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Abstract

This paper deals the global existence and blow-up properties of the following non-
Newton polytropic filtration system with nonlocal source,

ut −1m,pu = a
∫
�

vα(x, t) dx, vt −1n,qv = b
∫
�

uβ(x, t) dx .

Under appropriate hypotheses, we prove that the solution either exists globally or
blows up in finite time depending on the initial data and the relations between αβ and
mn(p − 1)(q − 1). In the special case, α = n(q − 1), β = m(p − 1), we also give a
criteria for the solution to exist globally or blow up in finite time, which depends on
a, b and ζ(x), ϑ(x) as defined in our main results.
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35B33.
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1. Introduction

In this paper, we consider the following doubly degenerate parabolic system with
nonlocal source,

ut −1m,pu = a
∫
�

vα(x, t) dx, vt −1n,qv = b
∫
�

uβ(x, t) dx,

(x, t) ∈�× (0, T ],
u(x, t)= 0, v(x, t)= 0, (x, t) ∈ ∂�× (0, T ],
u(x, 0)= u0(x), v(x, 0)= v0(x), x ∈�,

(1.1)
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14 J. Zhou and C. Mu [2]

where for k > 0, γ > 2 and N ≥ 1,

1k,γ2=∇ · (|∇2
k
|
γ−2
· ∇2k), ∇2k

= k2k−1(2x1, . . . , 2xN ),

�⊂RN (N ≥ 1) is a bounded domain with smooth boundary ∂�; m, n ≥ 1, p, q > 2,
α, β > 0 are parameters; and a and b are positive constants.

Throughout this paper, we use the notation QT =�× (0, T ], ST = ∂�× [0, T ],
T > 0, and make the following assumption on initial data.

ASSUMPTION 1.1. The nonnegative initial data satisfies compatibility conditions and
um

0 (x) ∈ C(�̄) ∩W 1,p
0 (�), vn

0 (x) ∈ C(�̄) ∩W 1,q
0 (�), and ∇um

0 · ν < 0, ∇vn
0 · ν < 0

on the boundary ∂�, where ν is unit outer normal vector on ∂�.

Parabolic systems such as (1.1) appear in population dynamics, chemical reactions,
heat transfer equations and so on. In particular, Equations (1.1) may be used
to describe the nonstationary flows in a porous medium of fluids with a power
dependence of the tangential stress on the velocity of displacement under polytropic
conditions. In this case, Equations (1.1) are called the non-Newtonian polytropic
filtration equations (see [16, 25, 27] and references therein). The problems with
the nonlinear reaction term and nonlinear diffusion include blow-up and global
existence conditions of solutions, blow-up rates and blow-up sets, etc. (see the
surveys [4, 14, 17, 22]). Here, we say that a solution blows up in finite time if the
solution becomes unbounded (in the sense of maximum norm) at that time.

System (1.1) has been studied by many authors. For p = q = 2, this system
is known as the porous medium equations (see [6, 21, 29] for nonlinear boundary
conditions, see [3, 11, 12] for local nonlinear reaction terms and see [1, 5, 9, 10, 20]
for nonlocal nonlinear reaction terms).

In [20], Li and Xie considered the following problem,

ut −1um
= a

∫
�

u p dx, (x, t) ∈�× (0, T ],

u(x, t) = 0, x ∈ ∂�× (0, T ],
u(x, 0) = u0(x), x ∈�,

(1.2)

and obtained that the solution either exists globally or blows up in finite time under
appropriate assumptions. Furthermore, if p > m, they also obtained the blow-up rate.

Recently, in [9], Du generalized (1.2) to a system, and studied the following
problem,

ut −1um
=

∫
�

v p dx, vt −1v
n
=

∫
�

uq dx, (x, t) ∈�× (0, T ],

u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂�× (0, T ],
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈�.

(1.3)
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[3] Non-Newton polytropic filtration system with nonlocal source 15

Similar to [20], he also obtained the criteria for a solution to exist globally or blow up
in finite time. Moreover, if p > n, q > m, he also obtained the blow-up rates under the
monotone assumption for initial data.

When m = n = 1, problem (1.1) is called the Laplace equations (see [13, 30] for
nonlinear boundary conditions, see [15, 18, 24, 28] for local nonlinear reaction terms
and see [19] for nonlocal nonlinear reaction terms).

In [19], Li and Xie considered the following problem,

ut −∇ ·
(
|∇u|p−2

)
=

∫
�

uq dx, (x, t) ∈�× (0, T ],

u(x, t) = 0, x ∈ ∂�× (0, T ],
u(x, 0) = u0(x), x ∈�,

(1.4)

and they obtained that the solution u exists globally if q < p − 1; u blows up in finite
time if q > p − 1 and u0(x) is large enough.

For general m, n ≥ 1, p, q > 2, α, β > 0, problem (1.1) is called non-Newton
polytropic filtration system, and only the case of nonlinear boundary condition has
been considered extensively (see [23, 26, 31]). However, it seems that the case of local
(nonlocal) nonlinear reaction terms is less studied.

