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Abstract

A method for determining the upper and lower bounds for performance measures
for certain types of Generalised Semi-Markov Processes has been described in Tay-
lor and Coyle [8]. A brief description of this method and its use in finding an upper
bound for the time congestion of a GI/M/n/n queueing system will be given. This
bound turns out to have a simple form which is quickly calculated and easy to use
in practice.

1. Introduction

Much work has gone into the analysis of teletraffic systems in which the
arrival traffic streams are Poisson. With the introduction of a heterogeneous
ISDN telecommunications system much of the offered traffic to the system
is no longer Poisson. The investigation of systems where the arrival traffic
streams are non-Poisson is therefore of much importance.

Often the exact nature of an arrival stream is unknown; the only data
we have about it being the mean interarrival time. Because of this it is of
interest to determine bounds on the variation of performance measures as
the interarrival distributions vary over a set of distributions with fixed mean.

In this paper we study the time congestion in the GI/M/n/n queue. To
do this we model this queue as a Generalised Semi-Markov Process (see for
example Koénig and Jansen [4]) and use this formulation to find sensitivity
bounds for the time congestion. A GSMP is insensitive when the steady state
probabilities of the system depends only on the mean values of the generally
distributed lifetimes. That is, no matter what the actual distribution of the

IDepartment of Applied Mathematics, The University of Adelaide, South Australia 5001.
© Copyright Australian Mathematical Society 1989, Serial-fee code 0334-2700/89

135

https://doi.org/10.1017/5033427000000655X Published online by Cambridge University Press


https://doi.org/10.1017/S033427000000655X

136 Andrew Coyle 2]

general lifetimes the steady state probability distribution of the system can
be determined when the mean values of these lifetimes are known.

Many GSMPs turn out to be insensitive. Others, including the GI/M/n/n
queue, are not insensitive and so the value of the steady state probabilities
of the system do depend on the actual form that the generally distributed
lifetimes take, not only on the mean value of the distributions. In a non
insensiiive GSMF there musi exist ai ieast iwo different iifetime distributions
with a fixed mean value which give rise to different steady state probability
distributions. The supremum and infimum of a performance measure as the
lifetime distribution range over the set of distributions with fixed mean form
the sensitivity bounds for this performance measure.

In Taylor and Coyle [8] a method for finding the sensitivity bounds for
GSMPs in which there is only one generally distributed lifetime is presented.
This method is described in Section 2 of this paper for the case when the
lifetime is always active. In Section 3 we apply this method to the GI/M/n/n
system. In Section 4 the method of Lagrange multipliers is briefly described
and in Section 5 an upper bound for the time congestion in a GI/M/n/n
system is found using the method of Lagrange multipliers. The proof of this
upper bound when n = 2 is given in this paper; the full proof can be found
in Coyle [2].

2. The method

In Taylor and Coyle [8] a method for finding the upper and lower values
of a performance measure for a GSMP with only a single general lifetime is
presented. In the situation described in that paper the single general lifetime
may or may not be active at any one time. In this paper a brief description
of this result when the single general distribution is always active is given.
This situation often holds when the general distribution is an interarrival dis-
tribution in a renewal input stream. For the case when the general lifetime
is not always active there are two sets of possible states of the system, one
set corresponding to when the general lifetime is active and the other corre-
sponding to when the general lifetime is not active. In this paper only the
states corresponding to when the general lifetime is active are used and so
the result presented is a simplified version of the full result given in Taylor
and Coyle [8].

We start with an irreducible Markov Process .# on a set of possible states
A. The process .# has one active lifetime which is generally distributed with
distribution function G(-). Without loss of generality it can be assumed that
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this lifetime has unit mean. Denote the set of all possible general distributions
with unit mean by .

