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1. Introduction

A (continuous and linear) operator T on a topological vector space X is said to be
hypercyclic if there exists a vector x ∈ X, also called hypercyclic, whose orbit {Tnx :
n ∈ N} is dense in X. The earliest examples of hypercyclic operators were operators on
the space H(C) of entire functions. Birkhoff [13] showed that the translation operators
Ta : H(C) → H(C),

Taf(z) = f(z + a), a �= 0,

are hypercyclic, while MacLane [27] obtained the same result for the differentiation
operator D : H(C) → H(C),

Df(z) = f ′(z).

It is natural to ask how slowly a corresponding hypercyclic function can grow at ∞.
Duyos-Ruiz [18] showed that translation hypercyclic entire functions can have arbitrarily
slow transcendental growth (see also [16]). MacLane [27] showed that differentiation
hypercyclic entire functions can be of exponential type 1, and Duyos-Ruiz [19] showed
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that they cannot be of exponential type less than 1. An optimal result on the possible
rates of growth for the differentiation operator was subsequently obtained in [23] and,
independently, in [28]. For generalizations of this result we refer the reader to [12,24].

Analogous investigations have been carried out for harmonic functions. Dzagnidze [20]
obtained the analogue of Birkhoff’s result (see also [6]); Armitage [5] recently studied
corresponding rates of growth. Hypercyclic partial differentiation operators and related
growth rates were investigated by Aldred and Armitage [1–3].

It is the aim of this paper to address the same problems for the notion of frequent
hypercyclicity that was recently introduced by Bayart and Grivaux [10,11]. By definition,
a vector is hypercyclic if its orbit meets every non-empty open set. Now, for frequent
hypercyclicity one demands that the orbit meets every non-empty open set ‘often’ in the
sense of lower density. We recall that the lower density of a subset A of N is defined as

dens(A) = lim inf
N→∞

#{n ∈ A : n � N}
N

,

where # denotes the cardinality of a set.

Definition 1.1. Let X be a topological vector space and let T : X → X be an
operator. Then a vector x ∈ X is called frequently hypercyclic for T if, for every non-
empty open subset U of X,

dens{n ∈ N : Tnx ∈ U} > 0.

The operator T is called frequently hypercyclic if it possesses a frequently hypercyclic
vector.

Remark 1.2. A useful alternative formulation is the following [15]: a vector x ∈ X is
frequently hypercyclic for an operator T on X if and only if, for every non-empty open
subset U of X, there is a strictly increasing sequence (nk) of positive integers and some
C > 0 such that

nk � Ck and Tnkx ∈ U for all k ∈ N.

The problem of determining possible rates of growth of frequently hypercyclic entire
functions has already been studied in [14]. The approach chosen there was based on
an eigenvalue criterion for frequent hypercyclicity. This criterion allowed a wide class of
operators to be treated on the space of entire functions. In this paper we choose a different
approach; while we can only apply it to the translation and differentiation operator, at
least in the latter case we obtain a better result than in [14]. In addition, we show here
that the result obtained in [14] for the translation operator is the best possible.

The present approach consists in studying the frequent hypercyclicity of the sequence
(Tn) of iterates of the given operator T on a space of functions of restricted growth.
For this we shall need the notion of frequent hypercyclicity for an arbitrary sequence of
mappings [15].

Definition 1.3. Let X and Y be topological spaces and let Tn : X → Y , n ∈ N, be
mappings. Then an element x ∈ X is called frequently universal for the sequence (Tn) if,
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for every non-empty open subset U of Y ,

dens{n ∈ N : Tnx ∈ U} > 0.

The sequence (Tn) is called frequently universal if it possesses a frequently universal
element.

In [15], a Frequent Universality Criterion was obtained that generalizes the Frequent
Hypercyclicity Criterion of Bayart and Grivaux [11]. We state it here only for Fréchet
spaces. A collection of series

∑∞
k=1 xk,j , j ∈ I, in a Fréchet space X is said to be uncon-

ditionally convergent, uniformly in j ∈ I, if, for every continuous seminorm p on X

and every ε > 0, there is some N � 1 such that for every finite set F ⊂ N with
F ∩ {1, 2, . . . , N} = ∅ and every j ∈ I we have that p(

∑
k∈F xk,j) < ε.

Theorem 1.4 (Frequent Universality Criterion). Let X be a Fréchet space, let
Y be a separable Fréchet space and let Tn : X → Y , n ∈ N, be operators. Suppose that
there are a dense subset Y0 of Y and mappings Sn : Y0 → X, n ∈ N, such that, for all
y ∈ Y0,

(i)
∑k

n=1 TkSk−ny converges unconditionally in Y , uniformly in k ∈ N,

(ii)
∑∞

n=1 TkSk+ny converges unconditionally in Y , uniformly in k ∈ N,

(iii)
∑∞

n=1 Sny converges unconditionally in X,

(iv) TnSny → y.

Then the sequence (Tn) is frequently universal.

