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ABSTRACT. Conditions for passive folding near ice-sheet centers are derived treating
the ice as an anisotropic viscous medium.Vertical uniaxial compression at a dome, or pure
shear stress near a ridge divide, both tend to stretch and flatten folds, while horizontal
simple shear deformation tends to overturn folds. Overturned folding is likely in a given
vicinity in a steady-state flow field, if the initial slope of a layer disturbance exceeds the
ratio of compressive/extensive deformation to shear deformation. Analytical equations for
particle tracks in steady state allow us to model the evolution of layers with initial slope
disturbances (`̀ wrinkles’’). The effects of anisotropy are explored using an analytical
solution for the strain rate as a function of a vertically symmetric c-axis orientation distri-
bution, called a cone fabric. Stronger anisotropy (small cone angle) makes the material
softer in horizontal shear, and facilitates folding, i.e. elements with smaller slopes can be
overturned for the same stress. The relation between anisotropy and folding is compli-
cated by the fact that, for a range of cone angles, the material is also softer in compression,
which opposes folding. Simulating a layer with spatially variable tilt of cone symmetry
axes, and accounting for fabric development, demonstrates that variations in the fabric
cause localized flow variations that could create the initial perturbations.

1. INTRODUCTION

Our knowledge of past climate conditions comes largely from
ice cores and other sedimentary records. Interpretation of
these records relies on the assumption that the stratigraphic
layering has remained intact. For marine and lacustrine sedi-
mentary cores, bioturbation and tectonic displacements are
major concerns. For ice-core records, layer stratigraphy is
usually assumed to have remained intact except possibly very
close to the bed. However, the loss of correlation of d18O
(Alley and others, 1995) and other climatic indicators below
2750 m depth (some 270 m above the bed) in the Greenland
Icecore Project (GRIP) and Greenland Ice Sheet Project 2
(GISP2) ice-core records, and visual observations of small-
scale folding in the bottom third of the GISP2 core, point to
the possibility of layer disturbance at considerable heights
above the bed, even near an ice divide (Alley and others,
1997). Layer disturbances due to varying flow over bed topog-
raphy are generally expected to havewavelengths comparable
to the bed topographyand to be found within one wavelength
of the bed.Therefore the small features seen in the Greenland
cores are unlikely to be directly causedbybedrocktopography.
Folding of surface features such as sastrugi is unlikely, due to
the longitudinal stretching of layers near ice-sheet centers.

Figure 1 shows a simple description of the deformation
states near ice-sheet centers, with longitudinal stretching and
horizontal shearing competing to flatten out or to overturn
any `̀ wrinkles’’ in the layering. This is very different from the
conditions near the bed or at the margins, where horizontal

compression is common (Hudleston, 1976; Hambrey and
Lawson, 2000).

Layer disturbances such as wrinkles (undulations, or
open folds in annual layers) can lead to overturned or
recumbent folds that have the potential to severely compro-
mise the chronological interpretation of ice cores. In an ice
sheet that has an overturned fold, an ice core could conceiv-
ably go through the same layer three times. The origin of
layer disturbances has not yet been fully resolved. Jacobsen
(2001) shows that the special arches found in layers under
steady ice divides (Raymond,1983) can act as a disturbance
source for overturned folds if the divide then moves. More
generally, transient flow may leave layers in disturbed orien-
tations near bedrock bumps (Hudleston,1976). Almost all of
the various potential surface sources (sastrugi, accumulation
variations) of layer disturbances are unlikely sources of
wrinkles near ice divides, due to the strong stretching of
annual layers near ice-sheet centers (Waddington and
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Fig. 1. Evolution of layer disturbances in steady-state flow
fields typical of near-divide environments. (a) Pure shear
deformation tends to flatten disturbances, while (b) simple
shear can overturn the disturbance to cause recumbent folding.
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others, 2001). Variations in rheology and anisotropy are the
most likely sources of layer disturbances within an ice sheet
(Dahl-Jensen and others,1997). Several authors have pointed
out that asymmetry of the fabric might cause flow inhomo-
geneities that could lead to layer disturbances (Azuma and
Goto-Azuma,1996; Castelnau and others,1998).

