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TOPOLOGICAL ENTROPY FOR THE CANONICAL COMPLETELY
POSITIVE MAPS ON GRAPH C'-ALGEBRAS

JA A. JEONG AND GI HYUN PARK

Let C*(E) = C*(se,pv) be the graph C*-algebra of a directed graph E = (E0^1)
with the vertices E° and the edges E1. We prove that if E is a finite graph (possibly
with sinks) and 4>E • C*(E) —>• C*(E) is the canonical completely positive map defined
by

I { ) = ^2 sexse*,

then Voiculescu's topological entropy ht(</>£) of 4>E is logr(A£;), where T(AE) is the
spectral radius of the edge matrix AE of E. This extends the same result known
for finite graphs with no sinks. We also consider the map <J>E when E is a locally
finite irreducible infinite graph and prove that sup{ht(</>£<)} ^ ht(</>£), where the

E'
supremum is taken over the set of all finite subgraphs of E.

1. INTRODUCTION

Given a directed graph E with the vertex set E° and the edge set El it is well
known that there exists a universal C*-algebra C*(E) generated by partial isometries
{se | e € E1} and mutually orthogonal projections {pv \ v € E0} satisfying certain
relations determined by the graph E. A classical Cuntz-Krieger algebra OA of an n x n
{0,1} matrix A is now well understood as a graph C*-algebra C*(E) of a finite directed
graph E with the vertex matrix A (OA = OB for the edge matrix B of E). If A has no
zero rows or columns, the map <J>A '• OA —> OA defined by

n

<t>A (x) = ^2 Sjxs'j, xeOA

i=i

is unital and completely positive, where Sj's, 1 ^ j ^ n, are the partial isometries that
generate OA- If -A is the edge matrix of E, (j>A corresponds to the unital completely
positive map 4>E '• C*[E) —> C*(E) given by

<f>E(x) = ^2 sexse'.
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102 J.A. Jeong and G.H. Park [2]

Then one can think of Voiculescu's topological entropy of <j>E (or CJ>A), and it turns out
that if E is a finite directed graph with no sinks

where r{A) is the spectral radius of the edge matrix AE of E (see [15, 4, 7, 3, 5, 14]).
One purpose of the present paper is to extend this result to a finite graph possibly with
sinks, and the other is to provide a lower bound for ht(<£e) when E is a locally finite
irreducible infinite graph.

In Section 2, we review several definitions and properties of graph C*-algebras, en-
tropies, and Voiculescu's topological entropy of a completely positive map. Then Section
3 is devoted to obtaining ht(</>E) for an arbitrary finite graph E with the sinks S(E). To
this end we consider another completely positive map ipE on C*(E),

ipE(x) =
ves(E)

and show that
httfe) = ht{il>B) = logr(AE).

We first prove that \ogr{AE) ^ ht(^£) by considering the topological entropy htop(XEs, a)
of the (compact) edge shift space (XEs, a) of the finite graph Es which we obtain from
E by adding a loop edge to each sink of E. For the reverse inequality h t^ s ) ^ \ogr(AE)
we shall modify the proof of [3, Theorem 1] to cover our general situation. Then
ht(<fiE) = ht(ipE) is proved.

In Section 4 we consider a locally finite (irreducible) infinite graph E, and prove that
the map (j>£ given by

is a (well defined) completely positive contraction. But in this case the edge shift space
XE may not be compact, so we shall consider Gureyic's compactification XE of XE

in order to find its topological entropy htoP(XE) as a lower bound for ht(0£). Note
from [8] that htop(XE) — suphtop(XE>), where the supremum is taken over all the finite

E'

subgraphs of E. Then it follows that ht(0£) — oo for many infinite irreducible graphs
E. Nevertheless it would be interesting and important to know the exact value of ht(<j>E)
when ht(0£) is finite.