We note that the sums in (i) can be understood as infinite series by adding zero terms.
The spaces H(C) of entire functions and H(RN ) of harmonic functions on R

N , N � 2,
are Fréchet spaces when endowed with the topology of local uniform convergence.

As usual, throughout this paper constants C > 0 can take different values for different
occurrences. By R+ we denote the set of real numbers x > 0. We write an ∼ bn for
positive sequences (an) and (bn) if an/bn and bn/an are bounded.

2. Frequently hypercyclic entire functions for the differentiation operator

For hypercyclicity with respect to the differentiation operator D, the rate of growth
er/

√
r turns out to be critical. Indeed, one has the following precise result [23, 28]: if

ϕ : R+ → R+ is any function with ϕ(r) → ∞ as r → ∞, then there is a D-hypercyclic
entire function f with

|f(z)| � ϕ(r)
er

√
r

for |z| = r sufficiently large;

however, there is no D-hypercyclic entire function f that satisfies

|f(z)| � C
er

√
r

for |z| = r > 0,

where C > 0.
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Before beginning our investigation into frequent hypercyclicity we want to extend this
result to growth rates in terms of Lp-averages. For an entire function f and 1 � p < ∞
we consider

Mp(f, r) =
(

1
2π

∫ 2π

0
|f(reit)|p dt

)1/p

and

M∞(f, r) = sup
|z|=r

|f(z)|,

for r > 0. The growth result stated above is in terms of M∞. It extends directly to all Mp.

Theorem 2.1. Let 1 � p � ∞.

(a) For any function ϕ : R+ → R+ with ϕ(r) → ∞ as r → ∞ there is a D-hypercyclic
entire function f with

Mp(f, r) � ϕ(r)
er

√
r

for r > 0 sufficiently large.

(b) There is no D-hypercyclic entire function f that satisfies

Mp(f, r) � C
er

√
r

for r > 0,

where C > 0.

Proof. Since
Mp(f, r) � M∞(f, r), r > 0,

part (a) follows from the corresponding classical result.
Part (b) follows as in the proof given in [23]. By the Cauchy estimates we have that

|f (n)(0)| � n!
rn

M1(f, r).

Since M1(f, r) � Mp(f, r), we find that

|f (n)(0)| � C
n!

nn+1/2 en, n � 1.

Now Stirling’s Formula implies that (f (n)(0)) is bounded, so that f cannot be hypercyclic.
�

After these preliminaries we study growth rates for frequent hypercyclicity. As an
auxiliary result we shall need the following estimate; it is certainly known in some form
or other, but we have not been able to find a reference. We deduce it here from a much
stronger result of Barnes [9].
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Lemma 2.2. Let 0 < α � 2 and β ∈ R. Then there is some C > 0 such that, for all
r > 0,

∞∑
n=0

rαn

(n + 1)β(n!)α
� Cr(1−α−2β)/2eαr.

Proof. Barnes [9, pp. 289–292] studied the functions

Eα(z; θ, β) =
∞∑

n=0

zn

(n + θ)βΓ (αn + 1)

for α, θ > 0, β ∈ R; for the special case of β = 0 these are the Mittag–Leffler functions
(see also [21, § 18.1]). Barnes derived asymptotic expansions for his functions which, for
0 < α � 2 and z ∈ R, z → ∞, yield that

Eα(r; θ, β) = αβ−1r−β/α exp(r1/α)(1 + O(r−1/α)).

Now, by Stirling’s Formula we have that

(n!)α

Γ (αn + 1)
∼ α−αn(n + 1)(α−1)/2.

Thus, we obtain that

∞∑
n=0

(r/αα)n

(n + 1)β+(1−α)/2(n!)α
� Cr−β/α exp(r1/α).

A change of variables and parameters implies the claimed estimate. �

Our first main result gives growth rates for which D-frequently hypercyclic functions
exist. In the following, we shall set 1/(2p) = 0 for p = ∞.

Theorem 2.3. Let 1 � p � ∞, and set a = 1/(2 max{2, p}). Then, for any function
ϕ : R+ → R+ with ϕ(r) → ∞ as r → ∞, there is an entire function f with

Mp(f, r) � ϕ(r)
er

ra
for r > 0 sufficiently large

that is frequently hypercyclic for the differentiation operator.

Proof. Since
Mp(f, r) � M2(f, r) for 1 � p < 2,

we need only prove the result for p � 2.
Thus, let 2 � p � ∞. We shall make use of the Frequent Universality Criterion.

Assuming without loss of generality that infr>0 ϕ(r) > 0, we consider the space

X =
{

f ∈ H(C) : ‖f‖X := sup
r>0

Mp(f, r)r1/(2p)

ϕ(r)er
< ∞

}
.
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It is not difficult to see that (X, ‖ · ‖X) is a Banach space that is continuously embedded
in H(C); one need only note that on account of the Cauchy estimates we have that, for
0 < ρ < r,

sup
|z|�ρ

|f(z)| � r

r − ρ
M1(f, r) � r

r − ρ
Mp(f, r).

