
18

Dynamics of quantum fields

In this chapter we describe how to quantize linear classical dynamics. The
starting point will be a dual phase space Y equipped with a dynamics – a
one-parameter group of linear transformations {rt}t∈R preserving the structure
of Y.

The most typical examples of Y are the space of solutions of the Klein–Gordon
equation and of the Dirac equation, possibly on a curved space-time and in the
presence of external potentials. We can also consider other systems, not neces-
sarily relativistic, e.g. motivated by condensed-matter physics.

We describe how to quantize
(Y, {rt}t∈R

)
obtaining a model of non-interacting

quantum field theory. We demand that quantum fields are represented on a
Hilbert space and that the dynamics is implemented by a unitary group gen-
erated by a positive Hamiltonian. In all the cases we consider, the first step of
quantization is the construction of the so-called one-particle space Z, equipped
with a dynamics generated by a positive one-particle Hamiltonian h. Then we
apply the usual procedure of the second quantization to obtain the Fock space
over Z equipped with the dynamics given by the second quantization of eith .

The positivity of the Hamiltonian of the quantum system means that we are
at the zero temperature. We will also consider briefly the case of positive temper-
atures, which involves the construction of a state satisfying the KMS condition.

The abstract procedure outlined above is used in concrete situations in quan-
tum field theory to construct free (i.e. non-interacting) quantum fields and many-
body quantum systems. In this chapter we will not discuss the construction of
interacting quantum fields, which is much more difficult. In the physical liter-
ature, one usually tries to construct interacting fields by perturbing free ones,
which is one of the reasons for the importance of free fields. We will describe
the diagrammatic aspects of the formal perturbation theory in Chap. 20. Some
mathematical tools involved in the rigorous construction of interacting fields are
described in Chap. 21 and will be applied to bosonic models in two space-time
dimensions in Chap. 22.

The space Y will always have an additional structure preserved by the dynam-
ics. We distinguish four kinds of such structures leading to four kinds of quanti-
zation formalisms:

(1) Neutral bosonic systems. The space Y is symplectic. This formalism is
used e.g. for real solutions of the Klein–Gordon equation.
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476 Dynamics of quantum fields

(2) Neutral fermionic systems. The space Y is Euclidean. This formalism
can be used e.g. for Majorana spinors satisfying the Dirac equation.

(3) Charged bosonic systems. The space Y is charged symplectic (equipped
with a non-degenerate anti-Hermitian form). This formalism is used e.g. for
complex solutions of the Klein–Gordon equation.

(4) Charged fermionic systems. The space Y is unitary. This formalism is
used e.g. for Dirac spinors satisfying the Dirac equation.

Remark 18.1 In the most common physics applications we encounter the neu-
tral bosonic formalism (e.g. for photons) and the charged fermionic formalism
(e.g. for electrons). Charged bosons are also quite common, e.g. charged pions
or gluons in the standard model. On the other hand, until recently, the neutral
fermionic formalism had mostly theoretical interest. However, in the modern ver-
sion of the standard model involving massive neutrinos, Majorana spinors can
be useful.

Remark 18.2 To avoid possible confusion, let us discuss the distinction between
the notion of a “phase space” and of a “dual phase space”.

Possible states of a classical system are described by elements (points) of a
set V, called a phase space. V is typically a manifold, often equipped with an
additional structure, e.g. it is a symplectic manifold. The time evolution of a
classical system is given by a one-parameter group {rt}t∈R of isomorphisms of
V. Classical observables are described by (real- or complex-valued) functions
on V.

If V is in addition a vector space, we have in particular linear (i.e. “coordi-
nate”) functions V � v �→ v · y ∈ R labeled y ∈ V# =: Y. We will say that Y is
the dual phase space. After the bosonic resp. fermionic quantization, we obtain
a family of quantum observables φ(y), y ∈ Y, which are operators satisfying the
CCR, resp. the CAR and are called the bosonic, resp. fermionic fields. They are
labeled by elements of the dual phase space.

As we see from this discussion, in the quantum case it is the dual Y of the
phase space that has a more fundamental role than the phase space V itself.
Therefore, in our work the starting point is typically Y.

The distinction between the phase space and its dual is rather academic in the
fermionic case, where they can be naturally identified using the scalar product.
In the bosonic case, if the space V is symplectic (the form ω is non-degenerate),
one can identify the phase space and its dual with help of this form.

The Hamiltonian, which generates a symplectic dynamics, is traditionally
defined as a function on the phase space. If the phase space is symplectic we
can transport the Hamiltonian by ω from V to Y, so that it becomes a function
on Y. In this chapter, in the bosonic case the phase space will be always sym-
plectic and we will treat Hamiltonians as functions on the dual phase space, as
explained above.
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Dynamics of quantum fields 477

One can distinguish three stages of quantization.

(1) Classical system. We consider one of the four kinds of the dual phase space
Y, together with a one-parameter group of its automorphisms, R � t �→ rt ,
which we view as a classical dynamics.

(2) Algebraic quantization. We choose an appropriate ∗-algebra A, together
with a one-parameter group of ∗-automorphisms R � t �→ r̂t . The algebra A is
sometimes called the field algebra of the quantum system. The commutation,
resp. anti-commutation relations satisfied by the appropriate distinguished
elements of A are governed by the (charged) symplectic form, resp. the scalar
product on the dual phase space. {r̂t}t∈R describes the quantum dynamics
in the Heisenberg picture. The algebra A contains operators that are useful
in the theoretical description of the system. However, we do not assume that
all of its elements are physically observable, even in principle. Therefore, we
also distinguish the algebra of observables. It is a certain ∗-sub-algebra of A,
invariant with respect to the dynamics, which consists of operators whose
measurement is theoretically possible.

(3) Hilbert space quantization. We represent the algebra A on a certain
Hilbert space H. Typically, the representation of the algebra A is faithful, so
that we can write A ⊂ B(H). We demand that the dynamics is implemented
by a one-parameter unitary group on H. In the case of a zero temperature,
we want this unitary group to be generated by a positive operator H, called
the Hamiltonian, so that

r̂t(A) = eitH Ae−itH . (18.1)

In the case of a positive temperature, the spaceH should contain a cyclic vec-
tor satisfying the KMS condition with respect to the dynamics. Its generator
is called the Liouvillean and denoted L.

Note that, among the three stages of quantization described above, the most
important are the first and the third. The second stage – the algebraic quanti-
zation – can be skipped altogether. In the usual presentation, typical for physics
textbooks, it is limited to a formal level – one says that “commuting classi-
cal observables” are replaced by “non-commuting quantum observables” sat-
isfying the appropriate commutation, resp. anti-commutation relations. In our
presentation we have tried to interpret this statement in terms of well-defined
C∗-algebras. This is quite easy in the case of fermions. Unfortunately, in the case
of bosons it leads to certain technical difficulties related to the unboundedness of
bosonic fields, and involves a considerable amount of arbitrariness in the choice
of a C∗-algebra describing bosonic observables. To some extent, the algebraic
quantization is merely an exercise of academic interest. Nevertheless, in some
situations it sheds light on some conceptual aspects of quantum theory.

One of the confusing conceptual points that we believe our abstract approach
can explain is the difference between the dual phase space and the one-particle
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478 Dynamics of quantum fields

space. Throughout our work, the former is typically denoted by Y and the lat-
ter by Z. These two spaces are often identified. They have, however, different
physical meanings and are equipped with different algebraic structures.

We also discuss abstract properties of two commonly used discrete symmetries
of quantum systems: the time reversal and the charge reversals. Their properties
can be quite confusing. We believe that the precise language of linear algebra
is particularly adapted to explain their properties. Note, for instance, that the
charge reversal is anti-linear with respect to the complex structure on the phase
space and linear with respect to the complex structure on the one-particle space.
On the other hand, the (Wigner) time reversal is anti-linear with respect to both.

We will always assume that the time and charge reversals are involutions on
the observables. Only in the neutral bosonic case do they need to be involutive on
the fields as well. In the other three cases observables are even in fields; therefore
the time and charge reversals can be anti-involutive.

The first two sections of this chapter present the quantization in an abstract
way. In the next two sections, we specify it a little more, considering what we call
abstract Klein–Gordon and abstract Dirac dynamics. This presentation allows us
to isolate the main features of various constructions used in quantum field theory
and many-body quantum physics.

Throughout the chapter, t is the generic name of a real variable denoting the
time.

18.1 Neutral systems

This section is devoted to the neutral bosonic and fermionic formalism of quan-
tization.

In the neutral formalism the vector space Y is real and is equipped with
a symplectic form ω in the bosonic case, resp. with a positive definite scalar
product ν in the fermionic case. The dynamics describing the time evolution is
a one-parameter group {rt}t∈R with values in Sp(Y), resp. O(Y). The problem
addressed in this section is to find a CCR, resp. CAR representation Y � y �→
φ(y) on a Hilbert space H and a self-adjoint operator H on H such that eitH

implements rt . In the case of a zero temperature, usually one demands that the
Hamiltonian H is positive.

We will do this by finding a Kähler anti-involution that commutes with the
dynamics, and thus leads to a Fock representation in which the dynamics is
implementable.

It turns out that this is easy in the fermionic case. The bosonic case is more
technical. In particular, one needs to assume that the dynamics is stable, which
roughly means that the classical Hamiltonian is positive.

One often assumes that the dynamics {rt}t∈R is a part of a larger group
of symmetries G. In other words, our starting point is a homomorphism of a
group G into Sp(Y), resp. O(Y). One often asks whether the action of G can be
implemented in the Hilbert space H by unitary operators.
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18.1 Neutral systems 479

A different kind of a symmetry is the time reversal. After quantization, the
time reversal is implemented by an anti-unitary operator.

Recall that if a is an operator on a real space Y, then aC, resp. a
C

denotes its
linear, resp. anti-linear extension to CY.

18.1.1 Neutral bosonic systems

Let (Y, ω) be a symplectic space. Let R � t �→ rt ∈ Sp(Y) be a one-parameter
group.

Algebraic quantization of a symplectic dynamics

It is easy to describe the quantum counterpart of the above classical dynamical
system. We take one of the CCR algebras over (Y, ω), say CCRWeyl(Y), and
equip it with the group of Bogoliubov automorphisms {r̂t}t∈R, defined by

r̂t

(
W (y)

)
= W (rty), y ∈ Y.

Stable symplectic dynamics

Typical symplectic dynamics that appear in physics have positive Hamilton-
ians. We will call such dynamics stable. We will see that (under some technical
conditions) a stable dynamics leads to a uniquely defined Fock representation.

It is easy to make the concept of stability precise if dimY <∞. In this case
Y has a natural topology. Of course, we assume that the dynamics t �→ rt is
continuous. Let a be its generator, so that rt = eta . Clearly, the form β defined
by

y1 ·βy2 := y1 ·ωay2 , y1 , y2 ∈ Y, (18.2)

is symmetric.