In [23], Sun and Wang considered the following doubly degenerate equation,

(um)t = 11,pu, (x, t) ∈�× (0, T ],
|∇u|p−2

∇u · ν = uα, x ∈ ∂�× (0, T ],
u(x, 0) = u0(x), x ∈�,

(1.5)

by using upper and lower solution methods, they proved that all positive solutions
of (1.5) exist globally if and only if α ≤ m when m ≤ p − 1, or α ≤ (p − 1)(m + 1)/p
when m > p − 1.

In [26], Wang considered the system of (1.5) in one dimension,

(um)t =
(
|ux |

p−2ux
)

x , (vn)t =
(
|vx |

q−2vx
)

x , (x, t) ∈ (0, 1)× (0, T ],
ux (0, t) = 0, ux (1, t) = auαvr (1, t), t ∈ (0, T ],
vx (0, t) = 0, vx (1, t) = buβvs(1, t), t ∈ (0, T ],
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, 1).

(1.6)
He obtained that all positive solutions of (1.6) exist globally if and only if

α <min
{

m

p − 1
,

m + 1
p

}
, s <min

{
n

q − 1
,

n + 1
q

}
,

βr ≤

(
min

{
m

p − 1
,

m + 1
p

}
− α

)(
min

{
n

q − 1
,

n + 1
q

}
− s

)
.

Motivated by the references cited above, in this paper we investigate the blow-up
properties of solutions to the problem (1.1) and extend the results of [9, 19, 20] to more
generalized cases. Our main results are stated as follows.
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16 J. Zhou and C. Mu [4]

THEOREM 1.2. Suppose that the initial data (u0(x), v0(x)) satisfies the Assump-
tion 1.1, then the solution of Problem (1.1) exists globally if one of the following
conditions holds:

(i) αβ < mn(p − 1)(q − 1);
(ii) αβ = mn(p − 1)(q − 1) and ‖�‖ is sufficiently small, where ‖�‖ is the measure

of �;
(iii) αβ > mn(p − 1)(q − 1) and the initial value is sufficiently small.

THEOREM 1.3. Suppose that the initial data (u0(x), v0(x)) satisfies the Assump-
tion 1.1, then the solution of Problem (1.1) blows up in finite time if one of the following
conditions holds:

(i) αβ > mn(p − 1)(q − 1) and the initial is sufficiently large;
(ii) αβ = mn(p − 1)(q − 1) and � contains a sufficiently large ball.

Next, we consider a special case α = n(q − 1), β = m(p − 1).

THEOREM 1.4. Suppose that the initial data (u0(x), v0(x)) satisfies the Assump-
tion 1.1, and that α = n(q − 1), β = m(p − 1).

(i) If λµ≤ (ab)−1, then the solution of Problem (1.1) exists globally.
(ii) If λµ > (ab)−1, then the solution of Problem (1.1) blows up in finite time, where

λ=

∫
�

ζm(p−1)(x) dx, µ=

∫
�

ϑn(q−1)(x) dx,

and ζ(x), ϑ(x) are the unique solution of the following elliptic equation
(see [2, 7]),{

−1m,pζ = 1, x ∈�,

ζ = 0, x ∈ ∂�,

{
−1n,qϑ = 1, x ∈�,

ϑ = 0, x ∈ ∂�.

This paper is organized as follows. In Section 2, we give some preliminaries, which
form the basis of the proof of our theorems. The proof of Theorem 1.2 is the subject
of Section 3. In Section 4, we consider the blow-up properties of Problem (1.1) and
give the proof of Theorem 1.3. Finally, in Section 5, we consider a special case of
Problem (1.1) and give the proof of Theorem 1.4.

2. Preliminaries

As it is well known that degenerate equations need not have classical solutions, we
give a precise definition of a weak solution for Problem (1.1).
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[5] Non-Newton polytropic filtration system with nonlocal source 17

DEFINITION 2.1. A pair of functions (u(x, t), v(x, t)) is called an upper (lower)
solution of Problem (1.1) in Q̄T × Q̄T if and only if

um(x, t) ∈ C
(
0, T ; L∞(�)

)
∩ L p(0, T ;W 1,p

0 (�)
)
,

vn(x, t) ∈ C
(
0, T ; L∞(�)

)
∩ Lq(0, T ;W 1,q

0 (�)
)
,

ut ∈ L2(0, T ; L2(�)
)
, vt ∈ L2(0, T ; L2(�)

)
,

u(x, 0)= u0(x), v(x, 0)= v0(x),

and the following inequalities∫
�

u(x, t2)ψ(x, t2) dx −
∫
�

u(x, t1)ψ(x, t1) dx

≥ (≤)

∫ t2

t1

∫
�

uψt dx dt −
∫ t2

t1

∫
�

|∇um
|
p−2
∇um
· ∇ψ dx dt

+ a
∫ t2

t1

∫
�

ψ(x, t)