In addition, we define Y0 ⊂ H(C) as the set of polynomials, and we consider the
mappings

Tn : X → H(C), Tn = Dn|X ,

which are continuous, and

Sn : Y0 → X, Sn = Sn with Sf(z) =
∫ z

0
f(ζ) dζ.

Then we have, for any polynomial f and any k ∈ N, that

k∑
n=1

TkSk−nf =
k∑

n=1

Dnf ;

this converges unconditionally in H(C), uniformly for k ∈ N, because
∑∞

n=1 Dnf is a
finite series. Moreover, we have that

TnSnf = f for any n ∈ N

and
∞∑

n=1

TkSk+nf =
∞∑

n=1

Snf.

Thus, the conditions (i)–(iv) in Theorem 1.4 are satisfied if we can show that
∑∞

n=1 Snf

converges unconditionally in X, for any polynomial f ; note that X is continuously embed-
ded in H(C). It suffices to consider f(z) = zk, k ∈ N0, in which case

∞∑
n=1

Snf(z) =
∞∑

n=1

k!
(k + n)!

zk+n.

Therefore, all we need to show is that

∞∑
n=1

zn

n!

converges unconditionally in X. To this end, let ε > 0 and N ∈ N. By the Hausdorff–
Young Inequality (see, for example, [25]) we obtain for any finite set F ⊂ N that

Mp

( ∑
n∈F

zn

n!
, r

)
�

( ∑
n∈F

rqn

(n!)q

)1/q

,
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where q is the conjugate exponent of p. Hence, if F ∩ {0, 1, . . . , N} = ∅, then

∥∥∥∥ ∑
n∈F

zn

n!

∥∥∥∥
X

�
(

sup
r>0

rq/(2p)

ϕ(r)qeqr

∑
n>N

rqn

(n!)q

)1/q

.

We choose R > 0 such that ϕ(r)q � 1/ε for r � R. Then we have that

sup
r�R

rq/(2p)

ϕ(r)qeqr

∑
n>N

rqn

(n!)q
� Rq/(2p)

infr>0 ϕ(r)q

∑
n>N

Rqn

(n!)q
→ 0 as N → ∞;

moreover, Lemma 2.2 implies that

sup
r�R

1
ϕ(r)q

rq/(2p)

eqr

∑
n>N

rqn

(n!)q
� Cε for any N ∈ N,

where C is a constant only depending on q; note that 1
2 (1 − q) + q/(2p) = 0.

This shows that ∥∥∥∥ ∑
n∈F

zn

n!

∥∥∥∥
q

X

� (1 + C)ε,

if minF > N and N is sufficiently large, so that
∑∞

n=1 zn/n! converges unconditionally
in X. �

The following result gives lower estimates on the possible growth rates.

Theorem 2.4. Let 1 � p � ∞, and set a = 1/(2 min{2, p}).
Let ψ : R+ → R+ be any function with ψ(r) → 0 as r → ∞. Then there is no

D-frequently hypercyclic entire function f that satisfies

Mp(f, r) � ψ(r)
er

ra
for r > 0 sufficiently large. (2.1)

Proof. First, for p = 1 the result follows immediately from Theorem 2.1 (b) (one may
even take ψ(r) ≡ C here). Moreover, since

M2(f, r) � Mp(f, r) for 2 < p � ∞,

it suffices to prove the result for p � 2.
Thus, let 1 < p � 2. We obviously may assume that ψ is decreasing. Suppose that f

satisfies (2.1). With the help of the Hausdorff–Young Inequality (see [25]) we obtain

( ∞∑
n=0

(
|f (n)(0)|

n!
rn

)q )1/q

� Mp(f, r) � ψ(r)
er

r1/(2p) (2.2)

for r > 0 sufficiently large, where q is the conjugate exponent of p. Thus, we have that,
for large r,

∞∑
n=0

|f (n)(0)|q rqn+q/(2p)e−qr

ψ(r)q(n!)q
� 1. (2.3)
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Using Stirling’s Formula we see that the function

g(r) =
rqn+q/(2p)e−qr

(n!)q

has its maximum at an := n + 1/(2p) with g(an) ∼ 1/
√

n and an inflection point at
bn := an +

√
n/q + n/(2pq); we have used here that q/(2p)− 1

2q = − 1
2 . On In := [an, bn],

g therefore dominates the linear function h that satisfies h(an) = g(an), h(bn) = 0.
Now let m � 1. If m is sufficiently large and m < n � 2m, then In ⊂ [m, 3m]. Hence,

for these n we have∫ 3m

m

rqn+q/(2p)e−qr

ψ(r)q(n!)q
�

∫
In

h(r)
ψ(r)q

dr � C
1

ψ(m)q

1√
n

√
n

q
+

1
2pq

� C
1

ψ(m)q
.

Integrating (2.3) over [m, 3m], we thus obtain that, for m sufficiently large,

1
m

2m∑
n=m+1

|f (n)(0)|q � Cψ(m)q;

hence,

ym =
1
m

2m∑
n=m+1

|f (n)(0)|q → 0.

