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LIMIT THEOREMS FOR THE INDUCTIVE
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Abstract

For random variables with values on binary metric trees, the definition of the expected
value can be generalized to the notion of a barycenter. To estimate the barycenter
from tree-valued data, the so-called inductive mean is constructed recursively using the
weighted interpolation between the current mean and a new data point. We show the
strong consistency of the inductive mean, but also that it, somewhat peculiarly, converges
towards the true barycenter with different rates, and asymptotic distributions depending
on the small variations of the underlying distribution.
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1. Introduction

Metric trees attract considerable interest in the contemporary scientific literature due to
their applications in various fields, most notably in computational biology (see, e.g. [12], [13],
and [18]) and theoretical computer science (see, e.g. [3]). For some recent developments about
the mathematical properties of metric trees, we refer the reader to [4] or [14]. However, rigorous
research on probabilistic modeling and statistical inference for data with values on a metric tree
seems to be lagging behind the applications. For some references in this direction, see, e.g. [8]
and [15]. The main goal of the present paper is to provide the asymptotic analysis of the
inductive sample mean on metric trees. Starting from independent and identically distributed
(i.i.d.) observations on a tree, the inductive mean can be used to estimate the center of mass or
the barycenter of a probability distribution on a metric tree. This was shown by Sturm [17] in
more general metric spaces of nonpositive curvature. His work greatly influenced our approach
to the subject and remains our main theoretical inspiration.

Sturm [17] extended the familiar laws of large numbers of probability theory from their
usual setting in Euclidean or Banach spaces to the case of metric spaces of global nonpositive
curvature (or Hadamard spaces, as they are also called). Among other examples, the list of such
spaces includes all Hilbert spaces and all complete, simply connected Riemannian manifolds of
nonpositive curvature. The barycenters on Riemannian manifolds (as well as the corresponding
notions of martingale) were also discussed in [5], [7], and [11].

This class contains two types of metric space that we are particularly interested in: the metric
trees and the so-called tripods. The tripod is basically a leafless binary tree which consists of
only one vertex and three unbounded edges (rays) connected to it (see Section 2). In the rest
of this section we will, somewhat imprecisely, use the term metric tree to refer to both tripods
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Limit theorems on metric trees 1137

and metric trees. We will assume that a metric tree T consists of the (at most countable) set of
vertices V and the set of edges E, where each edge in E can be represented as a line segment
of nonzero length (cf. [14]). For simplicity, we only consider locally finite trees. For every two
points x0, x1 ∈ T , there exists a simple path in T which starts at x0 and ends at x1. In particular,
the metric on such trees (and tripods) allows any two points x0, x1 to be connected by the unique
geodesic, that is, a continuous map γ : [0, 1] → NT such that γ (0) = x0, γ (1) = x1, and

d(γ (r), γ (t)) = d(γ (r), γ (s))+ d(γ (s), γ (t)) for all 0 ≤ r < s < t ≤ 1.

Given a probability space (�,F ,P) and a separable metric spaceN with its Borel σ -algebra
N , a random variable onN is defined as any measurable mapX : � → N . IfN is also a metric
tree or a tripod and E d(x,X) < ∞ for at least one x ∈ N , it turns out that we can define the
expectation of X as a point EX ∈ N such that function

z �→ E(d2(z,X)− d2(y,X)) (1)

is minimized at z = EX for some fixed y ∈ N . We can show (see Proposition 4.3 of [17])
that such a point z always exists and is unique. Moreover, the value z which minimizes (1)
for one y, does so for all y ∈ N . The expectation of the random variable X is also called the
barycenter of its associated probability distribution on the metric tree (N,N ).

The variance of such a random variable is defined as

varX = inf
z∈N E d2(z,X).

If varX < ∞ then the expectation of X can be defined as a point EX which minimizes

z �→ E d2(z,X),

exactly as in the case of random variables. Hence, varX = E d2(EX,X).
We could also try to generalize the notion of expectation to the metric trees through the law

of large numbers. In other words, we could view the expectation as the limit of the sample
mean for an i.i.d. sequence of N -valued random variables with the same distribution as X, if
such a limit exists. However, it is not completely straightforward to see what a sample mean
might be in this context.

For a sequence of N -valued random variables (Xi)i∈N, we can define the sequence of their
means (

−→
X n)n∈N recursively as

−→
X 1 = X1,

−→
X n =

(
1 − 1

n

)−→
X n−1 + 1

n
Xn,

where the right-hand side denotes the γ (1/n)-point on the geodesic connecting γ (0) = −→
X n−1

and γ (1) = Xn. The point
−→
X n is also denoted by

−→
X n = n−1−→∑

i=1,...,nXi and called the induc-
tive mean value X1, . . . , Xn. In general, its value depends on the order in the sequence (Xi).