(∫
�

vα(x, t) dx

)
dx dt,∫

�

v(x, t2)ψ(x, t2) dx −
∫
�

v(x, t1)ψ(x, t1) dx

≥ (≤)

∫ t2

t1

∫
�

vψt dx dt −
∫ t2

t1

∫
�

|∇vn
|
q−2
∇vn
· ∇ψ dx dt

+ b
∫ t2

t1

∫
�

ψ(x, t)

(∫
�

uβ(x, t) dx

)
dx dt,

hold for all 0< t1 < t2 < T , where ψ(x, t)≥ 0 ∈ C1,1(Q̄T ) such that ψ(x, T )= 0
and ψ(x, t)= 0 on ST . In particular, (u(x, t), v(x, t)) is called a weak solution
of (1.1) if it is both a weak upper and a weak lower solution.

The local existence of weak solutions to Problem (1.1) under Assumption 1.1 and
the following comparison principle is standard (see [8, 16, 25, 27]).

COMPARISON PRINCIPLE. Suppose that (u(x, t), v(x, t)) and (ū(x, t), v̄(x, t)) are
the lower and upper solution of Problem (1.1) on Q̄T × Q̄T , respectively. Then
(u(x, t), v(x, t))≤ (ū(x, t), v̄(x, t)) almost everywhere on Q̄T × Q̄T .

In order to study the globally existing solutions to Problem (1.1), we need to study
the following elliptic system

−1k,γ2= 1, x ∈�,
2= 1, x ∈ ∂�,

(2.1)

where 1k,γ2 is defined in (1.1), and we obtain the following lemma.
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18 J. Zhou and C. Mu [6]

LEMMA 2.2. Problem (2.1) has a unique solution 2(x), and satisfies the following
relations,

2(x) > 1 in �, ∇2 · ν < 0 on ∂�, sup
x∈�

2= M <+∞,

where M is a positive constant.

PROOF. Set 2k
=8, then 8 satisfies the following equation

−∇ ·
(
|∇8|γ−2

∇8
)
= 1, x ∈�,

8= 1, x ∈ ∂�.
(2.2)

Next, let 9 =8− 1, then the following equation reads

−∇ · (|∇9|γ−2
∇9)= 1, x ∈�,

9 = 0, x ∈ ∂�.
(2.3)

Then from [2, 7], we obtain that Problem (2.3) has a unique solution9(x), and satisfies
the following relations,

9(x) > 0 in �, ∇9 · ν < 0 on ∂�, sup
x∈�

9 = M ′ <+∞,

where M ′ is a positive constant. Since 2= (9 + 1)1/k , the conclusion of Lemma 2.2
follows directly. 2

3. Global existence of a solution

In this section, we investigate the global existence property of the solutions to
Problem (1.1) and prove Theorem 1.2. The main method is constructing a globally
upper solution and using comparison principle to achieve our purpose.

PROOF OF THEOREM 1.2. Let ϕ(x) and ψ(x) be the unique solution of the following
elliptic problem{

−1m,p ϕ = 1, x ∈�,

ϕ = 1, x ∈ ∂�,

{
−1n,qψ = 1, x ∈�,

ψ = 1, x ∈ ∂�.

Then from Lemma 2.2, we obtain the following relations

ϕ(x), ψ(x) > 1 in �, ∇ϕ · ν, ∇ψ · ν < 0 on ∂�, (3.1)

sup
x∈�

ϕ = M1 <+∞, sup
x∈�

ψ = M2 <+∞, (3.2)

where M1, M2 are positive constants.
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[7] Non-Newton polytropic filtration system with nonlocal source 19

Let ū(x, t)=31ϕ(x), v̄(x, t)=32ψ(x), where 31, 32 > 0 will be determined
later. Then with a direct computation we obtain

ūt −1m,pū =3m(p−1)
1 , v̄t −1n,q v̄ =3

n(q−1)
2 ,

and

a
∫
�

v̄α dx ≤ a‖�‖Mα
23

α
2 , b

∫
�

ūβ dx ≤ b‖�‖Mβ

1 3
β

1 .

So, (ū(x, t), v̄(x, t)) is an upper solution of Problem (1.1), if

3
m(p−1)
1 ≥ a‖�‖Mα

23
α
2 , 3

n(q−1)
2 ≥ b‖�‖Mβ

1 3
β

1 ,

ū(x, t)|∂� ≥ 0, v̄(x, t)|∂� ≥ 0, ū(x, 0)≥ u0(x), v̄(x, 0)≥ v0(x).

