspondingly, the group of left quotients of a right reversible, cancellative
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semigroup is unique. Unfortunately, this result is not true of semigroups of left quotients
in general. In Section 4 we give an example of a semigroup which is a left order in two
non-isomorphic Clifford semigroups.

To overcome the problem of uniqueness, the concepts of a stratified semigroup of
(left) quotients and of a stratified (left) order were introduced in [4]. Theorem 3.3 of [4]
gives that stratified semigroups of left quotients are unique up to isomorphism.

If S is a left order in a Clifford semigroup Q, then S is not necessarily stratified in Q,
but we show in Theorem 4.3 that 5 is a stratified left order in some Clifford semigroup
Q', which is therefore unique (up to isomorphism).

From Theorem 3.1, if S is a left order in a Clifford semigroup, then 5 is a semilattice
of right reversible, cancellative semigroups. In particular, 5 is a semilattice of cancellative
semigroups and so is separative. In Section 5 we give an alternative characterisation of
left orders in Clifford semigroups as separative semigroups satisfying a strong reversibility
condition. We finish in Section 6 with a consideration of some special cases.

This paper forms part of the author's doctoral dissertation, written under the
supervision of Dr J. B. Fountain, whose careful guidance was greatly appreciated.

2. Preliminaries. The generalisations 9t*, 5£* and Vt* of Green's relations '31, 5E
and <fC play an important role in what follows.

We recall that the relation £%* is defined on a semigroup 5 by the rule that aSft.* b if
and only if a 9? b in some oversemigroup of 5. The relation 5£* is defined dually. Lemma
2.1 gives us an elementary characterisation of 9t* and 5£*.

LEMMA 2.1 [2]. The following conditions are equivalent for a semigroup S:
(i) a®*b(a <£* b)

(ii) for all x,ye S\

xa—ya <t> xb = yb (ax = ay <=> bx = by).

It is easy to see from this lemma that £%* is a left congruence and 5£* is a right
congruence. Thus the intersection of 3i* and 5£* is an equivalence relation, denoted by

We say that an element a of a semigroup S is square-cancellable if a $?* a2. Using
Lemma 2.1 we see that a is square-cancellable if and only if, for all x, y e Sl, xa2 = ya2

implies that xa = ya, and a2x = a2y implies that ax = ay. This provides the justification for
our terminology.

Let a be an element of a semigroup 5. If 5 is a subsemigroup of a semigroup Q, then
a is in a subgroup of Q if and only if a Wa2 in Q. If a Xa2 in Q then clearly a #f* a2 in 5;
thus the condition that a is square-cancellable is a necessary condition for a to be in a
subgroup of an oversemigroup.

In our theory of semigroups of quotients we consider square-cancellable elements as
playing a role analogous to that of non-zero-divisors in the theory of rings of quotients. If
r is an element of a ring R then the condition that r is a non-zero-divisor is a necessary
condition for r to be in the group of units of a ring Q containing R.
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We now give the definition of a semigroup of (left, right) quotients. Let 5 be a
subsemigroup of a semigroup Q. Then Q is a semigroup of left quotients of 5 if

(i) every element of Q can be written as a~1b, where a, b eS and a"1 is the inverse
of a in a subgroup of Q,

(ii) every square-cancellable element of 5 is in a subgroup of Q.
Semigroups of right quotients are defined dually. If Q is a semigroup of left (right)

quotients of 5 then we say that 5 is a left (right) order in Q. A semigroup Q is a semigroup
of quotients of its subsemigroup S and S is an order in Q if 5 is both a left order and a
right order in Q.

The main aim of this paper is to characterise left orders in Clifford semigroups. We
rely continually on Theorem IV.2.1 of [5] which states that a semigroup is a Clifford
semigroup if and only if it is a semilattice of groups. Using this result it is easy to see that
if 5 is a Clifford semigroup then, in 5, SB= 5? = %C= 2). Further, since the $?-classes of a
semigroup are maximal subgroups, it is clear that if 5 is a semilattice Y of groups Ga,
aeY, then the groups Ga are the ^-classes of Q. Hence a Clifford semigroup has a
unique decomposition as a semilattice of groups.

All the left orders we are concerned with in this paper are semilattices of cancellative
semigroups. As in the case of semilattices of groups, semilattices of cancellative
semigroups may be described in a more appealing manner. To be specific they are
separative semigroups.