Definition 18.3 We say that the group t �→ rt ∈ Sp(Y) is stable if β is positive
definite.

The definition of a stable dynamics in the case of infinite dimensions is more
complicated, because we need to equip (Y, ω) with a topology. There are various
possibilities for doing this; let us consider the simplest one.

Definition 18.4 We say that
(Y, ω, β, {rt}t∈R

)
is a weakly stable dynamics if

the following conditions are true:

(1) β is a positive definite symmetric form. We equip Y with the norm ‖y‖en :=
(y · βy)

1
2 . We denote by Yen the completion of Y w.r.t. this norm.

(2) R � t �→ rt ∈ Sp(Y) is a strongly continuous group of bounded operators.
Thus, we can extend rt to a strongly continuous group on Yen and define
its generator a, so that rt = eta .

(3) Ker a = {0}, or equivalently,
⋂

t∈R

Ker(rt − 1l) = {0}.
(4) Y ⊂ Dom a and y1 ·βy2 = y1 ·ωay2 , y1 , y2 ∈ Y.
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480 Dynamics of quantum fields

If, in addition, ω is bounded for the topology given by β, so that it can be
extended to the whole Yen , we will say that the dynamics is strongly stable. In
this case (Yen , ω) is a symplectic space.

Note that β has two roles: it endows Y with a topology and it is the
Hamiltonian for rt .

Theorem 18.5 Let
(Y, ω, β, {rt}t∈R

)
be a weakly stable dynamics. Then

(1) rt are orthogonal transformations on the real Hilbert space Yen .
(2) a is anti-self-adjoint and Ker a = {0}.
(3) The polar decomposition

a =: |a|j = j|a|
defines a Kähler anti-involution j and a self-adjoint operator |a| > 0 on Yen .

(4) The dynamics is strongly stable iff |a| ≥ C for some C > 0.

Recall that, given an operator |a| > 0 on Yen , we can define a scale of Hilbert
spaces |a|sYen (see Subsect. 2.3.4). Then rt and j are bounded on Yen ∩ |a|sYen

for the norm of |a|sYen . Let rs,t and js denote their extensions. Similarly, a and
|a| are closable on Yen ∩ |a|sYen for the norm |a|sYen . Let as , |a|s denote their
closures. Clearly, for any s, as = |a|s js = js |a|s is the polar decomposition, js is an
orthogonal anti-involution and rs,t = etas is an orthogonal one-parameter group.

Let ·s denote the natural scalar product on |a|sYen . Let us express the scalar
product and the symplectic form in terms of β:

y1 ·s y2 = y1β|a|−2sy2 =
(|a|−2sy1

)·βy2 , (18.3)

y1 ·ωy2 = y1 ·βa−1y2 = (a−1y1)·βy2 .

Note that the symplectic form does not need to be defined everywhere.
Of particular interest for us is the case s = 1

2 , for which we introduce the
notation Ydyn := |a| 12 Yen . In what follows we drop the subscript s = 1

2 from rs,t ,
js , ·s , as and |a|s .
Proposition 18.6 Ydyn equipped with (·, ω, j) is a complete Kähler space.

Proof Setting s = 1
2 in (18.3), we obtain

y1 · y2 = y1 ·β|a|−1y2 = y1 ·ωa|a|−1y2 = y1 ·ωjy2 . �

Fock quantization of symplectic dynamics

Until the end of this subsection we drop the subscript dyn from Ydyn . Let Z be
the holomorphic subspace of CY for the Kähler anti-involution j constructed in
Thm. 18.5.

Clearly, |a| commutes with j, hence its complexification |a|C preserves Z. We

set h := |a|C
∣∣
Z . Note that h > 0 and aC = i

[
h 0
0 −h

]
, if we use the identification
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18.1 Neutral systems 481

CY = Z ⊕Z. Likewise, (rt)C = (etj|a|)C preserves Z, and we have

(rt)C

∣∣
Z = eith .

For y ∈ Y, define the field operators

φ(y) := a∗
(

1l− ij
2

y

)
+ a

(
1l− ij

2
y

)
.

Then,

Y � y �→ eiφ(y ) ∈ U
(
Γs(Z)

)
(18.4)

is a Fock CCR representation. Introduce the positive operator H := dΓ(h) on
Γs(Z). We have

eitH φ(y)e−itH = φ(rty). (18.5)

Definition 18.7 (18.4) is called the positive energy Fock quantization of the
weakly stable dynamics {rt}t∈R. For any y ∈ Y, the corresponding time t phase
space field is defined as

φt(y) := φ(r−ty).

Quantizing symplectic dynamics with the (classical) Hamiltonian that is not
bounded below is in general more difficult. Even if it is possible, the corres-
ponding quantum Hamiltonian will not be bounded from below. There are some
situations in physics when non-positive Hamiltonians arise. An example of such
situations is the Klein–Gordon field in the space-time describing a rotating black
hole, where the phenomenon of super-radiance appears; see Gibbons (1975).

Criterion for a weakly stable symplectic dynamics

In practice, our starting point for quantization of a symplectic dynamics can
be somewhat different from that described in Def. 18.4. In this subsection we
describe a more general framework that leads to a stable dynamics.

Suppose that the symplectic space Y is equipped with a Hilbertian topology
given by a norm ‖ · ‖ such that the symplectic form ω is bounded. Let {rt}t∈R

be a strongly continuous symplectic dynamics. Again, we denote its generator
by a, so that rt = eta . It is easy to see that

y1 · ωay2 = −(ay1) · ωy2 , y1 , y2 ∈ Dom a.

Hence,

y1 · βy2 := y1 · ωay2 , y1 , y2 ∈ Dom a.

defines a symmetric quadratic form. Let us assume that there exists c > 0 such
that

y · βy ≥ c‖y‖2 , y ∈ Dom a. (18.6)
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482 Dynamics of quantum fields

Lemma 18.8 Consider the Hilbert space Yen obtained by completing Dom a in
the norm ‖y‖en = (y · βy)

1
2 . Then Yen can be viewed as a dense subspace of Y.

Moreover, rt preserves Yen and is a strongly continuous isometric group on Yen .

Proof (18.6) guarantees that Yen can be considered as a subspace of Y.
Let y ∈ Dom a. Then,

y·βy = y·ωay = (rty)·ωrtay

= (rty)·ωarty = (rty)·βrty.

Thus rt is isometric in ‖ · ‖en on Dom a (and hence on Yen). Moreover,

(rty − y)·β(rty − y) = (rty − y)·ω(rtay − ay) → 0.

Thus rt is strongly continuous in ‖ · ‖en on Dom a (and hence on Yen). �

Let aen denote the generator of the dynamics {rt}t∈R restricted to Yen . Clearly,
aen ⊂ a.

The following theorem is easy:

Theorem 18.9 Under the assumptions of this subsection, the space Dom aen

equipped with ω, β and {rt}t∈R restricted to Dom aen satisfy the conditions of a
weakly stable dynamics of Def. 18.4.

18.1.2 Neutral fermionic systems

Let (Y, ν) be a real Hilbert space. We think of it as the dual phase space of
a fermionic system. A strongly continuous one-parameter group R � t �→ rt ∈
O(Y) will be called an orthogonal dynamics. We view it as a classical dynamical
system.

Algebraic quantization of an orthogonal dynamics

We choose CARC ∗
(Y) as the field algebra of our system. It is equipped with the

one-parameter group of Bogoliubov automorphisms {r̂t}t∈R, defined by

r̂t

(
φ(y)
)

= φ(rty), y ∈ Y.

In quantum physics only even fermionic operators are observable. Therefore,
it is natural to use the even sub-algebra CARC ∗

0 (Y) as the observable algebra.

Kähler structure for a non-degenerate orthogonal dynamics

Let a be the generator of rt , so that rt = eta and a = −a# .

Definition 18.10 We say that the dynamics t �→ rt ∈ O(Y) is non-degenerate
if

Ker a = {0}, or equivalently
⋂
t∈R

Ker(rt − 1l) = {0}. (18.7)
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Theorem 18.11 The polar decomposition

a =: |a|j = j|a|
defines an operator |a| > 0 and a Kähler anti-involution j on Y.

Fock quantization of orthogonal dynamics

Let Z be the holomorphic subspace of CY for the Kähler anti-involution j.
The operator |a| commutes with j. Hence, its complexification |a|C preserves

Z. We set h := |a|C
∣∣
Z . Note that h > 0 and aC = i

[
h 0
0 −h

]
. Likewise, (rt)C =

(etj|a|)C preserves Z, and we have

(rt)C

∣∣
Z = eith .

Consider the Fock representation associated with the Kähler anti-involution j

Y � y �→ φ(y) := a∗
(

1l− ij
2

y

)
+ a

(
1l− ij

2
y

)
∈ Bh

(
Γa(Z)

)
, (18.8)

and the positive operator H := dΓ(h) on Γa(Z). We have

eitH φ(y)e−itH = φ(rty). (18.9)

Definition 18.12 (18.8) is called the positive energy Fock quantization of the
dynamics {rt}t∈R. For any y ∈ Y, the corresponding time t field is defined as

φt(y) := φ(r−ty).

18.1.3 Time reversal in neutral systems

Let (Y, ω) be a symplectic space in the bosonic case, or let (Y, ν) be a real Hilbert
space in the fermionic case.

Time reversal and its algebraic quantization

Definition 18.13 A map τ ∈ L(Y) is a time reversal if

(1) τ is anti-symplectic and τ 2 = 1l in the bosonic case,
(2) τ is orthogonal and τ 2 = 1l or τ 2 = −1l in the fermionic case.

Let us fix a time reversal τ . Let us quantize τ on the algebraic level.

Proposition 18.14 (1) In the bosonic case, there exists a unique anti-linear
∗-homomorphism τ̂ of the algebra CCRWeyl(Y) such that τ̂

(
W (y)

)
:=

W (τy). τ̂ 2 is the identity.
(2) In the fermionic case, there exists a unique anti-linear ∗-homomorphism τ̂

of the algebra CARC ∗
(Y) such that τ̂

(
φ(y)
)

:= φ(τy). τ̂ 2 is the identity on
CARC ∗

0 (Y) (the even algebra).

Definition 18.15 τ̂ defined in Prop. 18.14 is called the algebraic time reversal.
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Suppose that {rt}t∈R is a dynamics, where rt ∈ Sp(Y) in the bosonic case and
rt ∈ O(Y) in the fermionic case.

Definition 18.16 We say that the dynamics {rt}t∈R is time reversal invariant
if

τrt = r−tτ. (18.10)

Clearly, on the algebraic level (18.10) implies τ̂ r̂t = r̂−t τ̂ .

Fock quantization of time reversal

Let {rt}t∈R be a time reversal invariant dynamics. In the bosonic case we assume
that the dynamics is weakly stable; in the fermionic case we assume that it is
non-degenerate. In both cases we can introduce a, j, h. We have

τa = −aτ, τ j = −jτ, τ |a| = |a|τ.
Note that the anti-linear extension of τ , denoted τ

C
, preserves Z.