Next we prove (3.1) in three cases.
(i) When αβ < mn(p − 1)(q − 1), if we choose 31, 32 large enough such that

31 > max
{

max
x∈�̄

u0(x),

(
ab

α
n(q−1) ‖�‖

n(q−1)+α
n(q−1) M

αβ
n(q−1)

1 Mα
2

) n(q−1)
mn(p−1)(q−1)−αβ

}
,

32 > max
{

max
x∈�̄

v0(x),

(
a

β
m(p−1) b‖�‖

m(p−1)+β
m(p−1) Mβ

1 M
αβ

m(p−1)
2

) m(p−1)
mn(p−1)(q−1)−αβ

}
,

then (3.1) holds.
(ii) When αβ = mn(p − 1)(q − 1), we can choose 31, 32 large enough such that

31 >max
x∈�̄

u0(x), 32 >max
x∈�̄

v0(x),

and ‖�‖ small enough such that

‖�‖ ≤min
{(

ab
α

n(q−1) M
αβ

n(q−1)
1 Mα

2

) n(1−q)
n(q−1)+α

,

(
a

β
m(p−1) bMβ

1 M
αβ

m(p−1)
2

) m(1−p)
m(p−1)+β

}
,

then (3.1) holds.
(iii) When αβ > mn(p − 1)(q − 1), we can take 31, 32 small enough such that

31 <

(
ab

α
n(q−1) ‖�‖

n(q−1)+α
n(q−1) M

αβ
n(q−1)

1 Mα
2

) n(1−q)
αβ−mn(p−1)(q−1)

,

32 <

(
a

β
m(p−1) b‖�‖

m(p−1)+β
m(p−1) Mβ

1 M
αβ

m(p−1)
2

) m(1−p)
αβ−mn(p−1)(q−1)

.

Furthermore, if the initial data is sufficiently small such that u0(x)≤31 and
v0(x)≤32, then (3.1) holds. The proof of Theorem 1.2 is complete. 2
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20 J. Zhou and C. Mu [8]

4. Blow-up of a solution

In this section, we investigate the blow-up property of the solutions to Problem (1.1)
and prove Theorem 1.2. The main method is constructing a blowing-up lower solution
and using the comparison principle to achieve our purpose.

PROOF OF THEOREM 1.3. (i) When αβ > mn(p − 1)(q − 1) and the initial data is
large enough, set

u(x, t)= (τ − t)−γ1 V1(ξ), ξ = |x |(τ − t)−`1, V1(ξ)=

(
1+ A

2 −
ξ2

2A

)1/m

+

,

v(x, t)= (τ − t)−γ2 V2(η), η = |x |(τ − t)−`2, V2(η)=

(
1+ A

2 −
η2

2A

)1/n

+

,

where γi , `i > 0 (i = 1, 2), A > 1 and 0< τ < 1 are parameters to be determined.
It is easy to see that u(x, t), v(x, t) blow up at time τ , so it enough to prove that
(u(x, t), v(x, t)) is a lower solution of Problem (1.1). If we choose τ small enough
such that

supp u(·, t) = B(0, R(τ − t)`1)⊂ B(0, Rτ `1)⊂�,

supp v(·, t) = B(0, R(τ − t)`2)⊂ B(0, Rτ `2)⊂�,

where R = (A(2+ A))1/2, then u(x, t)|∂� = 0, v(x, t)|∂� = 0. Next if we choose the
initial data large enough such that

u0(x)≥
1
τ γ1

V1

(
|x |

τ `1

)
, v0(x)≥

1
τ γ2

V2

(
|x |

τ `2

)
,

then (u(x, t), v(x, t)) is a lower solution of Problem (1.1) if

ut −1m,pu ≤ a
∫
�

vα(x, t) dx, vt −1n,qv ≤ b
∫
�

uβ(x, t) dx,

(x, t) ∈�× (0, τ ]. (4.1)

After a direct computation, we obtain

ut =
γ1V1(ξ)+ `1ξV ′1(ξ)

(τ − t)γ1+1 , vt =
γ2V2(η)+ `2ηV ′2(η)

(τ − t)γ2+1 ,

∇um
=

x

A(τ − t)mγ1+2`1
, −1um

=
N

A(τ − t)mγ1+2`1
,

∇vn
=

x

A(τ − t)nγ2+2`2
, −1vn

=
N

A(τ − t)nγ2+2`2
,

(4.2)

and

1m,pu = |∇um
|
p−21um

+ (p − 2)|∇um
|
p−4(∇um)τ ·

(
Hx (u

m)
)
· ∇um

= |∇um
|
p−21um

+ (p − 2)|∇um
|
p−4

N∑
j=1

N∑
i=1

∂um

∂xi

∂2um

∂xi x j

∂um

∂x j
, (4.3)
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[9] Non-Newton polytropic filtration system with nonlocal source 21

1n,qv = |∇v
n
|
q−21vn

+ (q − 2)|∇vn
|
q−4(∇vn)τ ·

(
Hx (v

n)
)
· ∇vn

= |∇vn
|
q−21vn

+ (q − 2)|∇vn
|
q−4

N∑
j=1

N∑
i=1

∂vn

∂xi

∂2vn

∂xi x j

∂vn

∂x j
, (4.4)

where Hx (um), Hx (v
n) denote the Hessian matrix of um(x, t), vn(x, t), respectively.

