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Abstract. We developed a numerical method to incorporate nonrigid 
effects into a nutation theory of the rigid Earth. Here we assume that 
the nonrigid effects are based on a linear response theory and its transfer 
function is expressed as a rational function of frequency. The method 
replaces the convolution of the transfer function in the frequency domain 
by the corresponding integro-differential operations in the time domain 
numerically; namely multiplying the polynomial in the frequency domain 
by the numerical differentiations in the time domain and multiplying the 
fractions in the frequency domain by the numerical integrations with a 
suitable kernel in the time domain. In replacing by the integrations, the 
method requires the determination of the coefficients of free oscillation. 
This is done by a least-squares method to fit the theory incorporated with 
the nonrigid effects to the observational data, whose availability is also 
assumed. The numerical differentiation and integration are effectively 
computed by means of the symmetric formulas of differentiation and in
tegration. Numerical tests showed that the method is sufficiently precise 
to reproduce the analytically convolved nutation at the level of 10 nano 
arcseconds by using the 9-point central difference formulas and the 8-
point symmetric integration formula to cover the period of 15 years with 
1.5-hour stepsize. Since we only require the rigid Earth nutation theory 
to be expressed as a numerical table of time, this method enables one to 
create a purely numerical theory of nutation of the nonrigid Earth. 

1. Introduction 

Few of the nutation theories of the nonrigid Earth are fully numerical. For 
example, the current IAU Theory of Nutation (Seidelmann 1982) is the combi
nation of an analytical theory of nutation of the rigid Earth (Kinoshita 1977) 
and an analytical treatment of nonrigid effects based on a linear response theory 
of the Earth (Wahr 1981). The nonrigid effects are introduced by the analytical 
convolution of the transfer function to the nutation theory of the rigid Earth. 
Here the convolution is done in the frequency domain since the transfer function 

595 

https://doi.org/10.1017/S0252921100061765 Published online by Cambridge University Press

http://ac.jp
https://doi.org/10.1017/S0252921100061765


596 Fukushima and Shirai 

is expressed as a rational function of frequency while the rigid Earth nutation 
theory is given as Fourier series with respect to time. 

This approach has been followed by almost all of the researchers. See the 
report of the IAU/IUGG Working Group on Nutation (Dehant et al. 1999). 
Some created new analytical theories of the rigid Earth nutation (Kinoshita and 
Souchay 1990; Bretagnon et al. 1997; Roosbeek and Dehant, 1998). Others 
developed new transfer functions of the nonrigid Earth (Mathews et al., 1991a; 
Mathews et al, 1991b; Herring, 1995; Schastok, 1997; Mathews et al, 1999). 
Anyway, unchanged has been the way of combining these two factors; the ana
lytical convolution. Recently, Getino et al. (1999) developed a scheme to obtain 
the nutation of the nonrigid Earth directly by solving the rotational equations 
of the multi-component Earth. However, it is also analytical. 

On the other hand, most of the state-of-the-art theories of orbital motions 
of the planets and their major satellites are fully numerical. The state-of-the-art 
theory of the rotational motion of the Moon is also numerical. Good examples 
are JPL's DE series. This is simply because the numerical theories are more 
precise in the sense of explaining observational data better. 

Then, there comes a naive question. Why do not we have a fully numerical 
theory of nutation? The major reason is that the above analytical approach has 
been the only method known to execute the convolution precisely and efficiently. 
Of course, the discrete Fourier transform of a numerically integrated nutation 
of the rigid Earth can be done quickly by means of FFT. However, we learned 
that the end effects, which are caused by the fact that the integrated nutation is 
not single-periodic, introduce spurious components into the Fourier spectrum, 
and therefore degrade the precision of the Fourier transform significantly. On 
the other hand, if we allow the transform to be multi-periodic, then the problem 
finally reduces to a large-scale nonlinear optimization, which would require a 
tremendous amount of computational time. 

In this short article, we report that a purely numerical method of convolu
tion works if (1) the transfer function expressed in the frequency domain is of 
rational form and (2) the observational data of nutation to be fitted are avail
able. Since the method requires the rigid Earth nutation theory only to be 
expressed as a numerical table of time, it enables us to create a fully numerical 
nutation theory of the nonrigid Earth, which would be consistent with the latest 
lunar and planetary ephemerides such as JPL's DE series. 

2. Method 

2.1. Outline 

Consider convolving a function expressed in the frequency domain g(u>) and a 
function expressed in the time domain z(t) to obtain another function in the 
time domain £(£). 

