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TOPOLOGICAL ENTROPY FOR THE CANONICAL COMPLETELY
POSITIVE MAPS ON GRAPH C*-ALGEBRAS

JAa A. JEONG AND GI HYuUN PARK

Let C*(E) = C*(s¢,py) be the graph C*-algebra of a directed graph E = (E°, E!)
with the vertices E® and the edges E'. We prove that if E is a finite graph (possibly
with sinks) and ¢g : C*(E) — C*(E) is the canonical completely positive map defined
by

op(z) = Z SeZSe”,

ecE?
then Voiculescu’s topological entropy ht(¢g) of ¢g is logr(Ag), where r(Ag) is the
spectral radius of the edge matrix Ag of E. This extends the same result known
for finite graphs with no sinks. We also consider the map ¢g when E is a locally
finite irreducible infinite graph and prove that sgp{ht(tpgl)} < ht{¢g), where the

supremun is taken over the set of all finite subgraphs of E.

1. INTRODUCTION

Given a directed graph E with the vertex set E° and the edge set E' it is well
known that there exists a universal C*-algebra C*(E) generated by partial isometries -
{se | e € E'} and mutually orthogonal projections {p, | v € E°} satisfying certain
relations determined by the graph E. A classical Cuntz-Krieger algebra O4 of ann x n
{0,1} matrix A is now well understood as a graph C*-algebra C*(E) of a finite directed
graph E with the vertex matrix A (04 = Op for the edge matrix B of E). If A has no
zero rows or columns, the map ¢4 : Oy — O, defined by

n
dalz) = ZSJ‘.TS;-, z€ 04
i=1

is unital and completely positive, where s;’s, 1 < j < n, are the partial isometries that
generate O4. If A is the edge matrix of E, ¢4 corresponds to the unital completely
positive map ¢g : C*(E) = C*(E) given by

$E(@) = D sezs.”.

ecE!
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Then one can think of Voiculescu’s topological entropy of ¢g (or ¢4), and it turns out
that if F is a finite directed graph with no sinks

ht(¢p) = log r(Ag),

where r(A) is the spectral radius of the edge matrix Ag of E (see [15, 4, 7, 3, 5, 14]).
One purpose of the present paper is to extend this result to a finite graph possibly with
sinks, and the other is to provide a lower bound for ht(¢g) when E is a locally finite
irreducible infinite graph.

In Section 2, we review several definitions and properties of graph C*-algebras, en-
tropies, and Voiculescu’s topological entropy of a completely positive map. Then Section
3 is devoted to obtaining ht(¢g) for an arbitrary finite graph E with the sinks S(F). To
this end we consider another completely positive map g on C*(E),

Ye(2) = $u(e) + D puzp0,
vES(E)
and show that
ht((ﬁg) = ht(’(/)E) = lOg T(AE)

We first prove that log 7(Ag) < ht(1g) by considering the topological entropy hiop (X, o)
of the (compact) edge shift space (Xg, o) of the finite graph Es which we obtain from
E by adding a loop edge to each sink of E. For the reverse inequality ht(yg) < logr(Ag)
we shall modify the proof of 3, Theorem 1] to cover our general situation. Then
ht(¢g) = ht(yg) is proved.

In Section 4 we consider a locally finite (irreducible) infinite graph E, and prove that

the map ¢g given by
¢e(z) = Z SeTS.", T € C‘(E))
ecE!l
is a (well defined) completely positive contraction. But in this case the edge shift space
Xg may not be compact, so we shall consider Gureyic’s compactification X g of Xg
in order to find its topological entropy hup(X£) as a lower bound for ht(¢z). Note
from (8] that hyp(XE) = sglp hiop(X ), where the supremum is taken over all the finite

subgraphs of E. Then it follows that ht(¢g) = co for many infinite irreducible graphs
E. Nevertheless it would be interesting and important to know the exact value of ht{¢g)
when ht(gg) is finite.

