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Abstract. The importance of the fundamental group of a graph in group theory has been well
known for many years. The recent work of Meakin, Margolis and Stephen has shown how effective
graph theoretic techniques can be in the study of word problems in inverse semigroups. Our goal
here is to characterize those deterministic inverse word graphs that are Schutzenberger graphs and
consider how deterministic inverse word graphs and Schutzenberger graphs can be constructed from
subgroups of free groups.

1. Introduction and background. Let X denote a finite non-empty set and X~{ a set
in one-to-one correspondence with X (via jc«-»jt~'). We define a unary operation on the
free semigroup (X U X~l)+ inductively by the rules

( * " ' ) " ' = * (xeX)

(ab)'1 = b~la~l (a e (X\JX~y, beXUX'1).

In particular, we will have (a"1)"1 =a, for all a e(X L) X~')+.
By an inverse word graph over X is meant a pair of sets F = (V, E) where
(i) EcVx(XUX~])xV,
(ii) (u,x, v) e E^>(v,x~\ u) e E,

(iii) for any u, v e V, there exists («,-, x,-, u,) e E, 0 < i < n, with

u = u,,, Vj = ui+, (0 < i < n — 1), vn = v.

We describe condition (iii) by saying that the graph is connected. For any (u,x,v)e E,
we define the label of (u,x, v) to be x. For general background information on graphs we
refer the reader to Serre [8].

The inverse word graph F = (V, E) is said to be deterministic if
(iv) (w, x, v), (u,x, w)e E implies that v = w

and to be injective if
(v) (u,x, w), (v,x, w)e E implies that u = v.

It is a simple exercise to show that an inverse word graph is deterministic if and only if it
is injective. We adopt the usual conventions for representing graphs diagrammatically. In
particular, we will only display edges labelled by elements of X and it will be understood
that to every displayed edge (u,x,v) with a label from X there is an undisplayed edge
(v,x~\ u) with a label from X~\ The following is an example of a deterministic inverse
word graph:

Deterministic inverse word graphs were introduced by J. B. Stephen as a tool in the study
of word problems in inverse semigroups and have subsequently been employed with
considerable success by Stephen [9], Margolis and Meakin [3], [4], [5], [6] and Margolis,
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Meakin and Jones [7]. Unless otherwise stated we adopt the notation and terminology of

A presentation of an inverse semigroup S is a pair (X; R) where A' is a non-empty set
and R is a binary relation on FJ>{X), the free inverse semigroup on X, such that

where p is the congruence on FJ'(X) generated by R. A presentation is said to be finite
when both X and R are finite.

For any w e F$(X) and any congruence p on FJ>(X), define the Schutzenberger
graph rp(w) = (V, E) of w relative to p by:

V = Rwp,
E= {(ap,x, bp):ap, bp e Rwp,x eX U ^ H and axp = bp).

LEMMA 1.1. (Stephen [9], Theorem 3.1). Tp(w) is a deterministic inverse word graph.

Let F = (U, E), A = (V, F) be two inverse word graphs over X. By an isomorphism
of T to A is meant a pair {cp, %) of mappings such that

(i) cp is a bijection of U onto V, and
(ii) x ' s a bijection of E onto F such that

X(u,x,v) = (q>(u),x,<p(y)), for all (u,x,v)eE.

In other words, isomorphisms must preserve labels.
The importance of Schutzenberger graphs in the study of inverse semigroup word

problems derives from the next result.

THEOREM 1.2. (Stephen [9], Theorem 3.4). Let u, v e FJ>(X) and p be a congruence
on FJ(X).

(1) up J£vp<=> there exists an isomorphism ofVp(u) onto Tp(v) which maps up to vp.
(2) up 0lvp<?>there exists an isomorphism ofYp{u) onto tp(v) which maps uu~xp to

vv~lp.
(3) up3)vp<£>there exists an isomorphism o/Tp(u) onto Tp(v).
(4) up $f up <=>there exist isomorphisms of Tp(u) onto Tp(v) one of which maps up to

vp, while the other maps uu~lp to vv~{p.
(5) up = up©there exists an isomorphism of Tp(u) onto Tp(v) which maps up to vp

and uu~lp to vv~[p.

It is important to observe that Theorem 1.2(3) asserts that Schutzenberger graphs are
(to within isomorphism) associated with ^-classes. In particular, this enables us to
identify any point in a Schutzenberger graph with an idempotent as follows:

LEMMA 1.3. (Stephen [9]). Let ueF3>{X) and p be a congruence on FJ>(X). Let
PeV(r(u)) and a be a word over XL)X~[ labelling a walk from uu~^p to P. Let
e = a~luu~la. Then there exists an isomorphism ofVp(u) to Yp(e) mapping P to e.

In order to turn Theorem 1.2 into an effective tool for solving word problems,
Stephen developed a procedure for calculating the Schiitzenberger graphs of the form
Fp(u). For more details of this interesting technique, see Stephen [9].

