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Abstract

We consider a theoretical model for the flow of Newtonian fluid through a long flexible-
walled channel which is formed from four compliant and rigid compartments arranged
alternately in series. We drive the flow using a fixed upstream flux and derive a spatially
one-dimensional model using a flow profile assumption. The compliant compartments
of the channel are assumed subject to a large external pressure, so the system admits
a highly collapsed steady state. Using both a global (linear) stability eigensolver and
fully nonlinear simulations, we show that these highly collapsed steady states admit a
primary global oscillatory instability similar to observations in a single channel. We
also show that in some regions of the parameter space the system admits a secondary
mode of instability which can interact with the primary mode and lead to significant
changes in the structure of the neutral stability curves. Finally, we apply the predictions
of this model to the flow of blood through the central retinal vein and examine the
conditions required for the onset of self-excited oscillation. We show that the neutral
stability curve of the primary mode of instability discussed above agrees well with
canine experimental measurements of the onset of retinal venous pulsation, although
there is a large discrepancy in the oscillation frequency.
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1. Introduction

Retinal venous pulsation (RVp) was first described by Coccius [7] and takes the
form of a vigorous oscillation in the central retinal vein as it crosses the optic disc.
Interestingly, this pulsation is much stronger than the corresponding pulsation in
the central retinal artery. Despite years of effort, this surprising observation is still

ISchool of Mathematics and Statistics, The Mathematics and Statistics Building, University Place,
University of Glasgow, Glasgow G12 8SQ, UK; e-mail: peter.stewart@glasgow.ac.uk.
*Department of Ophthalmology, Queen’s Medical Centre, Nottingham NG7 2UH, UK;

e-mail: alexaner.foss @nottingham.ac.uk.

© Australian Mathematical Society 2019

320

https://doi.org/10.1017/51446181119000117 Published online by Cambridge University Press


https://orcid.org/0000-0002-0971-8057
https://orcid.org/0000-0001-9649-0072
mailto:peter.stewart@glasgow.ac.uk
mailto:alexaner.foss@nottingham.ac.uk
https://doi.org/10.1017/S1446181119000117

2] Self-excited oscillations in a collapsible channel 321

incompletely understood (see the article by Morgan et al. [33] for a recent review of
the clinical literature). Under healthy conditions the pulsation is present or, if not,
it can be easily triggered by a mild increase in intraocular pressure (the pressure in
the vitreous in the eye, denoted IOP). However, it has long been established that the
RVp disappears for a sufficiently large intracranial pressure (the pressure in the brain,
denoted ICP) [25, 44], indicating a strong coupling between the pressure environments
in the eye and the brain. In addition, spontaneous RVp is also less common in patients
with glaucoma [21, 32].

To better quantify these clinical indicators, the onset of RVp has been measured
as a function of ICP in animal models by Morgan et al. [34]. Their measurements
indicate that the onset curve is formed by two branches: for low ICP the critical IOP
required for the onset of pulsation is independent of ICP (approximately 14.9 mmHg
in canines [34]), while for larger ICP the critical IOP for pulsation scales linearly
with ICP. If such an onset curve could be well validated in humans, it would provide
foundation for a novel new noninvasive method to measure ICP, since IOP can be
adjusted and measured relatively easily. Given a measurement of a patient’s IOP at
RVp onset, the predicted onset curve could then be used to either verify that the
corresponding ICP is in the normal range (if the IOP lies in the flat region of the onset
curve) or provide a noninvasive estimate of the ICP (if the IOP lies in the linear region
of the onset curve). Several steps in this direction have already been taken [11, 12, 16],
but theoretical understanding of the coupling between the pressures in the eye and the
brain needs to be improved before the method can be used reliably.

The geometry of the central retinal artery and vein as they pass through the optic
nerve and into the eye has been well described in a series of classical papers [15,
38, 39]. The geometry is sketched in Figure 1(a), showing the course of the vein
as it leaves the eye, passes along the optic nerve before exiting into the orbit and
then connecting to the ophthalmic vein. As it exits the nerve, the vein must cross
the optic nerve sheath, which comprises meningeal tissue including the optic nerve
subarachnoid space (which is filled with cerebrospinal fluid (CSF) at the ICP) confined
by the dura mater.

In our previous theoretical work to quantify the onset of RVp [42], we modelled
the flow along the retinal vein using a Starling resistor [23]. In particular, we extended
the model of Levine [26] to represent the vein as a long flexible-walled channel which
is externally surrounded by the IOP and the ICP at different points along its length
(see Figure 1). The vein is assumed to be formed of four compartments in series:
from the upstream end, the first compartment represents the portion of the vein in
the eye (the portion that can be observed through an ophthalmoscope); the second
represents the portion of the vein that passes through the lamina cribrosa and along
the centre of the optic nerve; the third represents the portion of the vein which crosses
the optic nerve sheath; the fourth represents the portion of the vein outside the nerve,
connecting downstream to the ophthalmic vein. These sections are labelled in Figure 1.
Compartments 1 and 3 were assumed to have flexible walls, with compartment 1
externally surrounded by vitreous at the IOP and compartment 3 externally surrounded
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by CSF at the ICP. Compartment 2 was assumed to be tightly confined by the nerve
fibres and so could be effectively considered to be rigid, while compartment 4 was
also modelled as rigid for simplicity. The flow of blood was modelled using the
incompressible Navier—Stokes equations, while the elastic portions of the channel wall
were modelled as a tensioned membrane with an elastic pre-stress. Similar to many
previous studies of flow in collapsible vessels [40, 49], the flow was simplified using a
long-wavelength approximation with a flow profile assumption. The ICP and IOP were
chosen to be prescribed functions of time with simple oscillatory profiles. The model
parameters could all be reliably estimated from the literature with the exception of
the vein wall tension (membrane pre-stress), which was chosen to exhibit transition to
oscillatory instability (which we attributed to RVp) at a physiologically realistic value
of the IOP. We showed that for physiologically realistic parameter choices the system
exhibits a transition to fully nonlinear instability along an onset curve, which shows
excellent agreement with the measured onset curve in canine experiments [34].

In this study, we revisit the model of Stewart et al. [42] to examine its behaviour
across the parameter space (not just for parameters relevant to RVp). We ignore the
time dependency of the external pressures and, instead, treat a model system of flow
in a flexible-walled channel with two compliant compartments. In particular, we look
for the onset of self-excited oscillations by recasting the governing equations as a
linear stability problem about a nonuniform static state. In a similar manner to [40],
we construct a global (linear) stability eigensolver which can be solved to isolate the
critical conditions for instability with much reduced computational cost, compared
to full nonlinear simulations of the same system. Such an approach provides explicit
access to the corresponding oscillation frequency at neutral stability and elucidates all
the normal modes of the system.

This study follows in the spirit of many previous studies of fluid flow in collapsible
vessels and the associated onset of self-excited oscillations, pertinent to physiological
phenomena, such as Korotkoff noises generated during sphygmomanometry, wheezing
in the lungs and phonation in the vocal folds. Theoretical models for the onset of
these self-excited oscillations span empirical lumped parameter models [1, 3], reduced
long-wavelength models [19, 36, 43, 49, 50] and full numerical computations in
channels and tubes [17, 27-29, 41]. Comprehensive literature reviews are available
elsewhere [13, 18]. Of most pertinent interest to the present study are long-wavelength
models for flow through collapsible channels with prescribed inlet flux, where the wall
elasticity takes the form of an axial membrane tension [40, 49-51]. These models are
similar in spirit to our previous model for the onset of RVp [42], albeit with only
one compliant compartment rather than two. For a constant external pressure on the
collapsible segment, we previously showed that this collapsible channel system with
one flexible compartment admits two distinct families of self-excited oscillation [40]:
for low tensions the system admits a family of low-frequency oscillatory modes where
the flexible portion of the channel is highly inflated along most of its length; for large
tensions the system admits a family of high-frequency oscillatory modes where the
channel is highly collapsed. We now revisit these predictions in a model with two
compliant compartments rather than one.
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Flow through channels composed of multiple compliant compartments (or over
multiple compliant plates) also has potential application in turbulent-drag reduction,
where it has been hypothesized that arranging several compliant panels in series could
be used as part of a device to delay the onset of laminar—turbulent transition [8, 9, 37],
based on initial experiments conducted by Kramer in the 1960s [24].