Definition 18.17 We write τZ := τ
C

∣∣
Z .

Clearly, τZ is anti-unitary and τZh = hτZ . Moreover,

(1) τ 2
Z = 1l in the bosonic case,

(2) τ 2
Z = 1l or τ 2

Z = −1l in the fermionic case.

Consider the positive energy quantization of the dynamics on the Fock space
Γs/a(Z).

Definition 18.18 The Fock quantization of time reversal is defined as the anti-
unitary map T := Γ(τZ).

We have THT−1 = H, T eitH T−1 = e−itH . T implements τ̂ and

Tφ(y)T−1 = φ(τy), y ∈ Y.

Recall that I denotes the parity operator defined in (3.10). We have

(1) T 2 = 1l in the bosonic case,
(2) T 2 = 1l or T 2 = I in the fermionic case.

18.2 Charged systems

In the charged formalism, the classical system is described by a complex vector
space Y.

In the bosonic case, it is equipped with an anti-Hermitian form (·|ω·) – we say
that it is a charged symplectic space. The dynamics {rt}t∈R describing the time
evolution is assumed to preserve (·|ω·) – we say that rt is charged symplectic.

In the fermionic case it is equipped with a positive scalar product (·|·). Without
decreasing the generality we can assume that it is complete – Y is a complex
Hilbert space. The dynamics {rt}t∈R preserves (·|·) – it is unitary.
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18.2 Charged systems 485

By a positive energy quantization of a charged classical system we mean a
charged CCR or CAR representation Y � y �→ ψ∗(y) on a Hilbert space H and
a positive self-adjoint operator H on H such that eitH implements rt .

The complex structure of Y is responsible for the action of a U(1) symmetry
{eiθ}θ∈[0,2π ] . On the level of the Fock representation it is implemented by eiθQ ,
where Q is called the charge operator.

Recall that charged systems can be viewed as special cases of neutral sys-
tems equipped in addition with a certain symmetry. As discussed in Subsect.
1.3.11, a homomorphism U(1) � θ �→ uθ ∈ L(Y) on a real space Y is called
a U(1) symmetry of charge 1 if there exists an anti-involution jch such that
uθ = cos θ1l + sin θjch . Assume that it preserves the symplectic, resp. Euclidean
form ω, resp. ν, which is equivalent to saying that jch is pseudo-Kähler, resp.
Kähler. Assume also that the dynamics {rt}t∈R commutes with this symmetry,
which is equivalent to saying that jch commutes with rt . If we equip the space
with the complex structure given by jch , then the symmetry uθ becomes just the
multiplication by eiθ . It is then natural to replace the real bilinear forms ω, resp.
ν by the closely related sesquilinear forms (·|ω·), resp. (·|·). The invariance of
the dynamics w.r.t. the charge symmetry is now expressed by the fact that the
dynamics is complex linear. See Subsects. 8.2.5 and 12.1.7 for further details.

In this section we describe in abstract terms the charged formalism. At the end
of the section, we discuss the charge reversal and the time reversal for charged
systems.

We will use θ as the generic variable in U(1) = R/2πZ.

18.2.1 Charged bosonic systems

Let
(Y, (·|ω·)) be a charged symplectic space. Let R � t �→ rt ∈ ChSp(Y) be a

charged symplectic dynamics.

Algebraic quantization of a charged symplectic dynamics

By taking Re(y1 |ωy2) we can view YR as a real symplectic space. We choose
CCRreg(YR) as the field algebra of our system. This algebra is generated (in
the sense described in Subsect. 8.3.4) by the Weyl elements eiψ (y )+iψ∗(y ) , y ∈ Y,
satisfying the relations

eiψ (y1 )+iψ∗(y1 )eiψ (y2 )+iψ∗(y2 ) = e−iRe(y1 |ωy2 )eiψ (y1 +y2 )+iψ∗(y1 +y2 ) .

We equip CCRreg(YR) with the automorphism groups {êiθ}θ∈U (1) and {r̂t}t∈R

defined by

êiθ
(
eiψ (y )+iψ∗(y )) = eiψ (eiθ y )+iψ∗(eiθ y ) ,

r̂t

(
eiψ (y )+iψ∗(y )) = eiψ (rt y )+iψ∗(rt y ) , y ∈ Y.
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486 Dynamics of quantum fields

For the observable algebra it is natural to choose the so-called gauge-invariant
regular CCR algebra CCRreg

gi (Y), which is defined as the set of elements of

CCRreg(YR) fixed by êiθ . Note that CCRreg
gi (Y) is contained in the even alge-

bra CCRreg
0 (YR) and is preserved by the dynamics r̂t .

Remark 18.19 In this subsection, for the field algebra of our system we have
preferred to choose CCRreg(YR) instead of CCRWeyl(YR). This is motivated
by the fact that the only element left invariant by the gauge symmetry êiθ in
CCRWeyl(YR) is 1l, whereas in the case of CCRreg(YR) we obtain a large gauge-
invariant algebra.

Fock quantization of a charged symplectic dynamics

The concept of stability of dynamics in the charged case is analogous to the
neutral case.

Definition 18.20 We say that
(Y, (·|ω·), (·|β·), {rt}t∈R

)
is a weakly stable

dynamics if the following conditions are true:

(1) (·|β·) is a positive definite sesquilinear form. We equip Y with the norm
‖y‖en := (y|βy)

1
2 . We denote by Yen the completion of Y w.r.t. this norm.

(2) We assume that {rt}t∈R is a strongly continuous group of bounded operators
on Y. Thus we can extend rt to a strongly continuous group on Yen and
define its generator ib, so that rt = eitb .

(3) Ker b = {0}, or equivalently,
⋂

t∈R

Ker(rt − 1l) = {0}.
(4) We assume that Y ⊂ Dom b and

(y1 |βy2) := i(y1 |ωby2), y1 , y2 ∈ Y. (18.11)

If in addition ω is bounded for the topology given by β, so that (·|ω·) can be
extended to the whole Yen , we will say that the dynamics is strongly stable.

Theorem 18.21 Let
(Y, (·|ω·), (·|β·), {rt}t∈R

)
be a weakly stable dynamics.

Then

(1) rt are unitary transformations on the Hilbert space Yen ,
(2) b is self-adjoint and Ker b = {0}.

Set q := sgn(b) and j := i sgn(b). Clearly, |b| is positive and rt = etj|b|.
Set Ydyn := |b| 12 Yen . As in Subsect. 18.1.1, we can view rt , j, b and |b| as defined

on Ydyn . In what follows we drop the subscript dyn from Ydyn .
Let 1l± := 1l]0,∞[(±b) = 1l{±1}(q), Y± := Ran 1l±. Let Z denote the space Y

equipped with the complex structure given by j. (In other words, Z := Y+ ⊕ Y−.)
The operators |b|, q and b preserve Y±. Hence, they can be viewed as com-

plex linear operators on Z as well, in which case they will be denoted h, qZ
and bZ .
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18.2 Charged systems 487

Consider the space Γs(Z). For y ∈ Y, let us introduce the charged fields on Y,
which are closed operators on Γs(Z) defined by

ψ∗(y) = a∗ (1l+y) + a
(
1l−y
)
,

ψ(y) = a (1l+y) + a∗ (1l−y
)
. (18.12)

We obtain a charged CCR representation

Y � y �→ ψ∗(y) ∈ Cl
(
Γs(Z)

)
. (18.13)

Define the self-adjoint operators on Γs(Z)

H := dΓ(h), Q := dΓ(qZ).

Clearly,

eitH ψ(y)e−itH = ψ(eitby), eiθQψ(y)e−iθQ = ψ(eiθ y), y ∈ Y.

Definition 18.22 (18.13) is called the positive energy Fock quantization for the
dynamics {rt}t∈R. For any y ∈ Y, the corresponding time t field is defined as

ψt(y) := ψ(r−ty).

18.2.2 Charged fermionic systems

Let
(Y, (·|·)) be a complex Hilbert space describing a charged fermionic system.

A strongly continuous one-parameter group R � t �→ rt ∈ U(Y) will be called a
unitary dynamics.

Algebraic quantization of a unitary dynamics

Clearly, by taking the real scalar product y1 ·νy2 := 1
2 Re(y1 |y2) we can view

YR as a real Hilbert space. We can associate with our system the field alge-
bra CARC ∗

(YR) with distinguished elements ψ(y), y ∈ Y. We equip it with the
automorphism group {êiθ}θ∈U (1) and {r̂t}t∈R defined by

êiθ
(
ψ(y)
)

= ψ(eiθ y),

r̂t

(
ψ(y)
)

= ψ(rty), y ∈ Y.

Similarly to the bosonic case, for the observable algebra we choose the so-
called gauge-invariant CAR algebra CARC ∗

gi (Y), which is defined as the set of

elements of CARC ∗
(YR) fixed by êiθ . Note that CARC ∗

gi (Y) is contained in the
even algebra CARC ∗

0 (YR) and is preserved by the dynamics r̂t .

Fock quantization of a unitary dynamics

Let b be the self-adjoint generator of {rt}t∈R, so that rt = eitb .

Definition 18.23 We say that the dynamics t �→ rt ∈ U(Y) is non-degenerate
if

Ker b = {0}, or equivalently
⋂
t∈R

Ker(rt − 1l) = {0}. (18.14)
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488 Dynamics of quantum fields

Set q := sgn(b) and j := i sgn(b). Clearly, |b| is positive, and rt = etj|b|. Let
1l± := 1l]0,∞[(±b) = 1l{±1}(q), Y± := Ran 1l±. Let Z denote the space Y equipped
with the complex structure given by j. (In other words, Z := Y+ ⊕ Y−).

The operators |b|, q and b preserve Y±. Hence, they can also be viewed as
complex linear operators on Z as well, in which case they will be denoted h, qZ
and bZ .

Consider the space Γa(Z). For y ∈ Y, let us introduce the charged fields on Y,
which are closed operators on Γa(Z) defined by

ψ∗(y) = a∗ (1l+y) + a
(
1l−y
)
, (18.15)

ψ(y) = a (1l+y) + a∗ (1l−y
)
. (18.16)

We obtain a charged CAR representation

Y � y �→ ψ∗(y) ∈ B
(
Γa(Z)

)
. (18.17)

Define the self-adjoint operators on Γa(Z)

H := dΓ(h), Q := dΓ(qZ).

Clearly,

eitH ψ(y)e−itH = ψ(eitby), eiθQψ(y)e−iθQ = ψ(eiθ y), y ∈ Y.

Definition 18.24 (18.17) is called the positive energy Fock quantization of the
dynamics {rt}t∈R. For any y ∈ Y, the corresponding time t phase space field is
defined as

ψt(y) := ψ(r−ty).