2. PRELIMINARIES

2.1. GRAPHS AND GRAPH C*-ALGEBRAS. Let E - (i?0,!?1.*-.*) be a directed graph
(or simply a graph) with a countable vertex set E° and a countable edge set E1, where
r,s : El —• E° are the range and source maps. If each vertex of E emits and receives
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only finitely many edges, E is called locally finite. By S{E) we denote the set of all

sinks (vertices which emit no edges) of E. A sequence a = (on,a2,... ,an) of edges

satisfying r(ttj) = s(ai+i), i — 1 , . . . , n — 1, is called a (finite) path of length \a\ — n.

We simply write a as a = ot\oi2 • • • otn and extend the maps r, s to finite paths by s(a)

= s(ai), r(a) = r(an). En will denote the set of all finite paths of length n (each vertex
oo

is regarded as a finite path of length zero), and E* = (J En denotes the set of all finite
n=0

paths. Similarly an infinite path is defined to be an infinite sequence a — ai«2 • • • of
edges with r(cti) = s(ai+i), i = 1,2,... . If a path a (|a| > 0) satisfies s(a) = r(a) we
call a a loop. A loop a is called a loop edge if \a\ — 1.

For a graph E, a family {se,pv \ e e E1, v € E0} of partial isometries se (with
mutually orthogonal ranges) and mutually orthogonal projections pv is called a Cuntz-
Krieger E-family if it satisfies the following.

S*ese = Pr(e)>

ses*e ^ Ps(e), and

Pv — ^2 ses*e if 0 < |s~'(t;)| < oo.
»(e)=t;

It is known (see [2, 12] for example) that there exists a universal C*-algebra C*(E) (or
C*{se,pv)) generated by a Cuntz-Krieger ^-family {se,pv}. We call C*(E) the graph
C*-algebra associated with E. It is useful to note that span{sQsJ | a,/3 € E*} is dense
in C*(E), where sa = sai • • • saic if a = c*i • • • a* € Ek, k ~2 1, and sa — pv if a = v G E°.

2.2. SHIFT SPACE AND ENTROPIES. Let A be a finite set. Then a subset X C AK is
called a (one-sided) shift space if there is a collection T of words over A such that X is
the set of all sequences x in which no word of T can appear. By ax we denote the shift
map on X. Since A is finite (so compact in discrete topology), a shift space X C AK

is a compact space and ax is continuous, hence (X, ax) carries the entropies which we
review below.

(i) ([13, Definition 4.1.1] or [10, p.23]) The entropy h{X) of X is defined by

n~+oo 71

where Wn(X) is the set of all words of length n that appear in a sequence of X. If X ^ 0
we have 0 ^ h(X) < \og\A\ < oo since 1 ^ | W n ( ^ ) | ^ \A\n. In particular, the full shift
space Xn = AN (\A\ = n) has h(Xn) — logn. If X = 0 then h(X) — —oo by definition,

(ii) ([16, Chapter 7]) Let T : X —>• X be a Continuous map on a compact space X.
If U is an open cover of X then so is T~lU. By ./V(W) we denote the number of sets in
a finite subcover of U with smallest cardinality. Then the entropy of T relative to U is
given by

/ "" '
:= lim — log!1 /

- log(iv(W
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where U V V denotes the join of U and V, and the topological entropy of (X, T) is defined

to be
/ i t o p (X,T)=sup/ i t o p (T ,W) ,

u
where the supremum is taken over all the open covers (or equivalently, over all the finite

open covers) of X.

REMARK 2 .1 . (a) If E is a finite graph we have the edge shift space

XE = {a= (at) € (JE?1)" | r(a«) = s(ai+1), i € N}

(or the infinite path space) and the shift map aE given by cr^ (a)j = ai+i for each i € N.
For E with no infinite paths, we have h(XE) = —oo. Otherwise it is known [16, Theorem
7.13] that

(b) Let E g ( c {El)z) be the two-sided shift space associated with a finite graph E.