There are other, arguably less intuitive or less practical, choices for the sample mean in
the global metric spaces of nonpositive curvature. One such alternative was considered in
Es-Sahib and Heinich [6], who also showed the corresponding strong law of large numbers and
the ergodic theorem. Sturm [17] proved that, for a sequence of i.i.d. random variables with a
finite variance and values in any such space (N, d), the inductive mean satisfies

−→
X n

L2−→ EX1 as n → ∞. (2)
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Moreover, if the Xis have finite support, he also showed that
−→
X n → EX1 almost surely (a.s.) as n → ∞. (3)

For a sequence of i.i.d. real-valued random variables (Xi) with finite variance σ 2 = varXi ,
the standard central limit theorem provides a more subtle result. We know that the difference
between the sample means and the expectation multiplied by the square root of the sample
size has asymptotically normal distribution. In the remaining part of the paper we show that
something rather different happens in the case of metric trees. On binary trees, both the limiting
distribution, as well as the rate of convergence, can change substantially.

The rest of the paper is organized as follows. In Section 2 we remove the assumption of finite
support needed for (3) and prove the strong law of large numbers on tripods. We also find the
asymptotic distribution for inductive means in this case. In Section 3 we first prove the strong
law of large numbers for barycenters on general metric binary trees. Finally, by generalizing
the results from the tripods, we determine our main result—the asymptotic distribution of
the inductive mean on an arbitrary binary tree. Interestingly, we discover a phase transition
phenomenon when the distribution changes in such a way that the barycenter becomes one of
the vertices. The basic tool used in most of the proofs is the comparison of the paths covered
by the inductive sample means with the sample path behaviour of the standard random walk
on the real line, and the random walk with negative drift and the barrier at 0. The latter is also
well known as the Lindley process in queueing theory, where it is used in conjunction with the
popular GI/G/1 model (see Remark 1 below and cf. [1, Chapter X]).

We note that some motivation for our study also comes from the applied perspective. Both
rooted and unrooted trees are used as a convenient representation of the evolutionary history
in biology. Biological sequences are currently routinely used to reconstruct the phylogenetic
relationship among different organisms. An important problem is to find the correct branching
point for a new organism in a previously established tree topology connecting a set of organisms.
However, different parts of the sequence (or different genes, say) often point towards different
locations of the branching point (see [9] or [16]). Sometimes it is desirable to summarize data
from different genes by building a so-called consensus tree (see [13, Section 3.6]). By studying
our problem we hope to uncover some of the many difficult issues surrounding phylogenetic
inference from real-life biological sequence data.

2. Auxiliary results on tripods

A tripod is a special case of a spider. To define a spider, consider an arbitrary nonempty set
K and, for each of its elements, i say, define the ray Ni = {(i, x) : x ∈ [0,∞)}. The spider is
formed by joining the rays together at the origin. In other words, we consider the following set
of equivalence classes:

N = {(i, x) : i ∈ K, x ∈ [0,∞)}/ ∼,
where (i, 0) ∼ (j, 0) for all i, j ∈ K . Therefore, the equivalence class in N consisting of all
points of the form (i, 0), i ∈ K , we denote by 0, and call it the origin, while all the other points
x = (i, x), x > 0, form an equivalence class on their own. If K has k ∈ N elements, we say
that N is a k-spider. The tripod is just the 3-spider, while the 2-spider is isomorphic to the real
line.

The distance between the points on the tripod (or any spider in general) is calculated as

d((i, x), (j, y)) =
{

|x − y| i = j,

|x| + |y| otherwise.
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Moreover, a binary operation can be added to a spider in the following way:

(i, x)+ (j, y) =

⎧⎪⎨
⎪⎩
(i, x + y) i = j,

(i, x − y) x ≥ y, i 	= j,

(j, y − x) otherwise.

(4)

On the 2-spider, this binary operation corresponds to the addition of real numbers. However,
on general k-spiders, k ≥ 3, this operation is commutative but not associative. The origin 0 is
clearly the neutral element for this operation, but each other point has exactly k − 1 inverses
on the k-spider. In the sequel, as it turns out, it will be important to understand the behaviour
of the random walk on this unusual space.

For (i, x) ∈ N and a ≥ 0, it is convenient to write a(i, x) = (i, ax). The binary operation
‘+’ introduced above allows us to define the inductive mean of the i.i.d. sequence (Xi) with
values on the tripod recursively as

−→
X 0 = 0,

−→
X n = n−1[(n− 1)

−→
X n−1 +Xn], n ≥ 1.

