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Power minimisation in branched fluidic networks has gained significant attention in
biology and engineering. The optimal network is defined by channel radii that minimise
the sum of viscous dissipation and the volumetric energetic cost of the fluid. For
limit cases including laminar flows, high-Reynolds-number turbulence or smooth-channel
approximations, optimal solutions are known. However, current methods do not allow
optimisation for a large intermediate part of the parameter space which is typically
encountered in realistic fluidic networks that exhibit turbulent flow. Here, we present
a unifying optimisation approach based on the Darcy friction factor, which has been
determined for a wide range of flow regimes and fluid models and is applicable to the entire
parameter space: (i) laminar and turbulent flows, including networks that exhibit both
flow types, (ii) non-Newtonian fluids (powerlaw, Bingham and Herschel–Bulkley) and
(iii) networks with arbitrary wall roughness, including non-uniform relative roughness.
The optimal channel radii are presented analytically and graphically. All existing limit
cases are recovered, and a concise framework is presented for systematic optimisation of
fluidic networks. Finally, the parameter x in the optimisation relationship Q ∝ Rx , with Q
the flow rate and R the channel radius, was approximated as a function of the Reynolds
number, revealing in which case the entire network can be optimised based on one optimal
channel radius, and in which case all radii must be optimised individually. Our approach
can be extended to a wide range of fluidic networks for which the friction factor is known,
such as different channel curvatures, bubbly flows or specific wall slip conditions.

Key words: fractals, channel flow, rheology

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1011 A42-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

39
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-5002-0913
https://orcid.org/0000-0002-1508-1275
https://orcid.org/0000-0002-0647-9249
https://orcid.org/0000-0003-3147-2003
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.393&domain=pdf
https://doi.org/10.1017/jfm.2025.393


J.S. Smink, R. Hagmeijer, C.H. Venner and C.W. Visser

1. Introduction
Branched networks for fluid transport are omnipresent in biology and engineering.
Biological systems, such as vascular networks (Hutchins, Miner & Boitnott 1976; Reichold
et al. 2009; Kelch et al. 2015) and the bronchial trees of the lungs (Hooper 1977; Xu
et al. 2016; Sznitman 2022), are capable of efficiently transporting heat or mass with low
dissipation within limited volumes (Bejan & Lorente 2013). Similarly, fluidic networks
provide efficient transport in emerging engineering applications, such as microfluidics
(Whitesides 2006), additive manufacturing (Skylar-Scott et al. 2019; Shaqfeh et al. 2023),
creation of synthetic vasculatures (Sexton et al. 2023), microreactors (Dong et al. 2021)
and multifunctional materials (Zheng et al. 2017). These networks were comprehensively
analysed and optimised for Newtonian (Murray 1926a,b; Kamiya, Togawa & Yamamota
1974; Zamir 1977; Oka & Nakai 1987), power-law (Mayrovitz 1987; Revellin et al. 2009;
Stephenson & Lockerby 2016; Miguel 2018) and yield-stress fluids (Ponalagusamy 2012;
Smink et al. 2023) in the laminar flow regime. However, a transition to turbulence
commonly occurs in natural flows (Olson, Dart & Filley 1970; Stein & Sabbah 1976; Ku
1997; Berger & Jou 2000; Calmet et al. 2016; Ha et al. 2018, 2019) and industrial flows
such as district heating (Gumpert, Wieland & Spliethoff 2019; Steinegger et al. 2023),
water distribution networks, heat exchangers (Siddiqui & Zubair 2017), the paper making
process (Lundell, Söderberg & Alfredsson 2011) and inertial microfluidics (Wang, Yang &
Zhao 2014). Similarly, fluidic networks that exhibit both turbulent flow and non-Newtonian
behaviour may benefit upscaling of nozzle-based technologies via parallelisation, such as
in-air microfluidics (Visser et al. 2018), spray drying (van Deventer, Houben & Koldeweij
2013), prilling (Kamis et al. 2023) or 3D printing of polymer foams (Visser et al. 2019).
Finally, analytical optimisation of fluidic networks in various turbulent regimes would
provide key validation data for computational fluid dynamics, which is increasingly used
to describe (Morris et al. 2016) or design (Sexton et al. 2023) networks with e.g. complex
geometries.

The parameter space spanned by the Reynolds number, the roughness and different fluid
models is shown in figure 1(a,b). Applications are plotted in figure 1(a), showing the
broad range of relevant Reynolds numbers, Re, and relative channel wall roughnesses,
δ, especially in the intermediate-Re turbulent regime (the Reynolds number is defined in
(2.4)). Figure 1(b) shows that the energy consumption by the network has been minimised
(Murray 1926b; Smink et al. 2023) only for specific limits of this parameter space. This
total energy consists of the sum of the power needed to maintain the flow (product of the
pressure drop �p and the volume flow rate Q) and a volumetric cost function αV , with
α a cost factor and V the volume of the channel, for networks as schematically shown in
figure 1(c, d). For example, in the case of a vascular network, the cost factor expresses the
metabolic energy needed to maintain blood (α ≈ 1 kW m−3) (Murray 1926b); for other
situations, see Smink et al. (2023). Note that optimising the relative channel radii for a
given volume is a related problem, which has been pursued for many cases with e.g. a
constructional law (Bejan, Rocha L.A. & Lorente 2000; Miguel & Rocha 2018; Miguel
2018). Instead, we focus on optimisation against a cost factor, which is generalisable for
different boundary conditions such as a cost function of the wall surface area (Woldenberg
& Horsfield 1986) and readily provides access to the optimal channel radii.

For a circular pipe with radius R, the power is generally minimised if

Rx

Q
= const., (1.1)
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Figure 1. (a) Parameter space of the Reynolds number Re and the relative channel wall roughness δ for fluidic
networks in coronary arteries (Singhal, Henderson & Horsfield 1973; Kassab et al. 1993; Burton & Espino
2019), paper making (Forgacs, Robertson & Mason 1957; Grossman & Carpenter 1968; Moller 1976), water
distribution (van der Schans et al. 2015; NEN 2018), inertial microfluidics (Di Carlo 2009; Zhang et al. 2016; Lu
et al. 2017), heat exchangers (Towler & Sinnott 2013) and district heating (Gumpert et al. 2019; Steinegger et al.
2023). The colour indicates a Newtonian (blue), power-law (green) or yield-stress (red) fluid. Here, Recrit is
assumed to be independent of δ for this parameter space. (b) Previously optimised parts of the parameter space
include laminar flow and low-Re turbulent flow in a smooth channel and a specific condition for complete
rough-channel turbulence. (c) Schematic of a single branch with fully developed laminar flow profiles within
the channels. (d) Schematic of a branched fluidic network, where a parent channel splits up into N daughter
channels. The location of the branching point x follows from the analysis and determines the lengths Li of the
channels. The grey channels indicate that it is possible to have many channels that originate from the branching
point. (e, f ) Examples of optimised branched fluidic networks. The colour indicates the Reynolds numbers
in the channel. The position coordinates of the begin and endnodes are given as an input; the coordinates of
intermediate nodes follows from the optimisation. Also the flow rates in all channels are given as an input. The
following quantities are kept constant: Q0 = 20 l min−1, ρ = 1000 kg m−3, α = 103 W m−3 and τ0 = 0 Pa.
Fluid and system parameters are defined in § 2. (e) Newtonian fluid in rough channel (μ′ = 10−3 Pa s, n = 1.0,
ε= 10−5 m, 5 levels, symmetric branching). ( f ) Power-law fluid in smooth channel (μ′ = 5 × 10−5 Pa s1.5,
n = 1.5, 4 levels, asymmetric branching 1:2).

with x a flow-regime and fluid-model-dependent power; x = 3 for laminar flow of an
incompressible Newtonian fluid, as further analysed theoretically (e.g. revealing the
shear forces, the optimal angles between channels or special cases such as curved pipes
or porous channels) (Kamiya et al. 1974; Zamir 1977; Sherman 1981; Miguel 2018)
and verified experimentally for e.g. human coronary and cerebral arteries (Hutchins
et al. 1976; Rossitti & Löfgren 1993). The value x = 3 also holds for laminar flows
of different fluid models, including power-law (Mayrovitz 1987; Revellin et al. 2009;
Stephenson & Lockerby 2016; Miguel 2018) and yield-stress fluids, such as the Bingham,
Herschel–Bulkley and Casson models (Smink et al. 2023), as well as for channels with
elliptical (Tesch 2010) and rectangular (Emerson & Barber 2012), or even arbitrary
cross-sections (Emerson et al. 2006; Stephenson et al. 2015; Zhou et al. 2024).