2. Characterizing Schutzenberger graphs. The question that we wish to consider in
this section is which deterministic inverse word graphs are Schutzenberger graphs. To do
this we require some preliminaries.
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LEMMA 2.1. Let F be a deterministic inverse word graph over X and p denote the
Vagner congruence on (X U A'~')+. Let P e V(F) and let u,v e(X U X~')+ be such that
upv. If u labels a walk from P then so also does v.

Proof. Since upv it follows that v can be obtained from u by a sequence of
elementary transitions of the form

app ~[pb—>apb
app~xqq~*b^

or their reverses. However it is clear that if a word on the left (respectively, right) in (1)
labels a walk in F from P then so also does the corresponding word on the right
(respectively, left). The result follows.

Although walks in a deterministic inverse word graph are labelled by words in
(X\JX~l)+, in the light of Lemma 2.1 we may consider them as being labelled by
elements of FJ-(X).

We shall denote the symmetric inverse semigroup on a set Y by I(Y).

LEMMA 2.2. Let F be a deterministic inverse word graph over X. For each a e FJ'(X)
define a partial mapping 6a = V(Y)—> V{T) by:

d(0a) = {v e V(T): a labels a walk starting at v}

and,forved(da),

v6a = w, where a labels a walk from v to w.

Then 6:a^>da is a homomorphism of F$(X) into 1{V{T)).

Proof. It follows from Lemma 2.1, that d{6a) is well defined for all a e FJ'(X) and it
follows from the assumption that P is deterministic that the action of each 6a is also well
defined. It is straightforward to verify that 6 is a homomorphism.

DEFINITION 2.3. For any deterministic inverse word graph F over X let dr denote the
homomorphism d: F&(X)—»/(V(F)) defined in Lemma 2.2 and refer to 6r as the natural
representation of FJ>(X) in /(V(F)).

LEMMA 2.4. Let V be a deterministic inverse word graph and let 6:FJ'{X)—*I(V(T))
be the natural representation. For all automorphisms (pofT and all a e F3>{X),

(cp(v))9a = q>(v6a).

Proof. This follows immediately from the definition of an isomorphism.

EXAMPLE 2.5.

Clearly the graph F depicted in Figure 1 is a deterministic inverse word graph. Here,

i
F:

"e -7-* v5 —^ v4

Figure 1.
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for example,

with 6y and 6Z being defined analogously.

LEMMA 2.6. (Stephen, [9]). Let p be a congruence on F^(X), e e E(FJ'(X)) and
Y = Tp(e). For each ap e Hep, define a mapping kap : Y—* Y by

kap{up) = aup (upeRep).
Then

k:ap^kap (apeHcp)

is an isomorphism of Hep onto the automorphism group of Y.

LEMMA 2.7. Let F be a Schiitzenberger graph over X. Let w e E(FJ'(X)) and p be a
congruence on F$(X) such that Yp(w) = F. Then p c 6r° 0p'.

Proof. Let 6 = 6rAw). Clearly, 0 r °0p ' = 0°0~' . Let a,beFJ>(X) be such that
(a,b)ep. Suppose that a labels a walk from up to vp for some up,vp e Rwp. Then
vp = uap = ubp and so b also labels a walk from up to vp. It follows that 6a c 6h.
Similarly, 8h c da and so (a,b) e 6°d~'= 0r° 0F1.

DEFINITION 2.8. Let F be a deterministic inverse word graph over X and let w be a
walk in F. Then we will denote by ||HL t n e element of F3{X) corresponding to the word
in (X UX'1)* obtained by concatenating the labels of the edges in w.

THEOREM 2.9. Let F be a finite deterministic inverse word graph, let <t> denote the
automorphism group of F and PeV(r). Let d:F$(X)^>/(V(F)) be the natural
representation. Then the following statements are equivalent.

(1) T is a Schiitzenberger graph.
(2) There is an idempotent e e W(Ar) with d(6e) = <i>(P), the orbit of P under the

action of <I>.
(3) For all Q e V(r)\<I>(P), there is a reduced word wQ such that wQ labels a walk

from P but does not label a walk from Q.
When (3) holds

satisfies (2) and

r = rBoB-.(e).
EXAMPLE 2.10. Let F be as in Figure 1 and let P = vt. It is easily seen that O is

trivial. Then the elements

w,,2 = w,,, = w,,4 = wVh = x and ivt<5 = z

satisfy Theorem 2.9(3) so that F s r H - i ( e ) where e =xx~lzz~[.

Proof of Theorem 2.9. (1) implies (2). Let p be a congruence on F$>(X). By Lemma
1.3 there exists e e E{F${X)) such that Y = Yp(e), with ep corresponding to P. Then
V(Y) = Rep. Let S = FJ>(X)/p and a e F${X). We have

apeHep=>(ap)(ep) = ap
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so that Hep c. d(8e). On the other hand,

ap e d{6e) => ap, aep e Rep

^>aa~lp = ep = aea~x p

^>aa~'p = ep,

a~'ap = a~'eap = a~'aea~'ap <ep.

However, we cannot have a~lap <ep = aa~[p since then the S)-class of ep would contain
a copy of the bicyclic semigroup ([1], Lemma 1.31) contradicting the finiteness of
Rep = V(Fp(e)). Hence a~lap = ep = aa~'p and ap e Hep. That (2) holds is now an easy
consequence of Lemma 2.6.