Use the notation d(�)= diam(�), then from (4.2) and (4.3), we obtain

|1m,pu| ≤
N

A(τ − t)mγ1+2`1

(
d(�)

(τ − t)mγ1+2`1

)p−2

+ (p − 2)
(

d(�)

(τ − t)mγ1+2`1

)p−4( d(�)

(τ − t)mγ1+2`1

)2 N

A(τ − t)mγ1+2`1

=
N (p − 1)(d(�))p−2

A(τ − t)(mγ1+2`1)(p−1)
. (4.5)

Similarly, from (4.2) and (4.4) we obtain

|1n,qv| ≤
N

A(τ − t)nγ2+2`2

(
d(�)

(τ − t)nγ2+2`2

)q−2

+ (q − 2)
(

d(�)

(τ − t)nγ2+2`2

)q−4( d(�)

(τ − t)nγ2+2`2

)2 N

A(τ − t)nγ2+2`2

=
N (q − 1)(d(�))q−2

A(τ − t)(nγ2+2`2)(q−1)
. (4.6)

Next, we compute the nonlocal term of (4.1)

a
∫
�

vα(x, t) dx =
a

(τ − t)αγ2

∫
B(0,R(τ−t)`2 )

V α
2

(
|x |

(τ − t)`2

)
dx =

aM1

(τ − t)αγ2−N`2
,

b
∫
�

uβ(x, t) dx =
b

(τ − t)βγ1

∫
B(0,R(τ−t)`1 )

V β

1

(
|x |

(τ − t)`1

)
dx =

bM2

(τ − t)βγ1−N`1
(4.7)

where

M1 =

∫
B(0,R)

V α
2 (|η|) dη, M2 =

∫
B(0,R)

V β

1 (|ξ |) dξ.

If 0≤ ξ, η ≤ A, then 1≤ V1(ξ)≤ (1+ A/2)1/m , 1≤ V2(η)≤ (1+ A/2)1/n and
V ′1(ξ)≤ 0, V ′2(η)≤ 0. Combining the above inequalities and the definition of M1 and
M2, we obtain

M1 =

∫
B(0,R)

V α
2 (|η|) dη ≥

∫
B(0,A)

V α
2 (|η|) dη ≥ ‖B(0, A)‖,

M2 =

∫
B(0,R)

V β

1 (|ξ |) dξ ≥
∫

B(0,A)
V β

1 (|ξ |) dξ ≥ ‖B(0, A)‖.
(4.8)
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Then from (4.2)–(4.8) we obtain

ut −1m,pu − a
∫
�

vα(x, t) dx

≤

γ1

(
1+ A

2

)1/m

(τ − t)γ1+1 +
N (p − 1)(d(�))p−2

A(τ − t)(mγ1+2`1)(p−1)
−

a‖B(0, A)‖

(τ − t)αγ2−N`2
, (4.9)

vt −1n,qv − b
∫
�

uβ(x, t) dx

≤

γ2

(
1+ A

2

)1/n

(τ − t)γ2+1 +
N (q − 1)(d(�))q−2

A(τ − t)(nγ2+2`2)(q−1)
−

b‖B(0, A)‖

(τ − t)βγ1−N`1
. (4.10)

If ξ, η ≥ A, since m, n ≥ 1, we obtain V1(ξ)≤ 1, V2(η)≤ 1 and V ′1(ξ)≤−1/m,
V ′2(η)≤−1/n. Combining the above inequalities (4.2)–(4.7), and M1 ≥ 0, M2 ≥ 0,
we obtain

ut −1m,pu − a
∫
�

vα(x, t) dx ≤
γ1 −

1
m `1 A

(τ − t)γ1+1 +
N (p − 1)(d(�))p−2

A(τ − t)(mγ1+2`1)(p−1)
, (4.11)

vt −1n,qv − b
∫
�

uβ(x, t) dx ≤
γ2 −

1
n `2 A

(τ − t)γ2+1 +
N (q − 1)(d(�))q−2

A(τ − t)(nγ2+2`2)(q−1)
. (4.12)

If 0≤ ξ ≤ A and η ≥ A, we have that (4.9) and (4.12) hold. If ξ ≥ A and 0≤ η ≤ A,
we have that (4.11) and (4.10) hold.

So, from the above discussions, (4.1) holds if the right-hand sides of (4.9)–(4.12)
are nonpositive.

Since p, q > 2, m, n ≥ 1 and αβ > mn(p − 1)(q − 1) > mn ≥ 1, we can choose
two constants `1, `2 > 0 small enough such that

1+ α + N (`2 + α`1)

αβ − 1
<

1− 2`1(p − 1)
m(p − 1)− 1

,

1+ β + N (`1 + β`2)

αβ − 1
<

1− 2`2(q − 1)
n(q − 1)− 1

.