For turbulent flows, fluidic networks were optimised only for limit cases and
approximations (Uylings 1977; Woldenberg & Horsfield 1986; Bejan et al. 2000;
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Stephenson & Lockerby 2016). For turbulent flow of Newtonian fluids at intermediate
Reynolds numbers 2 × 104 < Re< 106 in a hydraulically smooth channel (shaded for
relative wall roughness δ→ 0 in figure 1b), x = 17/7 was derived from an empirical
relation for the friction factor (Bejan 2013; Kou et al. 2014). For complete turbulence (the
light-shaded area in figure 1(b), which is defined as Re> 3500/δ Moody 1944), it was
derived that x = 7/3 (Uylings 1977; Bejan et al. 2000; Williams et al. 2008; Stephenson
& Lockerby 2016). Several previous studies (e.g. Revellin et al. 2009 and Zhou et al.
2024) have generalised the optimisation procedure for friction factors that are a power-law
function of R, and show that all these limit cases can be described by a single approach.
However, the intermediate part of the parameter space is described by more complex
friction factors that cannot be implemented in these existing approaches, such as the
Colebrook–White equation. Stephenson et al. (2015) and Stephenson & Lockerby (2016)
use a different approach allowing friction factors in arbitrary functional form, but they
do not apply this to the intermediate part of the parameter space. This terra incognita
represents a major knowledge gap, both fundamentally, as it covers several orders of
magnitude of both Re and δ, and from an application perspective, as we will show that
turbulent limit cases are rarely reached for realistic flows.

In this study, we introduce a universal approach for optimising fluidic networks in the
entire parameter space. The optimisation procedure is applicable to any flow regime,
wall roughness or fluid model for which the Darcy friction factor is known, even if its
formulation is implicit. First, § 2 describes non-dimensionalisation of pipe flows, enabling
calculation of the optimal Reynolds number within a channel and the corresponding
channel radius. Subsequently, the optimal channel radius is derived for laminar and
turbulent flow at arbitrary Re, arbitrary channel roughness δ and for both Newtonian and
non-Newtonian fluids in § 3. Section 4 synthesises the results from §§ 2 and 3, resulting
in approximations of x as a function of Re for all flow regimes and fluid models.
The design procedure is presented in § 5. The conclusions are presented in § 6. The
design of the optimal location of branching points within the network is described
in Appendix A.1, resulting in fully optimised networks for e.g. rough-wall channels
(figure 1e) or for non-Newtonian fluids (figure 1f ). Finally, an application example is
provided in Appendix F.

2. Optimisation of fluidic branching
Consider a branching configuration comprising a parent channel connected to N daughter
channels at a branching point denoted as x, as depicted in figure 1(d). The channels
are labelled 0 to N , with index 0 indicating the parent channel. The effective radii of
the channels are represented as R ≡ (R0, R1, . . . , RN ), while the termination points of
the channels are fixed and denoted as xi for i = 0, 1, . . . , N . The flow rates in the daughter
channels are specified as Qi for i = 1, . . . , N , with Q0 corresponding to the flow rate
in the parent channel; Q0 is considered positive towards the branching point, whereas
the flow rates in the daughter channels (Qi , i = 1, . . . , N ) are taken positive away from
the branching point. To ensure mass conservation, assuming incompressibility, the flow
rates must satisfy Q0 =∑N

i=1 Qi . The lengths of the channels, Li , are functions of the
branching location, given by Li ≡ |xi − x| for i = 0, 1, . . . , N . In this work, it is assumed
that there is only an axial velocity u. The channels are assumed to be cylindrical with
R � L . The fluid properties are taken constant and the flow is fully developed.

For optimisation of a fluidic network, the power to maintain the flow and to maintain a
fluid is minimised. The power is represented by a cost function depending on the radii and
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lengths of the channels, and is the sum of the individual channel contributions

P(R, x)≡
N∑

i=0

(�pi Qi + αVi ) . (2.1)

Here, Vi ≡ πR2
i Li is the channel volume and the pressure gradient �p/L is a fluid-

type and flow-regime-dependent function. The pressure at the nodes is not defined or
constrained. Differentiation of (2.1) to R and x and equating these expressions to 0
provides the optimisation problems for: (i) the channel radii R, and (ii) the location of
the branching point x (optimised in Appendix A.1). Optimisation of the channel radius
is independent of x, because it is a decoupled problem (Smink et al. 2023), in which the
power defined by (2.1) attains a global minimum with respect to the radius if all channels
satisfy ∂P/∂R = 0. Therefore, the optimisation condition for any radius Ri only depends
on the power contribution of the corresponding channel and Ri does not depend on the
lengths of the channels Li .

For minimising the power consumption in the network, every single channel has to be
optimised individually according to

∂P

∂Ri
= ∂�pi

∂Ri
Qi + 2παRi Li = 0, i = 0, 1, . . . , N . (2.2)

The pressure drop �p is represented as a function of a flow rate Q and a radius R using
the Darcy–Weisbach equation (Weisbach 1845)

�p = f
ρ

4π2
Q2

R5 L . (2.3)

Here, ρ is the fluid density, L is the length of the channel and f the Darcy friction factor.
The friction factor f as function of the Reynolds number for the different fluid models is
presented in figures 2(b)–2(d). The specific equations of f for different flow regimes and
fluid models are provided in § 3. In this study, a generalised Reynolds number is defined
as (Garcia & Steffe 1986)

Re ≡ 8
π2−n

(
n

3n + 1

)n
ρ

μ′
Q2−n

R4−3n
. (2.4)

The value of f also depends on the Hedström number He (commonly used for description
of yield-stress fluids), the relative wall roughness δ ≡ ε/2R (where ε is the absolute
channel wall roughness) and the flow index n.

The effective dynamic viscosity μ describes the resistance of a fluid against shear, and
is defined as μ=μ′|γ̇ |n−1, where γ̇ is the shear rate, μ′ is the flow consistency index
and n the flow index, where 0< n < 1 represents a shear-thinning and n > 1 represents
a shear-thickening fluid, as shown in figure 2(a). In addition, a fluid may show yield-
stress behaviour if τ0 � 0 (e.g. Bingham and Herschel–Bulkley fluids, see figure 2a), where
the fluid only shears once an effective local shear stress exceeds the yield stress τ0. The
rheological behaviour for the shear rate of a Herschel–Bulkley fluid as function of the
effective local shear stress is described as

γ̇ (τ )=
⎧⎨
⎩sign(τr z)

( |τr z |−τ0
μ′

)1/n
if |τr z|� τ0,

0 if |τr z|< τ0,
(2.5)
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Figure 2. (a) Fluid models as analysed in this work. (b–d) Friction factor as function of the Reynolds number
for different fluid models. The dashed black line indicates the transition from laminar to turbulent flow.
(b) Newtonian fluid in rough channels (Moody diagram (Moody 1944)). The blue lines represent constant
relative roughness δ from 10−7, 10−6, . . . 10−1. (c) Power-law fluid in smooth channels. The green-scale lines
represent values of the flow index n from 0.2, 0.4, . . . 1.8. (d) Herschel–Bulkley fluid with n = 1.0 in smooth
channels. the red-scale lines represent constant values of the Hedström number from 101, 102, . . . , 1010.

where τr z is the local shear stress induced by the flow. Figures 2(b)–2(d) also show the
transition from laminar to turbulent flows at the critical Reynolds number (Hanks & Ricks
1974)

Recrit = 6464n

(1 + 3n)2
× (2 + n)(2+n)/(1+n) × ψ2−n

(1 − φ)(n+2)/n
, (2.6)

where ψ(φ, n) and φ are defined in § 3.1. Although an increased relative roughness results
in a decrease in Recrit , this effect becomes only dominant around δ = 0.1 and larger
(Everts, Robbertse & Spitholt 2022). In order to ensure the validity of the used equations,
the present study will limit the discussed optimisation results to δ � 0.1.

The optimisation condition for the radius of every channel is obtained by substituting
(2.3) into (2.2), providing

R7 = ρQ3

8π3α
B, (2.7)
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where B is defined as
B ≡ 5 f − R

∂ f

∂R
. (2.8)

Here, B is a function of f and R and thus indirectly also a function of Re, He, δ and n.
The goal is to obtain an expression for the optimal channel radius as a function of

parameters that are independent of R. Therefore, dimensional analysis is carried out
to find a dimensionless form of the channel radius as function of radius-independent
dimensionless groups (for more details, see Appendix A.2). Scaling of the optimisation
problem results in the following 5 dimensionless numbers:

R̃ ≡ R

ρ− 1
2μ

′ 3
2(n+1) α

n−2
2(n+1)

, Q̃ ≡ Q

ρ− 3
2μ

′ 7
2(n+1) α

3n−4
2(n+1)

, τ̃0 ≡ τ0

μ′ 1
n+1α

n
n+1
,

ε̃≡ ε

ρ− 1
2μ

′ 3
2(n+1) α

n−2
2(n+1)

and n. (2.9)

To align with the literature, the Reynolds number will be used instead of R̃. This choice
will simplify the later computations in § 3 and enables direct characterisation of the flow
in the channel. The Reynolds number is rewritten in dimensionless groups as follows:

Re = a(n)
Q̃2−n

R̃4−3n
, (2.10)

where a(n) is defined as

a(n)≡ 8
π2−n

(
n

3n + 1

)n

. (2.11)

The network is described by the dimensionless numbers Re, Q̃, τ̃0, ε̃ and n. As τ̃0,
ε̃ and n are fluid or system parameters that are constant in a network, Re and Q̃ are
the only flow-rate-dependent dimensionless numbers, which is convenient for network
optimisation. Described with the new dimensionless numbers, f will now be a function of
5 dimensionless numbers instead of 4. Therefore, in the new domain, there will be a curve
along which f is constant, removing one degree of freedom (see Appendix A.3).