Notice that

m∑
n=1

yn =
m∑

n=1

1
n

∑
n<j�2n

|f (j)(0)|q �
m∑

j=2

|f (j)(0)|q
( ∑

j/2�n<j

1
n

)
� 1

2

m∑
j=2

|f (j)(0)|q.

Since ym → 0 implies (1/m)
∑m

n=1 yn → 0, one obtains that

1
m

m∑
n=0

|f (n)(0)|q → 0.

Hence, we have

dens{n ∈ N : |f (n)(0)| > 1} = lim inf
m→∞

1
m

#{n � m : |f (n)(0)| > 1}

� lim inf
m→∞

1
m

m∑
n=0

|f (n)(0)|q → 0,

which shows that f is not frequently hypercyclic for the differentiation operator. �

Figure 1 shows our present knowledge of possible or impossible growth rates er/ra for
frequent hypercyclicity with respect to D.
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Figure 1. Possible or impossible growth rates er/ra

for frequent hypercyclicity with respect to D.

3. Frequently hypercyclic entire functions for translation operators

We turn to the translation operators

Taf(z) = f(z + a), a �= 0.

Duyos-Ruiz [18] has shown that for any chosen transcendental growth rate there is a
Ta-hypercyclic entire function with slower growth. We shall see here that this behaviour
does not extend to frequent hypercyclicity. In fact, we have the following sharp result.

Theorem 3.1. Let a ∈ C, a �= 0.

(a) For any ε > 0, there is an entire function f that is frequently hypercyclic for Ta

such that
M∞(f, r) � Ceεr for r > 0,

where C > 0.

(b) Let ε : R+ → R+ with lim infr→∞ ε(r) = 0. Then there exists no entire function f

that is frequently hypercyclic for Ta with

M1(f, r) � Ceε(r)r for r sufficiently large.

Proof. For (a) we combine ideas from the proofs of [15, Theorem 4.2] and our The-
orem 2.3. By considering the change of variable z �→ z/a it is easy to see that we may
assume that a = 1. For fixed ε > 0 we consider the Banach space

X =
{

f ∈ H(C) : ‖f‖X := sup
r>0

sup
|z|=r

|f(z)|
eεr

< ∞
}

and, for n ∈ N, the continuous mappings

Tn : X → H(C), Tnf(z) = f(z + n).

The result will follow if we can show that (Tn) is frequently universal, for which we shall
apply the Frequent Universality Criterion.
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For m, k ∈ N we consider the entire functions

fm,k(z) = zm

(
sin(z/k)

z/k

)m+2

,

and we set

Y0 = span
{

fm,k : m, k ∈ N,
m + 2

k
� ε

2

}
.

Since fm,k(z) → zm in H(C) as k → ∞, we have that Y0 is dense in H(C).
Finally, we define, for n ∈ N, the mappings

Sn : Y0 → X, Snf(z) = f(z − n),

which are easily seen to be well defined.
Now, for all m, k, l ∈ N,

l∑
n=1

T lSl−nfm,k(z) = km+2
l∑

n=1

sinm+2((z + n)/k)
(z + n)2

;

since the series
∞∑

n=1

sinm+2((z + n)/k)
(z + n)2

converge absolutely (hence unconditionally in H(C)), condition (i) of the Frequent Uni-
versality Criterion follows. Condition (iv) is immediate, and for conditions (ii) and (iii)
it suffices to show that, whenever (m + 2)/k � 1

2ε,

∞∑
n=1

Snfm,k(z) = km+2
∞∑

n=1

sinm+2(z − n)/k

(z − n)2

converges absolutely in X.
To see this, let n ∈ N. We first consider the case when |z − n| � 1. Writing

Cm,k = max
|z|�1

∣∣∣∣ sinm+2(z/k)
z2

∣∣∣∣,
we find that

|Snfm,k(z)|
eε|z| � km+2 Cm,k

eε(n−1) .

Next, if 1 � |z − n| � 1
2n, then |Re z| � 1

2n, so that

|Snfm,k(z)|
eε|z| � km+2 exp((m + 2)|Im z|/k)

exp(ε(|Re z| + |Im z|)/2)
� km+2

exp(ε|Re z|/2)
� km+2

eεn/4 .

Finally, if |z − n| � 1
2n, then

|Snfm,k(z)|
eε|z| � km+2 exp((m + 2)|Im z|/k)

eε|z||z − n|2 � 4
km+2

n2 .
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Combining these results we have that
∞∑

n=1

‖Snfm,k‖X < ∞,

which had to be shown.

We turn to the proof of (b), again assuming that a = 1. Let f be an entire function
that is frequently hypercyclic for T1; by adding a constant, if necessary, we may assume
that f(0) = 1. Then there exists a strictly increasing sequence (nk) in N with nk = O(k)
such that, for all k ∈ N,

|f(z + nk) − z| < 1
2 for |z| � 1

2 .