Another useful process in the sequel is the sequence

−→
S n = n

−→
X n = −→

S n−1 +Xn, n ≥ 0.

We could view (
−→
S n) as the corresponding random walk on the space N with respect to the

nonassociative addition (4).
Suppose that there exists EX1 ∈ N . For each ray Nj , j = 1, 2, 3, we define µj to be the

expectation of X1 restricted to Nj . More precisely, consider the projections

fj (x) = d(0, x)1Nj (x). (5)

That is, for x = (i, x), we set fj (x) = fj ((i, x)) = x for i = j and 0 otherwise, and then
µj = E fj (X1). The values µj are finite since E d(0, X) = µ1 + µ2 + µ3 < ∞. Observe
that the three projections fj , j = 1, 2, 3, uniquely determine the position of the point on the
tripod. We will also need the following real functions on N in the arguments later on:

gj (x) = gj ((i, x)) = (−1)1+1Nj (x)d(0, x) =
{
x i = j,

−x otherwise,
(6)

for j = 1, 2, 3. Without loss of generality, we assume in the sequel that

µ1 ≥ µ2 ≥ µ3 > 0.

The case µ3 = 0 is not considered here, because in that case P(X1 ∈ N3 \ {0}) = 0, and,
therefore, the Xis are essentially concentrated on the real line, where the usual strong law
of large numbers and the central limit theorem apply. Define a+ = max{a, 0} for any real
number a.

Lemma 1. For every two elements x and y of the tripod N and any j = 1, 2, 3, the following
inequalities hold:

gj (x)+ gj (y) ≤ gj (x + y) ≤ fj (x + y) ≤ (fj (x)+ gj (y))+.
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Proof. The statement follows directly from (5) and (6) and the definition of the binary
operation ‘+’ on the tripod; see (4). To prove the rightmost inequality, observe that

fj (x + y) = d(0, x + y)1Nj (x + y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d(0, x)+ d(0, y), x, y ∈ Nj ,
(d(0, x)− d(0, y))+, x ∈ Nj , y 	∈ Nj ,
(d(0, y)− d(0, x))+, x 	∈ Nj , y ∈ Nj ,
0, otherwise.

Each of these four expressions is less than or equal to

(d(0, x)1Nj (x)+ d(0, y)(−1)1+1Nj (y))+ = (fj (x)+ gj (y))+.

This proves the third inequality, and the other two inequalities are proved in a similar way.

Remark 1. For a given i.i.d. sequence of random variables (Yn), by an associated Lindley
process, we understand a stochastic process of the form

W0 = 0, Wn = (Wn−1 + Yn)+, n ∈ N.

It is known that Wn
d= maxk=0,...,n Y1 + · · · + Yk , where ‘

d=’ denotes equality in distribution.
Also, the long-term behaviour of the process (Wn) is well understood (see [1, Chapter 10,
Propositions 1.1 and 1.2]). For instance, if E Y1 < 0 then a limiting stationary distribution
exists for the sequence (Wn). On the other hand, if µ = E Y1 > 0 thenWn/n → µ a.s. Finally,
if E Y1 = 0 and σ 2 = var Y1 is finite and greater than 0, then the sequence Wn/

√
n converges

in distribution to a random variable of the form |W |, where W represents a normal random
variable with mean 0 and variance σ 2 (cf. the discussion of the reflection principle in [2]).

As a consequence of Lemma 1, the random sequences (fj (
−→
S n)n) are dominated by the

Lindley processes (or the half-line random walks)

S
j
0 = 0, S

j
n = (S

j
n−1 + gj (Xn))+, n ≥ 0, (7)

for each j = 1, 2, 3 and n ≥ 0.

Our first goal in this section is to prove the strong law of large numbers under the condition that
the first moment E d(z,Xi) is finite for some value z ∈ N , thus extending result (3) established
by Sturm [17]. It is well known that in the case of real-valued random variables (and, therefore,
2-spiders) this condition is both necessary and sufficient. If we suppose that the expectation
EX1 exists on N , then, by Proposition 5.7 of [17], it follows that EX1 = (1, µ1 − µ2 − µ3)

if µ1 > µ2 + µ3, and EX1 = 0 otherwise.

Proposition 1. Suppose that (Xi) is a sequence of i.i.d.N -valued random variables with finite
expectation EX1 ∈ N . Then, as n → ∞,

−→
X n → EX1 a.s.

Proof. We split the proof into two cases depending on the value µ = µ1 − µ2 − µ3 =
E g1(Xi). Recall that we assumed that µ1 ≥ µ2 ≥ µ3 > 0, and consider the processes
f1(

−→
S n) and (S1

n) (see (7)).

https://doi.org/10.1239/jap/1294170525 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170525


Limit theorems on metric trees 1141

Suppose first that µ = E g1(Xi) > 0. By the inequality in Lemma 1,

1

n

n∑
i=1

g1(Xi) ≤ 1

n
f1(

−→
S n) ≤ 1

n
S1
n.

