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1. Introduction. In this note we characterize certain types of spectral decomposi-
tion in terms of "universal" notions valid for any operator on a Banach space. To be
precise, let X be a complex Banach space and let T be a bounded linear operator on X. If
F is a closed set in the plane C, let X(T, F) consist of all y e X satisfying the identity

y = (z-T)f(z), (1.1)

where f:C\F^>X is analytic. It is then easy to see that X(T, F) is a T-invariant linear
manifold in X. Moreover, if y e X then

y(y, T) = n {F- F is closed and y e X(T, F)} (1.2)

is a compact subset of the spectrum o(T). Our aim is to give necessary and sufficient
conditions for a decomposable or strongly decomposable operator in terms of X(T, F)
and y(y, T). Recall that T is decomposable if whenever Gu G2 are open and cover C
there exist 7-invariant closed linear manifolds M,, M2 with X = Mt + M2 and o(T \ M,) c
G,-(i = 1,2) (equivalent^, a (T |M, )cG, see [4, p. 57]). In this case, X(T,F) is norm
closed if F is closed and each y in X has a unique maximally defined local resolvent
satisfying (1.1) on C\^ ; Fy is called the local spectrum o(y, T) and coincides with
y(y, T). Hence T has the single valued extension property (SVEP); i.e., zero is the only
analytic function f:V-*X satisfying (z - T)f(z) = 0 on V. If T is decomposable and the
restriction T \X(T, F) is also decomposable for each closed F, then T is called strongly
decomposable. We point out that Albrecht [2] has shown by example that not every
decomposable operator is strongly decomposable, while Eschmeier [6] has given a simpler
construction to show that this phenomenon occurs even in Hilbert space.

In Section 2 we prove our criteria for those types mentioned above. Section 3 gives
characterizations for a proper subclass of strongly decomposable operators which we call
"decomposable relative to the identity" (see also [5], [10].)

2. Decomposable operators. We shall need the following known criterion [8].

PROPOSITION 1. An operator T e L(X) is decomposable if and only if for each open
cover {G,H} of C, where G is a disc and H is the complement of a disc, there exist
invariant subspaces Y, Z such that X = Y + Z, o(T \ Y) <= G, o(T | Z) <= H.

THEOREM 1. For T e L(X) the following assertions are equivalent.
(i) T is decomposable;
(ii) for each open cover {G,H} of C there exists a linear transformation P:X—>X

such that

y(Py,T)cG and y(y-Py,T)cH for yeX, (2.1)

for each closed F cG\H and y eX(T, F)

Py=y, (2.2)
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and for each closed K c H\G andyeX(T, K)

Py = 0; (2.3)

(iii) for each open cover {G, H} ofC, where G is a disc and H is the complement of a
disc, there exists a linear transformation P: X-^ X satisfying (2.1)-(2.3)

Proof. Since (ii)=>(iii) is obvious, we prove (i)^>(ii) and (iii)4>(')-

(ii). Let GUH = C denote an open cover. Since T is decomposable we can
write

X = X(T,G) + X(T,H) (2.4)

because a T-invariant subspace M is contained in X(T, F) whenever a{T \M)cF. Next
put

Y = X(T, G)nX(T,H),

so that Y is a subspace of X. By a Hamel basis argument [9, Th. 1.11.2] there is a linear
manifold W<=X(T,H) such that

X(T,H) = W®Y, (2.5)

and we may suppose X(T,K)cW for closed K c H\G. We now prove that

X = X(T | G) © W. (2.6)

For if y e X then by (2.4) y=yx+ y2, where yx e X(T, G) and y2 e X(T, H). But then
(2.5) implies y2 = u + w, where ueY and w eW. Thus u e X(T, G) and hence

X = X(T,G) + W. (2.7)

To see that (2.7) is direct, suppose 0 = y + w with yeX(T, G), weW. Then y =
-w e X(T, H) and so yeY. By (2.5) y = w = 0.

Let P be the projection of X onto X(T, G) along W. Hence for y e A^T, G) we have
Py =y, and for _y e W also Py = 0. In other words

PX = X(T,G) and (/

Now let xeX. Then

T) a(P^,r)CG,
y(jc - Px, T) = o(x -Px,T)cH,

and so (2.1) is proved. For F closed in G\H it follows from the inclusion X(T,F)c
X(T, G) and (2.8) that (2.2) holds; also (2.3) follows from (2.8) for K closed in H\G.

(iii)^>(i). Let F be closed. We prove that X(T,F) is absorbent in the following
sense. If AoeF, xoeX and (Ao- T)xoeX(T,F) then xoeX(T,F). In fact, let
ô = (̂ o - 70*0 and let / : C\F-*X be analytic such that

yo = (z-T)f{z){z*F).