Then we can choose two constants γ1, γ2 such that

1+ α + N (`2 + α`1)

αβ − 1
< γ1 <

1− 2`1(p − 1)
m(p − 1)− 1

,

1+ β + N (`1 + β`2)

αβ − 1
< γ2 <

1− 2`2(q − 1)
n(q − 1)− 1

,

that is

(mγ1 + 2`1)(p − 1) < γ1 + 1< αγ2 − N`2,

(nγ2 + 2`2)(q − 1) < γ2 + 1< βγ1 − N`1.
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[11] Non-Newton polytropic filtration system with nonlocal source 23

Furthermore, if we choose A >max{1, mγ1/`1, nγ2/`2}, then for τ > 0
sufficiently small, the right-hand sides of (4.9)–(4.12) ar nonpositive, so (4.1) holds,
and we obtain Theorem 1.3(i).
(ii) When αβ = mn(p − 1)(q − 1) and� contains a sufficiently large ball, we assume
that 0 ∈� and a ball B(0, R)⊂⊂�. Then we only need to show that the radial
solution of problem (1.1) on (B(0, R)× [0, T ])× B(0, R)× [0, T ]) blows up in
finite time.

Since p, q > 2 and αβ = mn(p − 1)(q − 1), we can choose two constants `1, `2
such that

α

m(p − 1)
=
`1

`2
=

n(q − 1)
β

, that is, `2α = m(p − 1)`1, `1β = n(q − 1)`2.

Firstly, let us consider the following elliptic problem on (0, R),−
d

dr

(
r N−1

∣∣∣∣dϕm

dr

∣∣∣∣p−2 dϕm

dr

)
= r N−1,

ϕ′(0)= 0, ϕ(R)= 0,

−
d

dr

(
r N−1

∣∣∣∣dψn

dr

∣∣∣∣q−2 dψn

dr

)
= r N−1,

ψ ′(0)= 0, ψ(R)= 0.

Then it is easy to show

ϕ(r) =

(
p − 1

p

)1/m( 1
N

)1/m(p−1)(
R p/(p−1)

− r p/(p−1))1/m
,

ψ(r) =

(
q − 1

q

)1/n( 1
N

)1/n(q−1)(
Rq/(q−1)

− rq/(q−1))1/n
.

By Assumption 1.1 on initial data, we can choose s0 > 0 small enough that

u0(r)≥ s`1
0 ϕ(r), v0(r)≥ s`2

0 ψ(r), ∀r ∈ [0, R).

Next, let us consider the following Cauchy problem with s(0)= s0,

s′(t) = min
{

ac1 − 1
`1 M1

,
bc2 − 1
`2 M2

}
sϒ (t),

ϒ = min{m(p − 1)`1 − `1 + 1, n(q − 1)`2 − `2 + 1},

where for R large enough and ω(N ) is the volume of the unit ball in N -dimensional
space

c1 =

∫
B(0,R)

ψα(|x |) dx

=

∫ R

0
dr
∫
∂B(0,r)

ψα(r) dσ

=

∫ R

0
Nω(N )ψα(r)r N−1 dr

= Nω(N )

(
q − 1

q

) α
n
(

1
N

) α
n(q−1)

∫ R

0

(
R

q
q−1 − r

q
q−1

) α
n

r N−1 dr >
1
a
,
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c2 =

∫
B(0,R)

ϕβ(|x |) dx

=

∫ R

0
dr
∫
∂B(0,r)

ϕβ(r) dσ

=

∫ R

0
Nω(N )ϕβ(r)r N−1 dr

= Nω(N )

(
p − 1

p

) β
m
(

1
N

) β
m(p−1)

∫ R

0

(
R

p
p−1 − r

p
p−1

) β
m

r N−1 dr >
1
b
,

M1 =

(
p − 1

p

) 1
m
(

1
N

) 1
m(p−1)

R
p

m(p−1) , M2 =

(
q − 1

q

) 1
n
(

1
N

) 1
n(q−1)

R
q

n(q−1) .

Since ϒ > 1, then there exists a constant τ ∗ such that limt→τ∗ s(t)=+∞.
Finally, we construct u(r, t)= s`1ϕ(r) and v(r, t)= s`2ψ(r), then (u(r, t), v(r, t))

blows up in finite time. So it is enough to prove that (u(r, t), v(r, t)) is a lower
solution of Problem (1.1) on (B(0, R)× [0, τ ])× (B(0, R)× [0, τ ]). Let us make
some simple computations:

1m,pu = ∇ ·

(
|(um)r |

p−2(um)r
x

r

)
=

N∑
i=1

(
|(um)r |

p−2(um)r
xi

r

)
xi

=

N∑
i=1

(
|(um)r |

p−2(um)r

)
r

x2
i

r2 +

N∑
i=1

|(um)r |
p−2(um)r

r2
− x2

i

r3

=

(
|(um)r |

p−2(um)r

)
r
+ |(um)r |

p−2(um)r
N − 1

r

= r1−N
(

r N−1
|(um)r |

p−2(um)r

)
r
:= =(u),

1n,qv = r1−N
(

r N−1
|(vn)r |

q−2(vn)r

)
r
:= =(v).

