INDEFINITE FINSLER SPACES AND TIMELIKE SPACES

JOHN K. BEEM

1. Introduction. In this paper we investigate indefinite Finsler spaces in which the metric tensor has signature n - 2. These spaces are a generalization of Lorentz manifolds. Locally a partial ordering may be defined such that the reverse triangle inequality holds for this partial ordering. Consequently, the spaces we study may be made into what Busemann [3] terms locally timelike spaces. Furthermore, sufficient conditions are obtained for an indefinite Finsler space to be a doubly timelike surface (see [2; 4]). In particular, all two-dimensional pseudo-Riemannian spaces are shown to be doubly timelike surfaces.

2. Indefinite Finsler spaces. Let M be a connected paracompact differentiable manifold of dimension n and class C^{∞} . Denote the local coordinates of a point x on M by x^1, x^2, \ldots, x^n . In the tangent space T(x) at x we take a natural frame and denote the components of a vector y in T(x) by y^1, \ldots, y^n . Let L(x, y) be a function on the tangent bundle T(M) of M which has the following properties:

(A) The function L(x, y) is of class C^4 whenever $y \neq 0$;

(B) $L(x, ky) = k^2 L(x, y)$ for all k > 0;

(C) The metric tensor $g_{ij}(x, y) = \frac{1}{2}(\partial^2 L/\partial y^i \partial y^j)$ has n-1 positive eigenvalues and one negative eigenvalue for all (x, y) with $y \neq 0$.

If M is a Lorentz manifold with $ds^2 = g_{ij}(x)dx^i dx^j$, then $L(x, y) = g_{ij}(x)y^i y^j$ satisfies the above conditions.

For each fixed (x, y) the tangent vectors u at x are separated into three classes, spacelike, null, and timelike according to whether $g_{ij}(x, y)u^iu^j$ is (respectively) positive, zero or negative.

Define $F(x, y) = |L(x, y)|^{\frac{1}{2}}$. Then F(x, y) is of class C^4 if $L(x, y) \neq 0$. In general, F(x, y) is not differentiable when L(x, y) = 0. If F(x, -y) = +F(x, y), then F is called symmetric.

For fixed x and a non-zero constant c let S be a component of $\{y \mid L(x, y) = c\}$. Then S is an (n - 1)-dimensional surface in the tangent space T(x). Let $y_0 \in S$ and define $H(y) = g_{ij}(x, y_0)y^iy^j$. Then $H(y) = \pm c$ consists of two conjugate quadrics. Let S_1 be the component of H(y) = c that contains y_0 .

Received December 23, 1969. The research for this paper was supported in part by NSF grant number GP-11875.

JOHN K. BEEM

Because of the homogeneity of $g_{ij}(x, y)$ in the second variable we have

$$\frac{\partial g_{ij}(x, y_0) y_0^{i}}{\partial y^k} = 0.$$

Therefore,

$$\frac{\partial H(y_0)}{\partial y^k} = \frac{\partial L(x, y_0)}{\partial y^k} = 2g_{ik}(x, y_0)y_0^i.$$

Consequently, *S* and *S*₁ have a common tangent hyperplane *P* at y_0 . Let *y* be a vector parallel to *P*. Let $\partial H/\partial y^i = H_{yi}$ and $\partial L/\partial y^i = L_{yi}$. Then

$$H_{yi}(y_0)y^i = L_{yi}(x, y_0)y^i = 0.$$

The normal curvature of *S* in the direction *y* is

$$k_{n} = \frac{2g_{ij}(x, y_{0})y^{i}y^{j}}{[\sum (y^{i})^{2}][\sum L_{y^{i}}^{2}(x, y_{0})]^{\frac{1}{2}}} = \frac{2H(y)}{[\sum (y^{i})^{2}][\sum L_{y^{i}}^{2}(x, y_{0})]^{\frac{1}{2}}}$$

LEMMA 1. Let S be a component of $\{y | L(x, y) = c \text{ with } c < 0\}$. Then S is a strictly convex surface whose principal curvatures are all positive.

Proof. Using the above notation let $y_0 \in S$ and let y be parallel to the tangent plane P at y_0 . Then H(y) > 0 and hence $k_n > 0$. Therefore, all of the principal curvatures of S at y_0 are positive.

Let $S^0 = \{y \mid y = \lambda u \text{ for } \lambda \ge 1 \text{ and } u \in S\}$. Then S^0 is closed, connected, and strongly locally convex. Consequently, S^0 is convex. The set S is the boundary of S^0 and must be strictly convex. If n = 2, then S is a strictly convex curve with non-zero curvature at each point.

By consideration of the normal curvature as in Lemma 1 we can establish the following result.