In the language of the nutation theory, the function g(u>) is the transfer 
function of the nonrigid Earth. Its example is of the form of a rational function 
as 

*(«) = E ^ + E - ^ - . (1) 
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Table 1. Some Parameters of Transfer Functions 
Model 
Wahr 
Dehant & Defraigne 
Herring (Re) 
Herring (Im) 

A0 

+ 1.0497 
+ 1.0504 
+ 1.0490 
-0.0015 

Ai 
-0.282 
-0.279 
-0.255 
+0.040 

Bi 
-6.038 
-6.070 
-5.799 

-

U>1 — SI 

+2.480 
+2.485 
+2.532 

-

B2 

-1.091 
-1.190 
-1.149 
-0.021 

w2 

-2.174 
-2.316 
-2.319 
+0.029 

Note: Shown are the rounded values of some parameters of the existing transfer functions. Those of 
Mathews et a/. (1999) are not shown since they contain some free parameters. The units of the coeffi
cients are 1 for Ao, ft for Ai, 10-4fi for Bj(j = 1, 2), and 10-3fi for u>\ — fi and ui2, respectively. Here 
Q = 7.292115 X 10~5 rad/s is the nominal mean angular velocity of the Earth. 

where the coefficients, Ak and Bj, are complex numbers in general, UJ are the 
complex eigenfrequencies1 of the nonrigid Earth regarded as a linearly responding 
body, and i = y/—l. Typical examples of the transfer functions are; 

1. that of Wahr (1981) where K = J = 2 while Ak, Bj, and Uj are all real, 

2. that of Dehant and Defraigne2 (1997) where K = J — 2 while Ak, Bj, and 
Uj are all real, 

3. that of Herring (1995) where K — 1 and J = 2 while Ak, B\, and wi are 
complex and B2 and u>2 are real, and 

4. that of Mathews et al. (1999) where K = 1 and J = 4 while Ak, Bj, and 
Xj are all complex. 

See Table 1 for the numerical values of these major parameters. 
On the other hand, the functions z(t) and £(i) are the complex forms of the 

nutation of the rigid and the nonrigid Earth, respectively; namely 

z(t) = AeR - is0Ail>R, CW = AeNR - is0A^NR, s0 = sin e0, (2) 

where Aip and Ae are the nutations in longitude and in obliquity, respectively, 
the subscripts R and NR denote the rigid and nonrigid Earth, respectively, and 
€o is the mean obliquity of ecliptic at the epoch J2000.0 (Kinoshita 1977). In 
place of so, which is a constant of time, some authors used s = sine, where 
€ is the mean obliquity of ecliptic, which is usually expressed as a low order 
polynomial of time (Seidelmann 1982). 

Now, if the function z(t) is expressed as Fourier series 

*(*) = I> e < n "> (3) 
t 

then the convolution is straightforward and the convolved function is obtained 
as 

C« = £0e^ , (4) 
e 

'By tradition, the eigenfrequencies close to 1 are called wobbles like Chandler Wobble (CW), 
while those close to 0 are called nutations like Free Core Nutation (FCN). 

2They did not give the expression of A2 in this form although it is easily derived from their 
original expression. 

https://doi.org/10.1017/S0252921100061765 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100061765


598 Fukushima and Shirai 

Table 2. Various Effects in Convolution of Rigid-Earth Nutations 

Effect Details Magnitude 
Mixed Secular Terms — 3 mas 
Round-off (published) vs. (computed) 0.5 mas 
Delauney Arguments Model Difference (Newcomb vs. VSOP) 40 //as 

High-Order Trends 30 ^as 
Numerical Integration Error (FCN) 0.1 /xas 

Differentiation Error 8 nas 
Integration Error (CW) 5 nas 

Note: Shown are the order of magnitudes of various effects to be considered in conducting the convo
lution of r igid-Earth nutat ion. The effects are evaluated numerically for the period of 1984-1999 and 
their maximum of the peak-to-peak values are listed. Remark tha t the numerical errors can be reduced 
by choosing a smaller stepsize or by adopting a higher order formula. 

where 
0 = g(Ht)ze. (5) 

This is the analytical way of convolution. 
We remark that the analytical convolutions conducted so far are not rigor

ous. In fact, the treatment of the mixed secular terms like tetwt appearing in 
many analytical theories of the rigid Earth nutation has been incomplete. Also 
questionable is the effect of higher-order (t2, 23, and t4) secular terms of the 
Delauney arguments. See Table 2 for the order of magnitudes of these effects. 