It follows from Rouché’s Theorem that f has a zero in |z − nk| < 1
2 . If N(r) denotes the

number of zeros of f in |z| < r, counting multiplicity, then, for all k ∈ N, we consequently
have

N(nk + 1) � k. (3.1)

Now assume in addition that there is ε : R+ → R+ with lim infr→∞ ε(r) = 0 and some
C > 0 such that

M1(f, r) � Ceε(r)r for r sufficiently large.

Applying Jensen’s Formula [17, pp. 280–282]

log |f(0)| +
∫ R

0

N(r)
r

dr =
1
2π

∫ π

−π

log |f(Reit)| dt

and Jensen’s Inequality for concave functions,

M1(log |f |, R) � log M1(f, R),

we have that, for large R,

N(R) log 2 �
∫ 2R

R

N(r)
r

dr � log C + 2Rε(2R).

Let Rν be such that ε(2Rν) → 0. Then there are kν ∈ N with

nkν
+ 1 � Rν � nkν+1.

We obtain that

N(nkν + 1) log 2 � N(Rν) log 2 � log C + 2Rνε(2Rν) � log C + 2nkν+1ε(2Rν);

hence,
N(nkν

+ 1)
nkν+1

→ 0. (3.2)

On the other hand, it follows from (3.1) that

N(nkν
+ 1)

nkν+1
� kν

nkν+1
� 1

2
kν + 1
nkν+1

,

so that, by (3.2), supk nk/k = ∞, which is a contradiction. This proves the claim. �
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The theorem implies that Ta has frequently hypercyclic entire functions of order 1 and
any given positive type, but not of type 0. The positive part was also obtained, by a
different method, in [14, Corollary 3.5].

The theorem can also be phrased more succinctly in the following way.

Corollary 3.2. Let φ : R+ → R+ be arbitrary and let 1 � p � ∞. Then there exists
a Ta-frequently hypercyclic entire function f with

Mp(f, r) � Cφ(r) for r sufficiently large

for some C > 0 if and only if

lim inf
r→∞

log(φ(r))
r

> 0.

4. Frequently hypercyclic harmonic functions for differentiation operators

We next study harmonic functions on R
N , N � 2, where we again start by considering

differentiation operators. Here they take the form

Dα =
∂|α|

∂xα1
1 . . . ∂xαN

N

,

where α = (α1, . . . , αN ) ∈ N
N
0 and |α| = α1 + · · · + αN .

Following [1], we first consider the special operators ∂/∂xk, and we study rates of
growth in terms of the L2-norm on spheres. More precisely, let S(r) be the sphere of
radius r centred at the origin 0 of R

N , and let σ be the normalized (N − 1)-dimensional
measure on S(r). For h ∈ H(RN ) and r > 0 we consider

M2(h, r) =
( ∫

S(r)
|h|2 dσ

)1/2

.

Then, for any function ϕ : R+ → R+ with ϕ(r) → ∞ as r → ∞ and 1 � k � N , there
exists a harmonic function h on R

N that is ∂/∂xk-hypercyclic such that

M2(h, r) � ϕ(r)
er

r(N−1)/2 for r > 0 sufficiently large,

while there can be no ∂/∂xk-hypercyclic harmonic function h that satisfies [1]

M2(h, r) � C
er

r(N−1)/2 for r > 0.

Note that Aldred and Armitage phrase their result in terms of a different notion of
universality, but their proof gives the result stated above.

We study the situation for frequent hypercyclicity. We shall need the following lemma,
where Hj,N , j � 0, denotes the space of homogeneous harmonic polynomials on R

N of
degree j.
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Lemma 4.1. Let α ∈ N
N
0 . For any H ∈ Hj,N , j � 0, there exists a unique polynomial

G ∈ Hj+|α|,N with
DαG = H.

Existence is obtained in [2, Lemma 2]. For |α| = 1, uniqueness is easily deduced from [1,
Lemma 3 (ii) and (10)]; the case of general α follows by induction (it is important to note
that the uniqueness assertion in [1, Lemma 3 (ii)] does not depend on the orthogonality
of the stated representation; see [26, Theorem 3]).

Theorem 4.2. Let 1 � k � N .

(a) Let ϕ : R+ → R+ be any function with ϕ(r) → ∞ as r → ∞. Then there is a
∂/∂xk-frequently hypercyclic harmonic function h on R

N with

M2(h, r) � ϕ(r)
er

rN/2−3/4 for r > 0 sufficiently large.

(b) Let ψ : R+ → R+ be any function with ψ(r) → 0 as r → ∞. Then there is no
∂/∂xk-frequently hypercyclic harmonic function h on R

N with

M2(h, r) � ψ(r)
er

rN/2−3/4 for r > 0 sufficiently large.

Proof. (a) We assume without loss of generality that infr>0 ϕ(r) > 0 and define

X =
{

h ∈ H(RN ) : ‖h‖X := sup
r>0

M2(h, r)rN/2−3/4

ϕ(r)er
< ∞

}
.

Then, as in [1], X is a Banach space that is continuously embedded in H(RN ), endowed
with the topology of local uniform convergence.