Here we derive a criterion for folding of layer distur-
bances injected in an otherwise steady-state flow field in
vertical uniaxial compression or pure shear stress, combined
with a simple shear stress state. Assuming homogeneous
strain-rates equations for particle tracks allows us to model
the evolution of layers. Waddington and others (2001)
followeda similar approach to assess folding potential for iso-
tropic ice. Here the effects of anisotropy on the folding criter-
ion are explored using the anisotropic flow law formulated by
Thorsteinsson (2000, 2001, 2002).

Finally, we consider the origin of disturbances to the layer-
ing. Fast changes in stress state, which might arise as ice flows
over bumps or as a divide migrates, can leave the fabric in a
different symmetry to that which it would have developed in
the new stress state. We will refer to fabric that has symmetry
different from the fabric that would have developed under
steady conditions as `̀ unadjusted fabric’’. Smaller-scale hetero-
geneity, such as stripes (Alley and others,1997), is also a poten-
tial source for layer disturbances at all depths.The deformation
of a material with an unadjusted fabric can cause layer distur-
bances. We examine the effects of unadjusted fabric on the
deformation, using both an analytical formulation for a given
fabric (Thorsteinsson,2000, 2001), anda model where the fabric
evolves with the deformation (Thorsteinsson, 2000,2002).

2. OVERTURNED FOLDS

2.1. Particle paths and deformation

For a homogeneous three-dimensional deformation field in
vertical uniaxial compression or pure shear combined with
simple shear, we can solve for the position of a particle at
any given time using the coupled first-order differential
equations (Ramberg,1975)
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where _xi ˆ dxi=dt and Lij ˆ @ui=@xj is the velocity gradient;
ui is the velocity component in direction x̂i (xi ˆ …x1; x2; x3†
ˆ …x; y; z†, where z is vertical).

The particle path, in steady state, is then given by the
solution to Equation (1)

x…t; x0; z0† ˆ eL11tx0 ‡ L13

L11 ¡ L33
…eL11t ¡ eL33t†z0 ;

y…t; y0† ˆ eL22ty0 ;

z…t; z0† ˆ eL33tz0 ;

…2†

where x0 ˆ x…t ˆ 0† and z0 ˆ z…t ˆ 0†.This solutionassumes
that the displacement at the origin xi ˆ 0 is zero, and that the
Lij’s are constants in time and space. Because ice in an ice
sheet tends to move into regions of increasing shear, this
assumption is not strictly correct. However, Waddington and
others (2001) show that the solution (Equation (2)) is still
useful, and Jacobsen (2001) shows that finite-strain calcu-
lations can illuminate layer behavior where the simple
solution (Equation (2)) is not applicable.We use Equation (2)
to derive a criterion for folding below. All the shear deform-

ation takes place in the …x̂1; x̂3† plane, and we can formulate
our equations in two dimensions, noting that variations in the
y direction are allowed.

2.2. Non-dimensional numbers

It is convenient to define several non-dimensional numbers,
in order to simplify the equations. First we define the slope m

m ˆ zB…t† ¡ zA…t†
xB…t† ¡ xA…t† ; …3†

where A and B are two points on a layer, connected by a
straight line (see Fig.1).

We define a shear number, S, as

S ˆ L13

L11 ¡ L33
: …4†

The shear number is a measure of how easy it is to deform
the material in horizontal simple shear, relative to vertical
pure shear or uniaxial compression. When S is large, shear
dominates over compression and folding is likely. It is also
convenient to define a stress ratio, ¨, as

¨ ˆ ½

¼
; …5†

where ½ is the shear stress and ¼ is the vertical compressive
stress.

Using local strain rates to define a characteristic time-scale

T ˆ 2

…L11 ¡ L33† ; …6†

we non-dimensionalize time as T ˆ t=T . We also use L, a
characteristic length scale for the layer disturbance, to non-
dimensionalize spatial variables, i.e. X ˆ x=L and
Z ˆ z=L.

