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THE LAPLACE TRANSFORM OF exp(e')
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Abstract

In an earlier paper [4], the author showed how Laplace transforms might be assigned to
a class of superexponential functions for which the usual defining integral diverges. The
present paper considers the case of the function exp(e'). which arises in combinatorial
contexts and whose Laplace transform may be assigned by means of an extension of
techniques described in the previous paper.

1. Introduction

In a previous paper [4], Deakin, following earlier work by Vignaux [9] and Berg
[2], was able to assign Laplace transforms to a number of superexponential functions
by means of asymptotic series. Such Laplace transforms possess most of the usual
properties of the standard Laplace transform. The purpose of the present paper is to
consider the Laplace transform to be assigned to the function exp(e')-

Indeed a formal Laplace transform has already been considered for this function
by Flajolet and Schott [8] in a combinatorial context.

2. Definitions and terminology

The function exp(e') itself takes the value e when t = 0, and it will be more
convenient to normalise this to unity. Thus we define

F(t) = exp(e' - 1) (2.1)

and discuss the Laplace transform of F(t).
Deakin's [4] technique for assigning Laplace transforms to analytic but super-

exponential functions such as F(t) is to expand the function as a Taylor series, take
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term by term Laplace transforms of the result and thus arrive at an asymptotic series in
negative powers of the new variable s. One then seeks to assign a sum to this series.

The series in s~l itself may be viewed as.the Laplace transform of the original
function or, heuristically, we may apply this term to some asymptotic sum of that
series. Such sums are not, of course, unique, so that, par abus de langage, the term
"Laplace transform of F(t)" may be applied to various functions f(s).

If we apply this technique to the function defined by (2.1), there results

H- (2.2)

where Bn are the so-called "Bell numbers". F(t) is thus a generating function for the
Bell numbers and one may use it to obtain "Dobinski's formula", an explicit expression

for the nth Bell number.
The Bell numbers are also closely connected with the more familiar Stirling

numbers, as

fin = r § w , (2.4)
m=0

where S^m) are Stirling numbers of the second kind. (The notation here used is that of
Abramowitz and Stegun [1, page 824].) For more on this background, see [7; 3, page
210].

The Laplace transform of F(t) may therefore be given as

n=0

and we wish to sum this series.

3. The incomplete gamma functions

The series (2.5) is, of course, divergent and thus, although it may be assigned sums
to which it is asymptotic, such sums will not be unique. Two such sums are readily
derived.

If we expand F(t) in terms, not of t, but of e', we find

F(t) = - £ —x (3-D
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and formal term by term Laplace transformation yields

n=0

which may be summed [1, page 263] to give

( i r

i °° i 1

-£-7—' (3-2)

(rVK-D, (3.3)
e

where y(a, x) is an incomplete gamma function [1, page 260].
This function, which tends to zero as Re(s) -> oo for other than integral n, may

nonetheless be seen as an unsatisfactory Laplace transform because of the poles at
positive integral values of s. It does however lead to other forms for f(s), in particular
we have [5, page 135] that

/ ( * ) - - • + , 1 ..+-, r̂ T - + • • • • (3-4)
s s(s - 1) s(s - l)(s - 2)

Note also that if we apply the known result [6, page 147]

Sf{cxp(-ae-')} = a-sy(-s, a) (3.5)

outside its normal range of validity, and set a = —1, we reach (3.3) via a scale
theorem. This procedure is justified in the author's previous paper [4].

This does not however exhaust the matter. We also have [6, page 147]

_S?{exp(-ae')} = a T ( - s , a), (3.6)

where T(a,x) is also an incomplete gamma function [1, page 260]. In this case, the
above procedure produces, when we set a = — 1 in (3.6),

I(-l)T(-s,-l), (3.7)
e

that is,

lY(-s, -1) + (-l)T(-*)}/e. (3.8)

This form of the sum removes the poles already noticed in the sum given in (3.3).
Thus if one were to choose between the two functions on the right-hand sides of (3.3),
(3.7) as representations of the Laplace transform given by the right-hand side of (2.5),
the latter form might be preferred.
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4. A recurrence relation

The function F(t) satisfies the differential equation

F'O) = e'F(t), (4.1)

and if we take the Laplace transform of this and recall that F(0) = 1, there results

sf(s) = l + f(s-l). (4.2)

It may be readily seen [1, page 262] that both of the (3.3) and (3.7) satisfy this
relation, as, naturally, do the expansions (3.2), (3.4). Expression (2.5) also satisfies
the recurrence relation (4.2). For, substituting from (2.5) into (4.2), we find the
requirement reduces after some tedious and intricate, but otherwise undemanding,
algebraic manipulations, to

r=0 V V

This is a known property of the Bell numbers which follows immediately from a
similar property,

E (?) (4-4)

for Stirling numbers of the second kind. (See [3, page 209].)
The general solution to (4.2) is however

f(s) = fo(s)+4>(s)/r(s + \), (4.5)

where /0(s) is some particular solution, here chosen to satisfy /0(0) = 0, and 4>{s) is
an arbitrary function of period 1. Since f(s) is a Laplace transform and thus analytic
in s, then fo(s), (j>(s) must be chosen also to be analytic in s.

We now turn to a characterisation of fo(s).