For given fluid, flow and system properties, an optimal channel radius can be calculated
via the Reynolds number using the non-dimensionalised optimisation condition (2.7)

(8π3)4−3n a7 Q̃2(n+1) = B̃4−3n Re7, (2.12)

where B̃ is a function of f̃ , which is a function of Re, τ̃0, Q̃, ε̃ and n. Hence, (2.8) can be
rewritten as

B̃ = 5 f̃ − R
∂ f̃

∂R
= 5 f̃ − R

∂ f̃

∂Re

∂Re

∂R
= f̃

(
5 + (4 − 3n)

Re

f̃

∂ f̃

∂Re

)
, (2.13)

where differentiation of (2.4) provides ∂Re/∂R = −(4 − 3n)Re/R. Therefore, knowing
τ̃0, Q̃, ε̃ and n, one can determine the optimal Re for a channel.

We conclude this section by introducing dimensionless groups that will be used in § 3.
The Hedström number He is defined (Swamee & Aggarwal 2011) and rewritten as follows:

He ≡ 4R2ρ

μ′

(
τ0

μ′

) 2−n
n = 4

(
a(n)

Q̃2−n

Re

) 2
4−3n

τ̃
2−n

n
0 . (2.14)
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The relative roughness δ becomes in the new dimensionless groups

δ ≡ ε

2R
= 1

2
ε̃

(
Re

a(n)Q̃2−n

) 1
4−3n

. (2.15)

Characteristic for a yield-stress fluid is the formation of a plug in the centre of the
channel, where the local shear stress τr z does not exceed the yield stress τ0. The associated
plug radius Rp is characterised by

Rp ≡ 2τ0
�p

L

. (2.16)

Non-dimensionalisation of the plug radius yields the dimensionless plug radius φ, which
often appears in descriptions for f in the case of yield-stress fluids

φ ≡ Rp

R
= 2τ0
�p

L
R
. (2.17)

By definition, φ can also be expressed in terms of the Reynolds and Hedström number and
in the new dimensionless groups

φ = 64
f Re

(
2He

Re

(
n

3n + 1

)2
) n

2−n

= 8π2a(n)
4

4−3n
τ̃0

f̃ Re

(
Q̃2

Re3

) n
4−3n

. (2.18)

Up to here, no assumptions are made with respect to the flow type.

3. Network optimisation for different flow regimes and fluid models
The following flow regimes and fluid models are discussed in subsections:

§ 3.1 Laminar flow of a Newtonian and non-Newtonian fluids.
§ 3.2 Turbulent flow of Newtonian fluids, rough and smooth channels.
§ 3.3 Turbulent flow of non-Newtonian fluids, smooth channel, for power-law (§ 3.3.1)

and Herschel–Bulkley fluids (§ 3.3.2).

For each fluid model, we will obtain expressions for f̃ , and thereafter for B̃, which via
(2.12) provides the optimal Reynolds number and therefore the optimal radius R for each
channel via (2.4) and (2.9) . As many expressions for f̃ and B̃ are implicit, finding an
optimal channel radius analytically is often impossible. Therefore, we also provide these
results in the form of contour plots for the optimisation condition for Re as a function of
Q̃ and τ̃0, ε̃ or n.

3.1. Laminar flow of Newtonian and non-Newtonian fluids
For laminar flow through a circular channel results in the friction factor (Smink et al. 2023)

f̃ = 64
Re ψ(φ, n)n

, (3.1)

where ψ is a dimensionless flow rate that ranges from 0 to 1. For laminar flow, the
friction factor is often considered to be independent of the channel wall roughness, but
this is only true for δ < 0.01. When the roughness becomes of the order of the channel
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size, then the resulting constricted diameter amplifies the friction factor (Liu, Li & Smits
2019). In this section, it is assumed that the relative channel wall roughness is sufficiently
small (δ < 0.01), such that the influence of the wall roughness on the friction factor is
negligible. For a Herschel–Bulkley fluid,ψ is computed by integration of the velocity field
over the channel’s cross-section as (Herschel & Bulkley 1926; Chilton & Stainsby 1998;
Smink et al. 2023)

ψ = (1 − φ)(n+1)/n

(3n + 1)−1 ×
(
(1 − φ)2

3n + 1
+ 2φ(1 − φ)

2n + 1
+ φ2

n + 1

)
. (3.2)

For Bingham fluids (n = 1), ψ reduces to (Reiner 1926; Smink et al. 2023)

ψ = 1 − 4
3
φ + 1

3
φ4, (3.3)

and for the case of τ0 = 0 (Newtonian and power-law fluids, φ = 0), ψ further reduces
to 1.

Calculation of the optimisation condition results in the following expression for B̃:

B̃ = f̃ J (φ, n), (3.4)

where the function J (φ, n) is defined as

J ≡ 1 + 3n

1 − nφ

ψ

∂ψ

∂φ

. (3.5)

For a Herschel–Bulkley fluid, substitution of ψ from (3.2) into (3.5) results in the
following expression for J :

J = 3n + 1
6n3

(2n + 1)(n + 1)
φ3 + 6n2

(2n + 1)(n + 1)
φ2 + 3n

2n + 1
φ + 1

. (3.6)

For Bingham fluids (n = 1), the expression for J reduces to

J = 4
φ3 + φ2 + φ + 1

, (3.7)

and for non-yield fluids (φ = 0), it reduces to J = 3n + 1. Finally, for the yield limit
(φ = 1), one obtains J = 1.

Substitution of B̃ into (2.12) reduces the optimisation condition to

Re3(n+1) =
(
π3

8

)4−3n

a7 Q̃2(n+1)
(
ψ(φ, n)n

J (φ, n)

)4−3n

. (3.8)

Together with (2.18) and (3.1), Re is then explicitly solved for given Q̃, τ̃0 and n,
providing the optimal radius via (2.4) and (2.9). Figures 8(a)–8(c) in Appendix E present
a contour plot for the optimal Re as function of Q̃ and τ̃0 for different values of n. Note
that the number of parameters can be reduced even further, by combining Q̃ and Re, to
a parameter which is only a function of given τ̃0 and n. Then the optimisation condition
becomes (Smink et al. 2023)
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R̃3

Q̃
=

(
a3 Q̃2

Re3

) 1
4−3n

= 1
π

((
3n + 1

n

)n J (φ, n)

ψ(φ, n)n

)1/(n+1)

, (3.9)

where the right-hand side is constant for an optimised network. Plotting R̃3/Q̃ as function
of τ̃0 and n gives the contour plot in figure 8(d) in Appendix E. This figure can be made
for laminar flows because R̃3/Q̃ is constant over the entire network, which is highly useful
for design of optimised branched fluidic networks, as only one optimisation condition has
to be calculated.

3.2. Turbulent flow of Newtonian fluid, rough and smooth channel
We now demonstrate that the proposed optimisation method is universal if the friction
factor is known, by optimising networks for diverse turbulent flow regimes. For turbulent
flow of a Newtonian fluid, the Colebrook-White equation (Colebrook 1939) describes the
friction factor for both low- and high-turbulent flow (Re = [Recrit ,∞〉) in hydraulically
smooth and rough pipes using the following implicit equation:

f =
{
−2.0 log10

(
δ

3.7
+ 2.51

Re
√

f

)}−2

. (3.10)

Equation (3.10) underlies the well-known Moody diagram (Moody 1944) as shown in
figure 2(b). Rewriting (3.10) in terms of the dimensionless numbers gives

f̃ =
⎧⎨
⎩−2.0 log10

⎛
⎝ 1

3.7
π

4
ε̃Re

Q̃
+ 2.51

Re
√

f̃

⎞
⎠
⎫⎬
⎭

−2

. (3.11)

Differentiation to Re gives

∂ f̃

∂Re
= − f̃

Re

2

⎛
⎝ 1

3.7
π

4
ε̃Re

Q̃
− 2.51

Re
√

f̃

⎞
⎠

⎛
⎝ 1

3.7
π

4
ε̃Re

Q̃
+ 2.51

Re
√

f̃

⎞
⎠ ln

⎛
⎝ 1

3.7
π

4
ε̃Re

Q̃
+ 2.51

Re
√

f̃

⎞
⎠− 2.51

Re
√

f̃

, (3.12)

resulting in

B̃ = f̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5 −
2

⎛
⎝ 1

3.7
π

4
ε̃Re

Q̃
− 2.51

Re
√

f̃

⎞
⎠

⎛
⎝ 1

3.7
π

4
ε̃Re

Q̃
+ 2.51

Re
√

f̃

⎞
⎠ ln

⎛
⎝ 1

3.7
π

4
ε̃Re

Q̃
+ 2.51

Re
√

f̃

⎞
⎠− 2.51

Re
√

f̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.13)
Substituting B̃ into (2.12) enables implicit solving Re for given Q̃. Contour plots of the
optimal Re as function Q̃ and ε̃ are presented in figure 3(a). Limit cases of the Colebrook–
White equation include complete turbulence (for which Von Kármán’s formula applies),
turbulence in smooth channels and low-Reynolds-number turbulence in smooth channels
(e.g. Blasius’ formula). Expressions of the optimal channel radius for these cases are
derived in Appendix B.
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Figure 3. Optimal Re for different fluid models. The colour-scale contour lines represent the Reynolds numbers
2 × 10x , 3 × 10x , . . .9 × 10x with decreasing brightness. (a) Contour plot of the optimal Re as function of Q̃
and ε̃ for a Newtonian fluid in a rough-wall channel. (b) Contour plot of the optimal Re as function of Q̃ and n
for a power-law fluid in a smooth-wall channel. (c) Contour plot of the optimal Re as function of Q̃ and ε̃ for a
Herschel–Bulkley fluid (n = 1) in a smooth-wall channel.
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3.3. Turbulent flow of non-Newtonian fluids, smooth channel