This paper is arranged as follows. In Section 2 we formulate the governing
equations and describe the formulation of the global (linear) stability eigensolver. In
Section 3 we consider the dimensionless model and examine its behaviour across a
wide range of the parameter space, using a combination of the linear eigensolver and
fully nonlinear simulations. In particular, we find that the system exhibits multiple
families of self-excited oscillations, some of which involve strong coupling between
the compliant compartments and others which are almost decoupled. In Section 4 we
use this eigensolver approach to revisit our previous predictions [42] and examine the
consequences of these extra modes of oscillation for our predictions of RVp onset.

2. The model

The model setup considered herein is motivated by blood flow in the central retinal
vein, similar to that proposed by Stewart et al. [42]. However, in this study the external
pressures are regarded as both spatially and temporally uniform (rather than oscillatory
functions of time driven by fluctuations in arterial pressure), so that the system admits
a nonuniform static wall configuration. We test the stability of this static state using a
global (linear) eigensolver and can thus make progress in systematically exploring the
parameter space with much reduced computational cost. We then apply this model to
the particular setup in the central retinal vein to examine the onset of oscillations in
this geometry, which explains some of the clinically observed features of RVp.

We consider a geometry inspired by the central retinal vein composed of four
compartments in series (labelled in Figure 1(a)), arranged in an identical manner to
our previous model [42], as shown in Figure 1(b). In particular, we consider flow
in a rigid-walled channel of constant width d, where two distinct portions of the
upper wall (of lengths L; and L3) have been replaced by a flexible membrane. A
rigid segment (of length L) spans between the two compliant segments and there is a
further rigid segment (of length Ls) downstream. The channel geometry is described
using Cartesian coordinates (x, y), where x is the distance measured along the channel
axis from the upstream inlet and y is the perpendicular distance from the lower wall
of the channel. We consider corresponding unit vectors e, and e,. Time is denoted .
The inlet to the upstream compliant compartment is denoted x = 0, where we prescribe
boundary conditions on the flow.

The flow is assumed to be homogeneous and Newtonian of (constant) viscosity and
density denoted i and p, respectively.

Similar to some Starling resistor experiments [4, 5], we prescribe the fluid flux Q at
the channel inlet (x = 0) and the pressure at the channel outlet Py (x=L; + L, + L3 + Ly).
This work builds on several previous theoretical studies of flow-driven oscillations
through a channel with a single flexible compartment along its length [40, 49, 50].
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FiGure 1. (a) Sketch of the course of the central retinal vein as it exits the eye and passes through the optic
nerve highlighting the four compartments of interest labelled 1-4; (b) setup of the mathematical model in
dimensional variables, showing the four compartments of the channel arranged in series.

The elastic portions of the wall are assumed to exhibit a tensile pre-stress T (or
membrane tension) acting axially along the channel (see the discussion of Cancelli
and Pedley [6]), similar to many previous studies of collapsible channel flow [20, 27,
28, 40, 43]. The influence of other elastic restoring forces, such as bending stiffness,
wall inertia and damping have been ignored for simplicity. In general, the channel wall
is assumed to be located at position y = h(x, t), while in the rigid segments we have
y = d uniformly.

The flexible compartments (denoted 1 and 3) are externally surrounded by
another fluid, which is assumed to have uniform pressure: the pressure external
to compartment 1 is denoted P,, while the pressure external to compartment 3 is
denoted P,.

2.1. Nondimensional variables To reduce the number of model parameters, we
nondimensionalize all lengths on the channel width d, velocities on the baseline flow
velocity Uy = Q/d (based on the inlet flux), time on d/U, and pressures according to
the inertial pressure scale

p=pUsp + Po, 2.1

where p is the dimensional pressure. All dimensionless variables take the same
symbol as the dimensional equivalent, but denoted with a tilde. This choice of
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nondimensionalization results in the following dimensionless groups:

L1 ~ Lz ~ L3 ~ L4 ~ pU ()d

—, = —, = —, = —, R — ,

7 L 7 L p Ly 7 p

representing the four dimensionless lengths of the compartments and the Reynolds
number R measuring the relative importance of inertial effects to viscous effects in the
flow. Furthermore, we have the nondimensional external pressures (both assumed to
be spatially and temporally uniform), written as

_ P, — Py P.— Py

De = Pc = >
© ey pUs

L=

respectively.

Hence, in dimensionless variables the channel wall is located at y = A(%, ), while the
dimensionless flow velocity @ = i(X, 3, fe, + ¥(%, ¥, f)ey and the dimensionless pressure
P(%,3,1) follow the nondimensional Navier—Stokes equations
- ou
V.a=0, —

of
where the tilded gradient operator V is defined in (dimensionless) Cartesian
coordinates. We henceforth drop tildes for notational convenience.

+u-Vi=-Vp+R W2, 0<i<li+ Lo+ L3+ L4 0<§<h,

2.2. Long-wavelength approximation Since all four compartments of the vein
are typically long compared to the channel width, we reduce the complexity of the
system using a long-wavelength approximation (similar to previous one-dimensional
models such as [40, 43]). We construct a small parameter € = 1/L£; <« 1 and rescale
the variables according to

X = e_lfc, t=¢€

and the model parameters according to

v v

R=eR, Lr=elLy, Li=e€L3 Li=€ely

Dropping breves and neglecting terms of O(e?), the final system of equations can
be written as

c’)uj an
E + a—y =0, (223.)
Ou; Ou; Ou; ap; 10 u;
— i— — = -t —— 2.2b
ot “ax "Viay T Tax Ry (2.20)
Op
o"?lyj =0, (2.2¢)

where the subscript (j = 1,...,4) on each variable denotes the region over which it is
defined. These equations are subject to kinematic and no-slip boundary conditions on
the elastic sections of the wall in the form

oh;j

vi= oo wp=0, y=hy j=13 (2.2d)
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as well as a balance of normal stress to determine the position of the flexible wall,
considered in Section 2.4. We also impose no-slip boundary conditions on the rigid
sections of the wall in the form

uj=v;=0, j=2,4. (2.2e)

These equations are further coupled to boundary conditions of prescribed inlet flux
and zero outlet pressure in the form

h1(0,1)
f 1O, 0dy =1, ps(l+ Lo+ L3+ Lot) =0, 2.2f)
0

as well as conditions matching the flux and pressure between each compartment.