2. PRELIMINARIES

2.1. GRAPHS AND GRAPH C*-ALGEBRAS. Let E = (E° E',r,s) be a directed graph
(or simply a graph) with a countable vertex set E° and a countable edge set E', where
r,s : E' = EO are the range and source maps. If each vertex of E emits and receives .

https://doi.org/10.1017/50004972700035851 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700035851

(3] Topological entropy 103

only finitely many edges, E is called locally finite. By S(FE) we denote the set of all
sinks (vertices which emit no edges) of E. A sequence a = (ay,as,...,qa,) of edges
satisfying () = s{ait1), ¢ = 1,...,n — 1, is called a (finite) path of length || = n.
We simply write @ as & = o3 - - - @, and extend the maps r, s to finite paths by s(a)
= s(a), r(a) =r(oy,). E™ will denote the set of all finite paths of length n (each vertex

[=<}

is regarded as a finite path of length zero), and E* = |J E™ denotes the set of all finite
n=0

paths. Similarly an infinite path is defined to be an infinite sequence o = ajay--- of

edges with 7(;) = s(ci41), 1 =1,2,... . If a path a (|a| > 0) satisfies s(a) = 7(a) we
call @ a loop. A loop « is called a loop edge if |a| = 1.

For a graph E, a family {s.,p, | e € E!, v € E°} of partial isometries s, (with
mutually orthogonal ranges) and mutually orthogonal projections p, is called a Cuntz-
Krieger E-family if it satisfies the following.

SeSe = Pr(e)s
S¢S, < Pa(e), and
Dy = Z sesy if 0< ls'l(v)| < 00.
s(e)=v
It is known (see (2, 12] for example) that there exists a universal C*-algebra C*(E) (or
C*(5e,pv)) generated by a Cuntz-Krieger E-family {s.,p,}. We call C*(E) the graph
C*-algebra associated with E. It is useful to note that span{s,s; | @, 8 € E*} is dense
in C*(E), where sq = Sq, *** Sq, ifa =01 ¢ € E¥, k> 1,and 5, = p, if a = v € E.

2.2. SHIFT SPACE AND ENTROPIES. Let A be a finite set. Then a subset X C AN is
called a (one-sided) shift space if there is a collection F of words over A such that X is
the set of all sequences z in which no word of F can appear. By ox we denote the shift
map on X. Since A is finite (so compact in discrete topology), a shift space X c AN
is a compact space and ox is continuous, hence (X, ox) carries the entropies which we
review below.

(i)  ([13, Definition 4.1.1] or [10, p.23]) The entropy h(X) of X is defined by

o1
h(X) = lim — log|Wa(X)],

where W, (X) is the set of all words of length n that appear in a sequence of X. If X # 0
we have 0 < h(X) < log|A| < oo since 1 < |Wo(X)| < JA". In particular, the full shift
space X, = AN (|A] = n) has h(X,) =logn. If X = 0 then h(X) = —oo by definition.

(i) ([16, Chapter 7]) Let T : X — X be a continuous map on a compact space X.
If U is an open cover of X then so is T~'U. By N(U) we denote the number of sets in
a finite subcover of U with smallest cardinality. Then the entropy of T relative to U is
given by .

huop (T, U) = lim ~ log(N(\/ T-"u)),

n—oo0 7 i~o
1=
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where U V'V denotes the join of i and V, and the topological entropy of (X, T) is defined
to be
hiop (X, T') = sup Poop (T, U),

where the supremum is taken over all the open covers (or equivalently, over all the finite
open covers) of X.

REMARK 2.1. (a) If E is a finite graph we have the edge shift space
Xg = {a= () € (BN | r() = s(cis1), i € N}

(or the infinite path space) and the shift map og given by og(a); = 0441 for each ¢ € N.
For E with no infinite paths, we have h(Xg) = —oo. Otherwise it is known [16, Theorem
7.13] that
hiop(XE,0E) = MXE).
(b) Let Zg(C (E')%) be the two-sided shift space associated with a finite graph E.
Then we know from ([10, p.23]) that

h(Xg) = h(ZE).

We call a graph E irreducible if for any two vertices v, w there exists a finite path
a with s(a) = v, r(a) = w. So a finite graph E is irreducible if and only if its vertex
matrix Vg (or edge matrix Ag) is irreducible. Here a real, nonnegative square matrix
A = (Aij)1gijgn 18 irreducible if for each i, j there exists an m > 1 such that (A™);; > 0.