3.3.1. Power-law fluid
Turbulent pipe flow of non-Newtonian power-law fluids at low Reynolds numbers in a
smooth circular channel (ε→ 0) was analysed by, amongst others, Dodge and Metzner
(Dodge & Metzner 1959). They modified the Von Kármán equation for turbulent
Newtonian pipe flow, resulting in an implicit relation for the Darcy friction factor f

2√
f

= 4
n0.75 log10

(
Re

(
f

4

)1−n/2
)

− 0.4
n1.2 . (3.14)

The value of f is shown as a function of Re and n in figure 2(c).
Implicit differentiation of f̃ to Re gives

∂ f̃

∂Re
= − f̃

Re

⎛
⎝n0.75 ln 10

4
√

f̃
+ 1 − n

2

⎞
⎠

−1

, (3.15)

resulting in

B̃ = f̃

⎛
⎜⎝5 + (3n − 4)

⎛
⎝n0.75 ln 10

4
√

f̃
+ 1 − n

2

⎞
⎠

−1
⎞
⎟⎠ . (3.16)

Here, B̃ is still a function of f̃ , which is in turn an implicit function of Re governed
by (3.14). Therefore, B̃ is governed by Re and the flow index n. Consequently, with this
expression for B̃, the optimal value of Re in a channel can be calculated as function of Q̃
and n. A contour plot for the optimal Reynolds number in a channel is given in figure 3(b).

3.3.2. Herschel–Bulkley fluid
For a turbulent flow of a Herschel–Bulkley fluid in a smooth circular channel (ε→ 0),
Torrance (Garcia & Steffe 1986) developed a relationship for the friction factor. This
relation for the Darcy friction factor is given by

2√
f̃

= 0.45 − 2.75
n

+ 1.97
n

ln(1 − φ)+ 1.97
n

ln

⎛
⎝Re

(
3n + 1

4n

)n
(

f̃

4

)1− n
2
⎞
⎠ . (3.17)

Here, φ as given in (2.18) is used in the calculations. Figure 2(d) shows f as function of Re
for n = 1.0 and a range of values of τ̃0.The f -Re plots for other values of n are presented
in figure 7 in Appendix E.

Implicit differentiation of f̃ to Re leads to

∂ f̃

∂Re
= − f̃

Re

1 + φ

1 − φ

4
4 − 3n

n

1.97
1√

f̃
+ φ

1 − φ
+ 1 − n

2

, (3.18)
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giving an expression for B̃

B̃ = f̃

⎛
⎜⎜⎜⎜⎜⎝5 −

4 − 3n + 4φ
1 − φ

n

1.97
1√

f̃
+ φ

1 − φ
+ 1 − n

2

⎞
⎟⎟⎟⎟⎟⎠ . (3.19)

Contour plots for the optimal Reynolds number in a channel as function of τ̃0 and Q̃
are given for n = 1.0 in figure 3(c) and the results for n = 0.5 and n = 1.5 are provided in
figure 9 in Appendix E. An additional fluid model covering laminar and turbulent flow of
a Bingham fluid is presented in Appendix C.

4. Scaling of the channel radii
In the literature, many attempts have been made to find the proportionality between the
flow rate Q and the channel radius R for optimised networks, in the form of (1.1) (Uylings
1977; Sherman 1981; Woldenberg & Horsfield 1986; Williams et al. 2008; Kou et al.
2014). In the optimisation method of the present study, only Re and Q̃ contain parameters
involving R and Q, while τ̃0, ε̃ and n are independent of R and Q. Therefore, when
knowing the proportionality between Q̃ and Re, x can be calculated analytically. However,
this only holds if B̃ ∝ Rec1 Q̃c2 , which is only true for relatively simple descriptions of f
applicable to laminar flows or limit cases of the turbulent regime (e.g. Blasius’ formula,
Appendix B.3). Therefore, in the following, x will be calculated by locally approximating
B̃ by a power function via

x = R

Q

∂Q

∂R
=

(4 − 3n)
Re

Q̃

∂ Q̃

∂Re

(2 − n)
Re

Q̃

∂ Q̃

∂Re
− 1

. (4.1)

By calculating the fluid-model-specific (Re/Q̃) ∂ Q̃/∂Re, one obtains x in the relevant
(Re, τ̃0, ε̃, n)-space, as shown in figure 4 for the different fluid models (the underlying
equations are shown in Appendix D). Known limit cases are shown in black; all coloured
results are new. For laminar flow of all treated fluid models, x becomes 3, as expected
(Murray 1926b; Smink et al. 2023) For networks that span ranges of Re for which x is
(almost) constant, the value of x is readily used to scale all channels in the network if one
optimal diameter is known, using Q ∝ Rx .

For a Newtonian fluid (figure 4a), at the transition from laminar to turbulent flow, x
drops quickly from 3 to around 2.5 for hydraulically smooth channels. We find that the
low-Re approximations (Blasius, x = 27/11, and an empirical relation, x = 17/7 (Kou
et al. 2014)) correspond to the average value of x over their applicable Re-range of the
Colebrook–White equation for a smooth channel. Although these approximations and the
resulting values of x are valuable for networks that span a limited range of the Reynolds
number, the network shown in figure 1(e) represents a case where x is not applicable for
determination of the optimal channel radii. Here, the optimal network partly corresponds
to laminar flow and partly to turbulent flow. As these regimes result in strongly different
values of x , as shown by the markers (×) in figure 4(a), the so-called Murray’s law
(Sherman 1981; Stephenson & Lockerby 2016) (Rx

0 =∑
i Rx

i , for one branching point) will
not hold. Therefore, the optimal radius of each channel must be calculated individually.
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Figure 4. Plot of x (4.1) as function of Re for the different fluid models as discussed in § 3. The dashed
lines for x = 3 and x = 7/3 show the expected limit cases for laminar flow and high-turbulent flow,
respectively (Uylings 1977). (a) Turbulent flow of Newtonian fluids, described by Colebrook–White (ε̃ ∈
[10−5, 101, 102, 103, 104, 105]), Blasius’ formula (B12) and an empirical relation (B14). The blue ×-symbols
correspond with the optimised channels in figure 1(e), showing that the values for x change significantly
for that network. (b) Plot of x as function of Re for turbulent flow of a Newtonian fluid in a hydraulically
smooth channel, described by (3.10) for the limit of ε̃= 0. For optimised networks, high-Re turbulent flow in
smooth channels will for realistic Re never reach x = 7/3. (c) Plot of x as function of δ = ε/2R for high-Re
turbulent flow of a Newtonian fluid in a rough channel, described by (B1). For optimised networks, high-Re
turbulent flow in channels with finite roughness will never reach x = 7/3. (d) Turbulent flow of a power-
law fluid (Metzner & Dodge) (n ∈ [0.2, 0.4, 1.0, 1.4, 1.8]). (e) Turbulent flow of a Herschel–Bulkley fluid
(Torrance) (τ̃0 ∈ [0.1, 0.25, 1, 2.5, 10, 25] with n = 1.0). Plots for n = 0.5 and n = 1.5 are presented in figure 10
in Appendix E.

Figure 4(a) also shows that x increases for increasing wall roughness. The lines are
clipped for δ = 0.1, corresponding to x ≈ 2.71. Analysing the Colebrook–White equation
for the smooth-channel limit (ε̃= 0) shows that, for extremely large Re, x will indeed
approach x = 7/3, as shown in figure 4(b). The high-Re limit for non-zero roughness,
however (figure 4(c), ε̃= const.), shows that x = 7/3 will never be reached if a finite value
of δ is included in the optimisation process.

When using the Colebrook–White equation, one has to make an assumption about the
wall roughness. Figure 4(a) shows the results for a fixed dimensionless absolute roughness
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ε̃. One can also choose to fix the relative wall roughness δ, which has often been an
implicit assumption in previous works (Uylings 1977; Bejan et al. 2000; Kou et al. 2014;
Stephenson & Lockerby 2016; Zhou et al. 2024). Then δ is excluded from the optimisation
procedure. Only in this case, it holds for complete turbulence in rough-wall channels that
x = 7/3 (figure 4c, δ = const.). The assumption of a fixed δ requires that the absolute
roughness ε is proportional to the optimised channel radius for every channel in the
network. However, many networks consist of a given wall material with uniform absolute
roughness ε. Even when there is a changing absolute roughness in the network, the choice
for the use of ε̃ is preferred and then the graphical approach (figure 3a) can be used for
optimisation of the channel radii.