We recall that a semigroup 5 is separative if, for any x, y e S,

x2 = xy and y2 = yx imply x=y,
ana 2 j 2 • 1

x = yx and y = xy imply x = y.

LEMMA 2.1 [7]. In a separative semigroup S,

xa = yu >f and only if ax = ay for all elements a, x, y of S.

We define the relation J£f on a semigroup T by

a 9* b if, for all x, y eT, ax = ay if and only if bx = by.
The relation 5?f is defined dually and we denote by 2Jff the intersection of the relations i f
and 9t\ Clearly for any semigroup we have 2* c %\ 01* c S?f and X* c 5iff. If T is a
monoid then if* = £\ 9t* = & and X* = X*.

As an immediate consequence of Lemma 2.1 we have the following corollary.
COROLLARY 2.2. Let S be a separative semigroup. Then i£f = £%f = $ff on S.

THEOREM 2.3 [7]. A semigroup S is separative if and only if S is a semilattice of
cancellative semigroups. If so, $fT is the greatest band congruence on S all of whose classes
are cancellative.

COROLLARY 2.4. For a separative semigroup S, if* = 91* = X* = £* = $+ = X\

Proof. We show that if a, b, x e S, a3? b and ax = a, then bx = b.
Suppose that a, b, x are elements of 5 satisfying the above conditions. From
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Theorem 2.3, 5 is a semilattice Y of cancellative semigroups Sa, a eY. If b eSp, x e SY,
then from ax = a we have axb = ab and so bxb = b2 and y/? = /3. Thus b, bx e Sp and since
Sp is cancellative, bx = b.

We make heavy use of the notion of reversibility, which we define for subsets of a
semigroup and not simply subsemigroups. If T is a subset of a semigroup S then T is left
(right) reversible if, given any elements a, b of T, there exist elements u, v in T with
au = bv (ua = vb). If T is both left and right reversible, then we say that T is reversible.

3. The main result. This section is devoted to the proof of the following theorem.

THEOREM 3.1. A semigroup S is a left order in a semilattice Y of groups Ga, a eY, if
and only if S is a semilattice Y of right reversible, cancellative semigroups Sa, a eY.

Proof. Suppose first that 5 is a left order in Q, where Q is a semilattice Y of groups
Ga, a e Y. By the above comments, Sif = !£ = 01 in Q and the groups Ga are the ^-classes
of Q.

For a e Y, we define Sa to be Ga n S. Let a e Y. To see that Ŝ  is non-empty, choose
g e Ga; by the definition of a semigroup of left quotients, g = a~lb for some a, 6 in 5. Let
/3, y e y be such that a e ^ , b eSy. Then a~l eGp and so or = /3y, which gives ab e Sa and
so 5,,. =f 0 . Thus, for any a e Y, Sa is the non-empty intersection of two subsemigroups of
Q, giving that Sa is a subsemigroup.

If a~lbeGa, then a~lb = a~lbea, where e^ is the identity of Ga. Since the
idempotents of Q are central and Sa is non-empty, a~lb = a~xc~xcb for some c e S .̂ Now
if a e Sp, be Sy we have fiy = a and so a~lc~l, ca, cb are elements of Ga. Then

and, similarly,

a lc lca = a leaa = eaa
 la = eaep

caa 'c ' = ceRc ' = cc xeR = en

But eaep is an idempotent in Ga\ so eaep = ea and a 'c ' = (ca) '. Thus any q e Ga may
be written as x~xy for some x, y e Sa; that is, Sa is a left order in Ga. Hence S^ is a right
reversible cancellative subsemigroup of 5. It is clear that 5 is a semilattice Y of the
semigroups S ,̂ a eY.

Conversely, assume that 5 is a semilattice Y of right reversible, cancellative
semigroups Sa, a eY. Since S is separative, Corollary 2.4 gives that $?* = X* on 5. By
Theorem 2.3, $f* is the greatest band congruence on 5, all of whose classes are
cancellative.

We define a relation Ys on 5 by

aYsb if and only if a, b e Sa for some a eY.

Clearly, Ys is a congruence on 5, S/Ys is the semilattice Y and the y5-classes are the
semigroups Sa, a eY. So certainly Ys is a band congruence with cancellative congruence
classes. By the above comments, Ys c X*.