If F is a finite graph, the vertex matrix Vg has irreducible components V;,...,V;
in the sense that each V; is an irreducible nonnegative square integer matrix and there
exists a permutation matrix P such that PVzP~1is in a block triangular form with
blocks V,..., Vi on its diagonal. Let Ay, be the Perron-Frobenius eigenvalue of V;. Then
the Perron value Ag = maxgick Av; is the largest eigenvalue of Vg, hence Ag = r(Vg),
the spectral radius of Vg (see [13, Section 4.4]). One can write E° as the disjoint union
of vertices E? (1 < 4 < k) so that each V; is a matrix with the index E?. Let E; be the
subgraph of E with the vertex set E? and edge set E} = {e € E! | s(e), r(e) € E?}, then
E; is irreducible, and E;’s are called the irreducible components of E. If E? is a singleton
and |E}| = 1, then log Ay; = 0, thus the subgraph E; makes no contribution to the value
of h(Xg) because

h(Xg) =logA\g = max log Av;

([13, Theorem 4.4.4]). On the other hand, it is easy to see that r(Ag) = r(Vg). In fact,
the rectangular matrices R = (Rey)ecrl ver® S = (Sye)verd ecet, Where

Rw={ L if rle)=v, s,,e={ 1, if s(e) =v,

0, otherwise, 0, otherwise,

satisfy RS = Ag and SR = Vg, which implies that A is an eigenvalue of Vg if and only
if A is an eigenvalue of Ag. Hence we have the following.
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PROPOSITION 2.2. Let E be a finite graph and Xg be the one-sided shift
space associated with E. Then

h(Xg) =logAg = logr(Ag),

where A\g is the Perron value of the edge matrix Ag (or the vertex matrix Vg) of E and
r(Ag) is the spectral radius of Ag.

2.3. TOPOLOGICAL ENTROPY OF A COMPLETELY POSITIVE MAP. We briefly review
the definition of topological entropy for a completely positive map of a C*-algebra which
was first defined for automorphisms of unital nuclear C*-algebras by Voiculescu [15] and
then extended to automorphisms of exact C*-algebras by Brown [4]. See also [7] and (3]
for the following definition of topological entropy for a completely positive map.

Let w : A — B(H) be a faithful representation of a C*-algebra A and Pf(A) be the
set of all finite subsets of A. For w € Pf(A) and é§ > 0, we put

CPA(m, A) := {(¢,%,B) | ¢: A— B,¢: B— B(H)
contractive completely positive maps, dim B < oo},

rep(m, w, 8) := inf { rank(B) | (¢, ¥, B) € CPA(r, A), || o ¢(z) ~ 7(z)|| < 6,

forall z € w},

where rank(B) := the dimension of a maximal Abelian subalgebra of B.

It is well known [9] that every exact C*-algebra A is nuclearly embeddable, that
is, there exists a faithful representation 7 : A — B(H) such that for each finite subset
w C A and 6 > 0 there is (¢, 4, B) € CPA(m, A) with ¢ o ¢ close to = within § on w.
Moreover the value rcp(m, w, ) is independent of the choice of 7 (see {4, 3]). Since graph
C*-algebras C*(E) are nuclear (see {11, p. 193]) we may write rcp(w, é) for rep(m,w, 6)
assuming C*(E) C B(H) for a Hilbert space H.

DEFINITION 2.3: ([4, 3]) Let A C B(H) be a C*-algebra and ® : A - A be a
completely positive map. Then we define

ht(®,w, d) = lim sup % log (rep(w U @(w) U --- U B} (w), d)),
. n—o0

ht(®, w) = sup ht(®, w, 6),
§>0

ht(®) = sup ht(P,w).
wePf(A)

ht(®) is called the topological entropy of ®.

REMARK 2.4. We refer the reader to (3, 4], and [7] for the following useful properties.
Let @ : A — A be a completely positive map on an exact C*-algebra A.
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(a) If6: A — B isa C*-isomorphism then
ht(®) = ht(896!).

(b) Let A be the unital C*-algebra obtained by adjoining a unit. Let ® : A — A
be the extension of ®. Then

ht(®) = ht(®).
(c) If Ay is a ®-invariant C*-subalgebra of A, then
ht(®]4,) < ht(®).