18.2.3 Charge reversal

Let
(Y, (·|ω·)) be a charged symplectic space in the bosonic case, or let

(Y, (·|·))
be a complex Hilbert space in the fermionic case.

Charge reversal and its algebraic quantization

Definition 18.25 χ ∈ L(YR) is a charge reversal if χ2 = 1l or χ2 = −1l, and

(1) (χy1 |ωχy2) = (y1 |ωy2) (χ is anti-charged symplectic) in the bosonic case;
(2) (χy1 |χy2) = (y1 |y2) (χ is anti-unitary) in the fermionic case.

Let us fix a charge reversal χ. Consider now its algebraic quantization.

Proposition 18.26 (1) In the bosonic case, there exists a unique
∗-automorphism χ̂ of CCRreg(YR) such that

χ̂
(
eiψ (y )+iψ∗(y )) = eiψ (χy )+iψ∗(χy ) .
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(2) In the fermionic case, there exists a unique ∗-automorphism χ̂ of CARC ∗
(YR)

such that

χ̂
(
ψ∗(y)

)
= ψ(χy).

In both the bosonic and the fermionic case, χ̂ leaves invariant the gauge-
invariant algebra and is involutive on it.

Definition 18.27 χ̂ defined in Prop. 18.26 is called the algebraic charge reversal.

Let us remark that whereas χ is anti-linear, χ̂ is linear.
Suppose that {rt}t∈R is a charged symplectic or unitary dynamics.

Definition 18.28 We say that the dynamics is invariant under the charge rever-
sal χ if

χrt = rtχ. (18.18)

Similarly, if we have a group of symmetries {rg}g∈G we say that it is invariant
under the charge reversal χ if rgχ = χrg , g ∈ G.

Clearly, on the algebraic level (18.18) implies χ̂r̂t = r̂t χ̂.

Fock quantization of charge reversal

Let {rt}t∈R be a charge reversal invariant dynamics. In the bosonic case assume
that the dynamics is weakly stable. In the fermionic case assume it is non-
degenerate. Let b, h, q etc. be constructed as before. In both the bosonic and the
fermionic case it follows that

χ|b| = |b|χ, χb = −bχ, χq = −qχ, χj = jχ.

Definition 18.29 We denote χZ the map χ considered on Z.

Note that χZ is unitary, unlike χ.

Definition 18.30 The Fock quantization of the charge reversal is the unitary
C := Γ(χZ).

We have CHC−1 = H, CQC−1 = −Q. C implements χ̂ and

Cψ∗(y)C−1 = ψ(χy).

Note that C2 = 1l or C2 = I, where we recall that I is the parity operator.

Neutral subspace

Assume that χ2 = 1l. Recall that we can define the spaces

Y±χ := {y ∈ Y : y = ±χy}.
The dynamics and the symmetry group restrict to Yχ and Y−χ .

Definition 18.31 We will call Yχ the neutral subspace of Y. (In the fermionic
case, we will also call it the Majorana subspace.)
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490 Dynamics of quantum fields

Note that Y = Yχ ⊕ iYχ , hence the system can be viewed as a couple of neutral
systems.

Let us describe the converse construction. Suppose that we have a neutral
system (Y, ω) or (Y, ν) equipped with the dynamics {rt}t∈R. We can extend it
to a charged system as follows. We consider the complexified space CY equipped
with the natural conjugation denoted by the “bar”. We equip it with the anti-
Hermitian form, resp. scalar product

(w1 |ωw2) := w1 ·ωw2 ,

or (w1 |w2) := 2w1 ·νw2 , w1 , w2 ∈ CY.

We extend the dynamics rt to (rt)C on CY. Clearly, (rt)C is a charged symplectic,
resp. unitary dynamics with the charge reversal given by χw := w, w ∈ CY. It
satisfies χ2 = 1l. One gets back the original system by the restriction to the
neutral subspace.

18.2.4 Time reversal in charged systems

Let
(Y, (·|ω·)) be a charged symplectic space in the bosonic case, or let

(Y, (·|·))
be a complex Hilbert space in the fermionic case.

In the case of charged systems it is natural to consider two kinds of time
reversal. The standard choice is an anti-linear symmetry considered by Wigner.
The so-called Racah time reversal is actually historically older than the Wigner
time reversal. It is linear and from a purely mathematical point of view may
seem more natural.

Wigner time reversal and its algebraic quantization

Definition 18.32 τ ∈ L(YR) is a Wigner time reversal if τ 2 = 1l or τ 2 = −1l,
and

(1) (τy1 |ωτy2) = −(y1 |ωy2) (τ is anti-charged anti-symplectic) in the bosonic
case;

(2) (τy1 |τy2) = (y1 |y2) (τ is anti-unitary) in the fermionic case.

Let us fix a Wigner time reversal τ .

Proposition 18.33 (1) There exists a unique anti-linear ∗-automorphism τ̂ on
the algebra CCRreg(YR) such that

τ̂
(
eiψ (y )+iψ∗(y )) = e−iψ (τ y )−iψ∗(τ y ) .

(2) There exists a unique anti-linear ∗-automorphism τ̂ of the algebra
CARC ∗

(YR) such that

τ̂
(
ψ(y)
)

= ψ(τy).

In both the bosonic and the fermionic case, τ̂ leaves invariant the gauge-
invariant algebra and is involutive on it.
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Definition 18.34 τ̂ defined in Prop. 18.33 is called the algebraic Wigner time
reversal.

Note that both τ and τ̂ are anti-linear.
Suppose that {rt}t∈R is a charged symplectic or unitary dynamics.

Definition 18.35 We say that the dynamics is invariant under the Wigner time
reversal τ if

τrt = r−tτ. (18.19)

Clearly, on the algebraic level (18.19) implies τ̂ r̂t = r̂−t τ̂ .

Fock quantization of Wigner time reversal

Let {rt}t∈R be a Wigner time reversal dynamics. In the bosonic case assume that
the dynamics is weakly stable. In the fermionic case assume it is non-degenerate.
Let b, h, q etc. be constructed as before. In both the bosonic and the fermionic
case it follows that

τ |b| = |b|τ, τb = bτ, τq = qτ, τ j = −jτ.

Thus τY+ = Y+, τY− = Y−.

Definition 18.36 Let τZ denote τ considered on Z.

Note that τZ is anti-unitary.

Definition 18.37 The Fock quantization of the Wigner time reversal is given
by the anti-unitary T := Γ(τZ).

We have THT−1 = H, T eitH T−1 = e−itH , TQT−1 = Q, T eiθQT−1 = e−iθQ . T

implements τ̂ and

Tψ(y)T−1 = ψ(τy), Tψ∗(y)T−1 = ψ∗(τy), y ∈ Y.

Moreover, T 2 = 1l or T 2 = I.

Racah time reversal

Definition 18.38 κ ∈ L(Y) is a Racah time reversal if κ2 = 1l or κ2 = −1l,
and

(1) (κy1 |ωκy2) = −(y1 |ωy2) (κ is charged anti-symplectic) in the bosonic case;
(2) (κy1 |κy2) = (y1 |y2) (κ is unitary) in the fermionic case.

Let us stress that the Racah time reversal is linear.
Let {rt}t∈R be a charged symplectic or unitary dynamics.

Definition 18.39 {rt}t∈R is invariant under the Racah time reversal if κrt =
r−tκ.
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492 Dynamics of quantum fields

Suppose that χ is charge reversal and τ is a Wigner time reversal satisfying

τχ = χτ or τχ = −χτ.

Then it is easy to see that κ := τχ is a Racah time reversal. In particular, κ2 = 1l
or κ2 = −1l.

Note that we are free to multiply either χ or τ by i. Therefore, possibly after
a redefinition of χ or τ , we can always assume that

τχ = χτ. (18.20)

Thus we have three commuting symmetries: χ, τ and κ.
Consider in addition {rt}t∈R, a charged dynamics invariant under Wigner’s

time reversal τ and a charge reversal χ. Let us recall the various commutation
properties:

τ |b| = |b|τ, τ j = −jτ, τ i = −iτ, τq = qτ,

χ|b| = |b|χ, χj = jχ, χi = −iχ, χq = −qχ.

τ , χ, κ and qκ are all either involutions or anti-involutions. The following list
describes various possible behaviors of these four symmetries:

τ 2 χ2 κ2 (qκ)2

1l 1l 1l −1l
1l −1l −1l 1l

−1l −1l 1l −1l
−1l 1l −1l 1l

Note that both κ and qκ satisfy the conditions of the Racah time reversal. If
τ 2 = χ2 = ±1l, we have κ2 = 1l, whereas if τ 2 = −χ2 = ±1l, we have (qκ)2 = 1l.
Therefore, one of the operators κ or qκ is always an involution.

18.3 Abstract Klein–Gordon equation and its quantization

In Subsects. 18.1.1, resp. 18.2.1 we described how to quantize a symplectic,
resp. charged symplectic dynamics. The most important symplectic or charged
symplectic dynamics used in quantum field theory is associated with the wave
equation

(∂2
t −Δ)ζ = 0

or, more generally, to the closely related Klein–Gordon equation

(∂2
t −Δ + m2)ζ = 0.
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18.3 Abstract Klein–Gordon equation and its quantization 493

One of the characteristic features of the wave and Klein–Gordon equation is the
second order of the time derivative. In this section we study an abstract version
of the wave or Klein–Gordon equation. We forget about the spatial structure of
the system, but we keep the second-order temporal derivative. We describe the
corresponding symplectic dynamics and its quantization.

In the next chapter we will consider the true wave and Klein–Gordon equa-
tion on the space-time and its quantization. We find it instructive and amusing,
however, that many of the constructions used in this context can be described
in a rather abstract fashion.

18.3.1 Splitting into configuration and momentum space

Suppose that Y is a symplectic space equipped with a time reversal τ . Recall
that it satisfies τ 2 = 1l. Thus τ is a conjugation on a real symplectic space. As
discussed in Subsect. 1.1.16, we can split the dual phase space into the direct sum
of Lagrangian subspaces Y = Yτ ⊕ Y−τ , where Y±τ := {y ∈ Y : y = ±τy}.
Yτ has the interpretation of the dual of the configuration space, whereas Y−τ

has the interpretation of the dual of the momentum space.
Recall from Subsect. 1.1.16 that (Yτ ,Y−τ ) can be interpreted as a dual pair

so that the symplectic form can be written as

(ϑ1 , ς1)·ω(ϑ2 , ς2) = ϑ1 · ς2 − ς1 · ϑ2 (ϑi, ςi) ∈ Yτ ⊕ Y−τ , i = 1, 2. (18.21)

The time reversal acts as

τ(ϑ, ς) = (ϑ,−ς), (ϑ, ς) ∈ Yτ ⊕ Y−τ . (18.22)

Let {rt}t∈R be a time reversal invariant dynamics. For (ϑ, ς) ∈ Yτ ⊕ Y−τ

write rt(ϑ, ς) = (ϑ(t), ς(t)). Then there exist f ∈ L(Yτ ,Y−τ ), g ∈ L(Y−τ ,Yτ )
such that f = f# , g = g# and

∂tς(t) = fϑ(t), ∂tϑ(t) = −gς(t).