LEMMA 2. Let S be a component of $\{y \mid L(x, y) = c \text{ and } c > 0\}$. Then at each point, S has one negative principal curvature and n - 2 positive principal curvatures.

3. The extremals. In this section and the next let F be symmetric. The Christoffel symbols are defined by

$$\gamma_{h\ k}^{\ j}(x,y) = \frac{g^{ij}}{2} \left[\frac{\partial g_{hi}}{\partial x^{k}} + \frac{\partial g_{ik}}{\partial x^{h}} - \frac{\partial g_{hk}}{\partial x^{i}} \right],$$

where the tensor $g^{ij}(x, y)$ is determined by $g^{ik}g_{kj} = \delta_j^{i}$. The extremals are given by

(*)
$$\frac{d^2x^j}{ds^2} + \gamma_h{}^j{}_k \frac{dx^k}{ds} \frac{dx^h}{ds} = 0.$$

This defines a space of paths. Consequently, simple convex neighbourhoods exist in which every pair of distinct points x, y determine a unique solution of (*); see [5]. If $U(x_0)$ is a simple convex neighbourhood about x_0 and $p, q \in U(x_0)$, let $\alpha(p, q)$ denote the unique extremal in $U(x_0)$ from p to q.

1036

Let \dot{x}_0 be given with $L(x_0, \dot{x}_0) = -1$. Construct a simple convex neighbourhood $U(x_0)$ in M such that for all $x \in U(x_0)$ we have $L(x, \dot{x}_0) < 0$. Let $K_1(x)$ be the component of $\{y \mid L(x, y) = -1\}$ that contains $\lambda \dot{x}_0$ for some $\lambda > 0$. Define $B(x) = \{\theta y \mid y \in K_1(x) \text{ and } \theta > 0\}$.

An indefinite metric is defined on $U(x_0)$ by $\rho(p, q) = \int_0^1 F(x, \dot{x}) dt$, where x(t) represents $\alpha(p, q)$ with x(0) = p and x(1) = q. Since F(x, -y) = F(x, y), it follows that $\rho(p, q) = \rho(q, p)$.

The Weierstrass *E*-function for the above integral is given by

$$E(x, \dot{x}, u) = F(x, u) - u^{i} F_{\dot{x}^{i}}(x, \dot{x}).$$

LEMMA 4. Let $x \in U(x_0)$ and $\dot{x}, u \in B(x)$. Then $E(x, \dot{x}, u) \leq 0$ and equality holds if and only if $u = \lambda \dot{x}$.

Proof. The Weierstrass *E*-function is homogeneous in both u and \dot{x} . Without loss of generality we may assume that $\dot{x} \in K_1(x)$ and u is in the tangent plane to $K_1(x)$ at \dot{x} . Then

$$F_{\dot{x}^{i}}(x, \dot{x})(u^{i} - \dot{x}^{i}) = 0$$
 and $F(x, \dot{x}) = 1$.

Since $K_1(x)$ is convex, we have F(x, u) < 1. Thus,

$$E(x, \dot{x}, u) = F(x, u) - 1 < 0.$$

4. Timelike spaces. For $p, q \in U(x_0)$ define p < q if there is a solution x(s) of (*) in $U(x_0)$ with x(0) = p, $x(s_0) = q$, and $x'(0) \in B(p)$.

THEOREM 5. The relation < is a partial ordering. Furthermore, if p < q < r, then $\rho(p, r) \ge \rho(p, q) + \rho(q, r)$ and equality holds if and only if $q \in \alpha(p, r)$.

Proof. Let p < q and q < r. It is necessary to show that p < r. Consider the Meyer field obtained by taking the extremals through p. This field covers a convex neighbourhood of U(p) and covers U(p) - p simply. We may assume that $q, r \in U(p)$. At each point $v \in \alpha(q, r)$ there is a tangent vector v_p to $\alpha(p, v)$ determined by the field. Traversing $\alpha(q, r)$ from q toward r we obtain a tangent vector v_q to $\alpha(q, r)$ at v. For v close to q we have $v_p, v_q \in B(v)$. Thus,

$$E(v, v_p, v_q) \leq 0.$$

Consequently, $\rho(p, v) \ge \rho(p, q) + \rho(q, v)$ with equality if and only if $q \in \alpha(p, v)$. It follows that $\rho(p, v)$ is non-decreasing as v traverses $\alpha(q, r)$ from q to r. Therefore, p < r and the theorem is established.

This theorem states that locally a timelike space can be obtained from an indefinite Finsler space of signature n - 2.

In the special case of n = 2, Lemma 1 holds for components of $\{y | F(x, y) = 1\}$. Using this it is not hard to show the following theorem.