(d) If {wk} is an increasing sequence of finite subsets in A such that the linear

‘span of the set |J @®'(wy) is dense in A, then
kl€Z+

ht(®) = sup ht(®, w;).
k
(e) LetT:X — X be a continuous map on a compact metric space X. Then

ht(T*) = hiop(X,T), where T* : C(X) — C(X) is the completely positive
map given by T*(f) = fo T, f e C(X).

3. FINITE GRAPHS

In this section we consider the following two completely positive maps ¢g, ¥g on the
graph C*-algebra C*(FE) associated with a finite graph E,

$e(z) = Y sczs.”,

eeE!
Ye(z) = z SeTSe + Z DuZDy.
ecEl vES(E)

We call ¢g the canonical completely positive map of C*(E) which is not unital if F
contains a sink while g is always. A computation shows that

(1) Yp(z) = Z 5uTSy" + }: SpTSy" + Z DvZPy-
lul=n 0<|nl<n vES(E)
r(n)€S(E)

Hence if E has no infinite paths then there exists an NV such that the first term ) s,zs,*

|s|=n
vanishes and ¥3%(z) = ¥X(z) whenever n > N. Thus it follows that ht(¢r) = 0. But
the edge matrix Ag has no nonzero irreducible components and so its Perron value is 0.
Hence we see from Proposition 2.2 that logr(Ag) = —o0.

We now compute ht(¢¥g) (and ht(¢g)) for E which contains an infinite path.
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THEOREM 3.1. Let E be a finite graph with the edge matrix Ag. If E contains
an infinite path then
ht(yg) = logr(AE),
where 7(Ag) is the spectral radius of Ag.

Let Dg be the commutative C*-subalgebra of C*(E) generated by projections of the
form p, = s,s;, p € E*. Then Dg is Yg-invariant and

Dp =5pan{p, = s,s;, € C*(E) | p € E*}.

Now we seek a shift space (X, ox) such that there exists an isomorphism w : Dg = C(X)
satisfying w(vg|pg)w™! = o% from which we deduce that h(X) < ht(¢g). Let Eg be the
graph obtained from E by adding a loop edge e, to each sink v € S(F), that is,

E}=E°’ Ei=E'U{e,|s(e) =r(es) =v, veSE)}

and consider the shift space Xg, of infinite paths. Then the cylinder sets [u] = {pa |
pa € Xgg}, p € Eg, are both open and compact, and form a basis for the subspace
topology of the compact space Xgg C (E})N. Hence the characteristic functions xjj,
u € E%, are continuous on Xg,. Moreover applying the Stone-Weierstrass theorem one
sees that the linear span of the characteristic functions {x, | » € E2, n € N} is dense
in C(Xgs). Then as in [6, Proposition 2.5] and [14, Corollary 7.2], one obtains the
following.

LEMMA 3.2. The linear map w : Dg — C(Xg,) given by

X I (el 21,
’LU(p#) — (1] .
Xle.)y If p=v € S(E)

is a *-isomorphism such that w(Yg|pm)w™ = (0x5,)"

ProposITION 3.3. hmp(XEs,axEs) = ht(¢g|pg) < ht(¥g).

PROOF: By Remark 2.4(e), we have hiop(Xg;,0x5,) = ht((UxEs)')- Also Remark
2.4(a) and Lemma 3.2 imply that ht((0x,,)*) = ht(4g|p,). The last inequality follows
from Remark 2.4(c). 0

ProposITION 3.4.

(a) h(Xg) = h(XEgs). “
(b) Let G be the graph obtained from E by removing vertices v with s~!(v)

consisting of a loop edge and all edges in r~'(v) and then adding a loop
edge to each newly formed sink, if any. Then h(Xg) = h(Xg).

PRrOOF: (a) immediately follows from Proposition 2.2 and the arguments before it.
For (b), apply (a) and the arguments before Proposition 2.2 repeatedly. 0
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PrROPOSITION 3.5. logr(Ag) = h(XEg) < ht(yg).
PROOF: h(Xg) = h(XEgg) by Proposition 3.4(a), and h(Xg,) = heop(XEs, 0x5) by
Remark 2.1.(a). Then Proposition 3.3 proves the assertion.