The Hamiltonian of the dynamics is

1
2
ϑ · gϑ +

1
2
ς · fς. (18.23)

18.3.2 Neutral Klein–Gordon equation

Let X be a real Hilbert space. Let ε > 0 be a strictly positive self-adjoint operator
on X . (Recall that ε > 0 means that ε ≥ 0 and Ker ε = {0}.)
Definition 18.40 The equation

∂2
t ζ(t) + ε2ζ(t) = 0, (18.24)

where ζ(t) is a function from R to X , will be called an abstract neutral Klein–
Gordon equation.
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Clearly, if ζ(t) is a solution, ζ(−t) is also a solution, so (18.24) is invariant
under time reversal.

Examples of (18.24) are the wave or Klein–Gordon equations on static space-
times; see Chap. 19.

Let us reinterpret (18.24) as a first-order equation. To this end, we consider

the space of Cauchy data Y = X ⊕ X , whose elements are denoted (ϑ, ς) or
[

ϑ

ς

]
.

We equip it with the symplectic form

(ϑ1 , ς1)·ω(ϑ2 , ς2) = ϑ1 · ς2 − ϑ2 · ς1 , (ϑi, ςi) ∈ X ⊕ X , i = 1, 2.

Setting

ς(t) := ζ(t), ϑ(t) := ∂tζ(t), a :=
[

0 −ε2

1l 0

]
,

we rewrite (18.24) as

∂t

[
ϑ(t)
ς(t)

]
= a

[
ϑ(t)
ς(t)

]
,

[
ϑ(0)
ς(0)

]
=
[

ϑ

ς

]
. (18.25)

(Note that we put the time derivative first, since we are considering the dual
phase space.) We see that (18.25) is solved by[

ϑ(t)
ς(t)

]
=
[

cos(εt) −ε sin(εt)
ε−1 sin(εt) cos(εt)

] [
ς

ϑ

]
= eta

[
ϑ

ς

]
. (18.26)

For bounded ε, eta is a symplectic dynamics on X ⊕ X with the Hamiltonian

1
2
ϑ · ϑ +

1
2
ς · ε2ς. (18.27)

For unbounded ε, there is a problem, since X ⊕ X is not preserved by eta . In
this case, one can replace X ⊕ X with Y = X ⊕Dom ε, which is a symplectic
space preserved by the dynamics. The dynamics is weakly stable. If in addition
ε ≥ m > 0, then it is stable. The energy space Yen is equal to X ⊕ ε−1X .

The Kähler anti-involution of Thm. 18.5 takes the form

j =
[

0 −ε

ε−1 0

]
. (18.28)

The associated Hermitian product is(
(ϑ1 , ς1)|(ϑ2 , ς2)

)
= ϑ1 · ε−1ϑ2 + ς1 · ες2 + i(ϑ1 · ς2 − ϑ2 · ς1). (18.29)

The completion of the Kähler space Yen for (18.29) is

Ydyn := ε
1
2 X ⊕ ε−

1
2 X . (18.30)

In the standard way we introduce the space Z := 1
2 (1l− ij)CYdyn , which will

serve as the one-particle space for quantization.
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Note that the dual phase space and dynamics of an abstract Klein–Gordon
equation belong to the class described in Subsect. 18.3.1. In particular, the time
reversal is given by (18.22).

It is natural to introduce the following identification:

C(2ε)
1
2 X � ϑ �→ Uϑ :=

1l− ij
2

(ϑ, 0) =
(1

2
ϑ,

i
2ε

ϑ
)
∈ Z ⊂ CYdyn . (18.31)

Note that U is unitary.
Recall that the dynamics can be lifted to the space Z by eta

Z := eta
C

∣∣
Z . We have

U∗eta
Z U = eitε .

Likewise, the time reversal can be lifted to Z by τZ := τ
C

∣∣
Z . Now U∗τZU

coincides with the usual canonical conjugation on C(2ε)
1
2 X .

Note that Ydyn is a complete Kähler space with a conjugation τ . Recall that
we considered the CCR over such spaces in Subsect. 8.2.7. The operator (2c)−1

of Subsect. 8.2.7 can be identified with ε of this subsection. The map U is the
same map as (8.32).

Remark 18.41 An abstract neutral Klein–Gordon equation describes the most
general stable dynamics invariant w.r.t. a time reversal. In fact, recall the Hamil-
tonian (18.23), discussed in Subsect. 18.1.3 about the time-reversal invariance,
and assume that it is strictly positive. Then it is easy to see that (18.23) can be
brought to the form (18.27).

18.3.3 Neutral Klein–Gordon equation in an external potential

We consider now the following modification of (18.24):

(∂t + d)2ζ(t) + ε2ζ(t) = 0, (18.32)

or ∂2
t ζ(t) + 2d∂tζ(t) + (ε2 + d2)ζ(t) = 0,

where d = −d∗ is anti-self-adjoint on X . Note that this equation is no longer
invariant under time-reversal. Examples of (18.32) are wave or Klein–Gordon
equations on stationary space-times (see Example 19.43). Setting

ς(t) := ζ(t), ϑ(t) := ∂tζ(t) + dζ(t), a :=
[−d −ε2

1l −d

]
,

we can rewrite (18.32) as a first-order equation,

∂t

[
ϑ(t)
ς(t)

]
= a

[
ϑ(t)
ς(t)

]
,

with a Hamiltonian
1
2
(ϑ− dς) · (ϑ− dς)− 1

2
(dς) · dς +

1
2
(ες) · ες.

If ε2 + d2 > 0, then the dynamics is weakly stable.
Note that the associated complex structure j does not have a simple expression

anymore.
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18.3.4 Splitting into complex configuration and momentum spaces

This subsection is the charged version of Subsect. 18.3.1. Suppose that (Y, ω) is a
charged symplectic space equipped with a Racah time reversal satisfying κ2 = 1l.
Again, we can split the dual phase space into the direct sum of Lagrangian
subspaces Y = Yκ ⊕ Y−κ , where Y±κ := {y ∈ Y : y = ±κy}. (Note that spaces
Yκ and Y−κ are both complex.)
Yκ has the interpretation of the dual configuration space and Y−κ of the dual

momentum space.
(Yκ ,Y−κ) can be interpreted as an anti-dual pair, so that the charged sym-

plectic form can be written

(ϑ1 , ς1)·ω(ϑ2 , ς2) = ϑ1 · ς2 − ς1 · ϑ2 , (ϑi, ςi) ∈ Yκ ⊕ Y−κ , i = 1, 2.

The Racah time reversal acts as

κ(ϑ, ς) = (ϑ,−ς), (ϑ, ς) ∈ Yκ ⊕ Y−κ . (18.33)

Let {rt}t∈R be a dynamics invariant w.r.t the Racah time reversal. For
(ϑ, ς) ∈ Yκ ⊕ Y−κ write rt(ϑ, ς) = (ϑ(t), ς(t)). Then there exist f ∈ L(Yκ ,Y−κ),
g ∈ L(Y−κ ,Yκ) such that g = g∗, f = f∗ and

∂tς(t) = fϑ(t), ∂tϑ(t) = −gς(t).

The Hamiltonian of the dynamics is

ϑ · gϑ + ς · fς.

18.3.5 Charged Klein–Gordon equation

Now we describe the charged version of Subsect. 18.3.2. Let X be a complex
Hilbert space. For ζ1 , ζ2 ∈ X , the scalar product will be denoted by ζ1 · ζ2 . Con-
sider again a strictly positive self-adjoint operator ε on X and the equation
(18.24).

Definition 18.42 If the space X is complex, the equation (18.24) will be called
an abstract charged Klein–Gordon equation.

Thus the only difference between the charged and neutral Klein–Gordon equa-
tions is the presence of the U(1) symmetry given by the multiplication by eiθ ,
θ ∈ [0, 2π].

The Racah time reversal consists in replacing t �→ ζ(t) with t �→ ζ(−t).
The charged Klein–Gordon equation is always invariant w.r.t. the Racah time
reversal.

Let us fix a complex conjugation on X , denoted by ζ �→ ζ, which defines the
charge reversal. The Wigner time reversal involves replacing a function t �→ ζ(t)
with t �→ ζ(−t). If ε = ε, then (18.24) is also invariant w.r.t. the charge and
Wigner time reversal.
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18.3 Abstract Klein–Gordon equation and its quantization 497

Consider the Cauchy problem (18.25). We introduce the space X ⊕ X ,
equipped with the charged symplectic form

(ϑ1 , ς1)·ω(ϑ2 , ς2) = ϑ1 · ς2 − ς1 · ϑ2 , (ϑi, ςi) ∈ X ⊕ X , i = 1, 2.

The Hamiltonian is

ϑ · ϑ + ες · ες.
Yen , Ydyn , j, a are given by the same expressions as in Subsect. 18.3.2. In
particular, it is natural to replace the original dual phase space X ⊕ X by
Ydyn = ε

1
2 X ⊕ ε−

1
2 X .

In terms of the Cauchy data, the Racah time reversal is given by (18.33). The
charge reversal and the Wigner time reversal are given by

χ(ϑ, ς) = (ϑ, ς), τ(ϑ, ς) = (ϑ,−ς).

We can “diagonalize” the dynamics by introducing the map

W : Ydyn = ε
1
2 X ⊕ ε−

1
2 X � (ϑ, ς) �→ (ϑ + iες, ϑ + iες) ∈ (2ε)

1
2 X ⊕ (2ε)

1
2 X .

W is a unitary operator satisfying

W etaW−1 = eit(ε⊕ε) , W iW−1 = i1l⊕ (−i1l),

W jW−1 = i1l⊕ i1l, WqW−1 = 1l⊕ (−1l).

Thus if we interpret W as an operator on Z (which differs from Ydyn only by
treating j as the basic complex structure), then W : Z → (2ε)

1
2 X ⊕ (2ε)

1
2 X is

unitary.
After conjugation by W , the charge and Wigner time reversal become

χ(h1 , h2) = (h2 , h1), τ(h1 , h2) = (−h1 , h2).

Remark 18.43 This remark is analogous to Remark 18.41 from the neutral
case. A charged abstract Klein–Gordon equation describes the most general stable
dynamics invariant w.r.t. the Racah time reversal.

18.3.6 Charged Klein–Gordon equation in an external potential

Again we can consider the complex analog of (18.32). It is more natural to write
it as

(∂t + iV )2ζ(t) + ε2ζ(t) = 0, (18.34)

or ∂2
t ζ(t) + 2iV ∂tζ(t) + (ε2 − V 2)ζ(t) = 0,

where V = V ∗. An example is obtained by minimally coupling (18.24) to an
external electric field.