2.3. Passive folding

To derive a criterion for folding, we consider two particles,
A and B, as shown in Figure1. Particle A at time t ˆ 0 is at
x ˆ 0; z ˆ A, xA…t ˆ0; x0 ˆ 0; z0 ˆ A†, and particle B is at
xB…0; L; 0†. For overturned folds to occur, particle A must
reach an x position greater than that of particle B at some
later time, xA…t;0; A† > xB…t; L; 0†.Waddington and others
(2001) used a similar folding criterion. An equivalent
approach is to consider when a line with an initial slope
m0 ˆ A=L reaches vertical, and consequently, since the
velocity gradient is uniform, overturns. By letting t ! 1
we find the smallest initial slope that can reach vertical.
Using Equation (2) to solve for xA…t; 0; A† ¡ xB…t; L;
0† > 0, where t ! 1, we get

A
L >

L11 ¡ L33

L13
;

or using the non-dimensional notation

Sm0 > 1 : …7†
The time it takes particle A to overtake particle B

(xA…t; 0; A† ¡ xB…t; L; 0† ˆ 0) is

tf ˆ ¡ 1

L11 ¡ L33
ln 1 ¡ L11 ¡ L33

L13

L
A

³ ´
;

or in non-dimensional form,

Tf ˆ ¡ ln

��������������������������
1 ¡ …Sm0†¡1

q
: …8†

As discussed byWaddington and others (2001), the shear
number S is not uniform along particle paths as we assume
here; layers tend to move toward regions of increasing simple

481

Thorsteinsson andWaddington: Folding near ice-sheet centers

https://doi.org/10.3189/172756402781816708 Published online by Cambridge University Press

https://doi.org/10.3189/172756402781816708


shear, and the overturning time (Equation (8)) tends to be an
upper limit. By calculating the finite strain along particle
paths, Jacobsen (2001) assessed the error introduced by the
uniform strain-rate assumption.The time error is small, and
the assumption a goodone, except in regions where Sm0 º1,
and in regions strongly affected by bedrock topography.

2.4. Anisotropic strain rates

Ice obeys a power law with a stress exponent n º 3; most other
minerals of geophysical interest also have n >1.The analytical
anisotropic flow law that we use here is based on the homo-
geneous stress assumption (often referred to as the Sachs
(1928) model). The derivation of the velocity gradient, Lij, as
a function of cone angle can be found inThorsteinsson (2000,
2001). Cone angle ¬ is a half-apex angle of a cone within which
the c axes of all the crystals are assumed to be uniformly dis-
tributed.Vertically symmetric fabrics are widespread in polar
ice sheets (Gow and others, 1997; Thorsteinsson and others,
1997).TheAppendix gives the equations for the non-zero com-
ponents of the velocity gradient in uniaxial compression com-
bined with simple shear (UC&SS) stress state, and in
combinedpure and simple shear (PS&SS) stress state, as func-
tions of cone angle.The stress states considered are

UC&SS : ¼ij ˆ
0 0 ½

0 0 0

½ 0 ¡¼

2

64

3

75;

PS&SS : ¼ij ˆ
¼ 0 ½

0 0 0

½ 0 ¡¼

2

64

3

75 :

…9†

The anisotropy breaks the one-to-one correspondence
between stress and strain-rate components that exists for
isotropic materials. We can examine how the anisotropy
changes the deformation rate, relative to the isotropic
response, by plotting the ratio of anisotropic deformation
rate to the deformation rate of a corresponding isotropic
material subjected to the same stress state.

Figure 2 shows the normalized vertical deformation
rate, L33…¬; ¨†=L33…90³; ¨†, as a function of cone angle ¬

and the stress ratio ¨ ˆ ½=¼, in combined uniaxial com-
pression (¼) and simple shear stress (½) state. The normal-
ized deformation rate can be viewed as an enhancement
factor for this particular deformation-rate component. The
peak enhancement in vertical strain increases with increas-
ing shear stress, and the maximum (for a given value of ¨)
moves from ¬ ’ 60³ for ¨ < 1 to ¬ ’ 35³ for ¨ > 1. The
vertical strain rate varies greatly as a function of cone angle.
Figure 3 shows the L13…¬; ¨†=L13…90³; ¨† component. The
shearing rate L13 depends less on the relative magnitude of
shear stress to compressive stress when ¨ > 1. When ¨ < 1
the enhancement varies greatly with both ¨ and ¬.