Now, what we aim for is to do the convolution without assuming the Fourier 
expressions of z(i). More specifically, we seek a numerical method to do this 
convolution under only the condition that z(t) is given as a table of its values at 
equally-spaced times. Since the convolution is a linear operation, we only have 
to combine the results of convolutions of each element. Then we will discuss 
each element below. 

2.2. Powers 

Consider the case that the transfer function is a power of u, 

5(w) = «*• (6) 

This form in the frequency domain is easily translated to the differential opera
tion in the time domain as 

.* / - d \ 
k 

^ - ( - * * ) • ( 7 ) 

In fact, 

= meiQt, i i ^ _ = _nv'n t , ••• (8) -—— = tile'1", , 
dt ' dt2 

Assume that the values of z(t) are tabulated at equally-spaced grid points of 
time as 

zn = z(tn), tn = t0 + nh, (9) 
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where h is the stepsize of tabulation. Then the table of its first order derivatives, 
zn , are numerically obtained by the first order central difference formulas; 

2hz^ = zn+1-zn_1+o{h3). (10) 

12 /4 1 ' = 8(*n+i - 2„_i) - {zn+2 - zn_2) + 0 (h5) . (11) 

60/i41} = 45 (zn+1 - zn_x) - 9 (zn+2 - zn_2) + (zn+3 - zn_3) + 0 (h7) . (12) 

840/141' = 672 (zn+l - zn-!) - 168 {zn+2 - zn_2) 

+ 32 {zn+3 - zn_3) - 3 (zn+4 - ^n-4) + 0 (h9) . (13) 

One must prepare the table of zn for a little longer period than the period of 
the table of z„ required. 

In obtaining higher order derivatives, one may use the above formulas re
peatedly. However, there are other types of formulas which directly evaluate 
them. One such example is that for the second order one, zn , as 

/i242) = -2zn + (zn+1 + zn_i) + 0 (h4) . (14) 

12/*242' = -18z„ + 8 (zn+i + «„_!) + (zn+2 + zn_2) + 0 (ft6) . (15) 

240/i242) = -340zn + 145 (zn+1 + zn_j) + 26 (zn+2 + zn_2) 

- (^n+3 + Zn-3) + 0 (h*) . (16) 

The above formulas include many differences of the quantities of the same order 
of magnitude. Thus one must take care of the loss of precision. If the tables 
zn are obtained from numerical integrations directly, it is better to save some 
intermediate variables such as the backward differences, Vzn = zn — zn_i, or the 
squared central differences, S2zn = zn+\ — 2zn + zn_i, and to use them instead 
of the integrated zn. 

2.3. First Order Fractions 

Consider the case of first order fractions, 

uj -\- lA 

This form is translated by means of the indefinite integral operation with a 
Green kernel as 

1 • rt 

le 
u + iX 

In fact, it is straightforward to show that 

0iwt 

[ ds e~Xs. (18) 

iext 
/

t piwt 

e-Xseiusds = + Cext, (19) 

u + iX v ' 
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where C is an integral constant. Apart from the determination of the integral 
constant, which will be discussed in the next subsection, we first discuss how to 
obtain the integral. Since the indefinite integral is not realized numerically, we 
consider evaluating the definite integral 

ftn _. 
xn = v(s)ds, v(s) = e 3z(s), 

Jt0 

(20) 

from the tables of 
vn = v(tn) = e-xt»zn. (21) 

This is realized by the numerical integration with the initial condition 

x0 = 0. (22) 

There we use the symmetric integration formulas as 

2 (xn+l -xn) = h (vn+1 +vn) + 0 (h3) . (23) 

24 (xn+1 -xn) = h [13 (v„+i + vn) - (vn+2 + »„_!)] + 0 (ft5) . (24) 

1440 (xn+1 -xn) = h [802 (vn+1 + t>„) - 93 (vn+2 + v„_i) 

+ l l ( V 3 + V 2 ) ] + 0 ( / 1
7 ) . (25) 

120960 (xn+1 -xn) = h [66413 (vn+i + vn) - 9631 (vn+2 + vn^) 

+ 1879 (vn+3 + vn_2) - 191 (vn+4 + vn_3)\ + O (ft9) . (26) 

2.4. Determination of Integral Constants 

Now, consider how to determine the integral constants. After collecting the 
formulas derived in the previous subsections, we know that the tables of ( are 
expressed as 