Then Problem (1.1) becomes the following equations,

ut − =(u)− a
∫

B(0,R)
vα(|x |) dx

= `1ϕs`1−1s′(t)+ sm(p−1)`1(t)− ac1sα`2(t)

= ϕs`1−1
(
`1s′(t)+ ϕ−1sm(p−1)`1−`1+1(t)− ac1ϕ

−1sα`2−`1+1(t)
)

= ϕs`1−1
(
`1s′(t)− (ac1 − 1)ϕ−1sm(p−1)`1−`1+1(t)

)
≤ ϕs`1−1

(
`1s′(t)− (ac1 − 1)M−1

1 sm(p−1)`1−`1+1(t)
)

≤ 0, ∀(r, t) ∈ B(0, R)× (0, τ ),
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[13] Non-Newton polytropic filtration system with nonlocal source 25

vt − =(v)− b
∫

B(0,R)
uβ(|x |) dx

= `2ψs`2−1s′(t)+ sn(q−1)`2(t)− bc2sβ`1(t)

= ψs`2−1
(
`2s′(t)+ ψ−1sn(q−1)`2−`2+1(t)− bc2ψ

−1sβ`1−`2+1(t)
)

= ψs`2−1
(
`2s′(t)− (bc2 − 1)ψ−1sn(q−1)`2−`2+1(t)

)
≤ ψs`2−1

(
`2s′(t)− (bc2 − 1)M−1

2 sn(q−1)`2−`2+1(t)
)

≤ 0, ∀(r, t) ∈ B(0, R)× (0, τ ),

r N−1
|(um)r |

p−2(um)r |r=0 = 0, r N−1
|(vn)r |

q−2(vn)r |r=0 = 0, ∀t ∈ [0, τ ],
u(R, t)= s`1ϕ(R)= 0, v(R, t)= s`2ψ(R)= 0, ∀t ∈ [0, τ ],
u(r, 0)= s`1

0 ϕ(r)≤ u0(r), u(r, 0)= s`2
0 ψ(r)≤ v0(r), ∀r ∈ [0, R].

So, (u(r, t), v(r, t)) is a lower solution of Problem (1.1) on (B(0, R)× [0, τ ])
× (B(0, R)× [0, τ ]), we obtain Theorem 1.3(ii). The proof of Theorem 1.3 is
complete.

5. The special case α = n(q − 1), β = m( p− 1)

In this section we consider Problem (1.1) for a special case α = n(q − 1),
β = m(p − 1), similar to Sections 3 and 4, we prove Theorem 1.4 by constructing
special upper and lower solutions.

5.1. Global existence In this section we prove the conclusion (i) of Theorem 1.4.
Since λµ≤ (ab)−1, we can take two positive constants31, 32 large enough such that

aµ≤
3

m(p−1)
1

3
n(q−1)
2

≤ (bλ)−1, 31ζ(x)≥ u0(x), 32ϑ(x)≥ v0(x).

Set ū(x, t)=31ζ(x), v̄(x, t)=32ϑ(x), then we show that (ū(x, t), v̄(x, t)) is a
upper solution of Problem (1.1), which exists globally. After a simple computation,
we obtain

ūt −1m,pū − a
∫
�

v̄n(q−1) dx = 3m(p−1)
1 − aµ3n(q−1)

2 ≥ 0,

v̄t −1n,q v̄ − b
∫
�

ūm(p−1) dx = 3n(q−1)
2 − bλ3m(p−1)

1 ≥ 0.

Noting that ū(x, t)= v̄(x, t)= 0 on ∂�× [0,+∞), we obtain that (ū(x, t), v̄(x, t))
is an upper solution of Problem (1.1). Then conclusion (i) of Theorem 1.4 holds.

5.2. Blow-up In this section we prove conclusion (ii) of Theorem 1.4. First, we
introduce the following useful lemma.
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26 J. Zhou and C. Mu [14]

LEMMA 5.1. Suppose that the initial data (u0(x), v0(x)) satisfies the Assumption 1.1
and λµ > (ab)−1, then there exist two positive constants σ1, σ2 such that

u(x, t)≥ σ1ζ(x), v(x, t)≥ σ2ϑ(x), ∀(x, t) ∈ Q̄T .

PROOF. Since λµ > (ab)−1, we can take two appropriate σ1, σ2 positive constants
such that

aµ≥
σ

m(p−1)
1

σ
n(q−1)
2

≥ (bλ)−1, σ1ζ(x)≤ u0(x), σ2ϑ(x)≤ v0(x).

Let u(x, t)= σ1ζ(x), v(x, t)= σ2ϑ(x), then we will show (u(x, t), v(x, t)) is a lower
solution of Problem (1.1). After a simple computation, we obtain

ut −1m,pu − a
∫
�

vn(q−1) dx = σm(p−1)
1 − aµσ n(q−1)

2 ≤ 0,

vt −1n,qv − b
∫
�

um(p−1) dx = σ n(q−1)
2 − bλσm(p−1)

1 ≤ 0.