We now examine the dependence of the shear number S
on the anisotropy and stress. Figure 4 shows the shear num-
ber S as a function of cone angle and stress ratio ¨ in com-
bined uniaxial compression and simple shear (UC&SS)
stress state. The folding criterion (Equation (7)) shows that
the slope, m, must be larger than S¡1 for overturned folding
to be likely. Figure 5 shows the shear number S as a function
of cone angle and shear stress in combined pure and simple
shear (PS&SS) stress state. Folding is more difficult in
PS&SS than UC&SS since, with equal layer thinning, the

Fig. 2.The normalized vertical deformation rate, L33…¬; ¨†=
L33…90³; ¨†, as a function of stress ratio ¨ ˆ ½=¼, and cone
angle ¬, in UC&SS. Note how the compressive deformation
rate has a maximum near 60³ when ¨ < 1, and near 35³ for
larger shear stress.

Fig. 3.The normalized shear deformation rate, L13…¬; ¨†=
L13…90³; ¨†, as a function of the stress ratio ¨ ˆ ½=¼, and
cone angle ¬, in UC&SS.

Fig. 4. Shear number S as a function of cone angle and stress
ratio in UC&SS stress state.The slope m0 of a layer distur-
bance must be greater than S¡1 for folding to develop.
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extension in the x direction (and therefore layer flattening)
is stronger in PS&SS. For isotropic material obeying a con-
stitutive equation of the form _"ij ˆ A…T †¼n¡1

e ¼ij (Glen’s
flow law (Glen,1958)), where ¼e is the effective stress, it can
be shown that S ˆ 2¨ in UC&SS and S ˆ ¨ in PS&SS.

The evolution of layers is calculated using Equation (2).
Figure 6 shows the evolution of the same initial wrinkle in
isotropic and anisotropic layers subjected to the same stress
field.The initial amplitude is A ˆ1, the initial base length is
L ˆ 10, and the initial slope of a straight-line segment
between points A and B is m0 ˆ 0.1. The stress state is
PS&SS, with ¨ ˆ 8. Under these conditions, point A will
never overtake point B in the isotropic medium (Fig. 6a);
overturned folding is unlikely to occur. In the anisotropic
medium, on the other hand, folding occurs rapidly (T f º
0.35) under the same conditions (Fig. 6b).

3. ORIGIN OF LAYER DISTURBANCES

Near ice-sheet margins, horizontal compression tends to fold
even apparently insignificant layer disturbances. Near a
divide, however, horizontal extension (Fig. 1) prevents most
disturbances from evolving into recumbent folds. Therefore
special conditions are required to create layer disturbances
that will fold. Unsteady ice-divide migration might provide
layer disturbances on a scale comparable to the ice thickness
(Jacobsen,2001), just as unsteady flow near margins cancause
folds (Hudleston,1976).There are also several possible sources
for small-scale layer disturbances near ice divides. Sastrugi or
accumulation variations at the surface seem unlikely sources
for the small-scale disruption of stratigraphy observed at
GRIP and GISP2 (Waddington and others, 2001). Variations
in rheological properties seem to be the most likely source of
small-scale layer disturbances near ice divides. Differences in
stiffness between horizontal layers in horizontal extension
can cause boudinage (Smith, 1977; Staffelbach and others,
1988; Cunningham and Waddington,1990), while variations
in the anisotropy may lead to layer disruption in severalways.
Inhomogeneous anisotropy causes inhomogeneous deform-
ation, which after some time leaves wrinkles.Thus, if we can
create wrinkles on a previously flat layer we have a mechan-

ism to make folds.The problem then reduces to how to gener-
ate spatially heterogeneous fabric in flat layers.

3.1.Tilted cones

If the symmetry axis of the cone is non-vertical the deform-
ation will be a combination of pure and simple shear, even if
the imposed stress state is only vertically directed pure shear
stress (Azuma and Goto-Azuma,1996;Thorsteinsson, 2000).
In contrast, vertically applied pure shear stress can only flat-

Fig. 5. Shear number S as a function of cone angle and stress
ratio in PS&SS stress state. The slope m0 must be greater
than S¡1 for folding to develop.

Fig. 6. Evolution ofa wrinkle in PS&SS stress state.The ratio
of shear to compressive stress is ¨ ˆ 8. (a) Isotropic material,
¬ ˆ 90³. The line segment between A and B has a slope
m0 ˆ 1/10, and the top point A will never overtake the bottom
point B (see Fig. 1). (b) Strongly anisotropic material, with a
cone angle ¬ ˆ 20³. In this case the wiggle overturns rapidly.
The layer profiles are shown at equal time intervals, and at the
same time in both panels.