The first and the last sequences in the inequality above converge a.s. to µ by standard results
on the (half-line) random walks (see Remark 1). Hence,

−→
X n = −→

S n/n → EX1 = (1, µ) a.s.
as well.

Suppose that µ ≤ 0. Then it is known that Sjn/n → 0 a.s. for j = 1, 2, 3; see Remark 1.
Since, for each n ∈ N,

0 ≤ 1

n
fj (

−→
S n) ≤ 1

n
S
j
n,

the same holds for the sequence fj (
−→
S n). In particular, it follows that

d(
−→
X n, 0) = d(

−→
S n, 0)
n

= 1

n
(f1(

−→
S n)+ f2(

−→
S n)+ f3(

−→
S n)) → 0 a.s. as n → ∞ .

This completes the proof.

Denote by Z a standard normal random variable, and by � its distribution function. The
following theorem describes the asymptotic behaviour of the inductive mean on tripods.

Theorem 1. Suppose that (Xi) is a sequence of i.i.d. N -valued random variables with finite
expectation EX1.

(i) If µ1 > µ2 + µ3 and the Xi are of finite variance σ 2 = varX1 > 0, then

√
n

σ
(f1(

−→
X n)− f1(EX1))

d−→ Z, (8)

where ‘
d−→’ denotes convergence in distribution.

(ii) If µ1 = µ2 + µ3 and the Xi are of finite variance σ 2 = varX1 > 0, then

√
n

σ
f1(

−→
X n)

d−→ |Z|. (9)

(iii) If µ1 < µ2 + µ3 then the sequence (n
−→
X n)n is tight in distribution.

Proof. To show that (8) holds, observe that if, for some x, y ∈ N and a, b ≥ 0, both x and
ax + by belong to N1, then

f1(ax + by) = af1(x)+ bg1(y). (10)

The sequence Yn = n−1 ∑n
i=1 g1(Xi), n ≥ 1, clearly satisfies Yn → µ a.s. Since, by Proposi-

tion 1,
−→
X n → EX1 a.s., with probability 1, there exists a random integer n0 such that, for all
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n ≥ n0, Yn ≥ 0 and
−→
X n ∈ N1. For all such n, applying (10) iteratively we obtain

√
n

σ
(f1(

−→
X n)− Yn)

=
√
n

σ

(
1

n
f1(

−→
S n0)+ 1

n

n∑
i=n0+1

g1(Xi)− 1

n
n0Yn0 − 1

n

n∑
i=n0+1

g1(Xi)

)

= 1√
nσ
(f1(

−→
S n0)− n0Yn0)

→ 0 a.s. as n → ∞.

Furthermore, the sequence (Yn) satisfies the standard central limit theorem

√
n

σ
(Yn − µ)

d−→ N(0, 1) as n → ∞.

Therefore, the first statement of the theorem follows.
(ii) To prove (9), consider again the random walk

−→
S n = n

−→
X n, n ≥ 0. For j = 1, 2, 3,

recall that the sequences

fj (
−→
S n) = d(

−→
S n, 0)1Nj (

−→
S n), n ≥ 0,

are respectively dominated by the Lindley processes (Sjn), since E gj (Xn) < 0 for j = 2
or 3 and the corresponding Markov chains (Sjn)n converge in distribution; see Remark 1. This
implies that the sequences (fj (

−→
S n))n and (Sjn)n for j = 2 or 3 are all tight in distribution. In

particular, it follows that
1√
n
fj (

−→
S n) ≤ 1√

n
S
j
n

p−→ 0

as n → ∞ for j = 2, 3, where ‘
p−→’ denotes convergence in distribution.

Now consider the sequence (f1(
−→
S n))n. By Remark 1,

lim sup
n→∞

P(f1(
−→
S n) > aσ

√
n) ≤ lim sup

n→∞
P(S1

n > aσ
√
n) = P(|Z| > a) = 2(1 −�(a)).

By the same remark, the process (S1
n)n satisfies

S1
n

d= max

{
0,

n∑
i=k

g1(Xi) : k = 1, . . . , n

}
. (11)

To prove the appropriate lower bound, note that, for x + y ∈ N1,

f1(x + y) =
{

−maxj=2,3fj (x)+ g1(y), x 	∈ N1,

f1(x)+ g1(y), x ∈ N1.
(12)

For any x, y1, . . . , yn ∈ N ,

f1(x + y1 + · · · + yn) ≥ − max
j=2,3

fj (x)+
n∑
i=1

g1(yi ),
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which can be shown by induction: the case n = 1 follows from (12), while the induction step
follows from

− max
j=2,3

fj (x + y) ≥ − max
j=2,3

fj (x)+ g1(y).