Two types of transitions may occur in this process, those that occur when
a general lifetime finishes, with rates q£(x, x’) from state x € A4 to state
x' € A, and those that occur whilst the general lifetime is still active, with
rates ¢/ (x, x') from x € A to x’ € A. The general lifetime will be worked off at
a rate ¢(x) when the process is in state x € 4, where ¢(x) = )"/, g€ (x,x").
The transition rate matrices are,

_ [ a'(x,x"), x #x'
[Ql]x,XI B { —ZZGA ql(x, Z)’ X =x,
[QF ) = g5 (x,x"), (2.1)
(0 X #x'
[Clexr = { c(x), x=x'

where x,x’ € A, and we define
0 =-C+QF.

A property of the matrix Q,C~! is that there are no eigenvalues with positive
real part and the dominant eigenvalue ag is always equal to zero; see Taylor
[7]. Here we assume that the eigenvalues are distinct. If this is not the
case then the following method must be altered accordingly. Assume that
A contains n + 1 states. Thus the eigenvalues of Q;C~! can be written in
descending order as —a;, i = 0,...,n and the respective left eigenvectors as
W;.

Let p.(y,G) be the stationary probability density that the process is in
state x with a spent lifetime y for x € 4 when the general lifetime is dis-
tributed according to G(:). Define P(y, G) = (px(y, G),x € A) as the vector
containing these densities. So f0°° P(y, G)dy gives the probability densities
that the process is in the discrete states x. It is shown in Taylor [7] that
P(y, G) satisfies

[h(y)P(y, 6+ %P(y, G)] C-Py,G)Q =0 (2.22)

and -~
/0 P(y, G)h(y) dyQF = P(0,G)C (2.2b)

where h(y) is the hazard function associated with the distribution G(-).
Simple manipulations of (2.2) will give us

[o " P, G)dyQ, + /0 Py, Gh(y) dyQ; = 0. (23)
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Solving the differential equation (2.2a) using the spectral representation of
Q,C~! (Taylor [7]) we find that

/ TP, G)dy = 40w, + Z"j(Af-G’/a,-)[l —Gledwi  (2.92)
0

i=1
and
[e o] n
/ P(, G)h(y) dy = APWo + 3 A9 G(ar)w; (2.4b)
0 1=1

where G(o;) = f0°° exp(—a;y)dG(y) and the constants AEG) depend on G(-).

THEOREM 1. Let F( f0°° P(y,G)dy) = H(G) be a bounded function of the
stationary distribution of # . The supremum of H(G) is less than or equal to
the solution of the constrained optimisation problem £, in the variables A;,
i=0,...,nand X;, i =1,...,n defined by

n
max F (Aowo + Y (Aifa)l1 - Xi]wi) (2.5)

i=1

subject to the constraints
e < X; for 2<i<n, (2.6)
X, <1, (2.7a)
Xi < Xi-y for 2<i<n, (27b)
(X102 + a1 — az)/a; £ X2, (2.8a)
[(Xilais1 — @im1) + Xic1(ai — i)/ (@i — aim1) £ Xy for2<i<n-—1

(2.8b)

[A()Wo + i(A,-/a,-)[l - X,']W,"| Ql + [AQWO + ZA,'XW,':I Q2 =0 (29)

i=1 i=1

and
l/iowo +Y (A /a1 - Xi]Wi] e=1 (2.10)
i=1

where e is a vector of 1s.

PrOOF. Represent G(a;) and AEG) by the variables X; and A; respectively.
The form of the objective function (2.5) follows from (2.4a). Substitution
of (2.4a) and (2.4b) back into (2.3) gives the equality constraint (2.9). Since
the sum of all the probabilities must be 1 the constraint (2.10) can be found
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by summing the probability density vector given by (2.4a). From Jensen’s
inequality we know that

exp(—a;) < X;

and so the inequality constraint (2.6) must be satisfied. Constraints (2.7) and
(2.8) follow from the fact that the function G(s) is completely monotone (i.e.
(-1)mdmG(s)/ds™ > 0 Vm > 0; see Feller [3]); a proof of this result is given
in Taylor and Coyle [8].