(2) implies (1). Let p = 6 ° 6~'. Define r]: Rcp -» V(T) by

(up)r) = P6U {up e Rep).

Since p = 0°6~[, t] is well defined.
Let up, vp e Rep and (up)r) = (vp)rj. Then P6U = Pdv. Since up, vp e 52^, it follows

that 0,,, 0W eRHrso that

Let 2 6 d(6u). Then there exists an automorphism (p of P with qc(P) = (?. Consequently,

00,, = (<p{P))Ov = <p(Pev) by Lemma 2.4

= Qeu.
Thus 0,, = 6,, and rj is one-to-one.

For any Q e V(F), there exists a walk /? from P to g. Let « = ||p||A. Then
ep e d6u = dduu-<. By Lemma 2.4, this implies that

Let Q e O(/>). Since P ^ - . = P, it again follows from Lemma 2.4 that Q0UU-. = Q = Q9<-
Therefore #<, ^ 0uu-i or ep ^ uu~lp. Hence e«p e Rep. In addition, eu also labels a walk
from P to Q so that P0ra = Q and (eup)jj = Q. Thus 77 is a bijection of V(Tp{e)) = Rep

onto K(F). We extend r\ to a mapping of £(Fp(e)) into £(F) by

(up, x, uxp)t] = (Pdu,x, Pd^) (up, uxp 6 Rep).

Note that

up, uxp e Rep4> 0H, 0^ e /?Hf

whence the extension of 7/ to E(Tp(e)) is well defined.
Let (Q, x, R) e £(F). Let up e Kep be such that Q = (up)rj = Pdu. Then

/? = Q0x = peudx = P ^ .

The next step is to show that uxp e Rep. Clearly d(6ux) c d(6u). In order to establish
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equality, let P' e d(6u) = d(de). By hypothesis, there exists an automorphism q> of F with
= p\ Let cp(Q) = Q'. Then there exists R' e V(T) with

Q'
Hence

P'6U = (<p(P))6u = <p((P)6u) = q>{Q) = Q',

where Q'ed(6x). Thus P'ed(dudx) = d(0,a), as required, and d ^ ) = d(0u) = d(0e).
Consequently, 6UX e RH, so that uxp e /?,,p. Therefore

(up,x,uxp)eE(Tp(e)).
Moreover,

(«p, A:, uxp)r] = (P0H, JC, P0,«) = (Q,x, R),

whence r\ maps E{Tp{e)) onto £(F). Finally, for up, uxp, vp, vyp e Rep,

= vp,x = y, since y\ is injective on Rep

,x, uxp) = (vp,y, vyp),

whence rj is a bijection and an isomorphism. This completes the proof that (2) implies (1).
(2) implies (3). Let e = uxu^ . . . unu~] where each u, is a reduced word. Then

and (3) follows from (2).
Now let (3) hold and let

Then Ped(6e) so that, by Lemma 2.4, <P(P)cd(de). On the other hand, it is clear that
Q $ 4>(P) implies that Q $ d(6e). Thus

d(6e) = <D(P)
and (2) holds.

EXAMPLE 2.11. Let T be the graph depicted in Figure 2.
Clearly T is a deterministic inverse word graph over X = {x,y} with trivial automorphism
group <I>. Hence <f>(P) = P. However, since there are edges labelled x,x~\ y and y~l

Pr y xccco
y x

Figure 2.

https://doi.org/10.1017/S0017089500009861 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009861


SCHUTZENBERGER GRAPHS 281

from every vertex, all three vertices are in the domain of every element of FJP(X)d. Thus
Theorem 2.9(2) is not satisfied and F is not a Schutzenberger graph.

EXAMPLE 2.12. Every finite deterministic inverse word graph over a singleton set
A' = {x} is either a linear graph or a cycle. In either case, Theorem 2.9(2) is easily verified
so that all such graphs are Schutzenberger graphs.

EXAMPLE 2.13. Let F be a finite deterministic inverse word graph over X such that,
for all xeX, the subgraph of F consisting of those edges labelled by x is a connected
linear graph. Then F is a Schutzenberger graph.

3. Finite presentations. Much of the interest in Schutzenberger graphs derives from
the fact that they can be used in studying word problems for finitely presented inverse
semigroups. It is therefore natural to consider whether or not every finite Schutzenberger
graph actually arises in association with a finite presentation.

THEOREM 3.1. Let F be a finite Schutzenberger graph over X. Then there exist a word
w and a finite presentation S = {X; R) with corresponding congruence x such that

(i) r^rT(wy,
(ii) T is the least congruence p such that F = Fp(w).

Proof. First of all, let

where P is a distinguished vertex of F and, for each Q e K(F)\<I>(/)), wQ is a reduced word
that labels a walk in F starting at P but does not label a walk in F starting at Q. By
Theorem 2.9 and its proof, there exists a congruence p, say, on F3{X) with Y = Yp{w)
and with P corresponding to wp under the isomorphism.