Now take an arbitrary ε > 0, and observe that

P(f1(
−→
S n) > aσ

√
n) (13)

≥ P

( n⋃
k=1

{ n∑
i=k

g1(Xi) > (a + ε)σ
√
n, max

j=2,3
fj (

−→
S k−1) < εσ

√
n

})

≥ P

( n⋃
k=1

{ n∑
i=k

g1(Xi) > (a + ε)σ
√
n, max

j=2,3
S
j
k−1 < εσ

√
n

})
. (14)

Define κ = sup{j : j = 1, . . . , n,
∑n
i=j g1(Xi) > (a + ε)σ

√
n}. Now, the probability in (14)

is greater than or equal to

P

( n⋃
j=1

{κ = j} ∩
{

max
j=2,3

S
j
j−1 < εσ

√
n
})

=
n∑
j=1

P
(
{κ = j} ∩

{
max
j=2,3

S
j
j−1 < εσ

√
n
})
.

Since the events on the right-hand side are independent for each j , the last sum is equal to

n∑
j=1

P(κ = j)
[
1 − P

(
max
j=2,3

S
j
j−1 > εσ

√
n
)]

≥
n∑
j=1

P(κ = j)− P(S2
n > εσ

√
n)− P(S3

n > εσ
√
n)

= P(S1
n > (a + ε)σ

√
n)− P(S2

n > εσ
√
n)− P(S3

n > εσ
√
n),

where the equality follows from (11).
Since, for j = 2, 3, the Markov chains (Sjn)n are tight, it holds that, as n → ∞,

P(Sjn > εσ
√
n) → 0.

Coming back to the probability in (13) and calculating lim infn→∞, we obtain the bound
P(|Z| > a + ε) = 2(1 − �(a + ε)) (again we refer to Remark 1). The statement is proved
once we note that ε > 0 was arbitrary and � is continuous.

(iii) Since E gj (Xn) < 0 for j = 1, 2, 3, all three Markov chains (Sjn)n, j = 1, 2, 3, in (7)
are tight by the argument above. Hence, the same holds for the sequences (fj (

−→
S n))n and,

therefore, for the sequence (n
−→
X n)n as well, just note that n

−→
X n = −→

S n = ∑3
j=1(j, fj (

−→
S n)).

This completes the proof.

There is an alternative, and perhaps more illustrative way, to express the first two statements
of the theorem. For any a ∈ R, define

(i, x)+ a = (i, x + a) if − a ≤ x,

where, for convenience, we can put (i, x)+ a = 0 if −a > x. If x = (i, x) and y = (i, y) for
some 0 ≤ x < y ≤ ∞, we denote the open interval on Ni by

(x, y) = {(i, z) : x < z < y}.
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Now, we can reformulate (8) by saying that, for each a < b ∈ R,

lim
n→∞ P

(−→
X n ∈

(
EX1 + aσ√

n
,EX1 + bσ√

n

))
= �(b)−�(a)

as n → ∞, and (9) as

lim
n→∞ P

(−→
X n ∈

((
1,
aσ√
n

)
, (1,∞)

))
= 2(1 −�(a)) for each a ≥ 0.

It is actually the third statement of the theorem that is, maybe, the most surprising, since in
that case the rate of convergence drastically improves and the limiting distribution, if it exists,
changes as well (cf. Proposition 2 and the Example 1, below).

Note that, in general, we cannot expect to have a limiting distribution in Theorem 1(iii).
Consider, for instance, the case when the law of random variables Xi puts equal mass at points
(j, 1), j = 1, 2, 3. Then the sequence (

−→
S n)n = (n

−→
X n)n is just a simple random walk on N .

Like the standard simple symmetric random walk on Z, (n
−→
X n)n is clearly a periodic Markov

chain with period 2 and, therefore, it does not have a limiting distribution.
In the rest of the section we consider Theorem 1(iii) in detail. We rely on the results in

Chapter 14 of [10] to establish the existence of the stationary distribution and ergodic properties
of the process (

−→
S n) (cf. [10, Subsection 14.4.1] in particular). We write

−→
S n = (iSn, Sn) ∈ N .