Noting that u(x, t)= v(x, t)= 0, we obtain that (u(x, t), v(x, t)) is a lower solution
of Problem (1.1). The proof of Lemma 5.1 is complete. 2

Now we can prove Theorem 1.4(ii). For �1 ⊂⊂�, let us consider the following
elliptic equation,{

−1m,pζ1 = 1, x ∈�1,

ζ1 = 0, x ∈ ∂�1,

{
−1n,qϑ1 = 1, x ∈�1,

ϑ1 = 0, x ∈ ∂�1.

Then the comparison principle asserts that ζ(x)|�1 ≥ ζ1(x), ϑ(x)|�1 ≥ ϑ1(x). Take

λ1 =

∫
�

ζ
m(p−1)
1 (x) dx, µ1 =

∫
�

ϑ
n(q−1)
1 (x) dx .

Since λµ > (ab)−1 and ζ(x)|∂� = 0, ϑ(x)|∂� = 0, we can choose some �1 such that
λ1µ1 > (ab)−1. From Lemma 5.1, we can see u(x, t)|�1 ≥ σ1ζ1(x), v(x, t)|�1 ≥

σ2ϑ1(x).
Next let us take a domain �2 ⊂⊂�1 and use the notation

ε =min
{

inf
x∈�̄2

σ1ζ1(x), inf
x∈�̄2

σ2ϑ1(x)

}
> 0.

Then,

u(x, t)|�̄2
≥ σ1ζ1(x)|�̄2

≥ ε, v(x, t)|�̄2
≥ σ2ϑ1(x)|�̄2

≥ ε.
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[15] Non-Newton polytropic filtration system with nonlocal source 27

So, the above discussion ensures that the solution (u(x, t), v(x, t)) of Problem (1.1)
is an upper solution of the following problem in (�̄2 × [0, T ])× (�̄2 × [0, T ]),

ut −1m,pu = a
∫
�

vα(x, t) dx, (x, t) ∈�2 × (0, T ],

vt −1n,qv = b
∫
�

uβ(x, t) dx, (x, t) ∈�2 × (0, T ],

u(x, t)= ε, v(x, t)= ε, (x, t) ∈ ∂�2 × (0, T ],

u(x, 0)= ε, v(x, 0)= ε, x ∈�2.

(5.1)

Denote ℘ =max{supx∈�̄2
ζ1(x), supx∈�̄2

ϑ1(x)}, and consider the following Cauchy
problem,

℘s′1(t)+ sm(p−1)
1 − aµ1sn(q−1)

2 (t) = 0, s1(0)= ε/℘
℘s′2(t)+ sn(q−1)

2 − bλ1sm(p−1)
1 (t) = 0, s2(0)= ε/℘.

(5.2)

Multiplying the first equation of (5.2) by bλ1 + 1, the second equation of (5.2) by
aµ1 + 1 and combining them together, we obtain

℘(bλ1 + 1)s′1(t)+ ℘(aµ1 + 1)s′2(t)= (abλ1µ1 − 1)
(

sm(p−1)
1 + sn(q−1)

2

)
.

Since m(p − 1) > m ≥ 1, n(q − 1) > n ≥ 1 and abλ1µ1 > 1, there exists a constant
T ′ <+∞ such that

lim
t→T ′

(s1(t)+ s2(t))=+∞.

Set ũ(x, t)= s1(t)ζ1(x), ṽ(x, t)= s2(t)ϑ1(x), then (ũ(x, t), ṽ(x, t)) blows up in
finite time. So, the solution of Problem (5.1) blows up in finite time if (̃u(x, t), ṽ(x, t))
is a lower solution of Problem (5.1). After a simple computation, we obtain

ũt −1m,pũ − a
∫
�

ṽα(x, t) dx

= ζ1(x)s
′

1(t)+ sm(p−1)
1 − aµ1sn(q−1)

2 (t)

≤ ℘s′1(t)+ sm(p−1)
1 − aµ1sn(q−1)

2 (t)= 0, ∀(x, t) ∈�2 × (0, T ],

ṽt −1n,q ũ − b
∫
�

ũβ(x, t) dx

= ϑ1(x)s
′

2(t)+ sn(q−1)
2 − bλ1sm(p−1)

1 (t)

≤ ℘s′2(t)+ sn(q−1)
2 − bλ1sm(p−1)

2 (t)= 0, ∀(x, t) ∈�2 × (0, T ],

ũ(x, t)= s1(t)ζ1(x)= 0, ṽ(x, t)= s2(t)ϑ1(x)= 0, ∀(x, t) ∈ ∂�2 × [0, T ],

ũ(x, 0)= s1(0)ζ1(x)≤ ε, ṽ(x, 0)= s2(0)ϑ1(x)≤ ε, ∀x ∈�2.

So, ũ(x, t), ṽ(x, t)) is a lower solution of Problem (5.1). Then the conclusion of
Theorem 1.4(ii) holds. The proof of Theorem 1.4 is complete. 2
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