Then the function defined by h(z) = (z - Ao)~
1[^o ~f(z)] is analytic on C\F and satisfies

(z - T)h(z) = x0; hence x0 e X{T, F).
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Next we prove that T has the SVEP. Assume that / : V-» X is analytic on the open
connected set V and satisfies

(z-T)f(z) = 0(zeV).

Let 61, 62 be disjoint closed discs in V. By absorbency proved above, if z e 6, (/ = 1, 2)
then f(z)eX(T, 6,). Hence

f(z)eX(T, 6 , )nA'(r ,62) (2.9)

for all z e V by analytic continuation. Now choose an open cover of {G, H) of C where G
is a disc, H is the complement of a disc and <5, c G\ / / and <52 <= H\G.

Let P: A'-* A" be as in (iii) satisfying (2.1)-(2.3). Then, by (2.9), /(z) = Pf(z) = 0 on
V.

W e now show tha t X{T,F) is closed w h e n e v e r F is closed in C. Le t A e F be
arbi t rary and define

By hypothesis there is a linear map P\X^>X such that Py=y for ysX(T,F) and
CT(PX, T) = y(Px, T) C # A for all x e l Hence a(y, T) c Hk if y e A"(T, F). Since A e F is
arbitrary, we have o(y, T)cz F for each y e X(T, F); hence X(T, F) is closed.

From the last paragraph we infer a(T | X(T, F)) <= F for any closed F (e.g., [4, p.
23]). Now let {Gu G2} be an open cover of C by a disc and the complement of a disc. The
previous paragraphs show X = X(T, G,) + X(T, G2)\ hence the remark above and
Proposition 1 imply that T is decomposable.

REMARK. A characterization of a bounded decomposable operator similar to
Theorem 1 (ii) first appeared in [7, Th. 1.2], but the proof here is simpler; part (iii) of
Theorem 1 is new.

Because of the examples cited in the introduction ([2], [6]) we evidently need a
separate criterion for strongly decomposable operators. To do this we use the following
well-known result [3].

PROPOSITION 2. Let T e L(X) be decomposable. Then T is strongly decomposable if
and only if for each open cover {G, H) of C and closed F

X{T,F) = X(T,FDG) + X(T,FnH). (2.10)

LEMMA 1. Let T e L(X) be decomposable, and let {G,H} be an open cover of C.
Define

Y = X(T, G D H)(=X(T, G) n X(T, H)),

Z=lin{X(T, K): K closed in H\G)

where "lin" denotes linear span. Then for F closed

x(T, F) n (Y © z) = [x(T, F ) n y ] e [X(T, F) n z]. (2.11)

Proof. Since the right-hand side of (2.11) is clearly contained in the left-hand side,
let u e X(T, F) n (Y © Z). Then u = y + z with y e Y and z e Z , and hence by [4, p. 2]

o(y,T)czo(u,T)\Jo(z,T).
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B u t o ( y , T) fl o ( z , T ) = 0 a n d s o o ( y , T) c o ( u , T) c F. S i m i l a r l y , o(z , T ) c F a n d so
(2.11) follows.

THEOREM 2. Let T e L(X). Then T is strongly decomposable if and only if for each
open cover {G,H} of C and for F closed in C there is a linear map P:X-+X such that

(i) y(Px, T) <= G, y(x -Px,T)<=Hfor all xeX;
(ii) ifFcG\HandyeX(T,F) then Py=y;

(Hi) if K is closed in H\G and y e X(T, K) then Py = 0;
(iv) X(T, F) is invariant under P.

Proof. Sufficiency is easy, for (i)-(iii) imply that Tis decomposable by Theorem 1. If
y eX(T, F), F closed, then by (i) and (iv) we have

PyeX(T,Fn<5), (/ - P)y eX(T, F OH).

This shows that X{T, F) is contained in the right-hand side of (2.10) and hence T satisfies
(2.10) since the reverse inclusion is trivial. By Proposition 2, T is strongly decomposable.

Conversely, let T be strongly decomposable, let {G,H} be an open cover of C and
let F be closed. Then (2.10) holds. Let Y and Z be defined as in Lemma 1. Then there is a
linear manifold Wo a X(T, F) n X(T, H~) such that

X(T, F) D X(T, H) = Wo 0 [X(T, F) n Y] 0 [X(T, F) n Z]. (2.12)

We claim that

Wo = (O). (2.13)

For if y e (Y © Z) D Wo then y e X(T, F). Hence y lies in the left-hand side of (2.11). By
Lemma 1 we have y = 0 and hence (2.13) holds. From this we infer the existence of a
linear manifold Wx z> Wo such that

X(T,H) = Y®Z®Wl. (2.14)

Since WocX(T,F)r\Wl by (2.12), we prove the reverse inclusion by letting ye
X(T, F)nWi. In view of (2.12) y = u + w0, where w0 e Wo and

u e [X(T, F) D Y] 0 [X(T, F) n Z].