2.3. Integral approximation Integrating the axial momentum equation (2.2b)
across the cross-section of the channel and applying the boundary conditions (2.2d)
and (2.2e), we express the long-wavelength governing equations (2.2) as a coupled
system in terms of three dependent variables in each compartment u;, h; and p;
(j=1,...,4), in the form

8h/+6(fhj d)_o (23)
or Tax\J, )T 58
0 hi d hj 2 3pj 1 (9l/tj hyj

= dy) + — ) = —n, 2y [ 2.3b
at(fo ”fdy)+ax(f0 ”fdy) I bx +R[8y]o (2.30)

We denote the flux of blood along the vein through any cross-section of the channel
orthogonal to e, as

hj
Qj(xJ)=f ujdy, j=1,...,4
0

2.4. Wall elasticity We consider the elastic response to wall displacement from
the uniform state (y = d), where a (long-wavelength) balance of normal stress on the
flexible wall gives

&h;
ox2’
where p; is the dimensionless external pressure on compartment j (so p; = p, and
P3 = pc) and 7 is the dimensionless wall tension parameter, defined as

eT
pU2d

This model (2.4a) assumes dominance of the longitudinal pre-stress tension and
neglects other features such as bending stiffness, wall dissipation and the influence
of normal viscous stresses. Furthermore, if an identical approach were applied to
a flexible tube, this would neglect tensile forces arising from radial and azimuthal
deformations of the wall. However, such an assumption is consistent with earlier
studies of flow in collapsible tubes, which argued that regions of the tube cross-
section in which longitudinal tension will have most effect are approximately parallel-
sided [6, 30]. This approximation is also consistent with the reduced wall model
derived from shell theory by Whittaker et al. [45].

i Zﬁj_T j=1,3, (2.4a)

(2.4b)
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2.5. Closure condition However, this long-wavelength system of equations ((2.2)
and (2.4a)) is not closed. In the literature on collapsible tubes, a number of approaches
are used to close the system based on specific assumptions or empirical measurements
(see the extended discussion by Cancelli and Pedley [6]). Similar to many previous
studies of flow in collapsible channels [40, 43, 49-51]), we close the system of
governing equations by assuming the flow profile to be everywhere parabolic (a von
Karman—Pohlhausen approximation), in the form
6q;y(hj—y) .
u(x,y,t) = ——~L—== h3.J , j=1,...,4,
J
where the system of governing equations (2.3) in each region becomes

2
ohj  9q; _ .\ 94 éﬁ(ﬂ)z 9P 124

- L T S
o “ox T o T 5ax\n) T ax T Rk e

The fluid pressure in the compliant regions (compartments 1, 3) of the channel
follows directly from the normal stress balance (2.4a). Conversely, in the rigid
segments (compartments 2, 4), we assume that the channel width is equal to the
baseline width and set 2; = 1 (j = 2, 4), so that the flux follows as

% _o %45 _ 9 12

ax o ox  RI
Hence, the fluid flux through the rigid segments is independent of x and we can
integrate the momentum equation along the rigid sections to obtain an expression for
the pressure along the compartment, from which we can deduce boundary conditions
for the flow in the compliant segments.

In summary, the governing equations in the compliant segments of the channel can
be written in the closed form

j=2,4.

oh;, 0q;
6—; + 6—; =0, (2.5a)
dq; 60 Fh; 12 q;

=Th—2L - 2.5b
ot 58x( ) Thy a3 R h2 (2.55)

for j = 1, 3. Matching the fluid flux and pressure at the junctions between each segment
of the channel, and applying the downstream pressure boundary condition (2.2f), we
obtain eight boundary conditions on the compliant compartments in the form

C]l(o, t) = 1’ QI(I’ t) = f]3(1 + Ll’t)s (250)
h1(0 t) = h](l,l‘) = hz(l + Lz, I) = h3(1 + .£2 + £3,l‘) = 1, (25(1)
a2h ohs P 12
S D= T2+ Lo = pe— pe - Lz(ﬂ(l, 0+ a(ln) @50
7’—23(1 + L+ Lo =p (6%(1 0+ —q3(1 t)) 2.50)
ox

The system (2.5) is closed and is almost identical to the system derived by Stewart
et al. [42].
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2.6. Static configuration Following previous studies of collapsible channel
flow [40, 43], we compute the corresponding static configuration of the system
by solving the time-independent version of (2.5), denoting this solution with the
superscript (s). We note that the static system must have unit flux everywhere along
the channel for this choice of upstream boundary conditions. Nonlinear solutions of the
resulting seventh-order system of one-dimensional ordinary differential equations are
computed using Newton’s method. In the results below, we summarize simulations
by the minimal and maximal constrictions of the static wall in each compliant
compartment.

2.7. Global linear stability eigensolver A global linear stability eigensolver for
collapsible channel flow subject to a large external pressure was recently presented
by Stewart [40]. We follow a similar approach here, considering the time-dependent
behaviour of a small perturbation from the static configuration identified in Section 2.6.
We linearize the system of equations around this static state and look for exponentially
growing solutions in time. For the collapsible channel model (2.5), we expand the
dependent variables according to

(h1 (x, ), ho(x, 1), g1 (x, 1), qa(x, ) = (B, 15, 1, 1)
+ 6(h1 (%), ha(x), §1 (%), G2 (x))e” + O(6%),

where 0 < 1, o € C is the complex growth rate of the system and hatted variables are
the complex eigenfunctions. Neglecting terms of O(5%), the linearized system becomes

chj+—2 =0, (2.62)

68 (24 1 0h; &h, . PhY 12, 4 2h;
oo Sl B e e Rl )
o3 03 (h(;))z (h(§))3
J J
(2.6b)

for j = 1,3, where we have used (2.6a) in (2.6b) to reduce to a system that is linear in
o. These equations are subject to the linearized boundary conditions in the form

gi1(0)=0, ¢1(1)=4g1+ L), (2.6¢)
1 (0) = hy(1) = h3(1 + L) = hs(1 + Ly + £3) = 0, (2.6d)
62h o0*h
SF -T2+ L) = —Lz(o-ql(l) + q1<1)) (2.6¢)
62 hs

TR L+ L) = ~L(ds( + Lo+ L)+ s+ Lo+ L) 260)
We solve the linear system (2.6) numerically using an approach identical to that of

Stewart [40]. As a brief summary, the two spatial domains (0 < x <1 and 1 + £, <
x <1+ L5+ L3) are each discretized onto a uniformly spaced grid. The governing
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equations and boundary conditions (2.6) are mapped onto these grids by approximating
spatial derivatives using second-order finite differences. What follows is a matrix
eigenvalue problem for the complex growth rate o with the associated (discretized)
eigenfunctions 7 (x; o), hs(x; o), g1(x; o) and gs(x; o). Interested readers are referred
to [40] for more details on the construction of the eigensolver.

In particular, we isolate neutral stability curves of the system (where Re(o) = 0)
using a bisection method. At neutral stability, we denote o = +iw, where w is
the dimensionless oscillation frequency. In Section 4 the corresponding dimensional
oscillation frequency is denoted as Q = wUy/L;, measured in Hz.

2.8. Fully nonlinear simulations Fully nonlinear simulations of the governing
equations (2.5) are constructed using the numerical scheme described and used
previously by Stewart et al. [42], based on a semi-implicit finite-difference method
which is first order in time and fourth order in space.

In fully nonlinear simulations, we quantify the solution in terms of the time traces
of either of the midpoint of the spatial profile, denoted mid(-) or by the maximal
constriction of the flexible wall across the compartments denoted 4,,; = min,(h;) for
Jj = 1,3. Alternatively, in constructing bifurcation diagrams we use the oscillation
amplitude of the compartment midpoint which we calculate as

Aj = max(mid(h; — b)) min(mid(h; — W), =13,
X t

where the subscript ¢ represents taking the maximum or minimum over a period of
fully saturated oscillation.

2.9. Baseline parameters for the onset of retinal pulsation In Section 4 we apply
the model to the particular geometry of the central retinal vein in an attempt to explain
the onset of the retinal venous pulse. The dimensional parameters for the model are
listed in Table 1.

Most of the model parameters can be estimated reliably from the literature. In
particular, the geometry of the vein has been well characterized [15, 38, 39, 48] and
the baseline diameter and lengths of the compartments are listed in Table 1, which
translate into dimensionless segment lengths £, = 10, £3 =1 and £4 = 10.

The inlet flux of blood entering the vein is the retinal blood flow, which has been
measured in experiments [10]. Herein we adopt a baseline value of 44 ul min~! [10].
The corresponding mean velocity of blood along the vein has been measured in the
range 2-6 cm s~!, from which we estimate a baseline value of Uy =4 cm s~! [46].
This translates into a baseline vein diameter (and hence channel width) of
d ~ 152.8 um [42].