Then we know from ([10, p.23]) that

h(XE) =

We call a graph E irreducible if for any two vertices v, w there exists a finite path
a with s(a) = v, r(a) = w. So a finite graph E is irreducible if and only if its vertex
matrix VE (or edge matrix AE) is irreducible. Here a real, nonnegative square matrix
A = (Aij)i^ij^n is irreducible if for each i, j there exists a n m ^ l such that {Am)ij > 0.

If E is a finite graph, the vertex matrix VE has irreducible components V i , . . . , Vfc

in the sense that each Vi is an irreducible nonnegative square integer matrix and there
exists a permutation matrix P such that PVEP~l is in a block triangular form with
blocks V i , . . . , Vk on its diagonal. Let Ay( be the Perron-Frobenius eigenvalue of V*. Then
the Perron value \E = m a x i ^ k XVi is the largest eigenvalue of VE, hence \E = r(VE),
the spectral radius of VE (see [13, Section 4.4]). One can write E° as the disjoint union
of vertices Ef (1 ^ i < A;) so that each Vi is a matrix with the index Ef. Let Ei be the
subgraph of E with the vertex set Ef and edge set E\ = {e € El \ s(e), r(e) € Ef}, then
Ei is irreducible, and Ei's are called the irreducible components of E. If Ef is a singleton
and \E}\ = 1, then logA^ = 0, thus the subgraph Et makes no contribution to the value
of h(XE) because

h(XE) = logAE = max logAVi

([13, Theorem 4.4.4]). On the other hand, it is easy to see that r(AE) = r(VE). In fact,
the rectangular matrices R = (Rev)eeE\veE<>, S - (Sve)veEoteeEi, where

1, if r(e) = v, J 1, if s(e) = v,
0, otherwise, I 0, otherwise,

satisfy RS — AE and SR — VE, which implies that A is an eigenvalue of VE if and only
if A is an eigenvalue of AE. Hence we have the following.
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PROPOSITION 2 . 2 . Let E be a Gnite graph and XE be the one-sided shift

space associated with E. Then

where A£ is the Perron value of the edge matrix AE (or the vertex matrix VE) of E and

T(AE) is the spectral radius of AE-

2.3. T O P O L O G I C A L E N T R O P Y O F A COMPLETELY POSITIVE MAP. We briefly review
the definition of topological entropy for a completely positive map of a C-algebra which
was first defined for automorphisms of unital nuclear C*-algebras by Voiculescu [15] and
then extended to automorphisms of exact C*-algebras by Brown [4]. See also [7] and [3]
for the following definition of topological entropy for a completely positive map.

Let n : A —>• B(H) be a faithful representation of a C*-algebra A and Pf{A) be the
set of all finite subsets of A. For UJ 6 Pf(A) and S > 0, we put

CPA(TT, A):={(4,il>,B)\4:A->B,1>:B-> B{H)

contractive completely positive maps, dimB < oo},

rcp(7r,w,(J) := inf { rank(B) | (0, if,, B) 6 CPA(ir,A), | |^ o <j>(x) - TT(X)|| < 6,

for all x 6 w },

where rank(B) := the dimension of a maximal Abelian subalgebra of B.

It is well known [9] that every exact C*-algebra A is nuclearly embeddable, that
is, there exists a faithful representation TT : A —> B(H) such that for each finite subset
u) C A and 5 > 0 there is (4>,tp,B) 6 CPA(TT, A) with tp o (j> close to IT within 6 on CJ.

Moreover the value rcp(7r, UJ, 5) is independent of the choice of TT (see [4, 3]). Since graph
C*-algebras C*(E) are nuclear (see [11, p. 193]) we may write rcp(o>,<5) for TCP(TT,CJ,S)

assuming C*(E) C B(H) for a Hilbert space H.

DEFINITION 2.3: ([4, 3]) Let A c B(H) be a C*-algebra and $ : A -> A be a
completely positive map. Then we define

ht($,ui, 6) = limsup - log (rcp(w U $(u>) U • • • U $"~x(tj), 6)),
n-*oo n

,w) = supht($, UJ,5),
6>0

ht(4>) = sup

ht($) is called the topological entropy of $.