Hence u=y-woeWu and since u e Y © Z (2.14) implies that u = 0. Thus y e Wo, and so

W0 = X(T,F)HWl. (2.15)

From (2.12) and (2.15) we obtain

X(T, F) D X(T, H) = [X(T, F) n Y] 0 [X(T, F) D Z] © [Z(T, F) D W,]. (2.16)

Since Y c X ( 7 \ G), from (2.10) and (2.16) we obtain

x(T, F) = x(T, F n G) 0 [^r(r, F) U Z] © [^(r, F) n w,. (2.17)

Finally since X = X(T, G) + X(T, H), (2.14) yields

X = X(T,G)®Z®WX.
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Hence there is a unique projection P of X onto X{T, G) along Z ® Wu i.e.,

Py=y for ye X(T,G) and Py = 0 for y e Z © Wj. (2.18)

If x e A-(7\ F) then (2.17) and (2.18) imply

PX(T, F) = X(7\ FDG)n X(T, F),

and (iv) is proved. Assertion (i) follows from (2.18), while (ii) and (iii) follow from the
construction of Z and W{.

3. Decomposition relative to the identity. In this section we consider another class
of spectral decomposition which has been treated recently (see [5], [10]). We use {T}' to
denote the commutant of T.

DEFINITION 1. Let T e L(X). We say that Tis decomposable relative to the identity if
for each finite open cover {G,} of C there exist corresponding systems {M,} of T-invariant
subspaces and bounded operators {P,} c {T}' such that

Mi and <x(r|M,)cG, ( l < i < B ) ,

We remark first that the conditions imply that an operator decomposable relative to
the identity is decomposable in the sense of the previous section. Our purpose in the
present section is to characterize this new type of "decomposability"; we shall also show
that these operators form a proper subclass of the strongly decomposable operators.

THEOREM 3. For T e L(X), the following assertions are equivalent:
(i) T is decomposable relative to the identity;
(ii) for every open cover {G,H} of C there exists P e {T}' such that for all y eX

Y{Py,T)<=G and y(y - Py, T) cz H, (3.1)

(iii) for every open cover {G, H) of C, each x e X has a representation

x=xt+x2 with y(xi,T) = G,Y(x2,T)czH

and for every pair of closed disjoint sets Ft, F2, there exists P e {T}' such that

Px=x, if y(x,T)cFi;

Px = 0, if y(x,T)ciF2.

(iv) for every open cover {G,H} of C, where G is an open disc and H is the
complement of a closed disc, there exists P e {T}' satisfying conditions (3.1);

(v) for every open cover {G,H} of C, where G is an open disc and H is the
complement of a closed disc, all conditions of (iii) are satisfied.

Proof. The proof will be completed with the sequence of implications

(i) =»(«)=>{(HO or (iv)}=>(v)=>(i).
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The first of these follows easily from Definition 1. Indeed, given C = G U H there is a
Pe{T}' with PXcX(T, G) and (/ - P)X <=X(T,H). Each xeX can be written
x = Px + (I - P)x; hence (3.1) follows.

Since (ii) =£> (iii) ̂  (v) and (ii) => (iv) =£>(v) are evident, we prove (v)=£>(i).
First we show that conditions (iii) of Theorem 1 are satisfied. Let {G, H} be an open

cover of C, where G is an open disc and H is the complement of a closed disc. Let Gx be
another open disc such that Gi<=G and {GUH} is an open cover of C; let H, be the
complement of a closed disc such that {G, H} is an open cover of C and G| D //, = 0 . By
hypothesis there exists P e {T}' such that

Px=x if y(x,T)czGu

Px = 0 if y ( je , r )c / / , . (3.2)

Since {GX,H} is an open cover of C, for each x eX there are JC, and x2 such that

x=Xl+x2, Y(xi,T)cGlt y(x2,T)cH. (3.3)

Now (3.2) and (3.3) imply that (/ - P)xi = 0 and hence (/ - P)x = (/ - P)x2. As P e {T}'
we have

y{x -Px,T) = y(x2 - Px2, T) c y(x2, T) c H.

Similarly, since {G, Hx) is an open cover of C, for each x e X there are x[, x2 e X with

x=x[ + x2,y(x[,T)CG,y(x2,T)<=Hl.

Then (3.2) and (3.4) imply that Px2 = 0; hence

y(Pxl,T) = y(Px[,T)<zy(x'i,T)czG.

Now let F be closed in G\H. Since {GX,H} is an open cover of C, one has F c G{\H.
By (3.2) if x eX(T, F) then Px=x. Hence Px=x on X(7\ F) because P is bounded. In
a similar way we have Px = 0 for x € X(T, K) if K c: H\G is closed.