Setting

ς(t) := ζ(t), ϑ(t) := ∂tζ(t) + iV ζ(t),
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we can rewrite (18.34) as

∂t

[
ϑ(t)
ς(t)

]
=
[−iV −ε2

1l −iV

] [
ς(t)
ϑ(t)

]
with the Hamiltonian

ϑ · ϑ + ες · ες − iϑ · V ς + iς · V ϑ

= (ϑ− iV ς) · (ϑ− iV ς)− V ς · V ς + ες · ες.
If ε2 − V 2 > 0, then the dynamics is weakly stable.
Note that if X is equipped with a conjugation such that V and ε are real, then

(18.34) is invariant under the Wigner time reversal.

18.3.7 Quantization of the Klein–Gordon equation

Until the end of this section, we would like to treat the neutral and charged cases
together. We do this by embedding the neutral case in the charged case.

More precisely, until the end of the section X is always a complex Hilbert
space with a positive self-adjoint operator ε. We consider the abstract charged
Klein–Gordon equation for t �→ ζ(t) ∈ X :

∂2
t ζ(t) + ε2ζ(t) = 0. (18.35)

We consider the charged symplectic space of solutions of (18.35), denoted Y.
Recall that every such solution can be parametrized by its Cauchy data (ϑ, ς).
The space Y is equipped with a charged symplectic dynamics rt .

If we want to consider the neutral case, we assume that there exists a
conjugation χ on X that commutes with ε. Thus we can restrict the abstract
Klein–Gordon equation to X χ = {ζ ∈ X : χζ = ζ}, obtaining the symplectic
space of solutions Yχ . The space Yχ is equipped with a symplectic dynamics
rt

∣∣
Yχ , which satisfies the abstract neutral Klein–Gordon equation.
We apply the positive energy quantization described in Subsects. 18.1.1, resp.

18.2.1, obtaining operator-valued functions

Yχ � (ϑ, ς) �→ φ(ϑ, ς), in the neutral case,

Y � (ϑ, ς) �→ ψ(ϑ, ς), in the charged case,

and the Hamiltonian H such that

eitH φ(ϑ, ς)e−itH = φ
(
rt(ϑ, ς)

)
, (ϑ, ς) ∈ Yχ ,

eitH ψ(ϑ, ς)e−itH = ψ
(
rt(ϑ, ς)

)
, (ϑ, ς) ∈ Y.

Definition 18.44 The time t configuration space field is defined as

φt(ϑ) := φ
(
r−t(ϑ, 0)

)
, ϑ ∈ ε

1
2 X χ ,

ψt(ϑ) := ψ
(
r−t(ϑ, 0)

)
, ϑ ∈ ε

1
2 X .
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18.3.8 Two-point functions for the Klein–Gordon equation

The remaining part of this section is devoted to various functions related to the
Klein–Gordon equation, which are often used in its quantization.

Consider the Klein–Gordon equation (18.35), where ζ(t) ∈ X is replaced with
an operator G(t) ∈ B(X ):

∂2
t G(t) + ε2G(t) = 0. (18.36)

The functions sin εt
ε and ei t ε

2ε solve (18.36) and appear naturally in the quantized
theory:

[ϕt1 (ϑ1), ϕt2 (ϑ2)] = iϑ1 · sin ε(t1 − t2)
ε

ϑ2 1l,(
Ω|ϕt1 (ϑ1)ϕt2 (ϑ2)Ω

)
= ϑ1 · 1

2ε
eiε(t1 −t2 )ϑ2 , ϑ1 , ϑ2 ∈ X χ ,

[ψt1 (ϑ1), ψ∗
t2

(ϑ2)] = iϑ1 · sin ε(t1 − t2)
ε

ϑ2 1l,(
Ω|ψt1 (ϑ1)ψ∗

t2
(ϑ2)Ω

)
= ϑ1 · 1

2ε
eiε(t1 −t2 )ϑ2 , ϑ1 , ϑ2 ∈ X .

Definition 18.45 sin εt
ε is called the Pauli–Jordan or commutator function.

18.3.9 Green’s functions of the abstract Klein–Gordon equation

Let us now consider an inhomogeneous version of Eq. (18.36).
In what follows we will often use the Heaviside function θ(t) := 1l[0,+∞[(t).

Definition 18.46 R � t �→ G(t) ∈ B(X ) is a Green’s function or a fundamental
solution of Eq. (18.35) if it solves

∂2
t G(t) + ε2G(t) = δ(t)1l. (18.37)

In particular, we introduce the following Green’s functions:

retarded G+(t) := θ(t)
sin εt

ε
,

advanced G−(t) := −θ(−t)
sin εt

ε
,

Feynman or causal GF(t) :=
1

2iε
(
eitεθ(t) + e−itεθ(−t)

)
,

anti-Feynman or anti-causal GF(t) := − 1
2iε
(
e−itεθ(t) + eitεθ(−t)

)
,

principal value or Dirac GPv(t) :=
sgn(t)

2
sin εt

ε
.

Note the identities
sin εt

ε
= G+(t)−G−(t),

GPv(t) =
1
2
(
G+(t) + G−(t)

)
,

G+(t) + G−(t) = GF(t) + GF (t).
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The importance of the Feynman Green’s functions in the quantum theory
comes from the identities(

Ω|T(ϕt2 (ϑ2)ϕt1 (ϑ1)) Ω
)

= iϑ2 ·GF(t2 − t1)ϑ1 , ϑ1 , ϑ2 ∈ X χ ,(
Ω|T (ψt2 (ϑ2)ψ∗

t1
(ϑ1)
)
Ω
)

= iϑ2 ·GF(t2 − t1)ϑ1 , ϑ1 , ϑ2 ∈ X ,

where we have used the time-ordering operation

T
(
At2 At1

)
:= θ(t2 − t1)At2 At1 + θ(t1 − t2)At1 At2 .

18.3.10 Green’s functions of the Klein–Gordon

equation as operators

Let X be as above. For simplicity, we assume that X is separable. We will need
the space

L2(R)⊗X � L2(R,X ). (18.38)

Note that the unitary identification � in (18.38) is possible thanks to the fact
that X is separable. It means that we can represent elements of L2(R)⊗X with
measurable a.e. defined functions, which e.g. in the temporal representation are
written as R � t �→ ζ(t) ∈ X and satisfyˆ

‖ζ(t)‖2dt < ∞.

Clearly, the subspace (L1 ∩ L2)(R,X ) is dense in L2(R,X ).
We will distinguish two physical meanings of the variable in R that appears

in (18.38). The first meaning is the time, and the corresponding generic variable
in R will be denoted t. We will then say that we use the temporal representa-
tion of the extended space. The second meaning will be the energy. Its generic
name will be τ and we will speak about the energy representation. To pass from
one representation to the other we apply the Fourier transformation F , so that
F−1τF = i−1∂t .

Green’s functions of the abstract Klein–Gordon equation can be interpreted
as quadratic forms on (L1 ∩ L2)(R,X ) given (in the temporal representation) by

ζ1 ·Gζ2 :=
ˆ

ζ1(t) ·G(t− s)ζ2(s)dtds, (18.39)

for ζ1 , ζ2 ∈ (L1 ∩ L2)(R,X ). In the energy representation they are multiplication
operators. Here we list the most important Green’s functions in the momentum
representation:

G+(τ) = (ε2 − (τ − i0)2)−1 ,

G−(τ) = (ε2 − (τ + i0)2)−1 ,

GF(τ) = (ε2 − τ 2 + i0)−1 =
(
ε2 − (τ 2 − i0 sgn(τ))2)−1

,

GF(τ) = (ε2 − τ 2 − i0)−1 =
(
ε2 − (τ 2 + i0 sgn(τ))2)−1

,

GPv(τ) = Pv(ε2 − τ 2)−1 .
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18.3.11 Euclidean Green’s function of the Klein–Gordon equation

Let us introduce the imaginary time, that is, let us replace t ∈ R with is ∈ iR.
The abstract Klein–Gordon equation is then transformed into

−∂2
s ζ + ε2ζ = 0. (18.40)

Definition 18.47 Equation (18.40) will be called the abstract Euclidean Klein–
Gordon equation.

The use of (18.40) instead of the Klein–Gordon equation is the main feature
of the so-called Euclidean approach to quantum field theory.

Definition 18.48 The Euclidean Green’s function of the abstract Klein–Gordon
equation is defined as

GE(s) =
1
2ε

(
e−sεθ(s) + esεθ(−s)

)
.

Clearly, GE solves

−∂2
s GE(s) + ε2GE(s) = δ(s)1l. (18.41)

The function GE(s) extends to a continuous function for complex s with Re s ≥ 0,
holomorphic for Re s > 0. We have

1
i
GE(it) = GF(t), −1

i
GE(−it) = GF(t).

Consider the self-adjoint operator −∂2
s + ε2 on L2(R,X ). Set

GE := (−∂2
s + ε2)−1 .

We then have

GEζ(s) =
ˆ

R

GE(s− s1)ζ(s1)ds1

for ζ ∈ (L1 ∩ L2)(R,X ). In the energy representation it is the operator of multi-
plication by

GE(τ) = (τ 2 + ε2)−1 .

Note that if ε ≥ m > 0, then GE is bounded.
We will use the standard notation for operators on L2(R). In particular, the

operator of multiplication by t in the temporal representation is denoted by t

and Dt := −i∂t . A similar notation will be used for the energy representation,
with τ replacing t.

Introduce the following operator on L2(R) (where we give its form in both the
temporal and the energy representation):

A := −1
2
(tDt + Dtt) =

1
2
(τDτ + Dτ τ). (18.42)

Clearly,

eiθA te−iθA = e−θ t, eiθAτe−iθA = eθ τ.
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Note that

R � θ �→ eiθAGEe−iθA =: Gθ
E

extends to an analytic function in the strip − π
2 < Im θ < π

2 given in the momen-
tum representation by

Gθ
E(τ) = (e2θ τ 2 + ε2)−1 .

Its boundary values coincide with the Feynman and anti-Feynman Green’s func-
tions:

G
i π

2
E = GF , G

−i π
2

E = GF .

This is the famous Wick rotation.

18.3.12 Thermal Green’s function of the Klein–Gordon equation

Recall that one of the steps of the quantization of symplectic, resp. charged
symplectic dynamics is the construction of the one-particle space Z and the
one-particle Hamiltonian h, as described in Subsect. 18.1.1, resp. 18.2.1. For the
zero temperature, the main requirement is the positivity of the Hamiltonian,
and as the result of the quantization we obtain the Hilbert space Γs(Z) and the
Hamiltonian dΓ(h).

If we are interested in positive temperatures, we can apply the formalism
described in Subsect. 17.1.7, obtaining a β-KMS state ωβ and the corresponding
Araki–Woods CCR representation. In particular, we can apply this formalism to
the abstract Klein–Gordon equation.