In addition, the density and viscosity of blood are well known [35]. For the baseline
parameter values, this translates into a reduced Reynolds number of R = 0.245.

In particular, compartment 1 is externally surrounded by vitreous at the IOP,
denoted by P, in the model. Also, compartment 3 is externally surrounded by CSF
at the ICP, denoted by P, in the model. The remaining two compartments are assumed
to be rigid. In compartment 2 this is appropriate, because the blood vessels are
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TasLE 1. Typical dimensional parameter values for the model.

Parameter Symbol Value Unit Source
Blood viscosity u 0.004 Pas [35]
Blood density o 1000 kg m™3 [35]
Length of compartment 1 Ly 1073 m [31]
Length of compartment 2 L, 1072 m [38]
Length of compartment 3 Ls 1073 m [48]
Length of compartment 4 Ly 102 m Estimated
Retinal blood flow 0 44 pul min~! [10]
Baseline blood velocity Uy 4 cms™! [46]
Vein diameter d 152 % 107° m Estimated
ICP P, 10-35 mmHg

I0P P, 0-20 mmHg

OVP Py <2.6 mmHg [34]
Vein wall tension T 0.110 Nm! [42]

tightly surrounded by axonal nerve fibres (which in themselves can be assumed
rigid [2]), severely limiting deformation. In compartment 4 this assumption is made
for simplicity, but, since the tissue pressure in the fat external to the vessel is
significantly less than the IOP (<3 mmHg), assuming this region was compliant
would not contribute to the oscillatory behaviour significantly. In normal adults the
IOP is measured in the range 10-35 mmHg, while the ICP is measured in the range
0-20 mmHg, depending on position.

We approximate the vein outlet pressure P as the orbital venous pressure (OVP);
this pressure is extremely difficult to measure in humans, but we expect it to be close to
the orbital tissue pressure, which is measured in humans in the range <2.6 mmHg [34].
In our results in Section 4 we simply report all pressures as a difference to the OVP.

The elastic pre-stress (tension) in the vein wall can only be obtained in vivo and has
not been reliably measured to the best of our knowledge. In our previous study, we
used a baseline of 7 = 0.110 N m~!, which corresponds to a dimensionless value of
7 =10 in conjunction with the other baseline parameter values listed in Table 1. We
explore the behaviour across a range of dimensionless tensions in Figure 8.

Results pertinent to these parameter values (Section 4) are reported in terms of
dimensional variables for ease of physiological interpretation.

3. Results

In this section we explore the general properties of the dimensionless model
outlined in Section 2. In particular, we outline the structure of the static solutions
(Section 3.1) and then explore the onset of self-excited oscillations from this static state
using both the global linear stability eigensolver and also fully nonlinear simulations
(Section 3.2).
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For brevity, in all cases, we consider the lengths of the compartments set at
Lo =2L4=10and L3 = 1. We hence only vary the (dimensionless) membrane tension
7", the Reynolds number R and the dimensionless external pressures p, and p..

3.1. Static wall profiles Since the flux must be constant along the entire channel
length for a time-independent solution (¢ = 1), for fixed p., the static solution in
compartment 3 satisfies the reduced model

66(1)_ H®hY 121

50x\ ) o ROy
WO+ Lo,y = hP A+ Lo + Ly, 1) = 1,
aZh(S)

12
T+ Lo+ Lyn=pe-Lag,

Ox
which is closed and independent of p, and the profile in compartment 1; this model is
identical to the static model of a single-compartment collapsible channel considered
by Stewart [40]. For this choice of global boundary conditions (prescribed flux at
the inlet and prescribed pressure at the outlet) in the static version of the problem,
the downstream rigid compartment is completely decoupled. Conversely, the static
solution in compartment 1 satisfies the reduced model

66(1)_ W 121

5 0x hY Lo R 2’
K0,0 =h00,0 =1,

>h n ~ 12
T axz (l’t)_T axz (1+£27t)_p€_pc_'£2§’

which couples to p, — p. and also to the (linearized) membrane curvature
compartment 3. Hence, the behaviour in the upstream compliant compartment will
be coupled to the behaviour in compartment 3.

To further explore the coupling between the static wall profiles, in Figure 2 we plot
the maximal and minimal channel widths in each compartment as a function of 7~
holding p, = 275 and p. = 100 for a variety of Reynolds numbers. Similar to [40],
for sufficiently low R, the static profile in each compartment is unique for each 7,
with the channel approximately uniform for large 7~ and becoming more collapsed
as 7 decreases due to the Bernoulli effect (see profiles for R =0.1 and R =1 in
Figure 2). For larger R (see Figure 2(b)), the profile in each compartment becomes
increasingly collapsed and the system exhibits multiple static states for a range of 7~
(these ranges are distinct between the two compartments), with each exhibiting two
stable solutions with an unstable intermediate state. Self-excited oscillations occur
from the most collapsed static branch (similar to [40]).
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FiGure 2. Summary of static wall profiles for p. = 100 and p, = 275 summarizing the maximal and

minimal channel widths as a function of the wall tension 7~ for a variety of R, showing compartment 1
(3) as a solid (dashed) line: (a) low Reynolds numbers R = 0.1 and R = 1; (b) larger Reynolds numbers
R =10, 25,50,75,100, 125,200. The inset in (b) shows a close-up of the curve for R = 200, highlighting
the three static states for a range of 7. Here £, = L4 = 10 and L3 = 1.

3.2. Onset of self-excited oscillations For each point in the parameter space, static
solutions to (2.5) are isolated numerically and the corresponding global stability
problem about this static state (2.6) is solved as a matrix problem to generate o € C.
We isolate neutrally stable solutions, that is, parameter combinations where the global
growth rate of the system is purely imaginary (Re(o) = 0).

We consider several slices through the parameter space. Firstly, we consider
fixed (dimensionless) membrane tension and Reynolds number and consider the
onset of instability in the parameter space spanned by the two external pressures
(Section 3.2.1). Secondly, we consider fixed external pressures and consider the
parameter space spanned by membrane tension and Reynolds number (Section 3.2.2).

3.2.1 Onset of oscillatory instability for fixed tension and Reynolds number. As
a baseline case we consider the point in parameter space with 7 =1 and R =1; in
Figure 3(a) we trace the neutral stability curves of the most unstable modes in the
space spanned by the two external pressures. In particular, we plot the critical value
of p. (denoted p,.) as a function of p.. The system is stable for low p. and low p,,
as expected. For larger pressures, we trace two distinct neutral stability curves which
almost intersect at p. =~ 150 and p, = 300. Note that the system does not subsequently
restabilize across the rightmost curve, but the system is simply unstable to two modes
of oscillation rather than one.

In the far field (far from the interaction), two branches of the neutral curves are
approximately independent of p, (close to the points labelled (b) and (d) in Figure 3(a))
and depend only on the value of p. ~ 150. In addition, for low p, there is a branch of
oscillations which onset for approximately constant p, (close to the point labelled (a)
in Figure 3(a)) and for large p. there is a branch of oscillations where the critical p,
increases linearly with p. (close to the point labelled (c) in Figure 3(a)). These latter
two branches exhibit strong qualitative similarity to the experimental measurements of
RVp onset [34], as discussed in Section 4. The accompanying frequencies of neutral
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Ficure 3. Neutrally stable oscillations of the system for fixed (dimensionless) membrane tension and
Reynolds number: (a) neutral stability curves showing the critical value of p, required for oscillation as a
function of p,; (b) associated oscillation frequencies plotted against p.. Here 7 = 1,R =1, £, = L4 =10
and L3 = 1.

stability oscillation are shown in Figure 3(b). Interestingly, the two branches exhibit
similar frequencies close to their intersection, reminiscent of a modal interaction. Also,
as p. becomes large or small, these frequencies asymptote to a constant value.