REMARK 2.4. We refer the reader to [3, 4], and [7] for the following useful properties.

Let $ : A —t A be a completely positive map on an exact C*-algebra A.
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(a) If 6 : A -¥ B is a C*-isomorphism then

(b) Let A be the unital C*-algebra obtained by adjoining a unit. Let <£ : A —> A

be the extension of $. Then

(c) If Ao is a ^-invariant C*-subalgebra of A, then

) ^ ht(*).

(d) If {tJk} is an increasing sequence of finite subsets in A such that the linear
span of the set \J 3>'(w/t) is dense in A, then

(e) Let T : X -> X be a continuous map on a compact metric space X. Then
ht(T') = /itOp(.Y,T), where T*: C{X) -> C(X) is the completely positive
map given by T'(/) = / o T, / e

3. FINITE GRAPHS

In this section we consider the following two completely positive maps <j>E, IPE on the
graph C*-algebra C* (E) associated with a finite graph E,

= Y2 sexse',

veS(E)

We call <J>E the canonical completely positive map of C*(E) which is not unital if E

contains a sink while tps is always. A computation shows that

(1) ipE(x) XI 5Z
veS{E)

Hence if E has no infinite paths then there exists an iV such that the first term ^ s^xs^*

vanishes and ipE{x) = rpg(x) whenever n > N. Thus it follows that ht(V>£) = 0. But
the edge matrix AE has no nonzero irreducible components and so its Perron value is 0.
Hence we see from Proposition 2.2 that logr(A£;) = -oo .

We now compute ht(^>£;) (and ht($£;)) for E which contains an infinite path.
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THEOREM 3 . 1 . Let E be a finite graph with the edge matrix AE. If E contains

an infinite path then

ht{i>E)=logr(AB),

where r(AE) is the spectral radius of AE.

Let VE be the commutative C*-subalgebra of C*{E) generated by projections of the
form Pp = s^s^, [i G E*. Then VE is ^-invariant and

VE = span{zv = s^ € C*(E) \ n G E*}.

Now we seek a shift space (X, ax) such that there exists an isomorphism w : VE —> C(X)
satisfying w{tpE\VE)w~l = ax from which we deduce that h(X) ^ ht(tpE). Let Es be the
graph obtained from E by adding a loop edge ev to each sink v G S(E), that is,

££ = E°, El
s = E1 U {e,, | s(ev) = r{ev) = v, v G S(E)}

and consider the shift space XEs of infinite paths. Then the cylinder sets [/i] = {fia \
lia G XEs}, \x G E$, are both open and compact, and form a basis for the subspace
topology of the compact space XEs C (E^)N. Hence the characteristic functions XM>
/ i g £ J , are continuous on XEs. Moreover applying the Stone-Weierstrass theorem one
sees that the linear span of the characteristic functions {x[rf \ n € E$, n G N} is dense
in C(XEs). Then as in [6, Proposition 2.5] and [14, Corollary 7.2], one obtains the
following.

LEMMA 3 . 2 . The linear map w :VE ->• C(XEs) given by

, if H = v

is a *-isomorphism such that w(ipE\V(E))w~l = {crxEs)'-

P R O P O S I T I O N 3 . 3 . htop(XEs,aXEs) = ht{tpE\VB) < ht(ipE)-

PROOF: By Remark 2.4(e), we have htop(XEs,oxEs) — ht((aXEs)*)- Also Remark
2.4(a) and Lemma 3.2 imply that ht((axE )*) = ht(i/jE\vE)- The last inequality follows
from Remark 2.4(c). D

PROPOSITION 3.4.

(a) h(XE) = h(XEs).

(b) Let G be the graph obtained from E by removing vertices v with s"1^)

consisting of a loop edge and all edges in r " 1 ^ ) and then adding a loop

edge to each newly formed sink, if any. Then h(XE) — h(Xc).