Figure 4(d) shows x for turbulent flow of a power-law fluid in smooth channels. The
behaviour of x is similar to that of a Newtonian fluid in a smooth channel, but increases
slightly with increasing n. Figure 4(e) shows the results for a Herschel–Bulkley fluid
(n = 1.0), which appears to have a complete transition from x = 3 to x → 7/3, with a
remarkable bump in the transition, which is related to the sharp corner around 101 < τ̃0 <
102 as observed in the optimisation plot (figure 3c). The transition occurs at larger Re
for increasing τ̃0, and for large Re, all lines converge. Results for n = 0.5 and n = 1.5 are
presented in figure 10 in Appendix E.

The transitional behaviour of x as presented in figure 4 stresses its importance for
network optimisation when considering turbulent flow. For domains of Re where x is
approximately constant, figure 4 enables making a quick estimation of the optimal channel
radii within a network. If one channel within a network has been optimised, then the other
channels can be optimised using Q ∝ Rx . For domains of Re where x clearly non-constant,
the full computations of the equations or the use of the graphical approach of figure 3 is
required.

5. Synthesis: design of an optimised fluidic network
The framework described in §§ 2, 3 and 4 leads to the following approach for optimisation
of branched fluidic networks (such as shown in figure 1e,f ):

(i) Determine the fluid model and the cost factor α, and calculate τ̃0, ε̃ and n. Calculate
Q̃ for all the to be optimised channels (§ 2).

(ii) Determine the optimal radius R in one channel.

(a) First, determine the optimal Re by one of the following options:

– Read Re from an optimisation contour plot (e.g. Figure 3a) for given Q̃.
– Calculate B̃( f̃ , Re, Q̃, τ̃0, ε̃, n) via (2.13) and then solve (2.12) for Re for

given Q̃.

(b) Subsequently, calculate R from the calculated Re by using (2.4).

(iii) Obtain all channel radii:

– By repeating step 2 for each channel, or
– by obtaining x from figure 4 and calculating all channel radii using Q ∝ Rx . This

option only applies if x is (almost) constant over the applicable range of Re.
(iv) Calculate the optimal location of the branching points (Appendix A.1).

This approach is illustrated by an example of the optimisation of a fluidic network with
turbulent flow of a Newtonian fluid in rough-wall channels, presented in Appendix F.
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6. Conclusion
A unifying design procedure for optimisation of branched fluidic networks was presented.
The optimal channel radius is obtained by minimising the power consumption for
maintaining the flow and minimising the volume simultaneously, which is carried out for
all channel segments individually. The approach is applicable to every flow configuration
for which the Darcy friction factor is available, even for non-power-law or implicit
formulations.

Network optimisation was carried out for the parameter space spanned by the Reynolds
number (laminar and turbulent flows), the wall roughness and for different rheologies. This
parameter space is widely applicable to e.g. heat exchangers or (inertial) microfluidics, but
was hardly covered in the literature, as shown in figure 1(a,b). First, the entire optimisation
problem is non-dimensionalised in terms of Re, Q̃, τ̃0, ε̃ and n. For every channel, the
optimal Reynolds number and the optimal channel radius are obtained as a function of the
dimensionless flow rate Q̃. To minimise the required mathematical analysis, graphs are
presented that readily provide the optimal Reynolds number for every fluid model.

Subsequently, the value of x in the proportionality Q ∝ Rx was evaluated for the
full parameter space of the Reynolds number and channel roughness for different fluid
rheologies. The well-known limit values x = 3 for laminar flow and x = 7/3 for high-Re
turbulence were recovered (Uylings 1977; Bejan et al. 2000; Kou et al. 2014; Stephenson &
Lockerby 2016; Zhou et al. 2024). However, as the latter value is hardly reached in practice,
the intermediate values of x were calculated and plotted. This revealed in which case the
entire network can be optimised based on one optimal channel radius, and in which case
all radii must be optimised individually. Finally, a design procedure of optimised fluidic
networks that incorporates all aforementioned elements was presented.

Our unifying approach for optimisation of fluidic networks can be extended to other
configurations with known friction factors, including non-circular cross-sections, bended
pipes, bubbly flows, porous walls (Miguel 2018), porous media (MacDonald et al. 1991)
or slip flow (Morini & Spiga 1998). As such, it enables optimisation of many realistically
encountered configurations in nature and engineering.
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Appendix A. Details on optimisation of a fluidic branching

A.1 Optimal branching point location
To minimise the power in a network, the location of the branching point x must be chosen.
If the channel radii are optimised according to (2.12), this is the same as minimising the
total volume within the channels. Differentiation of the total power P (2.1) to x results in

∇x P =
N∑

i=0

(∣∣∣∣dp

dz

∣∣∣∣
i

Qi + απR2
i

)
∇Li = 0, i = 0, 1, . . . , N , (A1)

where we define

ei,∗ ≡ (∇Li )∗ = x∗ − xi

|x∗ − xi | . (A2)
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Here, the subscript i indicates the index of the channel, and the subscript ∗ indicates an
optimised parameter.

Substituting the optimisation condition for the channel radii (2.12) results in the
optimisation condition of the branching point x = x∗ (for a full derivation, see Smink
et al. (2023))

N∑
i=0

(
R2

i,∗
2 f + B

B
ei,∗

)
= 0, i = 0, 1, . . . , N . (A3)

Alternatively, we can rewrite (A3) in terms of dimensionless numbers

N∑
i=0

(
Q̃2−n

Re

) 2
4−3n 2 f̃ + B̃

B̃
ei,∗ = 0, i = 0, 1, . . . , N . (A4)

Equation (A4) requires the optimal Reynolds number and corresponding f̃ , B̃ and Q̃ for
each channel for computation of the optimal branching point location. It is an implicit
equation, such that the coordinates of x∗ are solved by simple numerical methods,
providing the lengths of the channels Li . The resulting x∗ determines a network that is
optimised both with respect to the channel radii (2.12) and the channel lengths (A4).

A.2 Governing dimensionless numbers
Scaling of the problem for calculation of the optimisation condition for the channel
radii is investigated using the Buckingham-Pi theorem. The goal is to find a non-
dimensionalisation of the radius and the dimensionless parameters where it depends on.
In this problem, the following 8 independent parameters are relevant: the channel radius
R in m, the flow rate Q in m3 s−1, the fluid density ρ in kg m−3, the viscosity index μ′ in
Pa sn , the cost factor α in W m−3, the yield stress τ0 in Pa, the channel absolute roughness
ε in m and the flow index n. In these parameters, 3 independent physical dimensions are
present. We choose ρ, μ′ and α to scale this problem, which are suitable for the scaling.
We will end up with 5 dimensionless parameters, where n is one of them.

In mathematical terms, the problem is then

R = g(ρ, μ′, α, Q, τ0, ε, n), (A5)

where scaling of the problem results in

R̃ = g̃(Q̃, τ̃0, ε̃, n), (A6)

with

R̃ ≡ R

ρ− 1
2μ

′ 3
2(n+1) α

n−2
2(n+1)

, Q̃ ≡ Q

ρ− 3
2μ

′ 7
2(n+1) α

3n−4
2(n+1)

,

τ̃0 ≡ τ0

μ′ 1
n+1α

n
n+1

and ε̃≡ ε

ρ− 1
2μ

′ 3
2(n+1) α

n−2
2(n+1)

. (A7)

For convenience, the Reynolds number will be used instead of R̃. This choice simplifies
the calculations and provides direct characterisation of the flow in the channels. Expressed
in dimensionless groups, the Reynolds number (2.4) becomes

Re = a(n)
Q̃2−n

R̃4−3n
, (A8)
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where a(n) is defined as

a(n)≡ 8
π2−n

(
n

3n + 1

)n

. (A9)

In the end, a network can be described by the dimensionless numbers Re, Q̃, τ̃0, ε̃
and n. All parameters except for R and Q are fluid or system parameters, which are
constant in a network. In a branched fluidic network, Q can change from channel to
channel. Therefore, for design procedure purposes, it is convenient that Re and Q̃ are
the only flow-rate-dependent dimensionless numbers.

Therefore, the optimisation problem is reduced to the dimensionless dependency

Re = g̃1(Q̃, τ̃0, ε̃, n). (A10)

For n = 1, the dimensionless numbers reduce to

Re = 2
π

ρQ

μ′ R
, Q̃ = α

1
4ρ

3
2 Q

μ′ 7
4

, τ̃0 = τ0

(μ′α)
1
2

and ε̃= ρ
1
2α

1
4 ε

μ′ 3
4
. (A11)

For given fluid, flow and system properties, an optimal channel radius can be calculated
from the obtained optimal Reynolds number.