3.2.2 Fully nonlinear oscillations. To assess the fully nonlinear behaviour of the
system associated with these neutral curves, in Figure 4 we consider the growth of
instability at two distinct points just inside the unstable regime. In particular, we
consider two points where the system transitions from globally stable to unstable, close
to the points labelled (a) and (d) in Figure 3.

Firstly, at the point labelled (a) in Figure 3, just inside the unstable region across
the neutral curve with constant critical p,, the fully nonlinear oscillation in the
compartment midpoint (Figure 4(a)) has comparable amplitude in both compliant
segments. This feature is also evident in the bifurcation diagram constructed based
on the amplitude of oscillation of the compartment midpoint (Figure 4(b)) for a range
of p. beyond the critical value (marked with an X). The onset of instability is clearly
supercritical, in line with previous studies of flow-driven oscillations in collapsible
channels [40]. We term this mode of instability (i) and note that it involves oscillations
of significant amplitude in both compliant compartments.

Conversely, close to the point labelled (d) in Figure 3, just inside the unstable
region across the neutral curve with constant critical p., the fully nonlinear oscillation
in the compartment midpoint is of significantly larger amplitude in the downstream
compliant segment compared to the upstream one (Figure 4(c)). The feature is also
evident in the bifurcation diagram constructed based on the amplitude of oscillation
of the compartment midpoints (Figure 4(d)) for a range of p. beyond the critical
value (marked with an X). Hence, this branch of oscillations is strongly dominated
by the downstream compliant compartment and the upstream compartment is almost
perfectly decoupled, which is further enhanced as the length of the intermediate
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FiGure 4. Fully nonlinear oscillations of the system for fixed (dimensionless) membrane tension and
Reynolds number: (a) time trace of the compartment midpoint for p, = 277, p. = 100; (b) bifurcation
diagram showing the amplitude of the oscillation of each compartment midpoint as a function of p, for
pe = 100; (c) time trace of the compartment midpoint for p, = 275, p. = 156; (d) bifurcation diagram
showing the amplitude of the oscillation of each compartment midpoint as a function of p. for p, = 275.
Here 7 =1,R=1,L,=L4=10and L3 =1.

rigid segment (£;) increases. We term this mode of instability (ii) and note that it
(predominantly) involves large-amplitude oscillations in compartment 3 only and its
onset is (essentially) independent of the value of p,.

It is evident that the saturated oscillations in both cases exhibit a significant
modification to the mean position of the membrane midpoint over a period of
oscillation (Figure 4(a) and (c)). This change in the mean position of the membrane
reflects a net exchange of mass between the compartments. In Figure 4(a) the nonlinear
oscillation drives mass into compartment 1 at the expense of compartment 2 over a

period, while in Figure 4(c) the nonlinear oscillation drives mass into compartment 1
at the expense of compartment 2 over a period.

3.2.3 Onset of oscillatory instability for fixed external pressures. To assess the
structure of the neutral stability curves in the parameter space spanned by membrane
tension and Reynolds number, in Figure 5 we consider four distinct choices of the
external pressures (marked as open triangles in Figure 3). All the corresponding
neutral curves exhibit a similar structure, with two independent branches of oscillation
which are labelled (i) and (ii) corresponding to the modes identified above, shown

https://doi.org/10.1017/51446181119000117 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181119000117

[16] Self-excited oscillations in a collapsible channel 335

10 10
(@) (b)
10° ? 10° ,Q
/
/
1 | unstable // 1 | unstable !
& 10 ] 10 /

10° 10°
3 3
10 10
© (d
2 O 2 /(D
10 ! 10 /
) /
I /
R / 1 | unstable /
10 1 10 1 /
¥ unstable « @) /
_- (il
, , L (i)
10 () 10 - - — —
_,| stable _[ stable
10 1 0 1 2 10 —1 0 1 2
10 10 10 10 10 10 10 10
T T

Ficure 5. Neutrally stable oscillations of the system for fixed external pressures chosen as the four points
labelled (a)—(d) in Figure 3, showing in each case the critical Reynolds number for oscillation as a function
of the (dimensionless) membrane tension: (a) p. = 100, p, = 275; (b) p. = 150, p, = 400; (c) p. = 250,
pe = 400; (d) p. = 140, p, = 200. Here L, = L, =10 and L5 = 1.

as solid and dashed lines, respectively. The most unstable branch varies across the
parameter space, with (i) more unstable in Figure 5(a) and (b), and (ii) more unstable
in Figure 5(c) and (d). Each branch of oscillation is similar in structure to the primary
branch of instability predicted in flow-driven oscillations through a flexible channel
with a single compartment [40]: the system is stable for all 7 for sufficiently low
Reynolds numbers; for low 7~ the critical Reynolds number for instability is constant
and the oscillation is relatively low frequency; as 7 increases the critical Reynolds
number for instability increases sharply before the neutral stability curve terminates
abruptly (point of termination shown as an open circle in each case). As in a single
flexible compartment channel, this point of termination corresponds to a loss of
existence of the lower stable branch of static wall profiles at a limit-point bifurcation
(for example, the static solution for R = 200 in Figure 2(b) inset exhibits a pair of
saddle points). This interaction between an oscillatory Hopf bifurcation and a limit-
point bifurcation may lead to a global bifurcation and chaotic behaviour in the nearby
parameter space [40]. In the four cases shown, the neutral curves associated with
modes (i) and (ii) remain relatively independent, although there is some evidence of
mode interaction in Figure 3(c) as the neutral curves deform toward one another.
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Hence, the dimensionless model predicts that there are two distinct families of
oscillation, either of which can form the primary global instability of the system
depending on the parameters. The mode termed (i) has oscillatory behaviour evident
in both compliant compartments (Figure 4(b)), while the mode labelled (ii) involves
oscillation only in the downstream compliant compartment (Figure 4(d)).

4. Application to the parameters of the retinal vein

We now apply the model constructed in Section 3 to the parameters pertinent to
the central retinal vein to explore the conditions required for the onset of self-excited
oscillations; we will then compare the predictions to measured data for the onset of
RVp. Note that in this section we return to dimensional variables, unless otherwise
stated. In particular, we revisit the baseline case considered by Stewart et al. [42],
followed by an examination of the role of the vein wall tension (Section 4.4) and the
inlet flow rate (Section 4.5). Although the model shows good qualitative agreement in
the onset pressure conditions for RVp, there are several discrepancies (particularly in
oscillation frequency), which are discussed in Section 4.6.

Following our previous paper [42], we consider a baseline case where 7 = 10
(T =0.112 N m™!) with the other dimensional parameters as listed in Table 1. Note
that this value of the membrane tension has been chosen to give qualitative agreement
in the onset for low ICP, but no other fitting is involved. In Figure 6, we trace
neutral stability curves to elucidate the critical conditions required for the onset of
self-excited oscillations as a function of the ICP. In particular, we plot the critical
value of P, — Py required for instability as a function of P, — Py (Figure 6(a)), along
with the corresponding frequency of neutrally stable oscillation (Figure 6(b)). We
explore the features of this baseline case, focussing on the behaviour for low ICP
(Section 4.1), large ICP (Section 4.2) and intermediate ICP (Section 4.3). We then
progress to consider the role of varying the vein wall tension (Section 4.4) and the
steady flow rate along the vein (Section 4.5).