Fig. 7. (a) A layer with 20³ cones that have a sinusoidal vari-
ation of the tilt angle, with a maximum tilt of §40³. (b) An
initially flat region within a layer that has the fabric shown
above, and (c) the same region after ¹2% deformation in a
pure shear stress field.The dashed box shows how the region
responds if the cones are not tilted.
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ten and smooth disturbances in horizontally lying isotropic
layers. To explore the deformation of a layer with variably
tilted symmetry axes, we prescribe a sinusoidal variation of
the tilt (to a maximum of §40³) of the cone symmetry axis
(see Fig.7a).This choice of spatial function for the tilt is com-
pletely arbitrary; the important point is that the tilt changes
with X.We then apply vertical pure shear stress on the layer.
Figure 7b shows the initially flat region within a layer, or a
region, with a 20³ cone whose symmetry axis tilt varies
sinusoidally. Figure 7c shows the shape of the region after
the applied deformation. The dashed box shows the shape
of the same region if all the 20³ cones are vertical; it hasbeen
subjected to ¹2% vertical strain. Note that there is about
106 exaggeration for the vertical scale. The sense of shear
is in the direction of the tilt (of the cone), creating the asym-
metry in the resulting shape of the initial region.The ratio of
maximum to minimum vertical strain rate, for a 40³ and 0³
tilt, respectively, is ¹3.5. The troughs are displaced away
from the center (X ˆ 25), and the limbs thicken around the
center.The spatially variableanisotropyhas created wrinkles
where none would be created if the ice were isotropic. More-
over, the wrinkles were created rapidly; note the small strain
on the region with vertical cones (dashed box).

3.2. Evolution of tilted fabric

So far we have considered only cases in which the fabric is
frozen (not evolving). In reality the fabric evolves during
deformation, because the c axes of the ice crystals rotate due
to intra-crystalline slip and constraints imposed by neighbor-
ing crystals (Wenk and Christie, 1991). We use the fabric evo-
lution model described in Thorsteinsson (2000, in press) to
calculate the c-axes rotation and the velocity gradient as a
function of time. Since the deformation rate changes continu-
ally during the deformation, we retain dimensional time in
these calculations.The calculations were done at ^10³C and
a compressive stress of 20 kPa. Other flow-law and model
parameters can be found in Thorsteinsson and others (1999)
and Thorsteinsson (2001, 2002). However, our primary focus
is on the differences attributable to cone tilts.

When the symmetry axis of the cone is tilted away from

vertical, in vertical uniaxial compression, the strain rates
are very different from those arising from the deformation
of a vertically symmetric fabric. Figure 8 shows layer thick-
ness as a function of time for layers with an initially 40³ cone
tilted by 0³, by 20³ andby 40³ from vertical.The layer thick-
ness h as a function of time is

h…t†
H

ˆ exp

Z t

0

_"zz…t0† dt0
³ ´

; …10†

where H is the initial thickness of the layer. Since it is easiest
to deform crystals oriented close to 45³, the cone tilted by 40³
has the highest vertical strain rate initially. The fabric-evolu-
tion calculations were carried out to 0.25 equivalent strain.
The cone tilted by 40³ accumulated 0.23 vertical strain at
t ¹ 8 kyr, the cone tilted by 20³ accumulated 0.17 vertical
strain at 10 kyr and the cone tilted by 0³ accumulated 0.13
vertical strain at 10 kyr. If there is no fabric evolution (frozen
fabric) then the cone tilted by 40³ accumulated 0.21 strain at
t ¹ 8 kyr, the cone tilted by 20³ accumulated 0.24 strain at
10 kyr and the cone tilted by 0³ accumulated 0.21 strain at
10 kyr. The c axes rotate toward vertical, and, as Figure 9
shows, in the process they do not preserve the cone fabric, in
the sense that the c-axis distribution tightens and migrates
toward vertical. In addition, the boundary enclosing all of
the axes can become elongated, and the c-axis density non-
uniform. This demonstrates that a region of tilted cones will
evolve to look very similar to adjacent regions with vertical
fabric.The rate of layer thinning depends on how many crys-
tals are close to, and pass through, the soft orientation, which
is 45³ in this case.Therefore the total strain for the cone tilted
by 40³ is greater when fabric evolution is active than for
frozen fabric, but smaller when the tilt is 0³.