A.3 Mapping from 4 to 5 variables for f

The friction factor f commonly depends on the Reynolds number Re, the Hedström
number He, the relative wall roughness δ and the flow index n. These are 4 independent
dimensionless groups. In the optimisation procedure, the following 5 dimensionless
numbers are used (for details, see Appendix A.2): Re, Q̃, τ̃0, ε̃ and n. Because the friction
factor will now be described by 5 instead of 4 dimensionless numbers, a curve in the
5-variable space exists along which f is constant. The direction of that curve is locally
described by the vector β = (β1, β2, β3, β4, β5)

T . Therefore, the inner product of this
vector with the gradient of the original variables F = (Re, He, δ, n)T to the new variables
F̃ = (Re, Q̃, τ̃0, ε̃, n)T must be zero. In that case, Re, He, δ and n are constant along the
direction of β. This results in the following 4 equations:

5∑
j=1

∂Fi

∂ F̃j
β j = 0, i = 1, 2, 3, 4, (A12)

which are sufficient to define the direction of the vector β while choosing its arbitrary
length by conveniently choosing β2 = 1. Solving (A12) results in β1 = 0, β3 = −(2n/(4 −
3n)) τ̃0β2/Q̃, β4 = ((2 − n)/(4 − 3n)) ε̃β2/Q̃ and β5 = 0.

The function of f will be restricted in the new parameter space by

5∑
j=1

∂ f

∂ F̃j
β j = 0. (A13)

Substituting the obtained coefficients β results in the following expression:

Q̃
∂ f

∂ Q̃
− 2n

4 − 3n
τ̃0
∂ f

∂τ̃0
+ 2 − n

4 − 3n
ε̃
∂ f

∂ε̃
= 0, (A14)

which provides the curve along which f is constant in the new parameter space.

1011 A42-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

39
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.393


Journal of Fluid Mechanics

Appendix B. Specific cases of turbulent flow of Newtonian fluid, rough and smooth
channel

B.1 Complete turbulence, rough channel
For sufficiently large Reynolds numbers, the friction factor corresponding to fully
developed turbulent flow in a circular channel can quite accurately be described by Von
Kármán’s formula (Haaland 1983), which holds for rough channels in the limit of high
Reynolds numbers

f =
{
−2.0 log10

(
δ

3.7

)}−2

. (B1)

This equation is a limit case of the Colebrook–White equation, valid for the complete
turbulent regime (Re> 3500/δ) (Moody 1944). In terms of ε̃, Q̃ and Re, f becomes

f̃ =
{
−2.0 log10

(
1

3.7
π

4
ε̃Re

Q̃

)}−2

. (B2)

Differentiation to Re results in

∂ f̃

∂Re
= − f̃

Re

2

ln
(

1
3.7

π

4
ε̃Re

Q̃

) , (B3)

resulting in

B̃ = f̃

⎛
⎜⎜⎝5 − 2

ln
(

1
3.7

π

4
ε̃Re

Q̃

)
⎞
⎟⎟⎠ . (B4)

Contour plots of the optimal Re as function Q̃ and ε̃ are presented in figure 3(a), for the
high-ε̃ limit.

B.2 Turbulence, smooth channel
For a smooth-wall channel (ε→ 0), the Colebrook–White equation (Colebrook 1939)
reduces to

f̃ =
⎧⎨
⎩−2.0 log10

⎛
⎝ 2.51

Re
√

f̃

⎞
⎠
⎫⎬
⎭

−2

. (B5)

Differentiation to Re gives

∂ f̃

∂Re
= f̃

Re

2

ln

⎛
⎝ 2.51

Re
√

f̃

⎞
⎠− 1

, (B6)
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Figure 5. Optimal Re as function of Q̃ for a Newtonian fluid in a smooth-wall channel according to the
Colebrook–White equation, together with the Blasius’ formula and a low-Re turbulent approximation.

resulting in

B̃ = f̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5 + 2

ln

⎛
⎝ 2.51

Re
√

f̃

⎞
⎠− 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (B7)

Figure 5 shows the optimisation curve for Re as function of Q̃. This result corresponds
to the contour plot of the optimal Re as function Q̃ and ε̃ as presented in figure 3(a) for
ε̃→ 0.

B.3 Low-Reynolds-number turbulence, smooth channel
Power-law approximations for the friction factor have been established for turbulent flows
in smooth channels (ε→ 0), for specific and limited ranges of the Reynolds number, in the
general form

f̃ = c1

Rec2
, (B8)

with c1 and c2 being two relation-dependent constants. This is an explicit expression for f̃
as function of Re, resulting in B̃ being

B̃ = (5 − c2) f̃ = c1(5 − c2)

Rec2
. (B9)

For Newtonian fluids, the optimisation condition (2.12) reduces to

B̃ Re7 = 1024
π4 Q̃4, (B10)

which can for this case be rewritten to

Re =
(

1024
c1(5 − c2)

) 1
7−c2

(
Q̃

π

) 4
7−c2

. (B11)
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Blasius’ formula (Blasius 1912, 1913), which is valid for 3 × 103 < Re< 105, is given
by

f̃ = 0.3164

Re
1
4
, (B12)

resulting in the optimisation condition

Re = 2.629

(
Q̃

π

) 16
27

. (B13)

An empirical relation valid for turbulent flows at intermediate Reynolds numbers (2 ×
104 < Re< 106) (Bejan 2013) is given by

f̃ = 0.184

Re
1
5
, (B14)

resulting in the optimisation condition

Re = 2.822

(
Q̃

π

) 10
17

. (B15)

These explicit expressions for the optimal Re as function of Q̃ are shown in figure 5 for
Blasius’ formula (B12) and low-Re turbulence (B14), revealing perfect coincidence with
the more general Colebrook–White solution for smooth channels.

Appendix C. Laminar and low-Reynolds-number turbulent flow of Bingham fluid,
smooth channel
Considering a turbulent flow of a Bingham fluid in a circular pipe brings to empirical and
numerical approximations for the friction factor f . Darby et al. (Darby, Mun & Boger
1992) developed an empirical curve-fit equation, composed of the following structure:

f = (
f χ1
L + f χ1

T

)1/χ1

fT = 4 × 10χ2 Re−0.193

χ1 = 1.7 + 4 × 105

Re

χ2 = −1.47(1 + 0.146 exp(−2.9 × 10−5 He)), (C1)

where fL is the laminar friction factor as determined from the Buckingham–Reiner
(Reiner 1926) equation ((2.18), (3.1) and (3.3) combined).

In the new set of dimensionless numbers, the friction factor f̃ becomes

f̃ =
(

f̃ χ̃1
L + f̃ χ̃1

T

)1/χ̃1

f̃T = 4 × 10χ̃2 Re−0.193
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Figure 6. Contour plot of the optimal Reynolds number as a function of Q̃ and τ̃0, for both laminar and low-
Reynolds-number turbulent flow of a Bingham fluid (C1). The red-scale contour lines represent the Reynolds
numbers 2 × 10x , 3 × 10x , . . .9 × 10x with decreasing brightness. The thick grey line represents the critical
Reynolds number.

χ̃1 = 1.7 + 4 × 105

Re

χ̃2 = −1.47

(
1 + 0.146 exp

(
−2.9 × 10−5 16

π2
Q̃2

Re2 τ̃0

))
. (C2)

Implicit differentiation of f̃ to Re results in the following expression:

∂ f̃

∂Re
= f̃

Re

⎡
⎣1.7 − χ̃1

χ̃1

⎛
⎝(

f̃L

f̃

)χ̃1

ln f̃L +
(

f̃T

f̃

)χ̃1

ln f̃T − ln f̃

⎞
⎠

+ (J (φ)− 5)

(
f̃L

f̃

)χ̃1

+
(

ln(10)Re
∂χ̃2

∂Re
− 0.193

)(
f̃T

f̃

)χ̃1
⎤
⎦ , (C3)

where

∂χ̃2

∂Re
= −1.99 × 10−4 × Q̃2τ̃0

π2 Re3 exp

(
−4.64 × 10−4 Q̃2τ̃0

π2 Re2

)
(C4)

resulting in

B̃ = f̃

(
5 + Re

f̃

∂ f̃

∂Re

)
. (C5)

The set of equations for this fluid model is relatively complex, but has as benefit that
it covers both the laminar and turbulent regimes. The contour plot in figure 6 gives the
optimal Reynolds number in a channel for given τ̃0 and Q̃.