Note that the onset curve in Figure 6(a) agrees well with the predictions of the onset
of self-excited oscillations in our previous paper [42], with the onset points shown
as open circles (Figure 6(a)). There is a slight offset between the two predictions,
because our previous fully nonlinear simulations used a time-dependent ICP where the
predictions were reported in terms of the mean ICP rather than the range of values of
P, — Py for which the oscillations were actually evident. Comparing this onset curve
to experimental measurements of the critical IOP required for the onset of RVp in
canines (see the paper by Morgan et al. [34], with a summary of their data shown as
a dotted line in Figure 6(a)), we observe excellent qualitative (and even quantitative)
agreement with the lower branch of our neutral stability curve along most of its length.
In particular, the prediction faithfully reproduces the kink in the onset curve.

However, the current eigensolver approach provides access to a more complete
description of the behaviour including explicit access to the oscillation frequency.
The corresponding oscillation frequency of each of these neutral curves is shown in
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Ficure 6. Neutral stability curves for the onset of self-excited oscillations for 7 = 10 plotted as a function
of P. — Py: (a) the critical value of P, — P for the onset of instability; (b) the corresponding (dimensional)
neutrally stable oscillation frequency. In (a) the points marked with open circles correspond to predictions
of Stewart et al. [42], the point marked with a cross is the predicted onset point from fully nonlinear
simulations described in Figure 7 and the dotted line is a summary of the measurements of RVp onset in
canines from Morgan et al. [34]. All other parameter values are as listed in Table 1.

Figure 6(b). The predicted (dimensional) oscillation frequency is very large (on the
order of 500 Hz), significantly larger than the frequency of RVp observed clinically
(on the order of several Hz). Mathematically, this large oscillation frequency can
be attributed to the relatively large value of the dimensional membrane tension (in
a similar manner to previous studies [20, 40]). This suggests that although our
model captures the critical conditions for the onset of oscillations, the frequency of
instability is not well predicted. Possible improvements to the model to decrease
the oscillation frequency toward physiologically realistic values are discussed in
Section 4.6. However, motivated by the excellent agreement in the onset conditions
for self-excited oscillations, we continue to explore the parameter space to understand
the onset of these oscillations in more detail.

4.1. LowICP For sufficiently low IOP and ICP, the system is stable to oscillations,
as expected. Holding the ICP fixed, P, = Py and increasing P, — Py through a
critical value (~18.0 mmHg), the system becomes unstable to self-excited oscillations
(Figure 6(a)) with critical frequency 510.1 Hz (Figure 6(b)). In accordance with the
dimensionless analysis above, we term this mode of instability mode (i), the primary
mode of instability, as it persists for (almost) all values of the ICP (for sufficiently
large IOP). The onset of this mode (i) is labelled in Figure 6 and is consistent with
our previous predictions [42] (open circles in Figure 6(a)). However, the eigensolver
approach gives access to further information. Continuing to increase the IOP, the
model predicts that mode (i) eventually stabilizes again across a second neutral curve
(Figure 6(a)). For example, for fixed ICP, P. = Py, the system exhibits a critical
pressure of P, — Py =~ 23.3 mmHg (Figure 6(a)) with a larger critical frequency of
955.1 Hz (Figure 6(b)). The branch of solutions associated with the smaller (larger)
critical ICP is termed as the lower (upper) neutral branch of mode (i).
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For these low ICPs, the critical IOP for instability of mode (i) is approximately
independent of the ICP. However, it is interesting to note that the two-compartment
system is predicted to be stable to oscillations above the upper branch, so the system is
stable despite increasing the external pressurization on compartment 1. Fully nonlinear
simulations for P, = Py corroborate this observation (not shown). A subsequent
restabilization of RVp at larger IOP has not been reported in the clinical literature.
Reasons for this possible discrepancy are discussed in Section 5. However, we show
below that eventually the system destabilizes again for a much larger IOP.

4.2. Large ICP For large ICP the shape of the neutral stability curves is very
different to those reported in Section 4.1. Tracking the neutral stability curves, the
lower and upper branches still appear, but along both the critical IOP for (in)stability
now scales linearly with the increasing ICP (Figure 6(a)), while the corresponding
frequency of oscillation approaches a constant value (Figure 6(b)). This behaviour is
again consistent with the canine experiments of Morgan et al. [34].

4.3. Intermediate ICP For intermediate values of ICP, the behaviour of the system
is significantly more complicated. As reported in the dimensionless analysis above,
for fixed low IOP there is an additional oscillatory mode, which we term mode (ii),
which becomes unstable across a range of ICP values. As shown in Figure 6(a), the
neutral stability curves for this mode (ii) persist for all IOP, so the instability has a
fundamentally different character to mode (i), as expected. For example, for P, —
Py =10 mmHg we see onset of mode (ii) at P. — Py = 12.0 mmHg and subsequent
restabilization of this mode at P, — Py ~ 17.3 mmHg.

Along the upper branches of modes (i) and (ii), we observe an interchange in
behaviour for P, — Py ~ 17.2 mmHg. This interchange is not explored here in detail,
but we hypothesize that this arises due to a mode interaction between modes (i) and
(ii) in the nearby parameter space.

To investigate the role of mode (ii) in the onset of visible self-excited oscillation
in compartment 1, in Figure 7 we consider fully nonlinear simulations across a range
of P, close to the onset curve for fixed P, — Py = 15 mmHg, computing until the
system has entered a fully saturated periodic limit cycle. In particular, we illustrate
time traces of the minimal width of the channel in compartment 1 (solid line, the region
visible to a clinician) and compartment 3 (dashed line) for P, — Py = 27.0 mmHg
(Figure 7(a)) and for P, — Py = 27.2 mmHg (Figure 7(b)). In the former case, the
oscillation in the minimal channel width in compartment 1 is present but almost
invisible, whereas in the latter it is significantly more pronounced. As the IOP is
further increased the system will eventually exhibit “slamming” oscillations in one
or both compartments, where over a period the channel transiently becomes highly
constricted before recovering [41]. To quantify this behaviour formally, we estimate
the amplitude of the pulsation in compartment 1 as

hcl = max(hml) - mln(hml)
t t

We trace the relative amplitude of the fully saturated oscillation in compartment 1 as
a function of the IOP shown as the bifurcation diagram in Figure 7(c). In this case,
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Ficure 7. Fully nonlinear simulations of the onset of self-excited oscillation with P, — Py = 15 mmHg:
(a) time trace of the minimal channel width in compartment 1 (solid line) and compartment 3 (dashed
line) for P, — Py = 27.0 mmHg; (b) time trace of the minimal channel width in compartment 1 (solid
line) and compartment 3 (dashed line) for P, — Py = 27.2 mmHg; (c) bifurcation diagram showing the
amplitude of fully saturated oscillation as a function of P, — Py. The filled circle in (c) indicates the point
where the oscillation in compartment 1 becomes significantly more prominent. All other parameters are
chosen according to Table 1.

we see a dramatic shift in behaviour beyond a critical value of P, — Py, where the
oscillation becomes much more evident. To quantify this point of onset, we compute
the point of maximal curvature of the trace of /., as a function of P, — Py, estimated
as P, — Py = 27.1 mmHg, plotted with a filled circle in Figure 7(c). Furthermore, this
point is also illustrated with a cross in Figure 6(a), almost perfectly coincident with
the onset curve for mode (i). Hence, although the dynamical system admits a second
mode of instability which is unstable for all IOP across a range of ICP, the presence
of this mode does not have a significant effect on the onset of (visible) self-excited
oscillations in compartment 1.

Hence, the curve for the onset of self-excited oscillation can be viewed as the
intersection of the behaviour for low ICP (where the critical IOP is independent of
ICP, Section 4.1) and the behaviour for large ICP (where the critical IOP scales linearly
with ICP, Section 4.2).

4.4. Varying the vein wall tension The critical value of the IOP required for self-
excited oscillation will be dependent on the value of the elastic wall tension, a model
parameter which cannot be easily measured or estimated in vivo. In Figure 8, we
elucidate this dependency by tracing the critical IOP required for oscillatory instability
(Figure 8(a)) and the corresponding (dimensional) oscillation frequency (Figure 8(b))
for various P, — Py as a function of 7.