5. The function/0 (5)

It is straightforward to discover the values of fo(s) for s = n (a positive integer).
We find

• ;=o

https://doi.org/10.1017/S0334270000010663 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010663


[5] The Laplace transform of exp(e') 283

But now [1, page 262] we find

/0(/i) = { ( - l ) T ( - « , -1) - E,(-\)/n\}/e, (5.2)

where E\(z) is Abramowitz and Stegun's first exponential integral [1, page 228].
Equation (5.2) is the specialisation to positive integers of the more general formula

Ms) = { ( - l ) T ( - j , -1) - E , ( - l ) / r ( * + l))/e. (5.3)

This is the most natural generalisation and will be used in what follows to define
fo(s). However it will be seen from (4.5) that fo(s) is not uniquely defined prior to
this point.

Now

E,( - l ) = -e (0.697175 . . . + / - )

= —be — in (say)

[1, page 250], where the defining integral has been indented upwards at the origin. So
we may now write (5.3) as

= {(-D'[r(-*) - y(-s, -1)] + (be + in)/ T(s + \)}/e. (5.4)

Thus [1, page 262],

= {(-l)T(-s) + M(-s, 1 - s, l)/s + (be + in)/ T(s + l))/e, (5.5)

where M(a, b, z) is Kummer's confluent hypergeometric function [1, page 504].
Choose now the principal value

(—l)s = cosns + isinns (5.6)

and substitute this into (5.5). The terms with imaginary coefficients combine to give
i (sin nsT(—s)+n/ F(l +s)}, an expression which vanishes as a result of the reflection
formula for the gamma function [1, page 256].

Thus write

Ms) = {r(-s) cos ns + M(-s, 1 - s, l)/s + be/ V(s + \)}/e. (5.7)

We now expand Ms) ^ a power series in s.
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6. The power series for fo(s)

The various terms on the right-hand side of (5.7) will now be expanded in power
series about 5 = 0. We have [1, page 256]

where C\ = 1, c2 = y, and c2 , . . . , c26 have been tabulated. In consequence of
Weierstrass' form for the gamma function [10, page 236], the coefficients cn are
polynomials in y, £(2), £(3) , . . . , that is, the values of Riemann's f -function [1,
page 807] for integral arguments. Now write

T h e dn are l ikewise polynomials in y , £ (2) , £ ( 3 ) , . . . . Indeed it may be calculated
that

dx = y, d2 = y2-c3 = 0.9890559953,

d3 = y3 - 2c3y + c4 = 0.9074790460,

d4 = y4 - 3c3y2 + 2c4y + c\-cs = 0.9817280869,

etc.

Next, from the definition of M(a, b, z) [1, page 504], we have

-M(-s, l-s, l) = --Y/ens"-ls (6.3)

where

(Formally, en = eB_n.)
Clearly e0 = e — 1, and we also have [1, page 229]

ex — be — y . (6.5)

Thene2 = 1.1464990725, e3 = 1.0693976089, eA = 1.0334848677, etc.
Finally

1 1
y ] " = 1 + ys + c3s

2 + cAs3 + ... . (6.6)
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Thus

fo(s) = il-ifi-^f. + ..\{i + y S + d2s
3+d3s

3 + ...) (6.7)

+ - -ex-e2s- e3s
2 - ... + be (l + ys + c3s

2 + .. .) I.

The terms in s~l clearly vanish, as do the constant terms - in view of (6.5). We thus
have

00

J2a"s" = °iS + aisl + • • • ' ( 6 '8 )

n = l

where

a, = ( y + bey - d2 - e2\ /e = 1.4322057347,

a2=(y—+ c3be - d3 - e3) /e = -0.136629604,

etc.

= ( y + bey - d2 - e2\ /e = 1.

=(y—+ c3be - d3 - e3) /e = -0.

7. An infinite matrix

Although the separate series (6.2) and (6.3) are each convergent (as may readily be
seen) only in the domain \s\ < 1, the series (6.8) is everywhere convergent in view of
(5.3) and the fact that F(—s, —1) is an entire function [1, pages 504, 510]. We may
thus use the series (6.8) to evaluate the function fQ(s) and its derivatives at the point
s = 1.

The function fo(s) is to have all its derivatives continuous at the point s = 1. Write
(4.2) in the form

(s + l)Ms + l) = l + Ms) (7.1)

and expand in powers of s, equating like powers from both sides. Following some
tedious though routine algebra we find

r=l

and

n + £ (r + l\ ar =
r=n+\ ^ /

nan + £ (r + l \ ar = 0 (7.3)
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for n > 1. Equations (7.2), (7.3) together make up an infinite array of linear equations

Aa = b, (7.4)

where a = (au a2, a^, . . . ) , b = (l, 0, 0, ...) and A is the matrix

1
1
1
0

1
3
2
1

1
4
6
3

1 . . .
5 . . .
10 . . .
10 . . .

(a slightly modified Pascal's triangle).
Thus the coefficients an give the solution of the equation Ax = b.
It is of interest to note that successive truncation of the system appears to produce

good approximation to the value of the first few an. The 9th approximation gives

and the 10th

a, ~ 1.4322055

a, ~ 1.4322094.

(C/. the correct value in Section 7. For a2 the corresponding values are —0.1365674
and -0.1366221 respectively.)

8. Other approaches

The asymptotic series (2.5) has also been considered by Flajolet [7] and more
recently by Flajolet and Schott [8]. These authors give a continued fraction expansion
for / ( s ) and they relate this to classical results on the Poisson-Charlier polynomials.
For details, see their original papers, but note that the connection of f(s) to the
incomplete gamma function was already indicated by Flajolet and Schott.
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