For the proof of the reverse inequality ht(1g) < logr(Ag), we modify the proof in [3]
according to our general situation. But we have to deal with more complicated situation
due to the existence of sinks which do not appear in case of [3], so we present a proof
here. Put

n-1
W(n) := E*U { pe | JE ‘ r(u) € S(E)}.
k=0

Then there is a one to one correspondence between W(n) and the set (Es)™ of finite
paths of length n in E§s, and so the following lemma is an immediate consequence of
Proposition 3.4(a).

LEMMA 3.6. le (1/n) log|W (n)| = log r(AE).

n—o00
As in [3] we define a map p,, : C*(E) = Mjwm) ® C*(E) by
pm(z) = Z v ® S,T5,.
myEW(m)
LEMMA 3.7. .pn is an injective x-homomorphism.

PROOF: Since ) s,s} = I, the unit of C*(E), it easily follows that p,, is a
weW (m)
x-homomorphism. To see that p,, is injective, suppose pm(z) = 0 (in [3], C*(E) was

simple). Then s;zs, =0 for all p,v € W (m). Thus for each pair of vertices v,w € EY,

* «
E 848,288, =0,

peW (m),s(u)=v
veW (m),s(v)=w
which implies that p,zp,, = 0 since

— »
Dy = § : SuSy-

BEW (m),s(n)=v
Therefore z = 0 and p, is injective. 0

LEMMA 3.8. Letn € N, |B] < |a] < no, and m > n + ng. Then for each
0<lig<n—-1,
pm(W(sasy) = D X(wa,BLm)®s,

uEW(ja|-|8l)

for some partial isometries X (1, a, 8,1, m).
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PROOF: Note first that if u,v € W(m) and |u| # |v| then s};s, = 0. Also if
u,v € E*, 7(n) € S(E), and |u| < |v| then s;s, = 0. Then from the formula (1)

pm(Wis(5a55)) = 3 Pm(snSashs))

new(l)

*x %
E E e ® s;s,,sasﬁs,,s,,

neW(l) preWw(m)

= E : § : ey ' @ Sy,

neW (lal~|B)) nau',nﬂu'u(e)W(m)

new(l
and X(p, @, B,l,m) := > €naw’ mBu's 1S @ partial isometry with the range pro-
nay’ nBu'ueW (m)
new(l)
jection X (g, @, B, L, m)X(n, a0, B, L, m)* = Y epap' mou- 0
nay’' EW(m)
new(l)

For each ng > 1, put
w(no) = {sasp | 18] < le < mo}.
Then the following proposition implies that

ht(’(f)E) S IOg T'(AE),

since the linear span of the set |J (w(k) Uw(k)*) is dense in C*(E) (Remark 2.4.(d)).
k31

PROPOSITION 3.9. Letny>1andéd > 0. Then

n—1

ht(Yg, w(ng), 8) = hmsup —log rcp ( U ¥ (w(na)), 5) < logr(Ag).

i=0

Proor: Let H be a Hilbert space on which C*(FE) acts faithfully. Since C*(E) is
nuclear, there exists (¢0,¢0, mo) € CPA(de-(E),C (E)) such that

(2) l|[%odo(sy) — 54| < v € W(ny).

()I

Now forn 2 1, let m = m(n) = n+ng and B = MW(mn ® Mp,,. Then by Arveson’s
extension theorem (see [4, p. 349]) the *- lSOmO!‘phlSD’l Pt pm(C*(E)) — C*(E) extends
to a unital completely positive map

v, : MIW("I)I ®C*(E) —» B(H)
Now consider the completely positive maps ¢ and 1 given by

¢ = (id® ¢o)pm : C'(E) » B and ¢=\pm(id®¢0):3—»3(ﬂ).
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idge
C.(E) C*(E) C‘(E)%;B(H)
Pm Y -
¢ B = Miw(m) ®C*(E) ~
id®¢o 1d®o

B = Miw(m)|® Mm,

Let a = s,55 € w(ng). Then by Lemma 3.8 there exist partial isometries X (i)
= X(u, a, 8,1, m) such that

3) (@)= S X(wes,.

ueW (Ja|-|8])

Then as in [3] it follows from (2) and (3) that

[ve(v5(@) - vhta)| < W (o) - 1_6_ _s

W(no)|
Therefore -
rcp ( U Vg (w(ng)), 6) < mOIW(m)| = mo|W (n + no)|,
i=0
and so lim sup(l/n logrcp( U 9 (w(no)), ) < logr(Ag) (by Lemma 3.6). 0

CorOLLARY 3.10. Let E be a finite directed graph and G be a subgraph of E
obtained by removing sinks and edges going into them. Then

ht(4£) = ht(¥e).
In the rest of the section we show that ht(¢g) = ht(¢g).