First, we consider low ICP, setting P, = Py. In this case, for low vein wall tensions
(close to the baseline value) the critical IOP for mode (i) increases (linearly) as the
tension increases. However, the instability does not persist as the tension is further
increased; the neutral curve exhibits a turning point in the parameter space spanned
by (7, P. — Py) and forms the upper branch of mode (i) described above. However,
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Ficure 8. The onset of oscillation as a function of the vein wall tension 7: (a) the critical IOP for
instability as a function of 7~ holding P. — Py = 0 mmHg (solid line), P, — Py = 20 mmHg (dashed line
for mode (i), dot-dashed line for mode (ii)); (b) the corresponding critical frequency of instability. All
other parameters are as listed in Table 1.

continuing to track this neutral curve, it exhibits another turning point in the parameter
space for much larger IOP and so the oscillatory instability eventually reappears for
much larger IOP. Further numerical tests (not shown) indicate that this new unstable
branch persists as the vein wall tension becomes very large. Along this neutral curve
the critical frequency of oscillation scales with the square root of the dimensionless
tension, consistent with the family of flux-driven oscillatory modes which persist for
large tensions in a single-compartment collapsible channel [40].

To explore how the critical conditions for instability at large ICP vary with the
elastic wall tension, in Figure 8(a) we plot the critical IOP for instability of mode (i) as
a function of the tension for P, = Py + 20 mmHg (dashed line). Similar to the case for
mode (i) for low ICP, the critical IOP grows linearly with 7~ for low tensions (7~ < 12),
but the critical curve again exhibits a turning point in the (7°, P, — Py) parameter space,
again corresponding to the upper branch of mode (i) for large ICP. As in the case of
low ICP, the neutral curve eventually turns once again (through a rather complicated
path), but now the critical IOP for instability approaches infinity for a constant value
of the wall tension.

To further elucidate the critical conditions for onset of the secondary unstable mode
(i1), in Figure 8(a) we illustrate the critical IOP as a function of the wall tension for
fixed ICP P. — Py = 20 mmHg. In this case, we find that for low IOP the neutral curve
asymptotes to a constant value of the tension. Conversely, for large 7~ the critical IOP
increases linearly with the tension, while the critical frequency increases as the square
root of the tension (consistent with [40]).

This behaviour for large IOP appears rather contrary to our previous observations,
where we might have expected that the critical IOP for mode (i) instability would
increase linearly with the tension parameter (as in the case for P, = Py), while the
critical IOP for mode (ii) instability would tend to infinity for a constant value of the
tension (consistent with Figure 6(a)). We speculate that this interchange of behaviour is
due to a mode interaction, where the neutral curves for modes (i) and (ii) have merged
and separated again in a different configuration.
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Figure 9. Predictions of the onset curve for self-excited oscillations while varying the steady flow rate
into the vein: (a) the critical IOP for instability as a function of the ICP for Q = 40 ul min~! (solid),
Q =44 ul min~' (dashed) and Q =48 ul min~! (dot-dashed); (b) the corresponding frequency of
oscillation for each of the neutral curves shown in (a); (c) the critical IOP for instability as a function
of the steady flow rate through the vein of P. — Py = 0 mmHg; (d) the corresponding frequency of
oscillation for the neutral curves shown in (c). The point marked with a cross in the inset of (a) is the
onset point predicted from fully nonlinear simulations described in Figure 10. All other parameters are
chosen according to Table 1.

4.5. Varying the flow rate along the vein In Figure 9, we investigate the
dependency of the onset curve for self-excited oscillations on the magnitude of the
steady flow rate entering the vein. In particular, in Figure 9(a) we plot the onset curve
for mode (i) oscillations (in the space spanned by the intracranial and intraocular
pressures) for fluxes in the range 4048 pl min~', while holding the dimensional
elastic wall tension fixed at the baseline value (7 = 0.11 Pa m™!). Note that changing
Q influences the mean flow through the vein Uy, so the dimensionless tension 7~ will
change for dimensional 7 held fixed. We find that the behaviour for Q = 40 ul min~!
is qualitatively similar to Q = 44 pl min~! (the baseline value considered above),
although the curve is shifted to lower ICP and IOP, so in this space the system becomes
more unstable as the flux is decreased. This prediction may seem counter-intuitive;
as the Reynolds number of the flow decreases linearly with the flow rate, we might
expect that this would make the system more stable rather than less for the same
dimensional tension. We note that increasing Q does, in fact, lead to a decrease in the
critical dimensionless p,, as expected (not shown). However, the (dimensional) inertial
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pressure scale along the channel (pU?, see equation (2.1)) increases quadratically with
increases in Q and so the overall effect is a net increase in the critical (dimensional)
IOP for onset of instability. The corresponding frequency of oscillation at onset is
relatively unchanged (Figure 9(b)). However, the onset curve for Q = 48 ul min™!
(Figure 9) is subtly different. An interaction between modes (i) and (ii) leads to a
different configuration of the onset curve. The portion along which IOP rises linearly
with IOP now has a discontinuity across P, — Py ~ 12.2 — 12.6 mmHg, which may
have implications for the onset of fully nonlinear oscillations; we explore this feature
in more detail in Figure 10.

To explore the onset of self-excited oscillations in cases of lower flow rates (such as
in retinal vein occlusion [22, 47]), in Figure 9(c) and (d) we plot the critical IOP for the
onset of self-excited oscillations as a function of Q holding the ICP fixed (P. = Py). It
emerges that below a critical value of Q (in this baseline case Q ~ 38.9 ul min™'), the
family of mode (i) oscillations (discussed above, with critical IOP in the physiological
range) ceases to exist. For these low fluxes the only possibility for instability is across a
secondary neutral curve (still associated with mode (i)), evident for much larger values
of the IOP.

To explore the complicated discontinuity in the mode (i) onset curve evident for
Q =48 pul min~! (see Figure 9(a)), in Figure 10 we consider the neighbourhood of
this discontinuity for P, — Py = 12.4 mmHg, showing fully nonlinear simulations
of the behaviour in compartment 1 for P, — Py = 24.2 mmHg (Figure 10(a)) and
P, — Py = 24.6 mmHg (Figure 10(b)). There is an evident increase in amplitude
between these two cases (despite both being in the unstable regime), which we explore
using a bifurcation diagram of /. (similar to Figure 7(c)). It emerges that there is a
sharp transition in behaviour at P, — Py = 24.4 mmHg (estimated in the same way
as above and marked with a filled circle), where the oscillation in the vein wall in
compartment 1 becomes significantly more visible. This point is plotted with a cross
in the parameter space in Figure 9(a). Interestingly, this onset point is almost directly
in line with the two portions of the mode (i) onset branch, where the IOP increases
linearly with ICP. Hence, despite an extremely complicated underlying dynamical
system, the onset behaviour of RVp is essentially unchanged, where the IOP effectively
increases linearly with ICP.

4.6. Assessing the modelling assumptions for application to RVp onset In the
earlier parts of this section we demonstrated good qualitative agreement between the
predictions of our model and the onset of RVp measured in canines, using the wall
membrane tension as a fitting parameter. The model predictions faithfully reproduce
the kink in the onset curve in the parameter space spanned by the two external
pressures and highlight the two distinct regions for large and small ICP. However,
the model predictions of the oscillation frequency are several orders of magnitude
larger than clinical observations. We now revisit the modelling assumptions to assess
the modifications that may be required to produce a more realistic prediction of the
oscillation frequency.
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Ficure 10. Fully nonlinear simulations of self-excited oscillations close to the discontinuity in the onset
curve for Q =48 pul min~! and P, — Py = 12.4 mmHg: (a) time trace of the minimal channel width
in compartment 1 (solid line) and compartment 3 (dashed line) for P, — Py = 24.2 mmHg; (b) time
trace of the minimal channel width in compartment 1 (solid line) and compartment 3 (dashed line)
for P, — Py = 24.6 mmHg; (c) bifurcation diagram of the amplitude of fully developed oscillation in
compartment 1 as a function of P, — Py. The filled circle in (c) illustrates the change in behaviour, where
the self-excited oscillations in compartment 1 become significantly more prominent. All other parameters
are chosen according to Table 1.