We note that every element of S is square-cancellable, for if a e Sa, x e Sp, y eSY and
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xa2 = ya2, then a/3 = ay and so ax, xa, ya e SaP. But xa2x =ya2x and Sap is cancellative,
which gives that xa =ya. Since 5 is separative, #f* = i%* = 5^ and so a $f* a2, that is, a is
square-cancellable.

We now proceed to construct a semigroup Q of left quotients of 5. For each a eY,
Sa has a group of left quotients Ga and we may assume that GaC)Gp=0 for all a, /? e Y
with a-^ /?. If a- e Y and a, b, c, de Sa are such that a~xb = c"'d in G,,., then b = ac~'d
and since Sa is a left order in Ga, ac'1 = x~ly for some x, y in Sa. This gives that xa =yc
and xb = yd. Conversely, if a, b, c, d,x, y e Sa and xa = yc, xb = yd, then ac~l = x~*y and
b=x~1yd. So b = ac~ld, giving a"1^ = c~ld.

If freSa. and ceSp, then bc,cbeSaP and since S^ is right reversible there exist
x',y'eSap with x'cb—y'bc. Putting x=x'c, y=y'b, one sees that xb=yc and
•*> y e $ap- Further, for any a eSa, d e Sp, *a, _yd € SaP and so (^a)"1^ exists in Gap.

Let (3 = U Ga. Define a product . on Q by
aeY

where if a, b eSa, c, deSp, then x, y eSap are chosen such that xb =yc. We emphasize
that the product (xa)~lyd is taken as the product in Gap.

To see that the product . is well-defined suppose that we have elements a, b, c, d of
Sa, m, n, p, q of 5̂  such that

a~xb = c~xd\n Ga, m~xn=p~xq in Gp.

Then there are elements x, y in Sa and w, x in 5̂  with

xa=yc, (3.1)

xb = yd, (3.2)

wm = zp, (3.3)

wn = zq. (3.4)
By definition,

a~lb . m~ln = (ha)~*kn e Gap,

c~xd. p~xq = {uc)~lvq e Gap,

where h, k, u, v e Sap and

hb = km, (3.5)

ud = vp. (3.6)

Since Sap is right reversible, there are elements s, t in Sap with

sha = tuc. (3.7)

Now sac, 5/1 e Sap; so, again by right reversibility, there are elements /, r' of Sap with
&t = r'sh. Putting Is = /', we have /' e Sap and I'x = r'sh.
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By (3.1) and (3.7),

I'yc = I'xa = r'sha = r'tuc.

This gives (l'y)(d') = (r'tu)(cl') and I'y, cl', r'tu e SaP so that I'y = r'tu. But then from
(3.2) we have

r'shb = I'xb = Vyd = r'tud,

which gives shb = tud. From (3.5) and (3.6),

skm = shb = tud = tup. (3.8)

By a similar argument to the above, there are elements /", r" of Sap with l"w = r"sk
and so, using (3.3) and (3.8), we find that

l"zp = l"wm = r"skm = r"tvp

and it follows that l"z = r"tv. Now, by (3.4),

r"skn = l"wn = l"zq = r"tvq,
giving that

skn = tvq. (3.9)

Equations (3.7) and (3.9) give that a~lb . m~ln = c~xd. p~xq and so the product . on Q is
well-defined.

Next we show that Q is a semigroup, that is the multiplication . on Q is associative.
Let a~lb e Ga, c~xd e Gp, h~lk e GY and put

X={a-xb.c-ld).h~lk
and

Y = a'lb.{c-ld.h-xk).
By definition,

X = ((ray1sd).h-1k,

where r, s e Sap and

rb=sc. (3.10)

Then

X = (tra)-Xuk,

where t, u e SapY and

tsd = uh. (3.11)

Considering Y we have that

Y = a~xb. ((vc)-xwk),

where v, w e SpY and

vd = wh. (3.12)
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Then
Y = (xa)~1ywk,

where x, y e SapY and

xb=yvc. (3.13)
It is clear that X, Y are both members of GapY. Since tra, xa e SapY and SapY is right

reversible, there are elements m, n in SapY with mtra = nxa. Now aŶ fe and so a 3t* b and
mtrb = nxb. Then, by (3.10) and (3.13),

mtsc = mfrb = nxb = nyrc.