LEMMA 3.11. okL(z) =¢k(z) + 1,/)2?1( > p,,:zp,,), leN.

vES(E)

PROOF: Since ¢¥g(z) = ¢g(z) + Y. pyzpy, we have
vES(E)

Yg(z) = ¢E(¢E + Y peap) + D pu(te@)+ Y pﬂm)

vES(E) wES(E) vES(E)

= ¢2E(z)+¢s( > pmn) + ) pw< > pvzpv)pw

vES(E) weS(E) vES(E)

= ¢ (2) +¢E< > puxpv>-

vES(E)

For [ > 3, use induction on (. 1]
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Let ¢ : C*(E) — C*(F) be the completely positive map given by ¢.(z)
= > S.Tse*.
ecE!
r(e)¢S(E)
ProposITION 3.12. ht(¢.) = ht(dE) < ht(¢E).
PrROOF: Let § > 0, n € N, and let w C C*(F) be a finite set of the elements of
the form sos3, o, € E* such that {p, | v € S(E)} C w. Then choose an element
n—-1
(%1, %2, B) € CPA(idc-(g), C*(E)) satisfying rank(B) = rcp( U v (w), 6). Ifz € w,
j=0
1 €1 < n -1, then by the above lemma

2w (85(2)) — d5(@)|| < |[atr (Wh(2)) — v (@)]|

Yot <¢'E‘l( > puxp.,)) - S‘( > puzpy

) <2,
veS(E) vES(E)

-+

and rcp (nol ¢ (w), 26) < rep ('Dl wé(w),é). Thus we have ht(¢g) < ht(yg).
j=0 7=0

To prove the first equality, note that ¢4 (z) = ¢4 (z) if = ses5* € w with |a| + |3
>0, and ¢4 (z) =0 if z = p,, v € S(E). Thus

n-1 n-1

U ¢i(w) € | ¢(w)u {0},

i=0 i=0
and hence ht(¢r) < ht(¢g). Put @ := wU ¢g(w). From definitions of ¢ and ¢, it is
easily seen that ¢ (z) = ¢7 ' (#&(z)), ! > 1. Thus '

n—-1 n—1
U #(w) € U @),
i=0 i=0
which also shows that ht(¢g) < ht(éz). 0

Note that the commutative C*-subalgebra
D :=35pan{p, = sus," | p € E", r(p) ¢ S(E)}.
of C*(E) is ¢r-invariant and so ht(¢r|p) < ht(gr).
PropPosITION 3.13. ht(¢g) = ht(¥E).

PRrROOF: Let G be the graph obtained from E by removing the sinks S(E) and the
edges going into them. Then as in Lemma 3.2, one can show that there is an isomorphism

w': Dy = C(Xg) such that
1

og = w'(¢slp,) (W),
where o is the shift map on Xg. Thus ht(¢.|p,) = h(Xc). Consequently,
ht(yg) = logr(Ag) = h(Xg) = h(Xg) = ht(ér|p,) < ht(¢E)

by Theorem 3.1, Corollary 3.10, and Proposition 3.12. ' 0
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ExXAMPLE 3.14. The Toeplitz algebra 7 can be viewed as the graph C*-algebra C*(E)
of E = (E° = {v,w}, E' = {e, f)}), where s(e) = r(e) = s(f) = v, 7(f) = w. In fact, if
{Se, 8, Pv, Puw} is a Cuntz—Krieger E-family generating C*(E) the element U := s, + s
satisfies that U*U = I = p, + py, UU* = p,, U*'U — UU* = p,, UU* = s,, and
U-U?U* = s;. Thus C*(E) = C*{U} and so by Coburn’s theorem 7 = C*{U} = C*(E).
Since U*U = I, the linear span of the set {U™(U*)" | m,n > 0} is dense in C*(E),
and one can show that ¢g(z) = UzU* for each z of the form U™(U*)". Thus ¢ is
the endomorphism Ad(U) on 7. Since r(Ag) = 1, it follows from Theorem 3.1 and
Proposition 3.13 that ht(¢z) = logr(Ag) = 0. Thus ht(Ad(V)) = 0.