Appendix D. Approximation of x for different fluid models
In network optimisation, many attempts have been made to find the proportionality
between the flow rate Q and the channel radius R for optimised networks, in the following
form:
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Q ∝ Rx . (D1)

In the optimisation method of the present study, only Re and Q̃ contain parameters
involving R and Q, whereas τ̃0, ε̃ and n are independent of R and Q. Therefore, when
knowing the proportionality between Q̃ and Re, one can obtain x using (D1). However,
this is only possible if B̃ ∝ Rec1 Q̃c2 . However, in most of the cases (except for e.g. Blasius’
formula), this is not true. Therefore, x is calculated by locally approximating B̃ by a power
function using

x = R

Q

∂Q

∂R
=

(4 − 3n)
Re

Q̃

∂ Q̃

∂Re

(2 − n)
Re

Q̃

∂ Q̃

∂Re
− 1

= 3 −
2

Re

Q̃

∂ Q̃

∂Re
− 3

(2 − n)
Re

Q̃

∂ Q̃

∂Re
− 1

, (D2)

where (Re/Q̃)∂ Q̃/∂Re is derived to be

Re

Q̃

∂ Q̃

∂Re
=−

⎡
⎣
⎛
⎝(4 − 3n)

Re

B̃

(
∂ B̃

∂Re

)
f̃ ,Q̃,φ

− 4
φ

B̃

(
∂ B̃

∂φ

)
f̃ ,Q̃,Re

+ 7

⎞
⎠
⎛
⎝1 + φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

⎞
⎠

+
⎛
⎝ f̃

B̃

(
∂ B̃

∂ f̃

)
Q̃,φ,Re

− φ

B̃

(
∂ B̃

∂φ

)
f̃ ,Q̃,Re

⎞
⎠
⎛
⎝(4 − 3n)

Re

f̃

(
∂ f̃

∂Re

)
Q̃,φ

− 4
φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

⎞
⎠
⎤
⎦

×
⎡
⎣
⎛
⎝2n

φ

B̃

(
∂ B̃

∂φ

)
f̃ ,Q̃,Re

+ (4 − 3n)
Q̃

B̃

(
∂ B̃

∂ Q̃

)
f̃ ,φ,Re

− 2(n + 1)

⎞
⎠
⎛
⎝1 + φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

⎞
⎠

+
⎛
⎝ f̃

B̃

(
∂ B̃

∂ f̃

)
Q̃,φ,Re

− φ

B̃

(
∂ B̃

∂φ

)
f̃ ,Q̃,Re

⎞
⎠
⎛
⎝2n

φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

+ (4 − 3n)
Q̃

f̃

(
∂ f̃

∂ Q̃

)
φ,Re

⎞
⎠
⎤
⎦

−1

.

(D3)
Equation (D3) is an expression containing 7 differentials of B̃ or f̃ to Re, φ, f̃ or Q̃.

All differentials can be calculated with keeping the parameters in subscript fixed. The
differentials have to be calculated for every flow model separately. The calculated value
for x is only valid around its corresponding point in the (Re, τ̃0, ε̃, n)-space with a limited
range depending on the change in x . Expressions for the differentials for the fluid models
presented in the following sections.

D.1 Laminar flow of a Newtonian, power-law, Bingham and Herschel–Bulkley fluids
For a laminar flow, the friction factor was found to be

f̃ = 64
Re ψ(φ, n)n

, (D4)

resulting in an expression for B̃ being
B̃ = f̃ J (φ, n), (D5)

where J (φ, n) is defined as

J ≡ 1 + 3n

1 − nφ

ψ

∂ψ

∂φ

. (D6)
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Differentiation provides the needed differentials in (D3), resulting in the expression for
x (D2)

f̃

B̃

(
∂ B̃

∂ f̃

)
Q̃,φ,Re

= 1,
Re

B̃

(
∂ B̃

∂Re

)
f̃ ,Q̃,φ

= 0,
φ

B̃

(
∂ B̃

∂φ

)
f̃ ,Q̃,Re

= φ

J

∂ J

∂φ
,

Q̃

B̃

(
∂ B̃

∂ Q̃

)
f̃ ,φ,Re

= 0,
Re

f̃

(
∂ f̃

∂Re

)
Q̃,φ

= −1,
φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

= −nφ

ψ

∂ψ

∂φ
,

Q̃

f̃

(
∂ f̃

∂ Q̃

)
φ,Re

= 0. (D7)

Substituting everything into (D3) results in (Re/Q̃) ∂ Q̃/∂Re = 3/2, resulting in x = 3.
This holds for laminar flow of all treated fluid models.

D.2 Turbulent flow of Newtonian fluid, rough and smooth channel
A turbulent flow of a Newtonian fluid in a rough or smooth channel can be described
by the Colebrook–White equation (Colebrook 1939), which is in the applied non-
dimensionalisation

f̃ = {−2.0 log10 (k1 + k2)
}−2

, (D8)

with

k1 ≡ 1
3.7

π

4
ε̃Re

Q̃
, (D9)

k2 ≡ 2.51√
f̃ Re

. (D10)

Differentiation provides the needed differentials in (D3)

f̃

B̃

(
∂ B̃

∂ f̃

)
Q̃,φ,Re

= 1 − f̃

B̃

[
2k1k2 ln (k1 + k2)− k2

2

[(k1 + k2) ln (k1 + k2)− k2]2

]
,

Re

B̃

(
∂ B̃

∂Re

)
f̃ ,Q̃,φ

= f̃

B̃

[
−8k1k2 ln(k1 + k2)+ 2k2

1 + 2k2
2

[(k1 + k2) ln(k1 + k2)− k2]2

]
,

φ

B̃

(
∂ B̃

∂φ

)
f̃ ,Q̃,Re

= 0,

Q̃

B̃

(
∂ B̃

∂ Q̃

)
f̃ ,φ,Re

= f̃

B̃

[
4k1k2 ln(k1 + k2)− 2k2

1
[(k1 + k2) ln(k1 + k2)− k2]2

]
,

Re

f̃

(
∂ f̃

∂Re

)
Q̃,φ

= 2(k2 − k1)

(k1 + k2) ln(k1 + k2)− k2
,

φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

= 0,

Q̃

f̃

(
∂ f̃

∂ Q̃

)
φ,Re

= 2k1

(k1 + k2) ln(k1 + k2)− k2
. (D11)
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D.2.1 Complete turbulent flow of Newtonian fluid, rough channel
For sufficiently large Reynolds numbers, the friction factor corresponding to complete
turbulence in a circular channel can accurately be described by Von Kármán’s formula
(Haaland 1983)

f =
{
−2.0 log10

(
1

3.7
π

4
ε̃Re

Q̃

)}−2

. (D12)

Differentiation provides the needed differentials in (D3)

f̃

B̃

(
∂ B̃

∂ f̃

)
Q̃,φ,Re

= 1,
Re

B̃

(
∂ B̃

∂Re

)
f̃ ,Q̃,φ

= f̃

B̃

2(
ln

(
1

3.7
π

4
ε̃Re

Q̃

))2 ,

φ

B̃

(
∂ B̃

∂φ

)
f̃ ,Q̃,Re

= 0,
Q̃

B̃

(
∂ B̃

∂ Q̃

)
f̃ ,φ,Re

= f̃

B̃

−2(
ln

(
1

3.7
π

4
ε̃Re

Q̃

))2 ,

Re

f̃

(
∂ f̃

∂Re

)
Q̃,φ

= −1

ln
(

1
3.7

π

4
ε̃Re

Q̃

) , φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

= 0,

Q̃

f̃

(
∂ f̃

∂ Q̃

)
φ,Re

= 1

ln
(

1
3.7

π

4
ε̃Re

Q̃

) . (D13)

D.2.2 Turbulence, smooth channel
For a smooth-wall channel (ε→ 0), the Colebrook–White equation (Colebrook 1939)
reduces to

f̃ =
⎧⎨
⎩−2.0 log10

⎛
⎝ 2.51

Re
√

f̃

⎞
⎠
⎫⎬
⎭

−2

. (D14)

Differentiation provides the needed differentials in (D3)

f̃

B̃

(
∂ B̃

∂ f̃

)
Q̃,φ,Re

= 1 + f̃

B̃

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1⎡
⎣ln

⎛
⎝ 2.51√

f̃ Re

⎞
⎠− 1

⎤
⎦

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

1011 A42-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

39
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.393


J.S. Smink, R. Hagmeijer, C.H. Venner and C.W. Visser

Re

B̃

(
∂ B̃

∂Re

)
f̃ ,Q̃,φ

= f̃

B̃

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2⎡
⎣ln

⎛
⎝ 2.51√

f̃ Re

⎞
⎠− 1

⎤
⎦

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

φ

B̃

(
∂ B̃

∂φ

)
f̃ ,Q̃,Re

= 0,

Q̃

B̃

(
∂ B̃

∂ Q̃

)
f̃ ,φ,Re

= 0,
Re

f̃

(
∂ f̃

∂Re

)
Q̃,φ

= 2

ln

⎛
⎝ 2.51√

f̃ Re

⎞
⎠− 1

,

φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

= 0,
Q̃

f̃

(
∂ f̃

∂ Q̃

)
φ,Re

= 0.

(D15)

D.2.3 Low-Reynolds-number turbulence, smooth channel
For certain Reynolds-number regimes of flow in a smooth channel (ε→ 0),
approximations for the friction factor have been formulated, such as Blasius’ formula and
empirical relations. These are often in the following form (Uylings 1977):

f̃ = c1

Rec2
. (D16)

Differentiation provides the needed differentials in (D3)

f̃

B̃

(
∂ B̃

∂ f̃

)
Q̃,φ,Re

= 1,
Re

B̃

(
∂ B̃

∂Re

)
f̃ ,Q̃,φ

= 0,
φ

B̃

(
∂ B̃

∂φ

)
f̃ ,Q̃,Re

= 0,

Q̃

B̃

(
∂ B̃

∂ Q̃

)
f̃ ,φ,Re

= 0,
Re

f̃

(
∂ f̃

∂Re

)
Q̃,φ

= −c2,
φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

= 0,

Q̃

f̃

(
∂ f̃

∂ Q̃

)
φ,Re

= 0.