Firstly, our model treats the vein as a flexible-walled channel rather than a
collapsible tube. Such an approximation has been shown to encompass many of the
same mechanisms of self-excited oscillation (for example, the 3D tube model of
Whittaker et al. [45] demonstrated essentially the same mechanism of instability as the
channel system [20]). However, the influence of azimuthal flows and nonaxisymmetric
buckling of the tube wall could have an influence on the predictions.

Secondly, we modelled the vein wall as a tensioned membrane, neglecting the
influence of wall inertia, bending stiffness and viscoelastic effects. Such an approach is
motivated by the literature for collapsible channels, where the aim is to keep the wall
model simple to better understand the mechanism(s) of oscillation [20, 40, 43], but
such an approach may miss features of the physiological problem. In this context, we
essentially assume that the axial membrane tension dominates these other effects. The
literature estimates the Young’s modulus of the central retinal vein as E = 0.6 MPa,
which translates into a stiffness parameter of approximately 40 Pa (unpublished
observations). Our chosen value of the membrane tension parameter (~0.11 N m™!)
correlates to a pressure of ~362 Pa (using the radius of the vein as a typical length
scale), so our assumption is at least self-consistent. However, we recognize that
changes to the wall tension parameter may adjust this balance, especially as the wall
model becomes more complicated.

This assumption of a tension-dominated wall model also has consequences for
the oscillation frequency. In single-compartment models, the oscillation frequency
typically becomes large when the dimensionless tension parameter 7 exceeds unity
(observed for either flow-driven or pressure-driven cases [20, 40, 43]), scaling as 7 '/?
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in the limit as 7~ — oo. This scaling is evident in our case in Figure 8. Hence, given
that our fitted wall tension parameter corresponds to a dimensionless value 7 = 10
(used in Figure 6), this helps to explain why the predicted oscillation frequency is so
large. To increase the agreement with the clinical observations, it is therefore necessary
to increase the complexity of the wall model. For example, preliminary simulations
including the effects of wall inertia have been shown to reduce the frequency of
oscillation considerably, but a much wider parameter sweep is necessary to reduce
the frequency to the physiological regime.

Thirdly, the present model neglects oscillations in the external pressures (IOP and
ICP) driven by the cardiac cycle; these external forcing oscillations were included in
our previous model [42] making no qualitative (and little quantitative) difference to
the results. However, it should be noted that resonant effects between the forced and
self-excited oscillations may be promoted if the wall model is substantially modified
to decrease the frequency of self-excited oscillation.

In addition, we modelled the inlet to the retinal vein with a fixed flow rate,
neglecting any coupling to the cardiac cycle. This assumption presumes that the
generated pressure oscillations are typically of very small amplitude, compared to
the overall pressure drop between the heart and the upstream end of the retinal vein.
Taking an average pressure in the heart as 100 mmHg, typical estimates of blood
pressure entering the central retinal vein are ~15 mmHg, giving a pressure difference
of #85 mmHg. There are no direct measurements of the oscillating RVp pressure (to
the best of our knowledge it seems), but in our nonlinear simulations in Figure 7 the
model predicts an oscillatory pressure amplitude of ~0.08 mmHg (as the vein leaves
the eye), so our model is at least self-consistent.

Finally, we have ignored the influence of tapering of the vein, so that the steady
flow is everywhere constant along its length. This, coupled with our assumption that
the inlet flow into the vein is always constant despite changes in IOP and/or ICP,
means that the model predicts that the oscillations subsequently stabilize as the IOP
is increased (Figure 6), before eventually becoming unstable again for much larger
IOP (Figure 8). Such a re-stabilization of RVp has not been observed clinically and
we expect that a model where the inlet flow rate were coupled to the ICP and/or IOP
would be required to eradicate this behaviour. However, such a model would require
consideration of the flow through the entire retinal circulation (including the arterial
side and the influence of auto-regulation [14]), which is beyond the scope of the present
study and deferred to future work.

5. Discussion

In this paper, we have considered a theoretical model for the flow along a
long flexible-walled channel which comprises two flexible compartments in series,
separated by a long rigid compartment. The flow is driven by a fixed upstream flux
against a fixed downstream pressure. This channel is externally exposed to different
external pressures on each flexible compartment and the resulting onset of self-excited
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oscillations exhibits an interesting coupling between these two pressures. In particular,
we formulated a system of partial differential equations to describe the fluid mechanics
coupled to the displacement of the channel wall, assuming that the elastic response is
dominated by a large membrane tension. The system was considerably simplified using
a long-wavelength approximation coupled to a prescribed flow profile (everywhere
parabolic). Such assumptions are justified, given the large aspect ratio of the retinal
vein across the region of interest and the relatively low Reynolds numbers of the flow.

To isolate the onset of self-excited oscillations, we formulated a global (linear)
stability eigensolver, similar to the approach of Stewart [40]. We found that the
primary global instability of this system was to one of two oscillatory modes depending
on the parameters, termed modes (i) and (ii): in mode (i) the eigenmode involved
oscillations of similar amplitude in both compliant compartments, while in mode (ii)
the eigenmode was strongly dominated by the response in the downstream compliant
compartment (Figure 4). Hence, for these boundary conditions it is possible to see
oscillations in the downstream compartment alone (to a first approximation), while
any significant oscillation in the upstream flexible compartment must be coupled
to oscillations of comparable amplitude in the downstream compliant compartment.
This correlates to the static behaviour of the system, where we showed that for these
boundary conditions the static deformation of the downstream compliant compartment
is entirely independent of the upstream compliant compartment, while the static
deformation of the upstream flexible compartment is necessarily driven by the shape
of the downstream compliant compartment.

Applying our model to the parameters and geometry of the central retinal vein
(Table 1) and assuming that the external pressure on the upstream (downstream)
compliant compartment is the IOP (ICP), the onset curve for mode (i) oscillations
shows strong qualitative agreement with the onset of RVp in the canine experiments
of Morgan et al. [34] (Figure 6(a)). In producing a comparison, we have chosen the
value of the wall tension parameter to give good agreement in onset at low ICP. Using
this one fitting parameter, the model faithfully reproduces the kink in the onset curve
which is observed in RVp onset measurements in canines, dividing the onset curve
into two regimes — one where the critical IOP is constant (for low ICP) and the
other where it increases linearly with ICP (for large ICP). However, the corresponding
oscillation frequency is much larger than clinical observations, which we attribute to
the simplicity of our wall model (see the extended discussion in Section 4.6).

Furthermore, we showed that in some cases the underlying dynamical system
exhibits significant complexity including superposition and interaction of modes (i)
and (ii), which can alter the shape of the neutral stability curves (Figure 10). However,
despite these complications, fully nonlinear simulations indicated that the onset curve
for oscillations which would be visible in the upstream flexible compartment remains
remarkably simple and in line with the experimental predictions discussed above
(Figure 7).

We also used our eigensolver approach to fully explore the parameter space,
showing that the onset of oscillations can be delayed to significantly larger IOP (with
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a significant increase in the corresponding frequency of oscillation) if the flow rate
along the vein is reduced. Such a reduction in flow rate may occur in cases of retinal
vein occlusion [22, 47], where delayed onset of RVp may provide a useful clinical
indicator.
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