1

ON THE INDEPENDENCE OF SOJOURN TIMES IN TANDEM QUEUES

THOMAS M. CHEN,* University of California, Berkeley

Abstract

Reich (1957) proved that the sojourn times in two tandem queues are independent when the first queue is M/M/1 and the second has exponential service times. When service times in the first queue are not exponential, it has been generally expected that the sojourn times are not independent. A proof for the case of deterministic service times in the first queue is offered here.

1. Problem formulation

Let us consider two tandem FCFS queues, the first queue being M/D/1 and the second queue having exponential service times. Let λ denote the rate of Poisson arrivals at the first queue, T the deterministic service time in the first queue, and μ^{-1} the mean service time in the second queue. The state of the system is defined as the vector of queue lengths at the embedded times $\{t_1, t_2, \cdots\}$ when customers move from the first queue to the second queue. Let $n_1(t_k)$ be the number of customers left behind in the first queue by customer k, and $n_2(t_k-)$ be the number of customers found by customer k upon arrival at the second queue. It will be shown that the steady-state probabilities $\pi_{ij} = P\{(n_1, n_2) = (i, j)\}$ do not have a product-form solution, and hence n_1 and n_2 are not independent. This will imply that the sojourn times in the two queues, T_1 and T_2 , are not independent.

2. Analysis

The transition probabilities $P_{ijkl} = P\{(n_1(t_{n+1}), n_2(t_{n+1}-)) = (k, l) | (n_1(t_n), n_2(t_n-)) = (i, j)\}$ are

$$P_{ijkl} = \begin{cases} a_{k+1}b_{j+1-l}, & i > 0, \quad j \ge 0, \quad j+1 \ge l > 0, \quad k \ge i - 1 \\ a_{k+1-i}\sum_{m=j+1}^{\infty} b_m, & i > 0, \quad j \ge 0, \quad l=0, \quad k \ge i - 1 \\ a_k c_{j+1-l}, & i=0, \quad j \ge 0, \quad j+1 \ge l > 0, \quad k \ge 0 \\ a_k \sum_{m=j+1}^{\infty} c_m, & i=0, \quad j \ge 0, \quad l=0, \quad k \ge 0 \\ 0, & \text{otherwise}, \end{cases}$$

where

 $a_{k} = \Pr \{k \text{ arrivals in } T \text{ time units}\} = \frac{(\lambda T)^{k}}{k!} e^{-\lambda T}$ $b_{k} = \Pr \{k \text{ departures in } T \text{ time units}\} = \frac{(\mu T)^{k}}{k!} e^{-\mu T}$ $c_{k} = \Pr \{k \text{ departures in } T + t \text{ time units}\} = \sum_{m=0}^{k} \frac{\lambda}{\lambda + \mu} \left(\frac{\mu}{\lambda + \mu}\right)^{k-m} b_{m}.$

Received 4 May 1988; revision received 14 February 1989.

^{*} Postal address: Department of EECS, University of California, Berkeley, CA 94720, USA.

The steady-state probabilities, assuming that they exist, must satisfy

$$\pi_{kl} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \pi_{ij} P_{ijkl}.$$

We assume a product form $\pi_{kl} = \pi_k^1 \pi_l^2$ and substitute the known steady-state probabilities for the M/D/1 queue (see for example Gross and Harris (1974), pp. 241–243). From the expression for $\pi_0^1 \pi_l^2$ and the fact $\pi_l^2 = \sum_{k=0}^{\infty} \pi_k^1 \pi_l^2$, we obtain the set of equations

$$\sum_{j=l-1}^{\infty} \pi_j^2(c_{j+1-l}-b_{j+1-l})=0, \quad l>0.$$

By determining the left-side inverse of the matrix

$$A_{ij} \begin{cases} c_{j-i} - b_{j-i}, & j \ge i, \quad i \ge 1\\ 0, & 1 \le j < i, \quad i \ge 1 \end{cases}$$

column by column, we can show that $\{\pi_i^2\} \equiv 0$ is the only solution of $c_0 \neq b_0$, which is valid under the conditions $\lambda > 0$, $\mu > 0$. Hence the steady-state probabilities $\{\pi_{ij}\}$ cannot have product form.

Lemma 1. For two tandem queues consisting of an M/G/1 queue followed by a G/M/1 queue, T_1 and T_2 are dependent if n_1 and n_2 are dependent.

Proof. It is shown that T_1 and n_2 are dependent when n_1 and n_2 are dependent. As noted by Reich (1957), n_1 and T_1 are related by

$$E\{z^{n_1} \mid n_2\} = \sum_{n_1=0}^{\infty} z^{n_1} \int_0^{\infty} p(n_1 \mid T_1, n_2) p(T_1 \mid n_2) dT_1 = \int_0^{\infty} \exp(\lambda T_1(z-1)) p(T_1 \mid n_2) dT_1.$$

The left-hand side is dependent on n_2 , and so $p(T_1 \mid n_2)$ depends on n_2 .

Now it is shown that T_1 and T_2 are dependent when T_1 and n_2 are dependent. Note that T_2 is the sum of $n_2 + 1$ i.i.d. exponential service times. We find

$$E[\exp(-sT_2) \mid T_1\} = \int_0^\infty \exp(-sT_2) \sum_{n_2=0}^\infty p(T_2 \mid n_2, T_1) p(n_2 \mid T_1) dT_2$$
$$= \sum_{n_2=0}^\infty (1 + \mu^{-1}s)^{-n_2-1} p(n_2 \mid T_1).$$

The right-hand side depends on T_1 , so T_2 and T_1 are dependent.

References

GROSS, D. and HARRIS, C. (1974) Fundamentals of Queueing Theory. Wiley, New York. REICH, E. (1957) Waiting times when queues are in tandem. Ann. Math. Statist. 28, 768–773.