PROOF: (a) immediately follows from Proposition 2.2 and the arguments before it.
For (b), apply (a) and the arguments before Proposition 2.2 repeatedly. D

https://doi.org/10.1017/S0004972700035851 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035851


108 J.A. Jeong and G.H. Park [8]

PROPOSITION 3 . 5 . logr(AE) = h{XE)

PROOF: h{XE) = h{XEs) by Proposition 3.4(a), and h(XEs) = htop(XEs,axEs)
 bY

Remark 2.1.(a). Then Proposition 3.3 proves the assertion. D

For the proof of the reverse inequality ht(ipE) ^ logr(AE), we modify the proof in [3]
according to our general situation. But we have to deal with more complicated situation
due to the existence of sinks which do not appear in case of [3], so we present a proof
here. Put

W(n) := E" U \n G (J Ek r(p) € S{E) \.

Then there is a one to one correspondence between W(n) and the set {Es)
n of finite

paths of length n in E$, and so the following lemma is an immediate consequence of
Proposition 3.4(a).

LEMMA 3 . 6 . lim(l/n)log|W(n)| = logr04E).
n—>oo ' '

As in [3] we define a map pm : C*(E) -> M\W{m)\ ® C*(E) by

pm(x) :=

LEMMA 3 . 7 . pm is an injective *-homomorphism.

PROOF: Since ]T s^ — I, the unit of C*(E), it easily follows that pm is a

*-homomorphism. To see that pm is injective, suppose pm(x) = 0 (in [3], C*{E) was
simple). Then s*^xsv — 0 for all fi, u e W(m). Thus for each pair of vertices v, w € E°,

\~" * * — n

i/gW(m),'s(i/)=u;

which implies that pvxpw = 0 since

Pv =

Therefore x — 0 and pm is injective. D

LEMMA 3 . 8 . Let n e N, |/?| ^ \a\ ^ n0, and m ^ n + n0. Then for each

X(n,a,P,l,m)®sll

for some partial isometries X(fi, a, f3,1, m).
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[9] Topological entropy 109

P R O O F : Note first that if fx, v € W(m) and |JJ| ^ \v\ then s^s^ = 0. Also if
i, v e E*, r(fi) G S(E), and \n\ < \i/\ then s^s^ — 0. Then from the formula (1)

and X(pb, a, P, Z, m) :=

jection X(n,a,/3,l,m)X(n,a,/3,l,m)t =

For each n0 ^ 1, put

w(n0) := {sas*0 |

Then the following proposition implies that

a partial isometry with the range pro-

|a| s£ n0}.

since the linear span of the set \J (oj(k) Uw(4) j is dense in C*(E) (Remark 2.4.(d)).

P R O P O S I T I O N 3 . 9 . Let n0 ^ I and5 > 0. Then

ht(V>E,w(no),<$) = l i m s u p - l o g r c p ( ( J i)'E(u(n0)), S) ^ log r(AE).

PROOF: Let H be a Hilbert space on which C*{E) acts faithfully. Since C*(E) is

nuclear, there exists (0o,^o>Mno) € CPA(idC'(E),C*(E)) such that

(2)

Now for n ^ 1, let m = m(n) = n + n0 and B = M|vy(m)| ® Mmo. Then by Arveson's
extension theorem (see [4, p. 349]) the *-isomorphism p"1 : pm(C*(E)) -> C*(£') extends
to a unital completely positive map

*m:Mmn)l®C'{E)->B(H).

Now consider the completely positive maps <f> and ^ given by

:Ct{E)^B and il> = ^m{id®ip0) : B-* B(H).
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C*(E)
• ( P \

*• C(E) c *• B(H)

Let a = sas'p € w(n0). Then by Lemma 3.8 there exist partial isometries
= X(/J., a, 0,1, m) such that

(3) Pm^E(a)=

= 6.