THEOREM 6. Let M be a two-dimensional space and let F(x, y) be symmetric. If at each point of M there are exactly two (linearly independent) null directions, M is a doubly timelike surface.

It is only necessary to prove Theorem 6 locally for simple convex sets U_i . Then we cover M with sufficiently small convex neighbourhoods U_i such that $U_i \cap U_j$ is always a simple convex set and such that \overline{U}_i is always compact. Then define $\Pi = \{(p, q) | p \neq q \text{ and both points belong to a common } U_i\}$. The external $\alpha(p, q)$ and indefinite distance $\rho(p, q)$ are as previously defined.

COROLLARY 7. If M is a two-dimensional pseudo-Riemannian space, then locally M is a doubly timelike surface.

5. The Minkowski case. If M is the space of real n-tuples and L depends only on y and not on x, the space is called a Minkowski space. The extremals are the ordinary straight lines (even in the non-symmetric case).

Since F and L only depend on y, we write F(y) and L(y). Let z denote the origin and identify the tangent space at z with M. Consider F to be a function from M to the non-negative reals. If p and q are points of M, then

$$\rho(p,q) = \int F(\dot{x}) dt = F(q-p).$$

Here the integral is from p to q along the segment $\alpha(p, q)$.

Using the above identification, it is clear that F(x) is just $\rho(z, x)$, the distance from z to x. The unit sphere K is $\{x | F(x) = 1\}$ and the light cone C is $\{x | F(x) = 0\}$. The light cone must consist of a union of half lines from z.

LEMMA 8. If $x_0 \in C - z$, then x_0 and $(L_{x^1}(x_0), \ldots, L_{x^n}(x_0))$ are linearly independent.

Proof. Let $H(h) = g_{ij}(x_0)h^ih^j$. Then

$$\frac{\partial H(x_0)}{\partial h^k} = \frac{\partial L(x_0)}{\partial x^k} = 2g_{ik}(x_0)x_0^{i}.$$

Therefore, $(L_{x^1}(x_0), \ldots, L_{x^n}(x_0)) \neq 0$. By Euler's Theorem we have

$$L_{x^i}(x_0)x_0^i = 2L(x_0) = 0.$$

This establishes the lemma.

It now follows that if n = 2, the light cone consists of only a finite number of half lines. These half lines separate the space into open components S_1, \ldots, S_r . Exactly one component of K lies in each S_i . We may assume that the components S_i are labeled consecutively around z. If S_i and S_{i+1} are adjacent components, then, by Lemma 8, L(x) is positive on one and negative on the other. Traversing a circle about z, the function L(x) must alternate each time a half line of C is crossed. Consequently, there must be an even number of components S_i . THEOREM 9. Let M be Minkowskian and n = 2. Then the unit sphere K has an even number r of components. Furthermore, if L(-x) = -L(x), then r is not divisible by 4. If L(-x) = L(x), then r is divisible by 4.

Proof. The fact that r is even follows from the above remarks. Let $t = \frac{1}{2}r + 1$. Let L(-x) = -L(x). If S_1 is a component on which L(x) > 0, then L(x) < 0 on S_t and $\frac{1}{2}r$ must be odd. By similar reasoning, if L(-x) = L(x), then $\frac{1}{2}r$ is even.

We now give two examples which are neither pseudo-Riemannian nor Minkowskian general G-spaces; compare [1]. They are both two-dimensional.

Example 1. Let

$$L(x) = \frac{(x^{1})^{3} - x^{1}(x^{2})^{2}}{[(x^{1})^{2} + (x^{2})^{2}]^{\frac{1}{2}}}.$$

Then L(-x) = -L(x). The unit sphere K has six components.

Example 2. Let

$$L(x) = \frac{(x^{1})^{3}x^{2} - x^{1}(x^{2})^{3}}{(x^{1})^{2} + (x^{2})^{2}}.$$

Then L(-x) = L(x). The unit sphere K has eight components.

Acknowledgement. I wish to thank Calvin D. Ahlbrandt for some valuable suggestions.

References

- 1. J. K. Beem, Indefinite Minkowski spaces, Pacific J. Math. 33 (1970), 29-42.
- 2. J. K. Beem and P. Y. Woo, Doubly timelike surfaces, Mem. Amer. Math. Soc. No. 92, 1969.
- 3. H. Busemann, Timelike spaces, Dissertationes Math. Rozprawy Mat. 53 (1967), 52 pp.
- H. Busemann and J. K. Beem, Axioms for indefinite metrics, Rend. Circ. Mat. Palermo (2) 15 (1966), 223-246.
- 5. J. H. C. Whitehead, Convex regions in the geometry of paths—Addendum, Quart. J. Math. Oxford Ser. 4 (1933), 226-227.

University of Missouri, Columbia, Missouri