Observe that the sequence (
−→
S n) is a Markov chain satisfying

−→
S n = −→

S n−1 +Xn

= (iSn−1 , (Sn−1 + giSn−1
(Xn))+)+ (iXn, (Sn−1 + giSn−1

(Xn))−) (15)

for n ≥ 0, with
−→
S 0 = 0. We denote by (P (x, ·)x∈N) its transition probability kernel, and by

Px the law of this process, conditionally that it starts at the value x. Finally, by τ(C)we denote
the return time to the set C of the Markov chain (

−→
S n), that is,

τ(C) = inf{t ≥ 1 : −→
S t ∈ C}.

Recall that the Markov chain (
−→
S n) is ψ-irreducible for a measure ψ on a measurable space

(N,N ), if Px(τ (A) < ∞) > 0 for each x and setA such thatψ(A) > 0, andψ is the maximal
irreducibility measure.

It is immediate from (15) that, for n ≥ 1,

Sn = |Sn−1 + giSn−1
(Xn)|.

Recall that, for a signed measure ν and a measurable function f : N → [1,∞), the f -norm
of ν is defined as

‖ν‖f = sup
{g : g≤f }

|ν(g)|.

The following proposition follows from the Lyapunov–Foster-type drift condition applied to
the Markov chain (

−→
S n).

Proposition 2. Assume that µ1 < µ2 + µ3 and that E d(0, Xi)k+1 < ∞ for some k ∈ N0. If
the Markov chain (

−→
S n) is aperiodic and ψ-irreducible, then

(a) it admits a stationary measure π such that
∫
xk dπ(x) < ∞;

(b) for f (x) = xk , as n → ∞, ‖P(
−→
S n ∈ · )− π( · )‖f → 0.
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Proof. Note that if E d(0, Xi)l < ∞ for some l ∈ N then E |gj (X1)|l < ∞ for j = 1, 2, 3,
since |gj (x)| = d(0, x). Moreover, since µ1 < µ2 + µ3, it holds that E gj (X1) < 0 for
j = 1, 2, 3. Using the binomial theorem and the function V : N → R such that V (x) = xk+1

for x = (i, x) ∈ N , we can see that these two assumptions yield the following drift inequality:∫
P(x, dy)V (y) = E |x + gi(X1)|k+1 ≤ xk+1 − cxk = V (x)− cxk

for some constant c > 0 and all x = (i, x) with the coordinate x large enough.
In particular, there exist constants 0 < c0, b0, δ0 < ∞ such that∫

P(x, dy)yk+1 − xk+1 ≤ −c0x
k + b01B(0,δ)(x).

Statements (a) and (b) now follow through respective application of Theorem 14.0.1 (i.e. the
f -norm ergodic theorem) and Theorem 14.3.7 of [10].

In particular, under the conditions of Proposition 2,
−→
S n

d−→ π as n → ∞. Denote by λN
the Lebesgue measure on N . To show ψ-irreducibility, we could assume that the distribution
of the Xis has a component with a strictly positive density with respect to the measure λN on
some ball of radius δ > 0 around the origin, denoted by B(0, δ). Then (

−→
S n)n is easily seen to

be aperiodic and λN -irreducible (cf. [10, Section 4.2]).

Example 1. (Triple exponential distribution.) We can write each N -valued random variable
X as (iX, d(0, X)), where iX denotes the leg of the spider containing X. Suppose that iX and
d(0, X) are independent random variables. Assume further that the first of these is uniformly
distributed on the set {1, 2, 3}, while the latter has the exponential distribution on [0,∞) with
a parameter λ > 0. Assume that the random variables in the i.i.d. sequence (Xn)n have the
same distribution as X. We could call this distribution triple exponential, thereby generalizing
the well-known double exponential or Laplace distribution.

By Proposition 2, the Markov chain (
−→
S n) has an invariant distribution in the triple exponen-

tial case. From (15), it is clear that if a random variable
−→
S on N has this invariant distribution

then it necessarily holds that
−→
S

d= −→
S +X,

where
−→
S and X on the right-hand side are assumed to be independent, N -valued random

variables. It is straightforward to check that
−→
S = (iS, S), with a triple exponential distribution

and parameter α = λ/3, satisfies this distributional equation. Therefore, this is the limiting
distribution of the sequence (

−→
S n) = (n

−→
X n) from Theorem 1(iii).

3. Binary trees

In [17] the laws of large numbers are proved for the inductive mean
−→
X n in the global metric

spaces of nonpositive curvature (see (2) and (3)). However, the conditions behind these results
can be relaxed in the case of k-spiders or metric trees, as we have already seen in the case of
tripods. We extend the strong law of large numbers to binary trees under the condition that the
first moment is finite. In the sequel, we denote by T an arbitrary binary metric tree (unrooted
and possibly unbounded). Observe that any two points on T are connected by a unique path.
It is easy to see that T is also a global metric space of nonpositive curvature (cf. [17]).
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T2

T1

z
T2

T1

T3

z

Figure 1: Two possible and essentially different positions of the barycenter on a binary tree.