This much proves that T is decomposable by Theorem 1 (iii).
Furthermore, for every open cover {G,H} of C condition (ii) of Theorem 1 holds.

Let {G,} be a system of open discs and let {//,} be a system of complements of closed
discs such that {G,, //,-} is an open cover of C for each 1 < / < n and

UC.-CG, n #,<=#.
i=i /=i

For each pair (G,, //,) there is P, e {T}' such that for x e X,

o(Pix,T)aGi and o(x - PiX,T)cHi. (3.5)

Put P = I - n,(/ - f;). It follows by an easy argument that

H. ( 3 . 6 )

S i n c e

p = ( p , + p 2 + . . . + p n ) - ( p , p 2 + . . . + p n _, p n ) + . . . + ( - 1 r p , p 2 . . . p n ,
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from (3.5) we have

o(Px,T)cUQcG. (3.7)

Because T is decomposable, (3.6) and (3.7) imply that T is decomposable relative to the
identity.

The following corollary first appeared in [5, Cor. 17.10]; the proof here uses the
previous theorem.

COROLLARY 1. If T is decomposable relative to the identity, then T is strongly
decomposable.

Proof. Suppose T is decomposable relative to the identity. Then T is decomposable.
Let F be closed, let S = T\X{T,F) and let Pe{T}' be as in Theorem 3(ii)
corresponding to the open cover {G,H} of C. Then X(T,F) is P-invariant. Put
Q = P\X{T,F) so that Qe{S}'. For ye X(T,F) we have y(Qy, S) = o{Py, T) c G
and y(y - Qy,T)a o(y — Py,T)<= H, by Theorem 3. Hence 5 is decomposable by
Theorem 2.

To give an example of a strongly decomposable operator which is not decomposable
relative to the identity, we first sketch a construction due to Albrecht [1]. Let Q be open
in C and let C""(Q) be the algebra of m-times continuously differentiable complex-valued
functions on Q with the topology of uniform convergence on compact sets. Let C(7(Q) be
the subset of C""(Q) with bounded derivatives up through order m. Then if (p e C(!'(Q)
the following defines a Banach algebra norm:

where 0<fc, p^m, k+p<m, the sup is taken over Q and d, d are the differential
operators d/dz = (l/2)(d/dx + id/dy) and d/dz = (l/2)(d/dx - id/dy) respectively. Let
Xo denote the subspace of bounded functions in C°(Q) and let X{ denote those / eX0

such that df e XQ in the sense of distributions. Let 7̂ ,, 71, denote multiplication by the
independent variable z on Q, where we now take Q = {z: | z |< l /2} . Let X = Xn(B X{

and T = T0(BTl. By [1], To, 7i and Tare generalized scalar operators and Xi{Tj,F) =
{fi e Xj-. supp/ c F}. For h e Xa we define the nilpotent operators Ah and Qh by

Ah(f,g) = (hdg,0),

Qh(f,g) = (hg,0),

for (f,g) eX. Then Ah and Qh commute with T. If S e L(X) leaves the spectral manifold
X(T, F) invariant, then by [1, Prop. 3.2] we have

S(f,g) = (bof, blg) + (Ah + Qk)(f,g), (3.8)

where h, k, boeXo and bxeXx.
Now let V = T + At. Then T is quasinilpotent equivalent to V, hence X(T,F) =

X(V, F) for all closed F [4, p. 40], and so the restrictions V | X(T, F), and T \ X(T, F) are
quasinilpotent equivalent. Since T is generalized scalar, V is strongly decomposable by
[4, p. 80].
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We prove that V is not decomposable relative to the identity with two lemmas.

LEMMA 2. If S e {V}', then S has representation (3.8), where bt) = b{ is analytic on Q.

Proof. By the remarks above (3.8) holds. Let U(f,g) = (bof,blg). Since VS = SV
and TU = UT, it follows that £M, =AlU. Then for (f,g) = (0,1) we have

and hence b, is analytic. In a similar way with g = z we find that 6, = bu.

LEMMA 3. V is not decomposable relative to the identity.

Proof. Suppose the contrary and let F = {z: Re z =£ 0} and G - {z\ Re z < 1/4}. Let
Pe{V}' with

PXcX(T,G), P|A'(r ,F) = /|A'(r,/ : '). (3.9)
By Lemma 2, for ( / ,g)eA'we have

where b is analytic and h, keXu. Hence P(0,1) = (k, b). By (3.9) suppftcG, so b
vanishes on Q D (C\G) and hence & = 0 throughout Q. Thus P reduces to the nilpotent
operator Ah + Qk, and this is impossible by (3.9).
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