4. INFINITE GRAPHS

In this section we consider the topological entropy of ¢g for an infinite graph E.

PROPOSITION 4.1. Let E be a locally finite infinite graph and let C*(E)
= C*(se,pv) be its associated C*-algebra. Then the sum Y s.zs.* exists for each

ecEl
z € C*(E) and the map ¢g : C*(E) — C*(E) given by
¢5(z) = D _ sezs.”, T € C*(E)
ecE!
is a completely positive contraction.

ProOOF: For an £ € C*(E) and £ > 0, choose a finite subgraph F of E and an

element z = 3 Aag8asg* (Aap € C) such that ||z — z|| < e. Put E' = {ei,e,,...}.
a,feF*
Then by the local finiteness of E there is a number N such that

F'u{e€ E'"|r(e) € F°} C E}, :={ey, e2,...,en},
so that zpy,) = 0 for £ > N + 1. For any finite set E' of edges, let Vg := {r(e) | e
€ E'\E\}and P:= ) p,. Then |zP| =||(z - 2)P| <e, and

vEVgy

E SeTS,

ecE\E},

1/2
< |lzP|| <e.

" se(zP)*(zP)s;

e€E'\E},

Thus if E’, E” are two finite sets of edges with E}, C E' N E”, then

E SeISe' — E SeIS.” E SeLSe" E SeTSe*

ecE' ecE" e€E'\E}, e€E"\EL

< + < 2¢,

which shows that the sum Y sczs! exists and the map ¢ is well defined. To see that
ecE!
¢r is a contractive completely positive map, consider a sequence of completely positive
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n
maps ¢, : C*(E) = C*(E) given by ¢,(z) = D 5¢,xse,*. If £ > 0 then ¢g(z) > 0 as
i=1
the limit of positive elements ¢,(z) in norm. The same argument also proves that ¢z is
completely positive. Since each ¢, is contractive we have ||¢g|| < 1. 0

The {one-sided) shift space Xg may not be compact for an infinite graph E,
which makes the definition hio,(Xg) meaningless. This leads Gurevic [8] to con-
sider a compactification of Xp: Identify the edge set E' = {e,}nen with the met-
ric space {1,(1/2),(1/3),...} C [0,1] by e = (1/n), and let E' = E'U {0}
={0,1,(1/2),(1/3),...} be the one-point compactification. Then Xg becomes the sub-
space of the product space (El)N with the closure X g, where the metric

(o0}

1 —
d((xﬂ)v (yﬂ)) = Z 2_n|xn - ynly Tn, Yn € El

n=1

is compatible with the product topology. The shift map 6g := 0%, on the compact
metric space Xg now has a well-defined topological entropy. Similarly we have the
compact metric space g C (E )2 and the shift map 7 := o5,. We use the same
notation for two shift maps.

LEMMA 4.2. IfFE is a locally finite irreducible infinite graph then
htop (YE,EE) = htop (EE, EE)-
PROOF: Consider the open cover P, := {[1],...,{1/n],{1/n]} of g, where

[I/_k] ={(z:) €Zp |z =1/k}, k=1,...,n,
[1/n] = {(z:;) € Tp | 71 < 1/n}.

Put Vn = E%Pn \'% E%‘lpn VeV -U—Epn vV P" Vv EEIPH (VR EE"’Prr Then
htOP(aEa vn)
1 k-1
— 1 —t
= lim I logN( ,\_/0 75 (Vn))
.1 n _ o
= Jim logN(TFPaV -+ VTEPaV -V PaV - Vg *HIp,)
1
k
.1 L e
= klg{.loz log N(P, vV UELPn V---V3g k“'P,.).