Let 7 be a spanning tree of F and, for each v e V(F), denote by g,, the word that
labels the geodesic in T from P to v.

Let R = RXUR2, where

and
R2= {(w,wgV]xg-2

i):(vl,x,v2)e E(T\T)}.
Let 5 = (X;R) and x be the congruence on FJ'{X) generated by R. Since F is a finite
graph, (A'; R) is a finite presentation for S. Note that wx = w2x.

Observe that if F = Fa(w) for some congruence a then Rco, by the definition of
Schutzenberger graph, so that xc.o. Thus, if we can establish statement (i) of the
theorem, then statement (ii) follows immediately.

Define a mapping $:F—»Fr(w) by

vtj) = wgx,x (v e V(r))
and

(v,,x, v2)(f) = (v,<p,x, t/20) ((vux, v2) e

We first show that (p maps F into Fr(w). For any veV(T), (w,wgvg~l)eR and so
wx$twgvx. Thus, (f) maps V(F) into V(FT(w)). Next, let (vux, v2) e £(F). We consider
two cases:

Casel: (v,, x, v2) is an edge of T. Then either gVlx = gV2 or gU2x~l =gU). UgVlx=gV2
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then wgVlxxx = wg,,2r and (wgUlx,x, wgV2x) = (v^,x, v2<p) e E(rr(w)). If gl,2x~]=g,,l
then wg,,2x~iT = wg,,lT, and so (wgV2x,x~l, wgVlx) e £(Ft(tv)), whence (wgVlx,x, wg,,2r) =
(v{(p,x,v2(t>)eE(rT(w)).

Case 2: (v,,x, v2) is not an edge of T. In this case, wxwgV[xgV2 by the relations of
R2. Therefore,

wgV2xwgVlxg~2
lgV2. (2)

In any inverse semigroup, if wba~'a = watflw then

w = ww~]w = {wba~*a)(wba~xa)~*w = wba~'ab~'
and

wa = wba~]a = wba~]ab~'b = wb.

Thus, by (2) with b =gVlx and a =gU2 we have that

WgVlXTWgll2.

Therefore (wgVlx,x, wgV2x) e E(TT(w)).
Consequently, 0 is a well-defined graph map of r into r r(w) which preserves

incidence and orientation. In other words, 0 is a graph morphism.
Suppose that u,0 = v2<p. Then wgVl xwgVl. Since r = Tp(w) and r e p , we must have

w8v,Pw8v2- It then follows that gVi and g,,2 label walks in Fp(w) from wp to the same
vertex; that is gVl and gV2 label coterminal walks in Fp(w) from wp. Therefore, gVi and g,,,
label coterminal walks in F from P. Consequently, V\ = v2 and (j> is one-to-one on the
vertices of F and hence, one-to-one on the edges of F. It remains to show that (p ' s

surjective.
Towards a contradiction, suppose that <p is not surjective on the vertices of F.

Among those vertices Q not in the image of <p, there is at least one that is joined by an
edge to a vertex in the image of <p. Assume that Q is such a vertex. That is, suppose that

(Wgl,x,x,Q)eE(rT(w)).
Then

Q = wgvxx0lwx,
and since r e p ,

wgvxp $1 wp.

Thus there is an edge (v,x,v')e E(T) and we claim that v'<j> = Q.
If (v, x, v')e E(T), then gvx = gu. or g^x'1 =gv. But then, either

in the first case, or

Q = wgvxx = wgv.x~lxx = wgv.x~]xgZ'[gV'X = wgvg~]gv.x = wgv,x = v'Q

in the latter case. In any event, Q is the image of 0 , a contradiction.
If (v,x, v') $ E(T) then wgvxg~l xw, by the relations of R2. As above, this implies

that wgvxxwgv: But then Q-wgvxx = wgvx = v'(f), again a contradiction. Thus <j> is
surjective on the vertices of F.

Finally, let (wgVlx,x, wgV2x) be an edge of Fr(w). Then wgVlxxwgV2 and, since r e p ,
it follows that wgv,xpwgV2. Therefore (vux,v2) is an edge of F and # maps this edge to
(wgVix,x, wgV2x) in £(FT(w)). Thus, <p is surjective on the edges of F, whence (j> is an
isomorphism of F onto rr(»v).
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NOTE. The congruence r produced in Theorem 3.1 is not minimum in an absolute
sense. In other words, there could be another word v and presentation P' = (X; S) with
the corresponding congruence a such that F = Fa(u) and where a is properly contained in
r.

4. Fundamental groups. Let F = (V, E) be a deterministic inverse word graph over
X and let PeV. Let

TT(F, P) = {reduced or empty words w over l U A " ' : w labels a walk in F from P to P}.

Then it is easily seen that JT(F, P) is a subgroup of F^X), the free group on X and
;r(F, P) is known as the fundamental group of F at P. For the graph in Figure 1, for
instance, we would have

xyzx~]y-lz~l en(T,P).

For more background information on the fundamental groups of graphs, the reader is
referred to Cohen [2] and Serre [8].