Tilted cones are therefore transient features capable of
generating layer disturbances.

3.3. Stripes

In a study of the GISP2 ice core, Alley and others (1997) found
that the expected vertical c-axis fabric was interrupted by
planes of grains, with the c axes oriented approximately in
the dip direction of the planes. These features were called
stripes because of their appearance when intersected by verti-
cal thin sections. The stripes are typically one to very few
grains in thickness. If they are orientatedclose to vertical, their
length is a few grains, but if they are orientated further away
from vertical, they tend to be longer. Alley and others (1997)

Fig. 8. Evolution of layer thickness, in uniaxial compression, as
a function of time for different tilts of the original cone fabric.
The three lines show the layer thickness for the initial condition
of a 40³ cone tilted by: 0³ (top), 20³ (middle) and 40³
(bottom). The fabric then evolves freely in vertical uniaxial
compression stress (using Thorsteinsson (2002) model, with
mild-nearest-neighbor interaction and ¼ ˆ ^0.2 bar).

Fig. 9. Fabric evolution in uniaxial compression for 40³ cones.
The fabric is shown on Schmidt plots. Initial fabric is shown in
the top row, and fabric after 8 kyr in the lower row.The cone is
initially (a) vertical, (b) tilted by 20³, and (c) tilted by 40³.

Thorsteinsson andWaddington: Folding near ice-sheet centers

484
https://doi.org/10.3189/172756402781816708 Published online by Cambridge University Press

https://doi.org/10.3189/172756402781816708


hypothesized that stripes form through organizedpolygoniza-
tion, such that after polygonization of the center grain the
stress on neighboring grains will tend to rotate them so that
they will be parallel to the polygonized grain. The stripe
would then grow through internal spinning of grains at the
end of a stripe, i.e. shear on the plane of the stripe would force
the grain at the end into the same orientation.

From our exploration of the tilted cone fabric above, we
know that non-vertical alignment of crystals will complicate
the deformation, and potentially give rise to layer distur-
bances. Stripes have a tilted symmetry axis, relative to the
bulk ice, and are therefore a potential source of small-scale
folding. Moreover, if the density of stripes is spatially vari-
able, increasing with depth for instance, then stripes might
affect the flow on a larger scale.

4. SUMMARYAND CONCLUSIONS

Knowledge of the processes responsible for small-scale fold-
ing near ice-sheet centers is important in order to assess the
integrity of ice-core records. Understanding the origin of
layer disturbances near ice-sheet centers is a challenging
problem. Several authors have suggested that anisotropy
may play a significant role in that process (Azuma and
Goto-Azuma, 1996; Castelnau and others, 1998). We
simulated the effects of tilted cones on the shape of a hori-
zontal layer and found that tilted cones can indeed produce
distorted layers in stress states that would not produce any
wrinkles with isotropic ice. Accounting for fabric evolution
does not change that conclusion.

The presence of rheological inhomogeneity and aniso-
tropy changes the distribution of stress. In general, if the
ice does not fracture or tear, then stress will be increased
where the ice is relatively stiffer with respect to the applied
stress. Similarly, where ice is made softer, stress will
decrease. By taking the view that we can specify the stress
pattern, we cannot incorporate this stress redistribution in
our analysis. Therefore our results should be interpreted as
a qualitative or semi-quantitative guide to the effects of ani-
sotropy on folding.

We have shown that if regions of unadjusted fabric, i.e.
fabric with different symmetry than expected in the current
deformation field, exist in ice sheets, that fabric is a likely
source of subsequent layer disturbances. The remaining
question is then about the source of the anomalous fabric.
Evidence from ice cores, such as stripes, shows that local
heterogeneity can form, but the concentration or distribu-
tion of such features is not well known.