1
(4) < lim (E log N(@LPs V - - - VTLP,) +

RVE =]
Jim log N(P,V:---V5p ’Pn))
Similarly for the finite open cover Q, := {[1],...,[1/n], [I/_n]} of X g, where

(1/k] = {(z:) € Xg | z1 = 1/k}, k= L...,m,
[1/n] = {(z:) € Xg | 71 < 1/n},
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and for U, = @, VG5 QnV - V75" Q,, one has
(5) hop(X e, Un) = lim log N(Qu VT5'Qn V- VEE" 1 Qy).

But N(P, VG5 PoV---Vag"*1P,) = N(Q, VG5 Q. V- - VFz" ¥+ Q,) follows easily,
thus from (4) and (5), we have

htop (EE, vn) = htop (YE, un)-

On the other hand, the sequence {U,} ({V,}, respectively) is refining (see [1]), that is,
U, 1 is a refinement of U, and for every (finite) open cover B there exists an n such that
U, is a refinement of B, which implies that

htop (YE; EE) = nlg{.lo h'top (YE; un)
htop (EE: EE) = ﬂll'ngo h'top (EE ) Vn)

REMARK 4.3. For an infinite graph E, Gurevic (8] introduced an entropy
sup{h(Zg) | E' C F finite subgraph},

and proved that hp(Eg) = sup A(Zg) holds if E is irreducible. Moreover the supremum
EI
can be taken over all the irreducible finite subgraphs by [8, Lemma 2].

THEOREM 4.4. Let E be a locally finite irreducible infinite graph. Then
hiop(X £) = sup h(Xe) < ht(¢g),

where the supremum is taken over all the finite subgraphs of E.

PRrOOF: Recall that h(Xg) = h(Xg) for any finite subgraph E’ of E (see Remark
2.1(b)). Then the first equality follows from Lemma 4.2 and Remark 4.3.
Note that for the locally compact shift space Xg(C (E_I)N) the cylinder sets

e ={z=(z1,22,...) € Xp|zi =1 <i< o]}, 2 € B*

are both compact and open and form a basis for the topology. Also one can easily show
that the closure X g is nothing but the one point compactification of Xz. As in a finite

graph case, let
Dg:=C*"{pa| € E"}

be the commutative C*-subalgebra of C*(FE) generated by projections p, = sos%. Then
clearly ¢z(Dg) C Dg, hence ht(¢g|p;) < ht(¢g). Thus it suffices to see that

ht(de|p;) = hiop(X ).
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We prove that the map w : Dg — Co(Xg), W(Pa) = Xja, 1S & *-isomorphism such that
(6) w($glp,)w™" = of,
which then implies that ht(¢g|p,) = ht(cg*), and thus by Remark 2.4(b) we have

ht(delps) = ht(5l5,) = huop(X ).

Since it is tedious to show that w is an injective *-homomorphism satisfying (6), here we
only prove that w is surjective. It is enough to see that the linear span of the characteristic
functions x|} is dense in Co(Xg). Let f € Co(Xg) and € > 0. Then there is a compact
subset K C Xg such that || f|xg\k|| < €. For each z = (z,) € K, consider the cylinder
set

[zl i={y=(m) € Xp | zx =9, 1<k <n}.

Since f is continuous at x there is a neighborhood U, of z such that
|f(z) — f(y)| <& whenever y € U,.

Moreover we can choose U, = [z]y for some N € N. Then there exists a finite
subcover of {U; | z € K} consisting of disjoint open sets, say {[z']n,,...,[z"]n, }-

Put g := 3 f(27)Xs)y,- Then g(y) =0 for y ¢ U[2’]n;. If y € [27]n; for some j then
i=1 j=1

|F(W) — 9)| < |f(W) — F@&)| + | f(=7) — 9(v)| <&
Therefore |g(y) — f(y)| < € for each y € XE. 0

REMARK 4.5. It would be nice to obtain an upper bound for the topological entropy
ht{¢g) for E in Theorem 4.4. Let E be a locally finite irreducible infinite graph and let
Ag be the AF subalgebra of C*(E) = C*{p,, s} generated by the partial isometries of
the form s,sp with Jo| = |B]- Then Ag is ¢g-invariant and contains the commutative
subalgebra Dg, so that ht(¢g|p;) < ht(dgl|az). We shall give an upper bound for
ht(@e|a.) elsewhere.
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