(D17)
Substituting everything into (D3) results in (Re/Q̃) ∂ Q̃/∂Re = (7 − c2)/4, resulting in

x = (7 − c2)/(3 − c2). For Blasius’ equation (B12), x reduces to x = 27/11 and for the
empirical relation (B14) x reduces to x = 17/7.

D.3 Turbulent flow of non-Newtonian fluids, smooth channel

D.3.1 Power-law fluid
Turbulent pipe flow of non-Newtonian power-law fluids at low Reynolds numbers in a
smooth circular channel (ε→ 0) described by Dodge and Metzner (Dodge & Metzner
1959) is given in the following implicit relation for the Darcy friction factor f :
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Figure 7. Friction factor as function of the Reynolds number for Herschel–Bulkley fluids. The dashed black
line indicates the transition from laminar to turbulent flow. The red-scale lines represent constant values
of the Hedström number from 101, 102, . . . , 1010 with decreasing brightness.Panels show (a) n = 0.5and
(b) n = 1.5.

2√
f

= 4
n0.75 log10

(
Re

(
f

4

)1−n/2
)

− 0.4
n1.2 . (D18)

Differentiation provides the needed differentials in (D3)

f̃

B̃
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∂ B̃

∂ f̃
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B̃
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⎠
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(
∂ B̃

∂Re

)
f̃ ,Q̃,φ
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(
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f̃ ,Q̃,Re

= 0,
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(
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(
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∂Re
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⎛
⎝n0.75 ln(10)
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√

f̃
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2

⎞
⎠
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,

φ

f̃

(
∂ f̃

∂φ

)
Q̃,Re

= 0,
Q̃

f̃

(
∂ f̃

∂ Q̃

)
φ,Re

= 0.

(D19)

D.3.2 Herschel–Bulkley fluid
For a turbulent flow of a Herschel–Bulkley fluid in a smooth circular channel (ε→ 0),
Torrance (Garcia & Steffe 1986) developed a relationship for the Darcy friction factor

2√
f̃

= 0.45 − 2.75
n

+ 1.97
n

ln(1 − φ)+ 1.97
n

ln

⎛
⎝Re

(
3n + 1

4n

)n
(

f̃

4

)1− n
2
⎞
⎠ . (D20)
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Differentiation provides the needed differentials in (D3)
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√
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∂ Q̃
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φ,Re
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(D21)

Appendix E. Extra figures for Herschel–Bulkley fluids (n = 0.5 and n = 1.5)
For a Herschel–Bulkley fluid, the graphs for the friction factor as function of the Reynolds
number and the optimisation graphs have to be made for every value of n separately. For
readability, in the main text, it is chosen to limit to n = 1, and therefore, the graphs for
other values of n are given in this section. Figure 7 shows the friction factor f as function
of the Reynolds number Re for both laminar and turbulent flow. The optimisation graphs
for laminar flow of a Herschel–Bulkley fluid for n = 0.5, n = 1.0 and n = 1.5 and covering
all n are given in figure 8. The optimisation graphs for turbulent flow for n = 0.5 and
n = 1.5 are given in figure 9. Finally, figure 10 shows x as function of Re for n = 0.5 and
n = 1.5.

Appendix F. Example of network optimisation
In this section, an example illustrates how the optimisation theory could be applied.
Imagine a water distribution system, which aims to distribute water from a main channel
to 8 endpoints. The requested output at each endpoint is 12.5 l min−1, which means that
the main channel should supply Q0 = 100 l min−1. The begin node is at (0,0) and the
end nodes are chosen to be placed equidistantly along an arc with a radius of curvature
of 4 m (see figure 11a). It is chosen to have symmetric bifurcations, with 4 levels of
branchings, denoted by indices 0 to 3. The channels are drawn tubes with a wall roughness
of ε= 0.0025 mm, and water is a Newtonian fluid (n = 1, τ0 = 0) with viscosity μ′ = 1
mPa s and fluid density ρ = 1000 kg m−3.

The design procedure as described in § 5 is followed. In step (i), the cost factor could be
chosen or derived from a constraint (see also Smink et al. 2023). Here, for the optimisation
is chosen to base the cost factor on a constraint for the outlet channel size. The radius of
the outlet channels is chosen to be R3 = 7.5 mm, a common channel size for tap water.
The cost factor can be retrieved in the following manner. The Reynolds number of the flow
in the outlet channels is set by the constraint to be Re3 = 1.768 × 104. This means that we
have a turbulent flow of a Newtonian fluid in rough-wall channels in the network. From
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Figure 8. Contour plots of the optimisation condition for a laminar flow of a Herschel–Bulkley fluid (3.8). The
red-scale contour lines represent values 2 × 10x , 3 × 10x , . . . 9 × 10x with decreasing brightness. (a) Optimal
Reynolds number as a function of τ̃0 and Q̃ for a Herschel–Bulkley fluid with n = 0.5. (b) Optimal Reynolds
number as a function of τ̃0 and Q̃ for a Herschel–Bulkley fluid with n = 1.0. (c) Optimal Reynolds number as
a function of τ̃0 and Q̃ for a Herschel–Bulkley fluid with n = 1.5. (d) Optimal R̃3/Q̃ as function of n and τ̃0.
This optimisation plot covers all laminar flows of Herschel–Bulkley fluids.

the given parameters, it is known that Q̃α−1/4 = ρ3/2μ′−7/4 Q = 1.17 × 106 m3/4 W−1/4

and ε̃α−1/4 = ρ1/2μ′−3/4ε= 0.0141 m3/4 W−1/4. We will use the graphical approach to
avoid tedious calculations. Figure 3(a) shows the corresponding optimisation graph, using
which the combination of Re, Q̃α−1/4 and ε̃α−1/4 gives the corresponding Q̃, ε̃ and α.
This graph shows that the given combination shows that Q̃3 ≈ 9.0 × 106, ε̃≈ 0.11 and
α≈ 3.5 × 103 W m−3. The dimensionless flow rates in the other three levels are then
Q̃2 ≈ 1.8 × 107, Q̃1 ≈ 3.6 × 107 and Q̃0 ≈ 7.2 × 107.

In step (ii), the optimal radius for one channel is determined. In this case, the channel
radius and Reynolds number for the outlet channels (level 3) are already known because of
the given constraint. Step (iii) is then carried out for obtaining the other optimal channel
radii Ri via the optimal Reynolds numbers in the channels, by repeating step (ii) for each
channel. Using ε̃ and the determined Q̃i (i = 0, 1, 2, 3), the other optimal values of Rei
are obtained from figure 3(a). These are Re2 ≈ 2.6 × 104, Re1 ≈ 4.0 × 104 and Re0 ≈
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Figure 9. Contour plots of the optimal Reynolds number as a function of Q̃ and τ̃0 for a turbulent flow of
a Herschel–Bulkley fluid (3.17) at constant n. The red-scale contour lines represent the Reynolds numbers
2 × 10x , 3 × 10x , . . .9 × 10x with decreasing brightness. Panels show (a) n = 0.5 and (b) n = 1.5.
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Figure 10. Plot of x (4.1) as function of Re for turbulent flow of a Herschel–Bulkley fluid (Torrance) as
discussed in § 3.3.2. The dashed lines for x = 3 and x = 7/3 show the expected limit cases for laminar flow
and high-turbulent flow, respectively (Uylings 1977). The different lines are for τ̃0 ∈ [0.1, 0.25, 1, 2.5, 10, 25].
Panels show (a) n = 0.5 and (b) n = 1.5.
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Figure 11. Example of optimisation of a branched fluidic network for a water distribution network. (a) The
position coordinates of the begin point and the endpoints are given and represented by black circles, where the
endpoints are located equidistantly along an arc with a radius of curvature of 4 m. (b) The obtained optimised
water distribution network. The colour indicates the Reynolds number of the flow within the channel. For
visibility, the channel diameters are magnified in the plot.

6.0 × 104. From here, the channel radii are calculated using the definition of the Reynolds
number (2.4): R2 ≈ 10.2 mm, R1 ≈ 13.3 mm, R0 ≈ 17.7 mm. These are the optimised
channel radii. Finally, the positions of the branching point locations are calculated in step
(iv) (see Appendix A.1), resulting in the full geometry of the optimised water distribution
network, presented in figure 11(b). In each level, the lengths of the channels are the same
(L0 ≈ 5.71 , L1 ≈ 1.48 , L2 ≈ 1.80 and L3 ≈ 1.18 m), and therefore the same holds for
the pressure drop in the channels in each level (�p0 ≈ 4.85 , �p1 ≈ 1.42 , �p2 ≈ 1.97
and �p3 ≈ 1.47 kPa).
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