Let 0 denote the automorphism group of F and define equivalence relations TV, TE

on V and E by

u v v O t ) = (p{u), for some q> e <t>

(w,x, v) xE{p,y, q)<^>x = y and there exists (p e <f> such that

<p(u)=p, <p(v) = q.

Thus the equivalence classes of xv and TE are simply the orbits of V and E under the
action of Q>. It is straightforward to verify that

TI<b:={VlTv,ElxE)
is a deterministic inverse word graph. We will refer to xv and rE as the orbit relations on
V and E, respectively, under O.

It should be noted that the fundamental group that we describe here is slightly
different from the standard fundamental group of an unlabelled graph. However, we can
use the standard formulation to provide a set of free generators for 7t(T, P), for a
deterministic inverse word graph F = (V, E) over X.

Let E+ denote the set of edges in E of the form (u,x, v), with xeX, and, for any
(u,x,v)eE, write (u,x, v)~l = (v,x~], u). Then the standard fundamental group
^,(F, P) consists of all elements in FCS(E+) of the form

*,...<!„ ( e , e £ + U ( £ T 1 )
where

e, = (M,,A:,, M,-+ 1), M, = « „ + , = P.

The next result is a special case of (Serre [8], Theorem 20).

THEOREM 4.1. Let F = (V, E) be a finite inverse word graph and PeV. Let T be a
spanning tree for V. For each y = (u,x, v) e E(T\T), let

y'=y\ • • -.V/W/+I- • -yn,

where yu. . . ,yt are the edges of the geodesic from P to u and y , + , , . . . , yn are the edges of

the geodesic from v back to P. Then {y' :y e E(T\T)} is a set of free generators for
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Now let A denote the "labelling" function defined by

A(M, x, v) = x ((u,x,v)eE)

where x e X U X~[. Then A extends to a unique homomorphism of F(S{E+) onto
which we will also denote by A. Clearly A maps ^i(F, P) onto n(T, P).

LEMMA 4.2. (ker A) D^,(r , P) = {e}.

Proof. Let w e ̂ ( F , P), wi=e and let

w = w, . . .wm (w, e E) (3)

in reduced form. Note that to say that w is given in reduced form in (3) is equivalent to
saying that the walk determined by w has no backtracking. Then

A(w) = A(w,). . . k(wm). (4)

Suppose that X(w) = A(w,+I)~'. Then we must have

tv, = («,-, x, ui+l), wi+l = («,-+,,x~\ ui+2),

for some uh «,+,, w,+2 e V, JteA'UA'"1. But if («,-, x, u,+l) e E then (ui+i,x~\ui)e E
and, since T is deterministic, we must have U/ + 2 = M,-. But then w,+, = w,̂ ' which
contradicts the assumption that the word in (3) is reduced as written. Therefore A(w) is
reduced as written in (4) so that if w ¥= e then necessarily A(»v) ¥= e. The claim then
follows.

COROLLARY 4.3. Let F = (V,E) be a deterministic inverse word graph over X. Let
P e V and T be a spanning tree. For each v eV, let gv be the word labelling the geodesic
from P to v. Then JI(Y, P) is freely generated by

{gllxg;] : (u,x, v) e E(T\T),xeX). (5)

Proof. Since ker A has trivial intersection with ji^(r,P), it follows that A is
one-to-one on ^,(r , P) and therefore an isomorphism of jr,(r, P) onto JI{T, P). Hence A
maps any set of free generators of jr,(r, P) onto a set of free generators of Jt(V, P). Since
the set in (5) is the image under A of the set described in Theorem 4.1, the claim holds.

EXAMPLE 4.4. Let F be as in Figure 2. As a spanning tree we may take

p.£*.+>.

(together with the inverses of these edges). Then we obtain the following set of free
generators for Jt(T, P):

{x,y2,yx2y~\yxyx~ly~>}.

Another important group in relation to a graph is its automorphism group. In the
remainder of this section we present some curious interactions between the automorphism
group and the fundamental group of a deterministic inverse word graph.

LEMMA 4.5. Let V = (V, E) be a deterministic inverse word graph and let <I> denote the
automorphism group of F. Then the action of <t> on F is semiregular (that is, if cp e <!> and
P eV are such that (p(P) = P, then cp is the identity automorphism).
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Proof. Let cp and P be as in the statement and Q e V. Since F is connected there
exists a sequence of edges {(u,, JC,-, vi+i): i = 0,. . . , n) with P = vn, Q = vn+i. Then

Since F is deterministic, we must have cp(vt) = vt. A simple induction argument will now
show that (p(Vj) = t>,-, i = 0,. . . , n + 1, so that (?(£?) = 2 and the claim holds.

THEOREM 4.6. Le/ F = (K,£) be a deterministic inverse word graph over X with
automorphism group <I>. Let xv be the orbit relation on V under <& and P eV. Then

(i) jr(r, P) is a normal subgroup of n(r/^>, Pxv),
(ii) <b = x ( / / (

Proof, (i) That JI(F, P) is a subgroup of 3i(TI®, Pxv) is clear. The normality of
K{T, P) will follow from the proof of (ii).