But CdK* d and so mted = nyvd, which, by (3.11) and (3.12), gives

muh = mtsd = nyvd = nywh.

Since h %C* k, we have that muk = nywk, which together with mtra = «*a gives that
X=Y.

To see that 5 is a subsemigroup of Q we need only show that the multiplication on Q
extends that of 5. Let aeSa, beSp. Then a = a~WeGa, b = b~xb2eGp. In Q,
a~la2. b~lb2 = (xa)~lyb2, where x, y eSap and xa2 = yb. But then yb2 = xa2b and so, in
Gap,

a~la2. b~xb2 = (xa)-lyb2 = (xa)-\xa)(ab) = eaPab = ab,

where ea/3 is the identity of Gap. Moreover, it is easy to see that if a~xb, c~ld e Ga, then
a~lb. c~xd is equal to the product of a~xb, c~xd in Ga. Thus we may omit the symbol .
and write the product of two elements of Q unambiguously as juxtaposition.

By construction, Q is the union of groups Ga, where, for each a e Y, Ga is the group
of left quotients of Sa. From the definition of multiplication in Q, if a~1beGa,
c~ld 6 Gp, then a~xbc~ld e Gap. Hence GaGp c GaP and so Q is a semilattice Y of groups
Ga, a eY. Finally it is clear that 5 is a left order in Q.

4. Stratified left orders. Theorem 3.1 shows that if S is a semilattice of right
reversible, cancellative semigroups, then for any decomposition of S as a semilattice Y of
right reversible, cancellative semigroups Sa, a e Y, we can construct a Clifford semigroup
Q of left quotients of S, where Q is a semilattice Y of groups Ga, a eY. However, such a
decomposition of 5 is not necessarily unique. For example, the set N of positive integers
under multiplication is a semilattice Y of reversible, cancellative semigroups, where Y is
the single element semilattice. But if X is the two element semilattice {a, fi), where
afi = P, and if

Na = {n e N: n is odd}, Np = {n eN: n is even},

then N = NaU Np, Na) Np are right reversible and cancellative and NaNp c Np. Hence fol
is a semilattice X of right reversible, cancellative semigroups Na, Np. Thus a semilattice
of right reversible, cancellative semigroups may have non-isomorphic semigroups of left
quotients.
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In order to overcome this problem of uniqueness we introduce the notion of a
stratified left order. Let S be a subsemigroup of a semigroup Q. Then 5 is a stratified left
order in Q and Q is a stratified semigroup of left quotients of S if

(i) every element of Q can be written as a~xb, where a, b eS and a9?b in Q,
(ii) every square-cancellable element of 5 is in a subgroup of Q,
(iii) for any elements a, b of 5,

a m b in Q if and only if a °k* b in 5,

a <£b in £ if and only if a i?* b in 5.

Clearly, if S is a stratified left order in Q then 5 is a left order in Q. We have the
obvious definitions of stratified (right) order and stratified semigroup of (right) quotients.

Our interest in stratified semigroups of left quotients is due to the following result.

THEOREM 4.1 [4]. Let S be a stratified left order in semigroups Q and Q'. Then Q and
Q' are isomorphic under an isomorphism whose restriction to S is the identity map.

In the proof of Theorem 3.1 we showed that if 5 is a left order in a Clifford semigroup
Q and q e Q, then q could be written as a~1b for some a, ft in 5 with a 91 b (indeed afflb)
in Q. Since X = 9t = Si? in Q and «S?* = 9?* = 2T in 5, the semigroup 5 will be a stratified
left order in Q if and only if WQ D (5 x 5) = 2S?|. If this is the case, then by Theorem 4.1,
Q must be the unique stratified semigroup of left quotients of S.

The next lemma enables us to show that if a semigroup 5 is a left order in a Clifford
semigroup Q, then 5 is also a stratified left order in some Clifford semigroup Q'.

LEMMA 4.2. Let S be a semilattice Y of right reversible, cancellative semigroups Sa,
aeY. Then $?* is a semilattice congruence on S and the 2£*-classes of S are right
reversible and cancellative.

Proof. From Theorem 2.3 and Corollary 2.4 we have that Sif* is the greatest band
congruence on 5 all of whose classes are cancellative.

As in the proof of Theorem 3.1 we define the relation Ys on 5 by

aYsb if and only if a, b e 5,,. for some aeY.