Theorem 2. Suppose that (Xi) is a sequence of i.i.d. T -valued random variables with finite
expectation EX1 ∈ T (see (1)). Then, as n → ∞,

−→
X n EX1 a.s.

Proof. Denote by T an arbitrary unrooted binary tree. Without loss of generality, we assume
that z = EX1 is not placed at the leaf of the tree, since this happens if and only if X1 is a.s.
equal to a constant z. In this case, however, the statement of the theorem clearly holds. By
splicing up the tree at z we can end up with two or three binary trees rooted at z (cf. Figure 1).

(i) First, suppose that we end up with two trees, say T1 and T2, rooted at z, as in the left-hand
diagram of Figure 1. Define µj = E d(X1, z)1Tj (X1), j = 1, 2. It necessarily holds that
µ1 = µ2.

Indeed, assume that the opposite holds, for instance, µ1 − µ2 = ε > 0. Denote by B(z, δ)
the open ball of radius δ > 0 centered at z, and define Tj,δ = Tj ∩B(z, δ), T c

j,δ = Tj \Tj,δ , and
µj,δ = E(d(X1, z)1Tj,δ (X1)). By the dominated convergence theorem, µ1,δ −µ2 → µ1 −µ2
as δ → 0. In particular, there is a δ0 > 0 such that µ1,δ − µ2 > ε/2 for all δ < δ0. Hence, we
can find a point z′ ∈ T1 on the same edge with z such that δ = d(z, z′) < min{δ0, ε}. Observe
that, for this z′, the following holds:

E(d2(X1, z
′)− d2(X1, y))

= E(d2(X1, z
′)1T c

1,δ
(X1)+ d2(X1, z

′)1T1,δ (X1)+ d2(X1, z
′)1T2(X1)− d2(X1, y))

≤ E((d(X1, z)− δ)21T c
1,δ
(X1)+ δ21T1,δ (X1)+ (d(X1, z)+ δ)21T2(X1)− d2(X1, y))

≤ E(d2(X1, z)− d2(X1, y))+ δ2 − 2δ(µ1,δ − µ2)

< E(d2(X1, z)− d2(X1, y)).

However, the last inequality contradicts the assumption that z is the barycenter; cf. (1) and the
discussion thereafter. Thus, µ1 = µ2.

The following real functions on T are used repeatedly in the sequel:

f ′
j (x) = 1Tj (x)d(x, z), (16)

g′
j (x) = (−1)1+1Tj (x)d(x, z). (17)

Note that, since µ1 = µ2, E g′
j (X1) = 0 for j = 1 and 2. Consider the sequence (f ′

j (
−→
X n)). It

is straightforward to check that

f ′
j (

−→
X n) ≤

(
n− 1

n
f ′
j (

−→
X n−1)+ 1

n
g′
j (Xn)

)
+
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by considering all possible positions of the points
−→
X n−1 andXn with respect to z (cf. the proof

of Lemma 1). Multiplying the last equality by n, we obtain

nf ′
j (

−→
X n) ≤ ((n− 1)f ′

j (
−→
X n−1)+ g′

j (Xn))+ for each n ≥ 0.

In particular, the sequence (nf ′
j (

−→
X n)) for j = 1, 2 is dominated by the Lindley process (Sjn),

given by Sj0 = 0 and
S
j
n = (S

j
n−1 + g′

j (Xn))+, n ≥ 1.

Since E g′
j (Xn) = 0, it follows that Ŝjn/n → 0 a.s., again by Remark 1. Hence, d(

−→
X n, z) =

f ′
1(

−→
X n)+ f ′

2(
−→
X n) → 0 a.s.

(ii) In the case z is located at the vertex, it splits T into three trees, say T1, T2, and T3, rooted
at z, as in the right-hand diagram of Figure 1. Again, define µj = E d(X1, z)1Tj (X1), j =
1, 2, 3, and assume without loss of generality that µ1 ≥ µ2 ≥ µ3. It necessarily holds that
µ1 ≤ µ2 +µ3 or otherwise z would not be a barycenter, which can be shown as in part (i). If we
consider the functions g′

j , f
′
j and the sequences (f ′

j (
−→
X n)), (S

j
n) as above for j = 1, 2 and 3, it

holds that E g′
j (Xn) ≤ 0 for each j . Therefore, Sjn/n →0 a.s., and, finally, d(

−→
X n, z) →0 a.s.

as n → ∞, exactly as in part (i). This completes the proof.