(ii) Let H = Ji(r/<5>, Pxv) and g e H. Then g, in reduced form, labels a walk in T/O
from Pxv to Pxv so that, in F, g must label a walk from P to some element Q in Pr^. But
Pxv = <I>(P) and so there must exist an automorphism (pK of F mapping P to Q. By
Lemma 4.5, q>g is unique and so the mapping

is well defined. Now let h be another element of H and let h label a walk from P to R.
The automorphism (p̂  must translate this to a walk labelled by h from (2 to 5, say, where
S = %(/?).

- I i
Then g/i labels a walk from P to 5 so that cp^,, is the unique automorphism of F mapping P
to 5. But

<pgq>h(P)=q>K(R) = S,

whence (p^cp,, = cp^,, and q> is a homomorphism.
Now consider any 0e<t> and let 0(P) = Q. Since F is connected, there exists a

reduced word g labelling a walk from P to Q. Then g e H and <ps is an automorphism
mapping P to £?. By Lemma 4.5, cp^ = 6 and so qo is an epimorphism.

Finally, it is clear that the kernel of cp is exactly JT(F, P). Therefore (ii) holds, by the
first isomorphism theorem for groups.

5. Construction of deterministic inverse word graphs. In this section we describe a
general technique for constructing deterministic inverse word graphs and Schiitzenberger
graphs from subgroups of free groups and we will show how this construction relates to
the fundamental groups of such graphs.
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DEFINITION 5.1. Let L be a subset of F^X) containing 1 and with the following
property. If JC, . . . *„+, e L, where JC, eX L)X~l (i = 1 , . . . ,« + 1) and x, . . . xn + l is a
reduced word, then xx . . . xn e L. We shall call such a set a Schreier subset or say that it
has the Schreier property.

When discussing Schreier subsets, it is convenient to view F^X) as consisting of
reduced words.

CONSTRUCTION. Let N be a subgroup of FS(A') and L a Schreier subset of F<S(X)
which is also the union of a finite number of cosets of N. Put

VN,L = {Na:aeL},

EN.L = {(Na,x, Nax):Na,Naxe VNM,xeXUX'1},

FN.L = (VV/., ENL).

When N and L are related as above, we shall refer to (N, L) as an inverse word pair.

THEOREM 5.2. TNL is a finite deterministic inverse word graph over X and every finite
deterministic inverse word graph over X is isomorphic to one of this form.

Proof. Condition (i) for YN L to be an inverse word graph is satisfied by the
definition of ENL. In regard to condition (ii), let (Na,x, Nax) e EN L, where x e X UA"1

and we may assume that a is reduced. Then a and the reduced form of ax both belong to
L. Hence the reduced forms of ax and (ax)x~l = a belong to L so that (Nax, JC"1, Na) e
ENL and condition (ii) is satisfied.

Now let Na e V = VN L, where a = xt . . . JC,, is a reduced word. Then

(Nx{ . . .Xi,xi+uNx, . . .xi+l)eEN^L,

for all i , 0 s / < n - l . It follows immediately that condition (iii) is satisfied and that FN,
is an inverse word graph. It is obvious that condition (iv) is satisfied. The finiteness of
TN L follows from the fact that X is finite and L is the union of finitely many cosets of N.
Thus VN L is a deterministic inverse word graph.

Now let T = (V,E) be an arbitrary finite deterministic inverse word graph and let
P € V. Let

L = {reduced or empty words labelling walks from P).

Let g,h e L. Then g and h label walks from P ending in the same vertex

»g / i " ' labels a walk from P to P

'eN (6)

Therefore L is the union of finitely many cosets of N. For each Q e V, let gQ be a reduced
word labelling a walk from P to Q. Then gQ e L and, by (6),

<p:Q-*NgQ (QeV)

is an injective mapping of V into VN L. By the definition of L, it is clear that q> is
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surjective. It is straightforward to verify that cp extends a bijection of E onto EN L that
preserves labels and therefore that cp is an isomorphism.

Not surprisingly, there is a strong direct connection between the fundamental group
and automorphism group of VNL and the values of N and L.

THEOREM 5.3. Let (N,L) be an inverse word pair and T = rNL. Let <£> be the
automorphism group of F and rv be the orbit relation on V = VN , under <&.

(i)n(T,N) = N.
(ii) n(r/<t>, Nrv) = U {<P(N) • V e <&} = {g : g labels a walk from N to <p(N), for

some cp e <P}.
(iii) L is a union of finitely many cosets of jr(r/<P, Nrv).
(iv) For each g e jr.(F/4>, NTV), define

cpK: Na —» Nga (Na e VN L).

Then cpK is an automorphism of F and O = {cpx :g e n(r/<P, Nrv)}.

Proof, (i) Clearly g e F'S(X) labels a walk from N to N in T if and only if Ng = N.
Thus (i) holds.

(ii) Let H and K denote the sets on the left and right of the first equality in (ii),
respectively. Let g e K, say g e q>(N) where q> e <i>. Then, since <p(N) is a coset of N, we
must have cp(N) = Ng. Taking g in reduced form, it follows that g labels a walk from N to
Ng in F, since L is a Schreier subset. But Ng = q)(N) e <J>(N) whence g e H. Thus K cH.