In this subsection we describe the 2-point correlation functions for the abstract
Klein–Gordon equation at positive temperatures.

Definition 18.49 The thermal Euclidean Green’s function at inverse tempera-
ture β of the abstract Klein–Gordon equation is defined for s ∈ [0, β] as

GE ,β (s) :=
e−sε + e(s−β )ε

2ε(1l− e−βε)
.

Note that GE ,β is the unique solution of the problem

−∂2
s GE ,β (s) + ε2GE ,β (s) = 0, s ∈]0, β[,

GE ,β (0) = GE ,β (β), ∂−
s GE ,β (β)− ∂+

s GE ,β (0) = 1lX ,

where ∂±
s denotes the derivative from the right, resp. from the left. In fact, we

have

GE ,β (β) = GE ,β (0) =
1l + e−βε

2ε(1l− e−βε)
,

∂−
s GE ,β (β) = −∂+

s GE ,β (0) =
1
2
1lX .
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Let Sβ := [0, β] (with the endpoints identified) be the circle of length β.
Clearly, GE ,β can be interpreted as a function on Sβ that solves the equation

−∂2
s GE ,β (s) + ε2GE ,β (s) = δ(s)1lX , on Sβ .

We denote by Fβ : L2(Sβ ) → l2
(

2π
β

Z
)

the discrete Fourier transform

Fβ ζ(σ) =
ˆ β

0
e−isσ ζ(s)ds, ζ ∈ L2(Sβ ).

Its inverse is given by

F−1
β v(s) = β−1

∑
σ∈ 2 π

β Z

eisσ v(σ), v ∈ l2
(

2π
β

Z
)
.

If we denote by ∂per
s the operator ∂s with periodic boundary conditions, defined

by

Dom ∂per
s :=

{
ζ ∈ L2([0, β]), ∂sζ ∈ L2([0, β]), ζ(0) = ζ(β)

}
,

then
Fβ ∂per

s = iσFβ . (18.43)

Introduce the space

L2(Sβ )⊗X � L2(Sβ ,X ). (18.44)

Consider the self-adjoint operator −(∂per
s )2 + ε2 on L2(Sβ ,X ). Set

GE ,β :=
(−(∂per

s )2 + ε2)−1
.

We then have

GE ,β ζ(s) =
ˆ

Sβ

GE ,β (s− s1)ζ(s1)ds1 , for ζ ∈ L2(Sβ ,X ).

In the energy representation obtained by applying the discrete Fourier trans-
form Fβ , GE ,β becomes the multiplication operator on l2( 2π

β Z,X ) by the Fourier
transform of s �→ GE ,β (s), the so-called Matsubara coefficients:

GE ,β (σ) := (σ2 + ε2)−1 , σ ∈ 2π

β
Z. (18.45)

Let us now describe the role of thermal Green’s functions in the quantum
theory. The function s �→ GE ,β (s) extends to a function continuous in the strip
Re s ∈ [0, β] and holomorphic inside this strip. Its boundary values express the 2-
point correlation functions for the state ωβ . More precisely, we have the following
identities (first in the neutral and then in the charged case):

ωβ

(
ϕt(ϑ1)ϕ0(ϑ2)

)
= ϑ1 ·GE ,β (it)ϑ2 ,

ωβ

(
ϕ0(ϑ2)ϕt(ϑ1)

)
= ϑ1 ·GE ,β (β + it)ϑ2 , ϑ1 , ϑ2 ∈ X χ ,

ωβ

(
ψt(ϑ1)ψ∗

0 (ϑ2)
)

= ϑ1 ·GE ,β (it)ϑ2 ,

ωβ

(
ψ∗

0 (ϑ2)ψt(ϑ1)
)

= ϑ1 ·GE ,β (β + it)ϑ2 , ϑ1 , ϑ2 ∈ X .
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18.4 Abstract Dirac equation and its quantization

In Subsects. 18.1.2, resp. 18.2.2 we described how to quantize orthogonal, resp.
unitary dynamics. The most important orthogonal or unitary dynamics used in
quantum field theory is given by the Dirac equation. We will study this equation
and its quantization in the next chapter. In this section we describe various
constructions related to the quantization of the Dirac equation in an abstract
setting.

An orthogonal dynamics can be defined by an equation of the form

(∂t − a)ζ(t) = 0, (18.46)

with an anti-self-adjoint a. In the charged case (18.46) can be replaced with

(∂t − ib)ζ(t) = 0, (18.47)

where b is self-adjoint. Many of the constructions of this section involve only a or
b. We choose, however, to use more structure in our presentation. In particular,
we multiply (18.46) and (18.47) from the left by an anti-self-adjoint operator
γ0 satisfying γ2

0 = −1l. This is used in the relativistic formulation of the Dirac
equation to make it covariant.

This section is parallel to Sect. 18.3 about the abstract Klein–Gordon equa-
tion. We will see, in particular, that with every abstract Dirac equation we can
associate an abstract Klein–Gordon equation. The knowledge of Green’s func-
tions for the abstract Klein–Gordon equation can be used to compute Green’s
functions of the abstract Dirac equation.

18.4.1 Abstract Dirac equation

Let Y be a real or complex Hilbert space, which will have the meaning of a
fermionic dual phase space. Let Γ and γ0 be anti-self-adjoint operators on Y
such that

γ2
0 = −1l, γ0Γ + Γγ0 = 0. (18.48)

Let m ≥ 0 be a number called the mass.

Definition 18.50 An equation of the form

(γ0∂t + Γ−m1l)ζ(t) = 0, (18.49)

where ζ(t) is a function from R to Y, will be called an abstract Dirac
equation.

Multiplying (18.49) with −γ0 , we obtain the equation (18.46) with an anti-
self-adjoint operator

a := γ0Γ−mγ0 .
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Introducing the Cauchy problem{
(γ0∂t + Γ−m1l)ζ(t) = 0,

ζ(0) = ϑ,
(18.50)

we see that (18.49) is solved by ζ(t) = etaϑ.
Using (18.48), we obtain that a# a = Γ# Γ + m21l, so the dynamics rt = eta is

non-degenerate if

Ker Γ = {0} or m �= 0. (18.51)

18.4.2 Neutral Dirac equation

If Y is a real Hilbert space, (18.49) will be called a abstract neutral Dirac equation.
A time reversal for the neutral Dirac equation is τ ∈ O(Y) satisfying τ 2 = ±1l,

τγ0 = −γ0τ, τΓ = Γτ, (18.52)

or, if m = 0,

τγ0 = γ0τ, τΓ = −Γτ. (18.53)

In both cases, τa = −aτ , hence if ζ(t) is a solution of (18.49), then so is τζ(−t).

18.4.3 Charged Dirac equation

Assume now that Y is a (complex) Hilbert space. Thanks to the complex struc-
ture, we can introduce the self-adjoint operator

b := −iγ0Γ + imγ0 .

The Cauchy problem (18.50) is solved by ζ(t) = eitbϑ.
A (Wigner) time reversal is an anti-unitary τ on Y satisfying (18.52), or, if

m = 0, (18.53). In both cases, τb = bτ , hence if ζ(t) is a solution of (18.49), then
so is τζ(−t).

A charge reversal is an anti-unitary χ on Y such that χ2 = ±1l and

χγ0 = γ0χ, χΓ = Γχ, (18.54)

or, if m = 0,

χγ0 = −γ0χ, χΓ = −Γχ. (18.55)

In both cases bχ = −χb and the dynamics eitb is invariant under χ.
If χ2 = 1l, then χ is a conjugation on Y and by restriction to the real subspace

Yχ we obtain a neutral Dirac equation, as in Subsect. 18.4.2.
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18.4.4 Quantization of the Dirac equation

Until the end of this section we would like to treat the neutral and charged cases
together. We will treat the charged case as the basic one and Y will always be a
complex Hilbert space. Y is identified with the space of solutions of the abstract
Dirac equation by considering the initial conditions: ϑ = ζ(0). The space Y is
equipped with a unitary dynamics rt = eitb .

If we want to consider the neutral case, we assume that there exists in Y a
conjugation χ that anti-commutes with b. Thus we can restrict the Dirac equa-
tion to Yχ equipped with the Euclidean structure and an orthogonal dynamics
eibt
∣∣
Yχ = eat .

We apply the positive energy quantization described in Subsects. 18.1.2 and
18.2.2, obtaining operator-valued functions

Yχ � ϑ �→ φ(ϑ), in the neutral case,

Y � ϑ �→ ψ(ϑ), in the complex case,

and the Hamiltonian H such that

eitH φ(ϑ)e−itH = φ(rt(ϑ)), ϑ ∈ Yχ ,

eitH ψ(ϑ)e−itH = ψ(rt(ϑ)), ϑ ∈ Y.

The fermionic fields satisfy the anti-commutation relations

[φ(ϑ1), φ(ϑ2)]+ = 2ϑ1 · ϑ2 , ϑ1 , ϑ2 ∈ Yχ ,

[ψ(ϑ1), ψ∗(ϑ2)]+ = ϑ1 · ϑ2 , ϑ1 , ϑ2 ∈ Y.

In the following part of the section, for simplicity we restrict ourselves to the
charged case.

18.4.5 Two-point functions for the Dirac equation

Consider the abstract Dirac equation (18.35), where ζ(t) ∈ Y is replaced with an
operator S(t) ∈ B(Y):

(γ0∂t + Γ−m1l)S(t) = 0. (18.56)

Recall that θ denotes the Heaviside function. The functions eibt and eibtθ(b) solve
(18.56) and appear naturally in the quantized theory:

[ψt2 (ϑ2), ψ∗
t1

(ϑ1)]+ = ϑ2 · eib(t2 −t1 )ϑ1 1l,(
Ω|ψt2 (ϑ2)ψ∗

t1
(ϑ1)Ω

)
= ϑ2 · eib(t2 −t1 )θ(b)ϑ1 , ϑ1 , ϑ2 ∈ Y.

18.4.6 Green’s functions of the Dirac equation

Consider the abstract charged Dirac equation as in Subsect. 18.4.3.

Definition 18.51 We say that R � t �→ S(t) ∈ B(Y) is a Green’s function or
fundamental solution of Eq. (18.49) if it solves

(γ0∂t + Γ−m1l)S(t) = δ(t)⊗ 1lY . (18.57)

https://doi.org/10.1017/9781009290876.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.019
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We introduce in particular the following Green’s functions:

retarded S+(t) := −θ(t)eitbγ0 ,

advanced S−(t) := −θ(−t)eitbγ0 ,

Feynman SF(t) := −eitb (θ(t)θ(b)− θ(−t)θ(−b)) γ0 ,

anti-Feynman SF(t) := −eitb (θ(t)θ(−b)− θ(−t)θ(b)) γ0 ,

principal value SPv(t) := − sgn(t)
2

eitbγ0 .

Set

ε := |b| =
√

Γ∗Γ + m21l.