Any feasible solution to the problem £ must satisfy these constraints.
Therefore a solution that maximises (2.5) and satisfies the constraints must
be greater than or equal to the maximum feasible solution.

3. The GI/M/n/n queue

We will now look at a specific GSMP, the GI/M/n/n queue with arrival
rate a. A GI arrival distribution is one for which the interarrival lifetimes
are generally and independently distributed. For this system the arrivals are
offered to n servers each with negative exponentially distributed service times.
Since in this situation the general lifetime is always active the above version
of the full theorem can be used. The states of this GSMP correspond to the
number of busy servers in the system and so there are n+ 1 possible states. If
c(i) = a, V 0 < i < n the general lifetime is being worked off at rate a. This
is equivalent to an arrival rate a. When a general lifetime has been worked
off an arrival occurs and another general lifetime begins. If there is a spare
server this server will service the new arrival, and if no spare exists the call
is lost. Without loss of generality assume that the service times have mean
1 and therefore the rate at which a transition from state i,i € {1,...,n} to
state | — 1 takes place is i. So we have

.. a, j=i+l1, |
E
i = . i, =0,...,n,
7°(.J) {0, otherwise ]
i, j=i-1,
adinN=4 i, Jj=i i,j=0,...,n,
0, otherwise
. a, j=i, ..
C i = . i, =0,...,n
(&) {0 otherwise, J
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and so it can be shown that

(0 0O 0 O 0 0 0\
1 -1 0 O 0 0 0
0 2 -2 0 0 0 0
0O 0 3 -3 0 0 0
o= - . . ) ) .
0O 0 0 0 -+ 2-n 0 0
0o 0o 0 0 - n-11-n 0
00 0 0 «« 0 n -n
and
(—a a 0 0 0 0 0\
0 —-a a 0 0 0 0
0 0 —a a 0 00
0 0 0 —-a 0 0 0
0; = ) . ) ) . .
0 0 0 0 —-a a 0
0 0 0 0 0 —a a
\ 0o 0 0 0 0 0 0)

The eigenvalues of @,C~! are
—a,~=—i/a, i=0,...,
and the corresponding left eigenvectors are w; with coordinates
(wi)j = { Y

0, otherwise.
Given these results and from (2.8a) and (2.8b) we get
-1<X;-2Xx,, (3.1a)
and
0< Xis1 —2Xi + X,—1, i=2,...,n—1. (3.1b)

The dot product of the right and left eigenvectors of a matrix correspond-
ing to different eigenvalues is 0. Therefore since e is the right eigenvector of
Q:C~! corresponding to the eigenvalue 0,

{ 1, i=0,
w;.e = .
0, i=1,...,n
and so from (2.10)
Ay =1. (3.2)
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Also
w0 = (—a)a;w;
and
Win:{ (_a)';viﬂ, l:=0,...,n—1,
(_a)w: il=n
where
1)k (! k=0,...,n—1,
(v“v)k={( )n(/;)’ n
(=1) (n—l)’ k =n.
Hence from (2.9)
n n—1
D AlX, = 1Iwi = Agw, = 3~ AiXiWir1 — AnXnW = 0. (3.3)
i=1

i=1

In this case we want to look at the maximum possible time congestion in the
system, and so the objective function we are looking at is the probability that
n servers are occupied. Since

[ P0.6)dy = dowo + S (difatt - Kaw
i=1

is the probability density vector, the nth component of this vector is the prob-
ability that n servers are occupied. The nth component of all the eigenvectors
apart from the nth one is zero. The nth component of the nth eigenvector is
(—1)" and so the probability that n servers are busy in given by

P, = (~1)"(adn/m)[1 - X, (3.4)

4. The method of Lagrange multipliers

To solve a nonlinear bounded optimisation problem with nonlinear
equality and inequality constraints, the method of Lagrange multipliers can
be used (see for example Avriel [1]). If the optimisation problem is