Conversely, let g e H. Then g, in reduced form, labels a walk from N to a vertex Q,
say in <f>(N). But if g labels a walk in F from N then it must be from N to Ng. Thus
Ng = Q e <P(N) so that g eNgcK. Hence H cK and the first equality in (ii) holds.

The second equality follows immediately from the observation that if g is a reduced
word and cp e <1>, then

ge<p(N)G><p(N) = Ng

O g labels a walk from /V to q>{N).

(iii) Let g e L and h e H = JT(F/4>, Nrv). Then taking h to be reduced, it follows that
h labels a walk from P to cp(P), for some cp e 4>. Since <p is an automorphism of TN L and
g labels a walk from P, it follows that g labels a walk from <p(P). Thus hg labels a walk
from P and so does the reduced form of hg. Thus hg e L and L is a union of cosets of H.
Since NcH c.L and (N, L) is an inverse word pair, L must be the union of just finitely
many cosets of H.

(iv) Let g e H = J T ( F / $ , NTV) and be reduced. By the proof of Theorem 4.6, there
exists a unique automorphism cpg of F such that g labels a walk from N to (p,,(N). But in
F/vX this means that we must have

For any Na e VNL, with a in reduced form, a labels a walk from N to Na and therefore
from q>g(N) to q)g(Na), that is, from Ng to q)g(Na). Consequently

cpg(Na) = Nga.

Thus <pg is of the form described in (iv) and since, by Theorem 4.6, every automorphism
is of the form cpg, for some g eH, the claim follows.
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THEOREM 5.4. Let N be a subgroup of F^X) and L be a Schreier subset that is a
union of finitely many cosets of N. Let <t> be the automorphism group of VN L, xv the orbit
relation on V under 4> and H = Jt(TN LIQ, NTV). Then the following statements are
equivalent.

(i) T^ L is a Schutzenberger graph.
(ii) g eF<S(X) and gL c L ^ > g e H.

(iii) H is the maximum subsemigroup of F^X) such that HL c L.

Proof, (i) implies (ii). Let g e F<3(X) and gLcL and V = VN L. Suppose that
Ng $ <P(N). By Theorem 2.9 there exists a reduced word w such that w labels a walk from
N but not from Ng. In other words, Nw e V but Ngw $ V so that w e L but gw $ L, a
contradiction. Therefore Ng e (t>(N) so that, by Theorem 5.3, g e H.

(ii) implies (i). Let Ng $ <t>(N) where g is reduced. Then, by Theorem 5.3, g $ H.
Therefore, by hypothesis, there exists w e L with the reduced form of gw $ L. But then
w labels a walk from N but not from Ng. By Theorem 2.9, TN L is a Schutzenberger
graph.

(ii) implies (iii). Let M be a subsemigroup of F<6{X) such that MLc.L. Then, for
any g e M, we have

gLcMLcL

so that, by (ii), g e H. Thus M cH and (iii) holds.
(iii) implies (ii). Let g e F^X) be such that gL c L. Then gkL c L, for all k > 0, and

so (g)Lc L. By (iii), this implies that (g) cH so that g eH and (ii) holds.

6. Coverings. Let T = (V, £) be an inverse word graph and P eV. We define

Star(P) = {(P, x, v): (P, x, v) e £} .

Let F = (V, E) and A = (W, F) be deterministic inverse word graphs. By a covering
morphism 6 of T to A is meant a morphism which, for each u eV, induces a bijection of
Star(/)) onto Star(0P) for all P e V. If there is a covering morphism from T to A, then we
say that F covers A. For a general treatment of covering spaces, we refer the reader to
[2], Chapter 6.

Note that, if P e V and Q eW, then there can be at most one covering morphism 6
such that dP = Q. In addition, any covering morphism must be surjective, since any
deterministic inverse word graph is connected.

THEOREM 6.1. Let (M,K) and (N,L) be inverse word pairs. Then there exists a
covering morphism 6'.rMK^rNL, with 6M = N, if and only if

(i) K = L,and
(ii) iWcJV.
// 6 is such a covering then

d(Ma,x,Max) = (Na,x,Nax) (a, ax e L,x e X U X~l). (7)

Proof. Let d:YM,K~^^N.L be a graph morphism with 6M = N. Let m be a reduced
word in M. Then m labels a walk from M to M. Hence m must also label a walk from N
to N, in other words, Nm = N. Thus m eN and M cN. In the same way, any word a that
labels a walk in TM K from M must label a walk in VN L from N, since 6 is a graph
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morphism with 9M = N. Thus K c L. Conversely, any word that labels a walk in TNM

from A' must label a walk in TM K from M since 6 is a covering morphism. Hence L c K
and equality holds.

Now let (i) and (ii) hold and define 6 as in (7). By (ii), 6 is well defined and, by (i), 9
is a graph morphism. Consider any vertex Ma, a e K. Then the edges emanating from Ma
are precisely those of the form

(Ma,x, Max) (a,axeK).

