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ON THE INDEPENDENCE OF SOJOURN TIMES IN TANDEM QUEUES

THOMAS M. CHEN, * University of California, Berkeley

Abstract

Reich (1957) proved that the sojourn times in two tandem queues are
independent when the first queue is M / M /1 and the second has exponential
service times. When service times in the first queue are not exponential, it
has been generally expected that the sojourn times are not independent. A
proof for the case of deterministic service times in the first queue is offered
here.

1. Problem formulation

Let us consider two tandem FCFS queues, the first queue being M / D / 1 and the second
queue having exponential service times. Let A denote the rate of Poisson arrivals at the first
queue, T the deterministic service time in the first queue, and /1-1 the mean service time in
the second queue. The state of the system is defined as the vector of queue lengths at the
embedded times {t l , t2 , ••• } when customers move from the first queue to the second queue.
Let nl(tk) be the number of customers left behind in the first queue by customer k, and
n2(tk-) be the number of customers found by customer k upon arrival at the second queue. It
will be shown that the steady-state probabilities Jrij = P{(n l, n 2) = (i, j)} do not have a
product-form solution, and hence n 1 and n2 are not independent. This will imply that the
sojourn times in the two queues, 1;. and ~, are not independent.

2. Analysis

The transition probabilities P;jkl = P{(nl(tn+ l), n 2(tn+ 1 - ) ) = (k, I) I (n 1(tn ) , n 2(t n - ) ) = (i, j)}
are

ak+l bj+l-1, i >0, j~O, j + 1~ 1>0, k ~i-l

ak+l-; L bm , ;>0, t e», 1=0, k ~i-l
m=j+l

P;jkl = akcj+l-l, i =0, ie», j + 1~ I > 0, k~O

Uk L Cm, i = 0, j~O, 1=0, k~O
m=j+l

0, otherwise,

where
. . . . (AT)k _ T

ak = Pr {k arrivals In T tune units} =~ e ).

b {k d . T . its} (/1T)k - I-tT
k = Pr epartures In time uruts =~ e

k A ( /1 )k-m
Ck = Pr {k departures in T + t time units} = L -,- -,- bm •

m=O I\. + /1 I\. + /1
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Letters to the editor

The steady-state probabilities, assuming that they exist, must satisfy

rekl = L L reijp;jkl.
i=O j=O
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We assume a product form rekl = rekre; and substitute the known steady-state probabilities for
the MIDll queue (see for example Gross and Harris (1974), pp. 241-243). From the
expression for re6re; and the fact re; = ~;=o rekre;, we obtain the set of equations

L reI(cj + 1 - 1 - bj+ 1- / ) = 0, I> O.
j=I-1

By determining the left-side inverse of the matrix

j?; i, i ?; 1

1~j < i, i?; 1

column by column, we can show that {reI} == 0 is the only solution of Co =1= bo, which is valid
under the conditions A> 0, u > O. Hence the steady-state probabilities {reij } cannot have
product form.

Lemma 1. For two tandem queues consisting of an MIGll queue followed by a GIM/l
queue, 1; and 1; are dependent if n 1 and nz are dependent.

Proof. It is shown that 1;. and nz are dependent when n, and nz are dependent. As noted
by Reich (1957), n, and 1;. are related by

E{zn. Inz} = n~o zn t ( rt». Ii: nz)p('Ft Inz) at; = ( exp (A'Ft(Z -l))p('Ft Inz) at;

The left-hand side is dependent on n«. and so pt'I, I n z) depends on n-:
Now it is shown that 1;. and 1; are dependent when 1;. and nz are dependent. Note that Tz is

the sum of nz + 1 i.i.d. exponential service times. We find

E[exp (-sTz) I 'Ft} =rexp (-sTz) f p(Tz In«. 'Ft)p(nzl 'Ft) dTz
o nz=O

= L (1 + Jl- 1s )- nz- 1p (nz l 1;.).
nz=O

The right-hand side depends on 1;., so 1; and 1;. are dependent.
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