For n ∈ N, we consider the continuous mappings

Tn : X → H(RN ), Tn =
∂n

∂xn
k

∣∣∣∣
X

,

and for Y0 we take the space of harmonic polynomials on R
N .

Next, by Lemma 4.1, for any H ∈ Hj,N and n ∈ N, there exists a unique harmonic
polynomial Pn(H) ∈ Hj+n,N such that

∂n

∂xn
k

Pn(H) = H.

Moreover, by [1, Lemma 4] and the homogeneity of Pn(H), we have

M2(Pn(H), r) � cN,j,nrj+nM2(H, 1) (4.1)

with

cN,j,n =
(

(N + 2j − 2)!
n!(N + 2j + n − 3)!(N + 2j + 2n − 2)

)1/2

.
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We note that, for fixed j,

cN,j,n ∼ 1
(n + j)!(n + j + 1)N/2−1 . (4.2)

Since any harmonic polynomial h of degree m has a unique representation

h =
m∑

j=0

Hj , Hj ∈ Hj,N ,

(see [8, Proposition 1.26, Theorem 1.27]), we may define, for n ∈ N, the mappings

Sn : Y0 → X, h =
m∑

j=0

Hj �→
m∑

j=0

Pn(Hj).

With these definitions we have for any harmonic polynomial h and l ∈ N that

l∑
n=1

TlSl−nh =
l∑

n=1

Tnh;

this converges unconditionally in H(RN ), uniformly for l ∈ N, because
∑∞

n=1 Tnh is a
finite series. Moreover,

TnSnh = h for any n � 1.

In addition, the uniqueness of the Pn(H) implies that

TlSl+nh = Snh for n � 1.

Thus, in order for conditions (i)–(iv) in the Frequent Universality Criterion to hold it
suffices to show that

∞∑
n=1

SnH =
∞∑

n=1

Pn(H)

converges unconditionally in X, for any polynomial H ∈ Hj,N , j � 0.
Since the degrees of the Pn(H), n � 1, are different, these functions are orthogonal

with respect to the inner product defining M2(f, r) [8, Theorem 5.3]. Hence, for F ⊂ N

finite, using (4.1), (4.2) and [1, Lemma 4], we have∥∥∥∥ ∑
n∈F

Pn(H)
∥∥∥∥

X

= sup
r>0

rN/2−3/4

ϕ(r)er
M2

( ∑
n∈F

Pn(H), r
)

= sup
r>0

rN/2−3/4

ϕ(r)er

( ∑
n∈F

M2
2 (Pn(H), r)

)1/2

� C sup
r>0

rN/2−3/4

ϕ(r)er

( ∑
n∈F

c2
N,j,nr2(j+n)

)1/2

� C sup
r>0

rN/2−3/4

ϕ(r)er

( ∑
n∈F

1
((n + j)!)2

(n + j + 1)N−2r2(j+n)
)1/2

.

https://doi.org/10.1017/S0013091508000564 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000564


Rate of growth of frequently hypercyclic functions 53

By Lemma 2.2 we have that( ∞∑
n=0

1
(n!)2(n + 1)N−2 r2n

)1/2

� C
er

rN/2−3/4 ,

which, as in the proof of Theorem 2.3, implies the unconditional convergence of∑∞
n=0 Pn(H).

(b) We may assume that ψ is monotonically decreasing. Let h ∈ H(RN ) satisfy the
given growth condition. We can write h as

h =
∞∑

n=0

Hn, Hn ∈ Hn,N .

By orthogonality of this sum we have

M2(h, r)2 =
∞∑

n=0

M2(Hn, r)2.

In addition,
∂n

∂xn
k

h(0) =
∞∑

j=0

∂n

∂xn
k

Hj(0) =
∂n

∂xn
k

Hn(0);

in view of [1, Lemma 1] we deduce that∣∣∣∣ ∂n

∂xn
k

h(0)
∣∣∣∣ � n!

√
dn,Nr−nM2(Hn, r),

where dn,N = dimHn,N . We note that dn,N = O(nN−2) (see [1] or [8, p. 94]). Combining
these results, we find that

∞∑
n=0

∣∣∣∣ ∂n

∂xn
k

h(0)
∣∣∣∣
2 1
(n!)2nN−2 r2n � Cψ(r)2

e2r

rN−3/2 ,

that is,
∞∑

n=0

∣∣∣∣ ∂n

∂xn
k

h(0)
∣∣∣∣
2

r2n+N−3/2e−2r

ψ(r)2(n!)2nN−2 � C.

We can now argue exactly as in the proof of Theorem 2.4; note that the function

g(r) =
r2n+N−3/2e−2r

(n!)2nN−2

has its maximum at an = n + 1
2N − 3

4 with g(an) ∼ 1/
√

n and an inflection point at

n + 1
2N − 3

4 +
√

1
2n + 1

4N − 3
8 .