Max f(x), (4.1)
such that hj(x) =0, j=1...,p, (4.2)
and g;(x) >0, i=1,...,m, (4.3)
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then if x* is a feasible solution to (4.1), (4.2) and (4.3), and there exist vectors
A*=(A},i=1,...,m) and ®* = ( %Ji=1,...,p) satisfying

m p
VL(x*, A", @) = V. f(x*) + ) _ATV,&(x*) + ) _ 8] Vihj(x*) =0,

i=1 j=1 (4.4)
i gi(x*) =0, i=1,...,m, (4.5)
A >0, i=1,....m (4.6)

and for every z # 0 such that z € Z(x*) it follows that

m p
2T [VIf(x*)+ ) _AVigi(x*)+ ) ¢;V2ihi(x")[z<0 (4.7)

i=1 j:]
where

Z(x*)={2: 27V, g(x*) =0, i e I'(x*), 27V, gi(x*) > 0,
ieI(x*), 27V, hi(x*) =0, j=1,...,p}, (4.8)

where I(x*) is the set of indices for which g,(x*) = 0 and I’(x*) is the set of
indices for which g;(x*) = 0 and A} > 0, then x* is a strict local maximum of
f(x).

Note that in general a point that is a local maximum of a problem is not
also a global maximum. To prove that a point satisfying the above is in fact a
global maximum is often very difficult, if not impossible. In the problem that
follows it can be shown that the local maximum presented is also a global
maximum.

4.1 The GI/M/n/n queune

If we let the vector x correspond to (4;, i =0,...,n, X;, i=1,...,n), then
using the above results we find that the problem of finding an upper bound
for the time congestion in a GI/M/n/n queue using (2.6), (2.7), (3.1), (3.2)
and (3.3) is equivalent to

Max f(x) = P, = (—=1)"(adn/n)[1 - X,] (4.9)
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such that

hj(x) = ZA,-[X,- — 1](w;); — Ao(wy);
i=1
n—1

~ Y AiXi(Wipr)j — AnXa(W); =0,  j=0,...,n,

i=1
hn+|(x)EA0— 1 =03
gl(X)EX2—2X1+lZO, (410)
gi(x)EXi+1-2Xi+Xi—lZO, i=2;'“an_l,
gn(x)=1-X; 20,

gi+n—1X) = X;o1 - X; 20, i=2,...,n,

Zivm—1(x) = X; —exp(—i/a) > 0, i=1,...,n

and the method of Lagrange multipliers can be used.

5. The solution

THEOREM 2. The solution to the problem formulated in (4.9) and (14.10) is

A;=(_1)"('Z>, i=0,...,n (5.1)
and
X;:(e_n/+_l>i+l, i=1,..,n (5.2)
50
Py = (=1)"(ad,/n)1 - X;1= (a/n)(1 —e~"/%). (5.3)

Proor. The proposed solution given by (5.1), (5.2) and (5.3) can be shown to
satisfy the feasible solution conditions (4.1), (4.2) and (4.3) and also satisfy
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the necessary optimality conditions (4.4) to (4.8) when we have

n—1 1
¢=—P‘(l+ )
2 %7

AI = —¢T’

i—1 J .
3= —igi+ S A5 - ) (E( ) 1>*¢;+,), i=2..n-1,
=1

k=0

=0, A, =0, i=2..n

Mgy =0, i=1,...n—1, A%, = (1)"“A
(5.4)

The proof of this result is achieved by showing that (4.2) to (4.8) are satis-
fied by (5.4) when (4.9) defines the objective and (4.10) define the constraints.
The algebra to show this result for the general case is messy and is given in
Coyle [2]. A proof of this result when there are 2 servers is given here; the
case when there is only one server is relatively simple.