Then as in [3] it follows from (2) and (3) that

Therefore

(T\ i
rep I I I ipE

" \W(no)\

mo\W{m)\ =mo\W(n + no)\,

Dand so limsup(l/n)logrcp I (J ip'B(uj(n0)), 5) ^ l o g r ^ ^ ) (by Lemma 3.6).
n \ t=0 /

COROLLARY 3 . 1 0 . Let E be a finite directed graph and G be a subgraph of E

obtained by removing sinks and edges going into them. Then

In the rest of the section we show that ht(<£E) =

LEMMA 3 . 1 1 . ^B(x) = <£'£(z) + fa1 ( £ PvXPv),
\ves(E) /

P R O O F : Since ^JS(X) = (J>E{X) + Z) P«xpv, we have

( 52
ves{E) wes(E) \es(E)

52 P"XPA-

For I ^ 3, use induction on /. D
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Let <f>L : C*(E) —> C*(E) be the completely positive map given by 4>L{X)

= J2 sexse".
eeE1

P R O P O S I T I O N 3.12. ht(4>L) = ht(̂ >£) ̂  ht(tpE).

P R O O F : Let 6 > 0, n e N, and let w C C*(E) be a finite set of the elements of

the form sas^, a, ft € E* such that {pv | v G S(E)} C u>. Then choose an element
/n-l \

( ^ , • 0 2 , 5 ) € C P A ( i d c - ( E ) , C * ( E ) ) s a t i s f y i n g r a n k ( B ) = r e p | J ^ ( w ) , 6 ) . I f a; € u ,
\ 3=0 )

1 ^ I ^ n — 1, then by the above lemma

and rep ( "(J ^ ( w ) , 2 5 ) ^ rep ( "(J ipj
E{u),6). Thus we have ht(<pE)

\j=o ) \>=o /

To prove the first equality, note that 4>l
E(x) = <j>l

L{x) \ix — sasp* € u> with \a\ + |/3|

> 0, and 4>l
L(x) = 0 if x = pv, v e S(E). Thus

U ^(w) ^ U ^(") u {o},
t=0 «=0

and hence ht((/>£,) ^ ht(<f>E). Put w := w U 0E(W). From definitions of 0 £ and ^ it is

easily seen tha t <t>l
E{x) = <j>l[l{<j>E(x)), I ^ 1. Thus

U ^i") c u ̂ i(w),
t=0 i=0

which also shows that ht(0£) ^ ht(<fo,). D

Note that the commutative C*-subalgebra

V'E := span{PA, = s^* \neET, r(/x) ^ S(E)}.

of C*(E) is ^-invariant and so ht($£,|x>'E)

P R O P O S I T I O N 3 . 1 3 . ht(0£) =

P R O O F : Let G be the graph obtained from E by removing the sinks S(E) and the

edges going into them. Then as in Lemma 3.2, one can show that there is an isomorphism

w' : V'E ->• C(XG) such that

<rh = ri{<l>L\v>g)(v/)-\

where og is the shift map on XG- Thus ht(0£,|cE) = h(Xc)- Consequently,

ht(^E) = \ogr(AE) = h(XE) = /i(XG) = ht{4>L\vB)

by Theorem 3.1, Corollary 3.10, and Proposition 3.12.
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E X A M P L E 3.14. The Toeplitz algebra T can be viewed as the graph C*-algebra C*{E)
of E = (E° = {v,w},Ex = {e , / )» , where s(e) = r(e) = s(f) = v, r{f) = w. In fact, if
{se,Sf,pv,pw} is a Cuntz-Krieger E'-family generating C*{E) the element U :— se + sj
satisfies that U*U = I = pv + pw, UU* = pv, U*U - UU* = pw, U2U* = se, and
U-U2U* = sf. Thus C*{E) = C*{U) and so by Coburn's theorem T = C*{U} = C*{E).
Since U*U = I, the linear span of the set {Um(U*)n | m,n ^ 0} is dense in C*(E),
and one can show that <j>E(x) = UxU* for each x of the form Um(U*)n. Thus <j>E is
the endomorphism Ad(U) on T. Since r(AE) = 1, it follows from Theorem 3.1 and
Proposition 3.13 that ht(<pE) = logr(AE) = 0. Thus ht(Ad([/)) = 0.