We then obtain that
1
m

m∑
n=0

∣∣∣∣ ∂n

∂xn
k

h(0)
∣∣∣∣
2

→ 0,

so that h cannot be frequently hypercyclic. �
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In [2], Aldred and Armitage studied rates of growth in terms of sup-norms on spheres,
and they did this for arbitrary differentiation operators Dα.

In order to formulate their results we need to introduce the constants cN given by

c2 = 1, cN = N

( N−1∏
j=1

(2j)2j

(2j + 1)2j+1

)1/(2N)

, N � 3.

Then [2]

cN >
√

1
2N for N � 3 and cN =

√
1
2N + o(1) as N → ∞.

Aldred and Armitage then show that, for any α ∈ N
N
0 , α �= 0, there exists a harmonic

function h on R
N that is hypercyclic for Dα such that, for any ε > 0, there is some

Cε > 0 with
|h(x)| � Cεe(cN+ε)r for ‖x‖ = r > 0,

while, for α = (1, 1, . . . , 1), there can be no Dα-hypercyclic harmonic function h that
satisfies

|h(x)| � Cecr for ‖x‖ = r > 0

for any c <
√

1
2N . Here, ‖x‖ denotes the Euclidean norm of x ∈ R

N .
We improve the positive part of this result in two directions: we strengthen the growth

condition and we extend the result to frequent hypercyclicity. Note, however, that the
result of Aldred and Armitage even covers a more general notion of universality.

Theorem 4.3. Let α ∈ N
N
0 , α �= 0. Let ϕ : R+ → R+ be a function such that

ϕ(r)/rp → ∞ as r → ∞ for any p � 0. Then there exists a harmonic function h on R
N

with
|h(x)| � ϕ(r)ecN r for ‖x‖ = r sufficiently large

that is frequently hypercyclic for Dα.

Proof. The proof follows the same lines as that of Theorem 4.2. Assuming, as usual,
that infr>0 ϕ(r) > 0, we consider the Banach space

X =
{

h ∈ H(RN ) : ‖h‖X := sup
r>0

sup
‖x‖=r

|h(x)|
ϕ(r)ecN r

< ∞
}

,

which is continuously embedded in H(RN ), and we define continuous mappings

Tn : X → H(RN ), Tn = Dnα|X .

For Y0 we consider the space of harmonic polynomials on R
N . The mappings Sn : Y0 → X

are defined by

h =
m∑

j=0

Hj �→
m∑

j=0

Pn(Hj),
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where Hj ∈ Hj,N and Pn(Hj) denotes the unique polynomial Gj ∈ Hj+n|α|,N with
DnαGj = Hj (see Lemma 4.1). It follows from [2, Lemma 4] that

sup
‖x‖=r

|Pn(Hj)| � C
nA|α|A(j + 1)(N−1)/2(cNr)n|α|

(n|α|)! sup
‖x‖=r

|Hj(x)|,

where A, C > 0 are constants depending only on N ; we may assume that A ∈ N.
Now, as in the proof of Theorem 4.2, the conditions of the Frequent Universality

Criterion are satisfied in this setting; we need only note that here we have

sup
r>0

1
ϕ(r)ecN r

∞∑
n=L+1

C
nA|α|A(j + 1)(N−1)/2(cNr)n|α|

(n|α|)! sup
‖x‖=r

|Hj(x)|

� C sup
r>0

1
ϕ(r)ecN r

∞∑
n=L+1

nA(cNr)n|α|

(n|α|)! rj

� C sup
r>0

rj+A

ϕ(r)ecN r

∞∑
n=L+1

(cNr)n|α|−A

(n|α| − A)!
,

where we have used the homogeneity of Hj . �

Our previous result contains, in particular, the following.

Corollary 4.4. For every α ∈ N
N
0 , α �= 0, the operator Dα is frequently hypercyclic

on H(RN ).

We complement Theorem 4.3 by giving lower estimates for possible growth rates, where
we obtain rates in terms of L2-norms. Note, however, that since

M2(h, r) � sup
‖x‖=r

|h(x)|,

the result is also true for M∞. For the same reason, Theorem 4.3 also gives a result in
terms of M2.

Theorem 4.5. Let α ∈ N
N
0 , α �= 0. Let ν denote the number of non-zero αk and let

µ =

√
|α|

2(
∏N

k=1 ααk

k )1/|α|
.

If ψ : R+ → R+ is any function with ψ(r) → 0 as r → ∞, then there is no Dα-frequently
hypercyclic harmonic function h on R

N with

M2(h, r) � ψ(r)
eµr

r(N+ν−2)/4 for r > 0 sufficiently large.

In particular, if α = (1, 1, . . . , 1), then there exists no Dα-frequently hypercyclic func-
tion h with

M2(h, r) � ψ(r)
exp(

√
N/2r)

r(N−1)/2 .
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Proof. By [22, Lemma 2.4] we have that

M2(h, r)2 = Γ ( 1
2N)

∞∑
m=0

|∇mh(0)|2
2mm!Γ (m + N/2)

r2m

with

|∇mh|2 = m!
∑

|α|=m

|Dαh|2
α1! · · ·αN !