Now 6(Ma) = Na and ax e K = L so that

6(Ma, x, Max) = (Na, x, Nax).

Since the label remains the same and both graphs are deterministic, it follows that 6 is
injective on Star(Ma). On the other hand, if

(Na,x,Nax)eE(rNX)
then a, ax e L = K so that

(Ma, x, Max) e E(TM L)
and

6(Ma,x, Max) = (Na,x, Nax).

Thus 6 induces a bijection of Star(Ma) onto Star(Na) and 6 is a covering morphism.
From the remark prior to the theorem, there can be only one covering morphism

with 6M = N which must, by the above, be the one given in (7).

For any Schreier subset L of F^X), it is evident that (H, L) will be an inverse word
pair whenever H is a subgroup and L is the union of finitely many cosets of H. What is
not so clear is when there will exist a subgroup N such that TN L is a Schiitzenberger
graph.

THEOREM 6.2. Let L be a Schreier subset of F<3(X). Let F = {g e F^(X) \gLcL).
Then the following statements are equivalent.

(i) There exists a subgroup N of F^X) such that TN L is a finite Schiitzenberger
graph.

(ii) F is a subgroup and L is a union of a finite number of cosets of F.

Proof, (i) implies (ii). Let N be as in (i) and let $ denote the automorphism group
of r,vx- By Theorem 5.4(iii), F = JZ(FN J(fr, Nrv), whence F is a subgroup. By Theorem
5.3(iii), L is the union of finitely many cosets of F. Thus (ii) holds.

(ii) implies (i). Directly from the hypothesis we know that (F, L) is an inverse word
pair. Let <& denote the automorphism group of T = TF L and xv be the orbit relation on
V = VFL under <1>. By Theorem 5.3(iii), L is a union of cosets of H = JI(TI<&,FTV) SO
that HL c L and therefore H c F. Then

F = x(T, F), by Theorem 5.3(i),

c.H, by Theorem 4.6(i).

Hence H = F and, by Theorem 5.4(iii), T is a Schiitzenberger graph.
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DEFINITION 6.3. In the light of Theorem 6.2, we will say that L is a Schiitzenberger
subset of F'S(X) if the following conditions are satisfied

(i) L is a Schreier subset of F<S(X);
(ii) F = {ge F'S(X): gL c L} is a subgroup of L;
(iii) L is the union of finitely many cosets of F.

In other words, L is a Schiitzenberger subset of F<£(X) if and only if there exists a
subgroup N of F^X) such that TNM is a finite Schiitzenberger graph.

The next observation follows immediately from Theorem 6.1.

LEMMA 6.4. Let L be a Schiitzenberger subset of F^X) and F = {g e F<3(X) : gL c
L). Then TN L covers VF L, for every subgroup N of finite index in F.

This leads naturally to the question of which subgroups of F correspond to covers of
TFL that are also Schiitzenberger graphs.

PROPOSITION 6.5. Let L be a Schiitzenberger subset of F^X) and F = {g e
F^X): gL cz L}. Let N be a subgroup of F of finite index. Then TNL is a Schiitzenberger
graph if and only if N is normal in F.

Proof. Suppose that T = rNL is a Schiitzenberger graph with automorphism group <I>
and orbit relation xv on V = VN L. By Theorem 4.6, N = n{T, N) is a normal subgroup of
#(170, NTV) which, by Theorem 5.4(iii) is the same as F. This establishes the direct
implication.

Now suppose that N is normal in F. Let <1> denote the automorphism group of
F = FN L and let xv denote the orbit relation of <!> on V. Let

H = x(rNJQ, Nxv).

By Theorem 5.4(iii), we must show that H = F. By Theorem 5.3(ii), this is equivalent to
showing that

pe<D}. (8)

Let K denote the right hand side of (8). Let g e L\F. Then gL is not contained in L so
that ga $ L, for some a e L. Therefore a labels a walk from N but not from Ng.
Consequently Ng =£ (p(N), for any <p e 4>. Hence K c F.

Now let g e F. Then gLc.L and any element a e L labels a walk from Ng. Hence the
mapping

<p: (Na,x, Nax)-+(Nga,x, Ngax)

determines a morphism which is well defined, since /V is a normal subgroup of F.
Furthermore, if

q>(Na, x, Nax) = q)(Nb, y, Nby)

then Nga = Ngb and x = y. But

Nga = Ngb OgNa = gNb (since N is normal in F)

Thus (p is one-to-one and, since TN L is finite, q> is an automorphism. Since q> maps N to
Ng, it follows that Ng c K. Thus g e K and so F c K. Therefore F = K, as required.
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o
Figure 3.

Lemma 6.4 and Proposition 6.5 reveal that there can be inverse word graphs that
cover a Schutzenberger graph that are not themselves Schiitzenberger graphs. A very
simple example that illustrates this fact is the graph in Figure 2. It is easily verified that F
covers the graph in Figure 3, which is a Schutzenberger graph.

However, as observed previously, F is not a Schutzenberger graph. This example is,
in fact, doubly interesting since there is no way of labelling F in order to make it a
Schutzenberger graph over {x,y}.
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