4. INFINITE GRAPHS

In this section we consider the topological entropy of <j)E for an infinite graph E.

PROPOSITION 4 . 1 . Let E be a locally finite infinite graph and let C*{E)
— C*(se,pv) be its associated C*-algebra. Then the sum

x € C{E) and the map <t>E : C'{E) -> C'(E) given by

4>B(x) = ^2 sexse*, x e C'{E)

sexse* exists for each

is a completely positive contraction.

PROOF: For a m 6 C'{E) and e > 0, choose a finite subgraph F of E and an
element z = J2 \apSaS0* (\ap € C) such that \\x - z\\ < e. Put El = {ei ,e 2 , . . . }.

a,peF'
Then by the local finiteness of E there is a number N such that

F1 U {e € E1 | r(e) 6 F0} c El
N -.= {eu e 2 j . . . , eN},

so that zpT(ek) = 0 for k ^ N + 1. For any finite set E' of edges, let VE> := {r(e) | e
EE'\ El,} and P := E pv. Then | | iP | | = ||(x - z)P\\ < e, and

1/2

\\xP\\ < e.

Thus if E', E" are two finite sets of edges with E^ c £" D £;", then

* - T s x s * \ \ < \ \ V s x s ' \ \ + V s x s *Z ^ SeXSe MH 2s SeXSe + 2 ^ SeXSe\E-
which shows that the sum 5Z sexs*e exists and the map <j>E is well defined. To see that

4>E is a contractive completely positive map, consider a sequence of completely positive
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maps <j>n : C*{E) -> C'(E) given by <j>n(x) = £ seixsei*. If x ^ 0 then <j>E(x) ^ 0 as

the limit of positive elements (/>„(#) in norm. The same argument also proves that 4>E is
completely positive. Since each <j>n is contractive we have | |0E | | ^ 1. D

The (one-sided) shift space XE may not be compact for an infinite graph E,
which makes the definition htop(XE) meaningless. This leads Gurevic [8] to con-
sider a compactification of XE: Identify the edge set E1 — {e n } n e N with the met-
ric space {1,(1/2), (1 /3) , . . .} C [0,1] by en H-> (1/n), and let ~E~l := E1 U {0}
= {0,1, (1/2), (1 /3) , . . . } be the one-point compactification. Then XE becomes the sub-
space of the product space (E )N with the closure XE, where the metric

d({xn),(yn)) =*52^\xn-yn\, xn,yn€E~l

n=l

is compatible with the product topology. The shift map aE :— a^E on the compact
metric space XE now has a well-defined topological entropy. Similarly we have the
compact metric space HE C (E ) z and the shift map WE :— og£. We use the same
notation for two shift maps.

LEMMA 4 . 2 . If E is a locally finite irreducible infinite graph then

P R O O F : Consider the open cover Vn := {[1] , . . . , [1/n], [1/n]} of EB, where

{(Xi) e E£ | z, = I/A}, k = 1,.. . , n,

[T/n] = {{xi) 6 E £ \xi < l / n } .

Put Vn := o^Vn V ol-lVn V • • • V oEVn V Vn V o£Vn V • • • V oE
nVn. Then

1=0
1

= lim T logN(alVn V • • • V aEVn V • • • V Vn V • • • V a^n~k+lVn)

(4) ^ lim (I log N^Vn V • • • V a^7>n) + i log N(Vn V • • • V a ^ -

= lim \ \ogN(Vn V a i 1 ^ V • • • V o?-k+lVn).