5.1 The case n =2

The vector of variables for this optimisation problem, x, is (Ag, Ay, 42,
X1, X;), the eigenvalues of Q;C~! are —ag = 0,—a; = —1/a,—a; = -2/a
and the respective eigenvectors are wo = (1,0,0),w, = (1,—1,0) and w, =
(1,-2,1), also woQ, = —aw = —a(1,-3,2). The optimisation problem as
formulated by (4.9) and (4.10) can be written as

Max f(x) = P, = a/24;(1 - X>) (5.5)
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such that

ho(x)=—Ag— A, — A, =0, hl(X)EA0+A1+2A2+A|X1+A2X2=O,
hy(x) = —-A; - A\ Xy — A2 X, =0, hi(x)=A49—-1=0,
S(X)=X2-2X1+120, &(Xx)=1-X,20, gx)=X-X;20,
g(x)=X;—e >0 g5(x)=X,—e"29>0.

(5.6)
The proposed solution to this problem given by (5.1) and (5.2) is
A =1, A1==2, A3=1, X;=(Y"+1)/2, X;=e%°,
and so
P; = (a/2)(1 —e~?9), (5.7)

The solution given by (5.7) satisfies all the constraints in (5.6). The La-
grangian given by (4.4) for this case is equivalent to

OL[/0Ay=—¢o+¢1 +¢3=0,
OL[3A; = —¢o+ (X1 + 1) —$2X, =0,

OL/0Ay = ~do+h(a+ D)~ + N+ 3(1-X) =0, (53
6L/6X1 =A1p — A1y —2Ay — A+ A3+ 44=0

OLIOX; = Ay — Aoty + Ay — A3 + As — a 32 =0,

These equations are satisfied when we choose
¢o=-P(1+(1/X7)), ¢ =-P(1/X}), ¢3=0, ¢3=-P5
B=-¢l, A=0, 43=0, =0 15=a(43/2)

(5.9)
as proposed by (5.4). These values also satisfy (4.5) and (4.6). To show that
(4.7) is satisfied the vectors z € Z(x*) must be found. These are given by
(4.8). The components of z correspond to the variables in this problem so let
27 = (24,, 24, 24> Zx,» Zx,)- The vector z must firstly satisfy 27V, g;(x*) = 0
for the inequality constraints where g;(x*) = 0. The inequality constraints
&1 and g5 are equal to zero so

27V, g (x*)=27(0,0,0,-2,1)T =0 = -2zx,+2x,=0
and
27V,g5(x*) =27(0,0,0,0,1)T =0 = zx,=0
and so zy, = zx, = 0. It is also required that 27V h;(x*) =0, j =0,...,3
and so

2TV, ho(x*) =27(~1,-1,-1,0,0)" =0,
2TV h(x*) =2T(1,1 + X1,2 + X2, 41, 4))T =0,
2TV, hy(x*) =27(0, - X1, —(1 + X3), — Ay, ~A3)T =0
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and
2TV, hs3(x*) = 27(1,0,0,0,0)T = 0.

For all of these to be satisfied it is necessary for z,, = z4, = z4, = 0.
Therefore the only possible vector z € Z(x*) is the zero vector and (4.7) is
trivially satisfied. The necessary conditions (4.2) through to (4.8) have been
shown to be satisfied by the proposed solution which is therefore a strict local
maximum of f(x). So Py is a local maximum for the time congestion in the
GI/M/n/n queue when n = 2.

To prove that this local maximum is also a global maximum it must be
shown that no other local maximum exists that is larger than the presented
result. The equality constraints kg, &, h; and h; can be reduced to the single
constraint A(x) = —A43[1+ X> - X,]+ X, = 0. The problem is now in the three
variables X, X3, and A,. Rearranging the above gives 4, = X;(1 — X; + X?)
and so for any feasible solution 4; must be positive.