Under steady-state stress conditions, the vertically ori-
ented anisotropy that tends to develop near ice domes can
greatly reduce the slope of disturbances needed to generate
overturned folds. Flow instabilities associated with an asym-
metric fabric in initially flat-lying layers could be a source of
layer disturbances that evolve into overturned folds, even in
the dominantly extensile flow regime near ice divides.
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APPENDIX

THE VELOCITY GRADIENTS

Here we give the non-zero velocity gradient components
(Thorsteinsson, 2000), as a function of stress and cone angle,
for the two stress states used. The velocity gradients below
have been divided by A…T † in Glen’s flow law (Paterson,
1994). A…T † ˆ A0 exp‰¡Q=…RT †Š incorporates the depen-
dence of the deformation rate on temperature T.

In combined uniaxial compression and simple shear
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(UC&SS) stress, the non-zero velocity gradient components
are

L11 ˆ L22 ˆ ¼3‰¡64 ‡ cos5…¬†f249 ¡ 220 cos…2¬†
‡ 35 cos…4¬†gŠ=…576…cos…¬† ¡ 1††
‡ ½2¼‰¡2048 ‡ 1785cos…¬† ‡ 245 cos…3¬†
‡ 63 cos…5¬† ‡ 60 cos…7¬† ¡ 105 cos…9¬†Š
=…6144…cos…¬† ¡ 1††;

…11†

L33 ˆ
©

6¼½ 2‰1024 ¡ 945 cos…¬† ¡ 105 cos…3¬†
‡ 21 cos…5¬† ¡ 30 cos…7¬† ‡ 35 cos…9¬†Š
‡ ¼3‰2048 ¡ 1890cos…¬† ¡ 420 cos…3¬† ‡ 252 cos…5¬†
‡ 45 cos…7¬† ¡ 35 cos…9¬†Š

ª
=…9216…cos…¬† ¡ 1††;

…12†

L13 ˆ
©

¼2½ ‰¡1024 ‡ 945 cos…¬† ‡ 105 cos…3¬†
¡ 21 cos…5¬† ‡ 30 cos…7¬† ¡ 35 cos…9¬†Š
‡ ½3‰¡3072 ‡ 2730 cos…¬† ¡ 35 cos…3¬† ‡ 357 cos…5¬†
¡ 15 cos…7¬† ‡ 35 cos…9¬†Š

ª
=…1536…cos…¬† ¡ 1††:

…13†

In pure shear and simple shear (PS&SS) stress, the non-
zero velocity gradient components are

L11 ˆ ¡
©

32¼½ 2‰¡12288 ‡ 11655cos…¬†
‡ 595 cos…3¬† ‡ 273 cos…5¬† ‡ 150 cos…7¬†
¡ 385 cos…9¬†Š ‡ ¼3‰¡393216 ‡ 384090cos…¬†
‡ 49420cos…3¬† ¡ 42084cos…5¬† ¡ 2445cos…7¬†
‡ 4235 cos…9¬†Š

ª
=…393216…cos…¬† ¡ 1††;

…14†

L22 ˆ ¡35¼ cos…¬† sin…¬†4

f¡83¼2 ¡ 192½2 ‡ 12…3¼2 ¡ 8½ 2† cos…2¬†
‡ …47¼2 ¡ 96½2† cos…4¬†

ª
=…12288…cos…¬† ¡ 1††;

…15†

L33 ˆ
©

8¼½ 2‰¡6144 ‡ 5565 cos…¬† ‡ 665cos…3¬†
¡ 21 cos…5¬† ‡ 180 cos…7¬† ¡ 245 cos…9¬†Š
‡ 3¼3‰¡16384 ‡ 15330cos…¬† ‡ 3080 cos…3¬†
¡ 2016 cos…5¬† ¡ 255 cos…7¬† ‡ 245cos…9¬†Š

ª

=…49152…cos…¬† ¡ 1††;

…16†

L13 ˆ ½ ‰¡24576…¼2 ‡ ½2† ‡ 105…217¼2 ‡ 208½2† cos…¬†
‡ 35…55¼2 ¡ 8½ 2† cos…3¬† ‡ 21…11¼2 ‡ 136½2† cos…5¬†
‡ 30…17¼2 ¡ 4½ 2† cos…7¬† ‡ 35…¡25¼2 ‡ 8½ 2† cos…9¬†Š
=…12288…cos…¬† ¡ 1††:

…17†
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