Similarly for the finite open cover Qn :— {[l] , . . . , [1/n], [1/n]} of XE, where

[I/A] = {(Xi) €XB\xi = 1 A} , * = 1, . . : , n,

[TM={(xi)eXE\x1<l/n},
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and for Un := Qn V o~£Qn V • • • V a^nQn, one has

(5) /itoP(X£,Wn) = lim log N(Qn Va^Qn V • • • Voi" -* + 1 Q n ) .
k—•ook—•oo

But N(PnVaE
1VnV---VaE

n-k+1rn) = N{Qnya-E
lQn\J---\/aE

n-k+lQn) follows easily,
thus from (4) and (5), we have

htop&E, Vn) = /ltop(^E,Wn).

On the other hand, the sequence {Un} ({Vn}, respectively) is refining (see [1]), that is,
lin+i is a refinement of Un and for every (finite) open cover B there exists an n such that
Un is a refinement of B, which implies that

fhop(X ElaE) — lim fhop(XE,Un)
n-too

htop{^E,oE) = lim fkOp(EE,Vn).
n-+oo rl

REMARK 4.3. For an infinite graph E, Gurevic [8] introduced an entropy

sup{/i(EE/) | E' C E finite subgraph},

and proved that /HOP(£.E) = sup h(Y,Ei) holds if E is irreducible. Moreover the supremum
E>

can be taken over all the irreducible finite subgraphs by [8, Lemma 2].
THEOREM 4 . 4 . Let E be a locally Gnite irreducible infinite graph. Then

p ( )

where the supremum is taken over all the finite subgraphs of E.

P R O O F : Recall that /i(££/) = h(XE>) for any finite subgraph £" of E (see Remark

2.1(b)). Then the first equality follows from Lemma 4.2 and Remark 4.3.

Note that for the locally compact shift space XE(c {E )N) the cylinder sets

[a} = { x = { x 1 , X 2 , . . . ) e X E \ x i = a i , l ^ i ^ \ a \ } , a £ E*

are both compact and open and form a basis for the topology. Also one can easily show
that the closure XE is nothing but the one point compactification of XE. As in a finite
graph case, let

VE := C'{pa | a G E*}

be the commutative C*-subalgebra of C*(E) generated by projections pa = sas*a. Then

clearly (J>EC^E) C VE, hence ht(<pE\i)E) ^ ht(0g). Thus it suffices to see that

= fhop(XE).
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We prove that the map w : T>E —> CO(XE), w(pa) = X[a]> is a *-isomorphism such that

(6) W{<I>E\VB)W~1 = 0*E,

which then implies that ht(<j>E\t>E) = ht(°E*)> a n d thus by Remark 2.4(b) we have

Since it is tedious to show that w is an injective *-homomorphism satisfying (6), here we
only prove that w is surjective. It is enough to see that the linear span of the characteristic
functions \[a] IS dense in C0(XE)- Let / € CQ(XE) and e > 0. Then there is a compact
subset K C XE such that ||/|xE\Ail < e. For each x — (xn) € K, consider the cylinder
set

[x]n •= { V = {Vn) e XE I xk = y k , 1 ^ k ^ n } .

Since / is continuous at x there is a neighborhood Ux of x such that

\f{x) - f(y)\ < e whenever y e Ux.

Moreover we can choose Ux — [X]N for some N € N. Then there exists a finite

subcover of {Ux | x € K} consisting of disjoint open sets, say {[z1]/^, • • •, [zm]Arm}-
m m

Put g := X) f(xj)x[xi]N. • Then g(y) = 0 for y $ \J [xi)Nj. If y € [arJ']jv,- f o r s o m e 3

Therefore |fl(2/) - f{y)\ < e for each y e Xg. D

REMARK 4.5. It would be nice to obtain an upper bound for the topological entropy
ht(0fi) for E in Theorem 4.4. Let E be a locally finite irreducible infinite graph and let
AE be the AF subalgebra of C*(E) = C*{pv,se} generated by the partial isometries of
the form sas*p with \a\ — |/3|. Then AE is </>E-invariant and contains the commutative
subalgebra VE, so that \&(4>E\VE) ^ ^ ( ^ B U B ) - We shall give an upper bound for

elsewhere.
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