We then have

(γ0∂t + Γ−m1l)(γ0∂t + Γ + m1l) = −(∂2
t + ε2).

Thus if G(t) is a Green’s function for ∂2
t + ε2 , then −(γ0∂t + Γ + m1l)G(t) is a

Green’s function for the Dirac equation. In fact we have the identities

S+(t) = −(γ0∂t + Γ + m1l)G+(t),

S−(t) = −(γ0∂t + Γ + m1l)G−(t),

SF(t) = −(γ0∂t + Γ + m1l)GF(t),

SF(t) = −(γ0∂t + Γ + m1l)GF(t),

SPv(t) = −(γ0∂t + Γ + m1l)GPv(t),

which easily follow from

eitb = cos(εt) + i sgn(b) sin(εt), Γ + m1l = ibγ0 .

The Feynman Green’s functions arise in the quantum theory in the following
way: (

Ω|T(ψt2 (ϑ2)ψ∗
t1

(ϑ1)
)
Ω
)

= ϑ2 · SF(t2 − t1)ϑ1 , ϑ1 , ϑ2 ∈ Y,

where we have used the fermionic time-ordering operation: if A1 , A2 are odd
fermionic operators, then

T (At2 At1 ) := θ(t2 − t1)At2 At1 − θ(t1 − t2)At1 At2 . (18.58)

18.4.7 Green’s functions of the Dirac equation as operators

Let Y be as above. For simplicity, we assume that Y is separable. Similarly to
Subsect. 18.3.10, we will use the space

L2(R)⊗ Y � L2(R,Y). (18.59)

We will use both the temporal representation and the energy representation of
L2(R,Y). Green’s functions of the abstract Dirac equation can be interpreted
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as quadratic forms on (L1 ∩ L2)(R,Y), denoted S and given (in the temporal
representation) by

ζ1 · Sζ2 :=
ˆ

ζ1(t) · S(t− s)ζ2(s)dtds. (18.60)

In the energy representation they are multiplication operators. Here we list the
most important Green’s functions of the Dirac operator in the energy represen-
tation:

S+(τ) =
(
iγ0(τ − i0) + Γ−m1l

)−1
,

S−(τ) =
(
iγ0(τ + i0) + Γ−m1l

)−1
,

SF(τ) =
(
iγ0(τ − i0 sgn(τ)) + Γ−m1l

)−1
,

SF(τ) =
(
iγ0(τ + i0 sgn(τ)) + Γ−m1l

)−1
,

SPv(τ) = Pv
(
iγ0τ + Γ−m1l

)−1
.

18.4.8 Euclidean Green’s function of the Dirac equation

Definition 18.52 The Euclidean Green’s function for the abstract Dirac equa-
tion is defined as

SE(s) =
(−θ(s)θ(b) + θ(−s)θ(−b)

)
e−bs iγ0 .

Note that SE solves

(−iγ0∂s + Γ−m1l)SE(s) = δ(s)1lY .

It is related to the Green’s function of the abstract Klein–Gordon equation by

SE(s) = (−iγ0∂s + Γ + m1l)GE(s).

The function SE(s) extends to an analytic function for complex s. We have

1
i
SE(it) = SF(t), −1

i
SE(−it) = SF(t).

Consider the operator on L2(R,Y)

−iγ0∂s + Γ−m1l.

In the energy representation, this becomes the operator of multiplication by

γ0τ + Γ−m1l.

It is closed on its natural domain. Moreover, we have

(γ0τ + Γ−m1l)∗(γ0τ + Γ−m1l) = (γ0τ + Γ−m1l)(γ0τ + Γ−m1l)∗

= τ 2 + Γ∗Γ + m21l > 0,
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which implies that −iγ0∂s + Γ−m1l is invertible if (18.51) holds. If this is the
case, set SE := (−iγ0∂s + Γ−m1l)−1 . Then,

SEζ(s) =
ˆ

R

SE(s− s1)ζ(s1)ds1 , ζ ∈ (L1 ∩ L2)(R,Y).

In the energy representation, this is the operator of multiplication by

SE(τ) = (γ0τ + Γ−m1l)−1 .

Using the notation in Subsect. 18.3.11, and in particular the generator of
dilations A, we see that

R � θ �→ eiθASEe−iθA =: Sθ
E

extends to an analytic function in the strip − π
2 < Im θ < π

2 , given in the momen-
tum representation by

Sθ
E(τ) = (γ0eθ τ + Γ−m1l)−1 .

Its boundary values coincide with the Feynman and anti-Feynman propagators:

S
i π

2
E = SF , S

−i π
2

E = SF .

This is the Wick rotation in the fermionic case.

18.4.9 Thermal Green’s function for the abstract Dirac equation

Clearly, we can apply the positive temperature formalism of Subsect. 17.2.7 to a
system described by an abstract Dirac equation, obtaining a β-KMS state ωβ and
the corresponding Araki–Wyss CAR representation. In this subsection, parallel
to Subsect. 18.3.12, we describe the 2-point functions given by this state.

Definition 18.53 The thermal Euclidean Green’s function at inverse tempera-
ture β of the abstract Dirac equation is defined for s ∈ [0, β] as

SE ,β (s) := −i
e−sb

1l + e−βb
γ0 .

Note that SE ,β is the unique solution of the problem

(−iγ0∂s + Γ−m1l)SE ,β (s) = 0, s ∈]0, β[,

−iγ0SE,β (0) = iγ0SE,β (β) + 1lY . (18.61)

(18.61) can be interpreted as

(−iγ0∂s + Γ−m1l)SE ,β (s) = δ(s)1lY , on Sβ ,

where we look for functions with anti-periodic boundary conditions at β = 0.
More precisely, we consider functions ζ on Sβ such that ζ(β) = −ζ(0), and the
Dirac delta function is defined as

´
Sβ

δ(s)ζ(s)ds = ζ(0) = −ζ(β) (the “right hand
side delta function”).
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Sβ � s �→ SE ,β (s) extends to a function continuous in the strip Re s ∈ [0, β]
and holomorphic inside this strip. If ωβ is the β-KMS state, then

ωβ

(
ψt(ϑ1)ψ∗

0 (ϑ2)
)

= ϑ1 · SE ,β (it)(−iγ0)ϑ2 ,

ωβ

(
ψ∗

0 (ϑ2)ψt(ϑ1)
)

= ϑ1 · SE ,β (β + it)(−iγ0)ϑ2 , ϑ1 , ϑ2 ∈ Y.

Let ∂ant
s denote the operator ∂s on the Hilbert space L2(Sβ ) with the anti-

periodic boundary conditions. Its domain is given by

Dom ∂ant
s :=

{
ζ ∈ L2(Sβ ), ∂sζ ∈ L2(Sβ ), ζ(0) = −ζ(β)

}
.

Note that ∂ant
s is anti-self-adjoint.

Define the anti-periodic discrete Fourier transform

Fant
β : L2(Sβ ) → l2

(
2π

β

(
Z +

1
2

))
by

Fβ ζ(σ) =
ˆ β

0
e−isσ ζ(s)ds, ζ ∈ L2(Sβ ).

Its inverse is

(Fant
β )−1v(s) = β−1

∑
σ∈ 2 π

β (Z+ 1
2 )

eisσ v(σ), v ∈ l2
(

2π

β

(
Z +

1
2

))
.

Clearly, ∂ant
s = (Fant

β )−1(iσ)Fant
β .

On the Hilbert space L2(Sβ )⊗ Y � L2(Sβ ,Y), we define the closed operator

(−iγ0∂
ant
s + Γ−m1l) = (−iγ0)(∂ant

s + b).

Note that ∂ant
s + b is a normal operator on its natural domain. We set SE ,β :=

(−iγ0∂
ant
s + Γ−m1l)−1 . We then have

SE ,β ζ(s) =
ˆ

Sβ

SE ,β (s1)ζ(s− s1)ds1 , ζ ∈ L2(Sβ ,Y).

In the energy representation, obtained by applying Fant
β , this becomes the oper-

ator of multiplication by the fermionic Matsubara coefficients:

SE ,β (σ) = (γ0σ + Γ−m)−1 , σ ∈ 2π

β

(
Z +

1
2

)
.

Set

Gant
E ,β (s) =

−e−sε + e(s−β )ε

2ε(1l + e−βε)
.

Note that Gant
E ,β is the unique solution of

−∂2
s Gant

E ,β (s) + ε2Gant
E ,β (s) = 0, s ∈]0, β[,

Gant
E ,β (0) = −Gant

E ,β (β), ∂+
s Gant

E ,β (0) + ∂−
s Gant

E ,β (β) = 1l. (18.62)
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In fact, we have

Gant
E ,β (0) = −Gant

E ,β (β) =
−1l + e−βε

2ε(1l + e−βε)
,

∂+
s Gant

E ,β (0) = ∂−
s Gant

E ,β (β) =
1
2
1l.

Thus Gant
E ,β can be interpreted as the solution of the equation on Sβ

−∂2
s Gant

E ,β (s) + ε2Gant
E ,β (s) = δ(s)1lX ,

with anti-periodic boundary conditions at β = 0 and the right hand side Dirac
delta function. Then we can express SE ,β in terms of Gant

E ,β as

SE ,β (s) = (−iγ0∂s + Γ + m1l)Gant
E ,β (s).

18.5 Notes

The topics discussed in this chapter in the context of concrete systems, usually
based on relativistic equations, can be found in every textbook on quantum
field theory, such as Jauch–Röhrlich (1976), Schweber (1962), Weinberg (1995)
and Srednicki (2007). The Racah and Wigner time reversals were introduced by
Racah (1927) and Wigner (1932a), respectively. Our presentation, in spite of its
abstract mathematical language, follows very closely the usual exposition; see in
particular Srednicki (2007), Sect. 22, for complex bosons and Srednicki (2007),
Sect. 49, for neutral fermions.

The idea of positive quantization of classical linear dynamics goes back to
the early days of the quantum field theory. In the fermionic case it was first
formulated in terms of the “Dirac sea”; see Dirac (1930). This approach hides
the particle–anti-particle symmetry. Its modern formulation is attributed to Fock
(1933) and Furry–Oppenheimer (1934).

In the case of bosons, the “Dirac sea” approach is not available. The bosonic
positive energy quantization was described by Pauli–Weisskopf (1934).

An interesting outline of the history of quantum field theory, which in
particular discusses the topic of the positive energy quantization, is contained in
the introduction to the monograph of Weinberg (1995).

The role of complex structures in positive energy quantization was emphasized
by Segal (1964) and Weinless (1969).

An abstract formulation of the positive energy quantization was given by Segal,
and can be found e.g. in Baez–Segal–Zhou (1991).

Positive temperature Green’s functions can be found e.g. in Fetter–Walecka
(1971), and from a more mathematical point of view in Birke–Fröhlich (2002).

https://doi.org/10.1017/9781009290876.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.019