Then Ys is a semilattice congruence contained in $?*.
To see that $?* is a semilattice congruence, it is only necessary to show that for any

a, b in 5, ab $f* ba. But Ys is a semilattice congruence and so if a, b e S, then abYsba.
Hence ab X* ba and £/$?* is a semilattice.

It remains to prove that the $?*-classes of S are right reversible. Let a, b eS and
suppose that a X* b. Then ab VC* ba $?* a2 M* a, since f̂* is a semilattice congruence.
But abYsba and so if ab, ba eSa, ae Y, then Sa c H*. Now Sa is right reversible, giving
cab = dba for some c, d e Sa. Then ca, db e H* and so //* is right reversible.

We can now deduce the following theorem.

THEOREM 4.3. >1 semigroup S is a stratified left order in a Clifford semigroup if and
only if S is a semilattice of right reversible, cancellative semigroups.
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Proof. If 5 is a stratified left order in a Clifford semigroup Q, then as Q is a
semilattice of groups, Theorem 3.1 gives that 5 is a semilattice of right reversible,
cancellative semigroups.

Conversely, if 5 is a semilattice of right reversible, cancellative semigroups, then
from Lemma 4.2, 5 is a semilattice X of right reversible, cancellative semigroups Sa,
a e X, where the semigroups Sa are the %C*-classes of S. It follows from Theorem 3.1 that
5 is a left order in a Clifford semigroup Q, where the group ^f-classes of Q are the groups
of left quotients of the semigroups Sa, that is, the $f*-classes of 5. It is then immediate
from the construction of Q that $fG n (5 x 5) = 5if|. Hence, by earlier comments, 5 is a
stratified left order in Q.

5. Alternative characterisations. Since semilattices of groups and semilattices of
cancellative semigroups both have more appealing characterisations as inverse semigroups
with central idempotents and separative semigroups, respectively, it is interesting to see
whether semilattices of right reversible, cancellative semigroups might also be described
in a more pleasing way. Obviously, such semigroups are separative and it is easy to see
that they are right reversible. For if 5 is a semilattice Y of right reversible semigroups Sa,
a e Y and a eSa, b eSp, then ba, ab e Saf} and right reversibility of SaP gives that ca = db
for some c,deSaP. However, given a cancellative semigroup T which is not right
reversible, by adjoining a zero to T we obtain a semigroup that is separative and right
reversible, but which has no semilattice decomposition into cancellative right reversible
semigroups.

To avoid awkward examples of this kind we define a stronger version of reversibility.
We say that a semigroup 5 is right W*-reversible if for any a, b in S there exist elements x,
y in S with xa = yb and x 36* y dfC* ab. The dual notion is left %£*-reversibility and we say
that a semigroup is %€*-reversible if it is both right and left #f*-reversible.

THEOREM 5.1. The following conditions are equivalent for the semigroup S:
(I) S is a left order in a Clifford semigroup;

(II) S is a semilattice of right reversible, cancellative semigroups;
(III) S is separative and the %C*-classes of S are right reversible;
(IV) S is separative and right %t*-reversible.

Proof. (I)O(II). This is Theorem 3.1.
(II) =̂> (III). Since 5 is a semilattice of cancellative semigroups, 5 is separative.

Lemma 4.2 gives that the $?*-classes of 5 are right reversible.
(III) => (IV). As 5 is separative, 5 is a semilattice of cancellative semigroups. As in

Lemma 4.2, §if* is a congruence on 5 and S/ffl* is a semilattice.
Let a, b eS. Then ba, ab e H*b as Sif* is a semilattice congruence. But H*b is right

reversible and so there are elements c, d in H*b with cbd = dab. But then cb e H*bHb c
H*b, da e H*hH* c. H*b, so putting x = cb, y = da, we have xa = yb and x 3€* y $f* ab.
Thus 5 is right $f*-reversible. We know that $?* is a semilattice congruence on 5 and that
the $?*-classes of S are cancellative. To see that they are right reversible, let a, b eS and
suppose that a 3C* b. By right $?*-reversibility, there are elements x, y in 5 with
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xW*y%*ab and xa=yb. But S/2T is a semilattice and so ab %* a* %* a. Hence
x$e*y2e*a and //* is right reversible.

6. Some special cases. If a semigroup is commutative it is of course reversible,
indeed any of its subsemigroups is reversible. The following result is essentially Theorem
II.6.6 of [7].