(n = j : Ak(-i)
kzW + i £ 5 .#) + J2 CW«, (27) 

k=0 j=l (=1 

where 
^ ' ) = ' ? ^ ) , ^ = e*'^", (j = !,-••, J), (28) 

and 

XU) = I " r(j)(a)da, v^\s) = e-^'zis), (j = !,•••, J). (29) 
Jto 

Assume that (1) the coefficients Ak, (k = 0 ,••• ,K) , and Bj, (j = 1,••-,/), 
as well as the eigenfrequencies Wj, (j = l , --- , J), are all known and that (2) 
the observational data, (n, to which the convolved functions are to be fitted, 
and their weights, wn, are available at tn. Then we can determine the unknown 
complex parameters Cj by a simple least-squares method. 
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Consider minimizing the chi square with complex parameters Cj 

N 

x2 = J2Wn 

n=0 

where 

AC„ = C» - ( E Ak(-i)
kzW + ij^B^A . 

\k=o j=i I 

Then the summand is expanded as 

XJC^j-Aa 

£ C ; ^ > -AC„ 
,3=1 

" J J 

E^(^)*)-(Ac«) 

EE^A^'W E^^Cn)* 
j=l 

(30) 

(31) 

where * denotes a complex conjugate. The conditions of minimization are 

dx2 

(32) 

dCj 
(cky 

d{c3T 
Ck. 

= 0. (33) 

These are no other than the normal equation, 

where 

^2<ijkCk = ej, (j = !,-••, J) 
k=i 

d3k = £ wn (,W)\W, e, = £ w" (^ 'T AC-
n=0 n=0 

(34) 

(35) 

Thus, the coefficients Cj are obtained by solving these J x J complex linear 
equation by the Gauss-Jordan or other methods to solve a set of linear equations. 
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Figure 1. Error of Numerical Convolution. 
Note: Shown are the components in Ac and A ^ sineo for the difference between the numerically and 
analytically convolved nutat ions of nonrigid Ear th . Here the rigid Ear th theory is that of Kinoshita 
(1977) while the transfer function is that of Wahr (1981). 

3. Example of Numerical Convolution 

In order to evaluate our method, we did a series of comparisons with the ana
lytical method of convolution expressed in Eq. (5). Let us show an example. 

First, we fixed the rigid Earth nutation z as that of Kinoshita (1977). We 
denote the nutation convolved analytically by (A and that done numerically 
by the new method by Cjv- Here, in order to make the analytical convolution 
rigorous (See discussion in Section 2.1 and Table 2), we dropped the mixed 
secular terms from the table of Kinoshita and removed the higher-order trends 
from the Delauney arguments. Then we set the stepsize of the tabulation as 
1.5 hours, namely 16 points per day. As for the integro-diffrential operations, 
we adopted the 9-point central difference formula, Eq. (13), to evaluate the 
numerical differentiation and the 8-point symmetric integration formula, Eq. 
(26), to perform the numerical integration. 

Figure 1 illustrates the resulting residuals Cjv — (A for the case when the 
period of comparison was 15 yr, actually 1984-1999, the period when the ob
served nutations were determined from the VLBI observations. Figure 2 is its 
close-up for the first few years. From the term-by-term comparison, we learned 
that the observed errors mostly came from the truncation error of the adopted 
integration formula for the Free Core Nutation mode. See also Table 2. We 
remark that this error can be reduced further by choosing a smaller stepsize or 
by selecting a higher order formula. Anyway, as is clearly shown in the figures, 
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Figure 2. Error of Numerical Convolution: Close-Up. 
Same as Figure 1 but shown for the first few years. 

the error of numerical convolution is of the order of 10 nano arcseconds, which 
we think sufficiently small. 

4. Conclusion 

We developed a numerical method of convolution. The method deploys the 
integro-differential operations in the time domain numerically instead of multi
plying a rational function in the frequency domain. Namely the multiplication of 
a polynomial in the frequency domain is translated into the numerical differen
tiations in the time domain and that of fractions into the numerical integrations 
with a suitable kernel in the time domain. In executing the numerical integra
tions, the unknown integral constants, which corresponds to the free oscillation 
component, are determined by a least-squares method to fit the observational 
data. The numerical differentiation and integration are effectively done by means 
of the symmetric difference and integral formulas. Numerical tests showed that 
the method is sufficiently precise to reproduce the analytically convolved nuta
tion at the level of 10 nano arcseconds. Since the method only requires the rigid 
Earth nutation theory to be expressed as a numerical table of time, it enables 
us to create a purely numerical theory of nutation of the nonrigid Earth. 
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