The partial derivatives of the Lagrangian are given by

OL/DAy = (1 - X1 + X2) + %(1 —X;) =0,
AL/OX) = —¢p(A2+ 1) =241 - A+ A3+ 44 =0,
OL/OX, = pAr+ Ay — A3 + As — %Az = 0.
Rearranging the first of these partial derivatives gives
¢ = —a(l = X2)/12(1 - X, + X3)]

and so ¢ must be negative or zero and so it is found from the other two
partial derivatives that
2+ 24— 2A3—~242>0 (5.11)

and
M —=2A34+45>0. (5.12)

Any local maximum, and so the global maximum, of the optimisation prob-
lem must satisfy both the above two equations and the inequalities of (4.10).
Note that from (4.6) the As must be positive or zero and from (4.5) an in-
equality constraint and its corresponding Lagrange Multiplier cannot both be
nonzero.

If (5.11) is zero then ¢ = 0, X3 = 1, X; = 1 and P, = 0. Whilst this is a
feasible solution it is obviously not the global maximum of the problem.

Equation (5.11) must be positive and so either 4, or 4, or both must be
positive and so X; = 1 or X; - 2X, + 1 = 0 or both. The case when X; =1
has already been shown to be infeasible so X, —2X; +1 =0 and X, < 1.
Since X; < 1 it follows that 4; = 0. Using this and manipulating (5.11) and
(5.12) it is found that —343 — 14 + 245 > 0 and so A5 must also be positive
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1.0+
Time ] .
congestion. T " °
0.5 . GI/M/n/n
_ x ° queue
. M/M/n/n
0 T L T ¥ T T T ) T ;
2 4 6 8 10 queue

The number of circuits, n.

FiGURE 1. A comparison of the maximum time congestion in the GI/M/n/n queue
with the time congestion in the M/M/n/n queue when the arrival rate is 5.0

which means that X> = exp(—2/a). The only feasible solution is therefore
X = (1+exp(—2/a))/2, A2 = 1 and so Py is the same as the solution given by
(5.3). It has been shown that for the case when n = 2 the value of the time
congestion in a GI/M/n/n queue given by (5.3) is the maximum possible
value.

Work by Kuczura [5] has shown that the call congestion in 2 GI/M/1/1
system is minimised when the call arrival distribution is deterministic and
conjectured this was also true for cases when there was more than one server.
For the single server case, (5.2) gives X} = exp(—1/a). It is shown in Pearce
[6] that this implies that the interarrival lifetime is deterministic. Thus it has
been shown that the time congestion is maximised for the single server case
when there is a deterministic interarrival distribution; however for situations
where there is more than one server this is no longer true.

An obvious lower bound for the time congestion in the GI/M/n/n queue
is O for all values of a and n. The results that are obtained using the above
method for a lower bound of the GI/M/n/n correspond to this lower bound
of 0. Unlike the upper bound the lower bound is achieved by a known
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distribution given by
l—¢, 0<y<l1/e,

G(.)={ 1, y>1/e

for the case where ¢ — 0. This distribution is known to be achieved when
X; =1 for all i (see Taylor and Coyle [8]). These two results give bounds on
the sensitivity of the time congestion in the GI/M/n/n system.

A comparison between the maximum time congestion in the GI/M/n/n
queue and the time congestion in a M/M/n/n queue is shown in Figure 1.
The maximum possible time congestion in the GI/M/n/n queue is consid-
erably higher than that of the M/M/n/n queue for certain values of n.

6. Conclusion

In this paper a method for determining sensitivity bounds for GSMPs in
which there is only one general distribution has been presented. Using this
method sensitivity bounds for the time congestion in a GI/M/n/n system
have been produced which are quickly calculated and easy to use. For this
system an analytic result has been produced, although the full proof is long
and complicated. For other systems numerical results have been calculated
which are much easier to obtain. These numerical results often lead to inter-
esting analytic results as was true in the case presented here. A few examples
of systems investigated using the above method can be found in [8]. In gen-
eral the main problem with the method at present is that there is still a certain
degree of uncertainty as to whether the results obtained are global maxima
and minima for the problem presented or just local maxima and minima. As
with many problems of this type it may be impossible to ever prove whether
a local optimal point is also a global optimal point.
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