COROLLARY 6.1. The following conditions are equivalent for a semigroup S:
(i) 5 is commutative and separative;

(ii) 5 is a semilattice of commutative, cancellative semigroups;
(iii) S is a left order in a commutative regular semigroup;
(iv) 5 is a subsemigroup of a commutative regular semigroup.

Proof, ( i)^(i i) , (iii)^(iv). These are clear.
(ii)^>(iii). Let 5 be a semilattice Y of commutative, cancellative semigroups Sa,

a eY. From Theorem 3.1, 5 is a left order in a semigroup Q, where Q is a semilattice Y of
groups Ga, a eY and for each a e Y, G« is the group of left quotients of 5,,.. Since Sa is
commutative, Ga is abelian, for each a e Y. It now follows as in Theorem II.6.6 of [7]
that Q is commutative.

(iv) => (i). Let S be a subsemigroup of Q, where Q is commutative and regular. Then
Q is a semilattice Y of abelian groups Ga, a eY, and so certainly Q is commutative and
separative. Since 5 is a subsemigroup of Q, we have that (i) holds.

We recall that a semigroup 5 is abundant if every $%*-class and every i?*-class of 5
contains an idempotent. If in addition the idempotents of S commute, then 5 is said to be
adequate. Owing to the importance of the relations 01* and X* in the theory of
semigroups of quotients, it is interesting to consider abundant orders in Clifford
semigroups. Clearly such orders must in fact be adequate.

PROPOSITION 6.2. The following conditions are equivalent for an adequate semi-
group S:

(I) 5 is a left order in a Clifford semigroup;
(II) &,*=<£* onS and each W*-class is right reversible;

(III) each ye*-class of S contains an idempotent and is right reversible;
(IV) each S^*-class of S contains an idempotent and S is right ffl*-reversible.

Proof. (I) >̂ (II). Since 5 is separative, 91* = 2* = X* on S. From Theorem 5.1, the
$f*-classes of 5 are right reversible.

(II) >̂ (III). This is immediate from Proposition 2.9 of [2].
(III) => (IV). Proposition 2.9 of [2] gives that 5 is a strong semilattice of cancellative

monoids. Thus 5 is separative and since the $?*-classes of 5 are right reversible, Theorem
5.1 gives that S is right 2C*-reversible.

(IV) => (I). Again from Proposition 2.9 of [2], S is separative and so the result
follows from Theorem 5.1.

Finally we consider orders in Clifford semigroups. It is easy to see that if a reversible,

https://doi.org/10.1017/S0017089500006492 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006492


CLIFFORD SEMIGROUPS 191

cancellative semigroup 5 is a left order in a group G, then S is an order in G. For if
a~xb e G, where a, b eS, then by the left reversibility of 5, there are elements c, d in 5
with ac = bd. Then cd'1 = a~lb and so 5 is a right order in G. The situation is similar for
stratified orders in Clifford semigroups.

PROPOSITION 6.3. The following conditions are equivalent for the semigroup S:
(i) 5 is an order in a Clifford semigroup;

(ii) 5 is separative and %?*-reversible;
(iii) S is a semilattice of reversible, cancellative semigroups;
(iv) S is a left order in a Clifford semigroup (2i and a right order in a Clifford

semigroup Q2;
(v) S is a stratified order in a Clifford semigroup.

Proof. The implications (i)=>(ii), (iii)=>(iv) are clear from Theorem 5.1 and the
implication (v) ̂ > (i) is obvious.

(ii)^>(iii). Since 5 is separative, Si?* is a semilattice congruence on 5 and the
Si?*-classes of S are reversible by Theorem 5.1.

(iv)^>(v). By Theorem 5.1, the Si?*-classes of 5 are reversible. From Theorems 3.1
and 4.3, S has a stratified semigroup of left quotients Q, where Q is a Clifford semigroup
and the Si?-classes of Q are the groups of left quotients of the $?*-classes of S. By the
comment preceding this proposition, the group Si?-classes of Q are groups of quotients of
the Si?*-classes of 5 and so S is an order in Q.

COROLLARY 6.4. If S is a stratified left order in a Clifford semigroup Qx and a stratified
right order in a Clifford semigroup Q2, then Qx is isomorphic to Q2 and Qlt Q2 are
semigroups of quotients of S.
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