Suppose that there exists the expectation z = EX1 ∈ T . Then z splits T into two or three
binary trees rooted at z (see Figure 1). In either case, consider the functions f ′

j (x) and g′
j (x)

from (16) and (17) for j = 1 or 2 (or 3 if z is located at one of the vertices), and define

µj = E(f ′
j (X1)).

Assume again that
µ1 ≥ µ2 ≥ µ3 > 0,

if z is a vertex (since, if µ3 = 0, the random variables Xn do not take values at subtree T3 with
probability 1, and z can be considered an interior point of the edge connecting the subtrees T1
and T2).

Theorem 3. Suppose that (Xi) is a sequence of i.i.d. T -valued random variables with finite
expectation z = EX1.

(i) If the Xi have finite variance σ 2 = varX1 > 0 and z is not a vertex of T , then, as
n → ∞, √

n

σ
g′

1(
−→
X n)

D−→ Z. (18)

(ii) If the Xi have finite variance σ 2 = varX1 > 0, z is a vertex of T , and µ1 = µ2 + µ3,
then, as n → ∞, √

n

σ
f ′

1(
−→
X n)

D−→ |Z|. (19)

(iii) If z is a vertex of T and µ1 < µ2 + µ3, then the sequence (n d(z,
−→
X n))n is tight in

distribution.

Proof. (i) Let e be the edge of T containing z. For some δ > 0, clearly B(z, δ) ⊆ e. By
Theorem 2, with probability 1, there is a number n0 = n0(ω) such that, for all n ≥ n0,−→
X n ∈ B(z, δ). Since, for n > n0,

g′
1(

−→
X n) = (−1)1+1T1 (

−→
X n)d(z,

−→
X n) = (−1)1+1T1 (

−→
X n−1)d

(
0,
n− 1

n

−→
X n−1

)
+ g′

1

(
1

n
Xn

)
,
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for Vn = ng′
1(

−→
X n), it holds that

Vn = Vn−1 + g′
1(Xn).

In other words, for n > n0, the sequence (Vn) behaves as a random walk on the real line with
i.i.d. steps (g′

1(Xn)), since E g′
1(X1) = 0 and var g′

1(X1) = σ 2, and relation (18) follows.
(ii) Again, by Theorem 2, with probability 1, there is an integer n0 = n0(ω) such that, for all

n ≥ n0,
−→
X n stays on one of the three edges connected to the vertex z. Hence, for indices larger

than n0, the sequence (
−→
X n) evolves as if it was defined on a tripod. It is useful for the rest

of the proof to embed this sequence in an auxiliary tripod N . This can be achieved by setting−→
X ′
n ≡ (i, d(z,

−→
X n)) when

−→
X n ∈Ti . Define an N -valued process (

−→
S n)n≥n0 by

−→
S n = n

−→
X ′
n, n ≥ n0.

For the sequences for j = 1, 2, 3, set

fj (
−→
S n) := d(0,

−→
S n)1Nj (

−→
S n) = n d(z,

−→
X n)1Tj (

−→
X n), n ≥ n0,

These three sequences behave exactly as (fj (
−→
S n)) in the proof of Theorem 1, because the

random variables
−→
X n stay on the tripod with the origin z for all n ≥ n0. In particular, they are

respectively dominated by the following Markov chains for j = 1, 2, 3:

S
j
n0 = f ′

j (
−→
S n0), S

j
n = (S

j
n−1 + g′

j (Xn))+, n > n0.

Since E g′
j (Xn) < 0 for j = 2 or 3, the sequences (f ′

j (
−→
S n))n and (Sjn)n are tight in distribution

for j 	= 1. Comparison of the sequence (f ′
1(

−→
S n))n with the Markov chain (S1

n)n implies the
desired relation (19) by the fact that E g′

1(Xn) = 0 (cf. arguments in the proof of Theorem 1).
(iii) Again, with probability 1, we can find an n0 such that, for all n ≥ n0, the

−→
X ns stay on

the tripod centered at z. The reasoning above and the proof of Theorem 1 are easily adjusted to
show that the sequences (f ′

j (
−→
S n))n are tight in distribution for all j = 1, 2, 3. This completes

the proof.

Observe that Theorems 1 and 3 can be used to derive a potentially useful, simple statistical test
concerning the hypotheses about the barycenter. As usual, we have to substitute the unknown
variance σ 2 with its standard sample estimate. Note that the results and proofs above extend
directly to arbitrary k-spiders and locally finite nonbinary metric trees. The strong laws of large
numbers hold unaltered in these cases too. Limit theorems will need minor adjustments, since
on a general tree, the barycenter can split the tree into more than three subtrees. Nevertheless,
asymptotically, the inductive mean will have one of the three types of behaviour described in
Theorem 3. In particular, the phase transition in the limiting behaviour is still to be expected.
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