.

Hence, we obtain that
∞∑

n=0

|Dnαh(0)|2
2n|α|Γ (n|α| + 1

2N)(nα1)! · · · (nαN )!
r2|n|α � CM2(h, r)2.

Using the definition of µ and ν we deduce that

∞∑
n=0

|Dnαh(0)|2
n(N+ν−1)/2

(
eµ

n|α|

)2n|α|
r2n|α| � CM2(h, r)2.

Now the proof can be completed as for Theorem 2.4. �

Remark 4.6. It is instructive to compare Theorem 4.5 with Theorem 4.2 (b).

(a) First, Theorem 4.2 (b) immediately extends to any operator Dα with α =
(0, . . . , 0, ν, 0, . . . , 0), ν � 1, because any function that is frequently hypercyclic
for such a Dα is also frequently hypercyclic for some ∂/∂xk. Even more is true; one
can show that Theorem 4.2 (b) holds with the same growth rate for an arbitrary
operator Dα, α �= 0. One need only repeat the proof, noting that

Dnα
∞∑

j=0

Hj(0) =
∞∑

j=0

DnαHj(0) = DnαHn|α|(0)

and that [1, Lemma 1] is valid for arbitrary Dα.

(b) Together with Theorem 4.5 we now have two lower estimates for growth rates for
arbitrary operators Dα. In some cases, Theorem 4.2 (b) gives the better growth esti-
mate (for example, when α has exactly one non-zero entry); in others Theorem 4.5
gives the better estimate (for example, if α = (1, 1, . . . , 1), N � 3).

5. Frequently hypercyclic harmonic functions for translation operators

We finally consider translation operators

Taf(x) = f(x + a), a �= 0,

on spaces of harmonic functions. The hypercyclicity of these operators was obtained
by Dzagnidze [20]. An alternative proof is due to Armitage and Gauthier [6] (see also
[4, § 11]); using their approach, we can show that the translation operators are even
frequently hypercyclic.

https://doi.org/10.1017/S0013091508000564 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000564


Rate of growth of frequently hypercyclic functions 57

Theorem 5.1. Every translation operator Ta, a �= 0, is frequently hypercyclic on
H(RN ).

Proof. By [11, Lemma 2.2] (see also [15, Lemma 2.5]) there are pairwise disjoint sets
A(l, ν) ⊂ N, l, ν � 1, of positive lower density such that

|n − m| � ν + µ for n ∈ A(l, ν), m ∈ A(k, µ), n �= m.

Let (Pl)l�1 be a dense sequence of harmonic polynomials in R
N . We define a function g

by
g(x) = Pl(x − na) for x ∈ B(na, 1

2ν‖a‖), n ∈ A(l, ν), l, ν � 1,

where B(b, ρ) = {x ∈ R
N : ‖x − b‖ � ρ}.

Then g and

F =
∞⋃

n=1

B(na, 1
2ν‖a‖)

satisfy the conditions of [7, Theorem 1.1 ]. Thus, there exists a harmonic function f on
R

N such that
|f(x) − g(x)| <

1
1 + ‖x‖ for x ∈ F.

This implies that, for n ∈ A(l, ν), l, ν � 1,

sup
‖x‖�ν‖a‖/2

|f(x + na) − Pl(x)| → 0 as n → ∞.

Since each set A(l, ν) has positive lower density, f is frequently hypercyclic for Ta. �

Armitage [5] proved that if φ : [0,∞) → (0,∞) is a continuous increasing function
such that log φ(r)/(log r)2 → ∞ as r → ∞, then there exists a harmonic function f on
R

N that is hypercyclic for Ta such that

|f(x)| � φ(‖x‖) for x ∈ R
N and lim sup

x→∞

f(x)
φ(‖x‖)

= 1.

In particular, there are hypercyclic harmonic functions of order 0. However, the methods
of [5] do not seem to be adaptable to the study of frequent hypercyclicity of Ta.

6. Problems

To end this paper we formulate several open problems.

• Complete the diagram in Figure 1.

• Even for p = 2 there remains a problem: does there exist a D-frequently hypercyclic
entire function f that satisfies

M2(f, r) � C
er

r1/4 for r > 0?
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• Obtain the analogue of Theorem 4.2 for rates of growth in terms of Lp-norms
Mp(h, r).

• Does there exist a ∂/∂xk-frequently hypercyclic harmonic function h on R
N such

that

M2(h, r) � C
er

rN/2−3/4 for r > 0?

• Find an optimal result on the possible rates of growth (in the ordinary sense, or in
terms of Mp, 1 � p < ∞) of harmonic functions that are hypercyclic or frequently
hypercyclic for Dα. Aldred and Armitage [2] conjecture that, for hypercyclicity and
sup-norms, exponential type

√
1
2N (instead of the larger cN ) is possible.

• Obtain (optimal) results on the possible rates of growth of harmonic functions that
are frequently hypercyclic for Ta, a �= 0.
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