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Mass transport induced by group-forced subharmonic waves (infragravity waves) is
investigated in the present study. A theoretical solution for subharmonic waves’ kinematic
contributions to fourth-order mass transport and drift velocity has been proposed for any
depth and bandwidth for the first time. This model is validated using particle-tracking
simulations driven by the flow field generated by the SWASH. The subharmonic-induced
mass transport solution is a weighted sum of the subharmonic velocity variance spectrum
and velocity skewness bispectrum due to the triad-difference interaction among two
primary and one subharmonic components. For narrow-banded waves with long wave
group relative to depth, the weightings become independent of spectral components,
and the solution is recovered in the time domain. Two mechanisms contributing to
mass transport were identified: a forward drift resulting from self-interaction similar
to Stokes drift, and a depth-decaying backward drift induced by negative subharmonic
velocity skewness due to the anti-phase coupling between subharmonics and wave groups.
For narrow-banded waves the forward transport surpasses the backward transport for
kh < 0.72, where k is the short wave wavenumber and / is the water depth. For other
waves, the critical kA for this phenomenon decreases with increasing wave period and
bed slope and decreasing bandwidth. At greater depths or steeper bed slopes, near-surface
backward transport predominates over forward transport; at shallower depths or gentler
slopes, forward transport is dominant throughout the water column. Although smaller than
Stokes transport by short waves, the subharmonic wave-induced mass transport can affect
the long-term trajectory of a floating and suspended particle. This study provides the
first evidence and insight for the influences of group-forced subharmonics on vertically
varying mass transport from the ocean surface to seabed in coastal environments.
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1. Introduction

Mass transport by waves has been widely studied due to its crucial role in transporting
material in the ocean, such as coastal sediment (Henderson & Allen 2004; Hsu, Elgar &
Guza 2006; Ruessink et al. 2011; Miles 2013; Li et al. 2024), spilt oil (Christensen &
Terrile 2009; Drivdal, Brostrom & Christensen 2014; Laxague et al. 2018) and marine
plastics (DiBenedetto et al. 2018, 2022; Calvert et al. 2019, 2021; van Sebille et al. 2020;
Nufiez et al. 2023; Liao et al. 2024).

For non-breaking waves, mass transport occurs due to both the rotational wave motion
near the surface and bottom boundary layers and the irrotational motion in the core
region outside the boundary layers (Longuet—Higgins 1953). Inside the boundary layer the
horizontal and vertical velocities are no longer in quadrature, their correlation gives rise
to wave radiation stress which generates a Eulerian steady streaming inside the near-bed
wave boundary layer and a steady vorticity in the free-surface boundary layer (Russell &
Osorio 1957; Longuet-Higgins 1960; Zou 2002; Zou & Hay 2003; Zou, Bowen & Hay
2006). Both the steady streaming and the steady vorticity outside the boundary layer drive
the mass transport in the core fluid region (Iskandarani & Liu 1991; Vittori & Blondeaux
1996; Blondeaux, Brocchini & Vittori 2002; Ng 2004a,b).

Fluid particles in the irrotational core region experience a net forward drift known as
the Stokes drift due to the non-closed trajectory over each wave cycle (Stokes 1847). For a
monochromatic progressive wave with amplitude a, angular frequency w and wavenumber
k at constant depth A, the first-order surface elevation and velocity field are given by
n =acos(kx — wt) and

h [k h
— a)w CcOS (kx — a)t)’
sinh kh (1.0
sinh [k (z + h)] . ‘
——————sin (kx — wt),
sinh kh

where z is positive upward with z =0 at the still water level. The first-order trajectory of
a particle can thus be obtained by integrating (1.1) with time as illustrated in figure 1. The
Stokes drift velocity can be derived from the net drift after a wave cycle (Ursell 1953)

3 ) k)? h[2k(z + h
Us:/Mdt_u+/wdt_u: (a ) ce [ §Z+ )]’ (12)
0x 0z 2 sinh“kh

where ¢ = w/k is the wave propagation speed. Integrating pU across the water column
yields the Stokes transport

0 2
a E
/hpuvdz=%=? (1.3)

where E = pga®/2 is the wave energy, p is the fluid density, g is the gravitational
acceleration.

Besides examining the trajectory of a Lagrangian particle, Stokes transport can also be
obtained in an Eulerian system. In the first-order problem, the velocity in (1.1) is always de-
fined from the bottom z = —#/ up to z = 0 even during n < 0 when physically there is no ve-
locity between z = n and z = 0. The velocity in the wave trough area given by (1.1) is there-
fore virtual and represents the analytical extension of the actual velocity from z =nto z =
0 and, by the same argument, from z = 0 to z = 1 in the crest area during n > 0. Effectively,
the wave crest where n > 0 carries ‘“positive’ mass forward while the wave trough where
n < 0 carries ‘negative’ mass backward (Longuet-Higgins 1969). Therefore, the residual
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Figure 1. Schematic of the Eulerian and Lagrangian descriptions of mass transport induced by a
progressive wave.

net forward mass transport is approximately pu|,—on, which leads to the same result of
E /c. Physically, the horizontal velocity observed by a sensor at a fixed height z =z,
between wave crest and trough (—a < z, < a) is intermittently zero when z, > 7 as

cosh [k(zo + h)]

a - cos (kx —wt) zo<n,
U=y, = sinh kh ( ) 2o =M

(L.4)
0 Zo>1,

which yields a non-zero forward mean velocity u(z,) between the crest and trough, as
illustrated in figure 1, and hence a forward net mass transport equal to [* o pudz,. The
first-order particle orbits and thus mass transport can be significantly modified by higher-
order nonlinear harmonics. Using a perturbation method, Chen, Hsu & Chen (2010)
derived the Lagrangian solution of particle trajectory for monochromatic progressive
waves over a flat bottom up to fifth order. Chen et al. (2012) extended the flat bottom
solution to a sloping bottom case up to third order. Recently, Li et al. (2023) obtained
the particle trajectory solution for partial reflected waves over a sloping bottom. However,
these studies adopted monochromatic waves as the leading-order wave, therefore, do not
account for the effect of second-order subharmonic waves generated through difference
interaction between first-order waves (primary waves) of different frequencies. As a result,
subharmonic wave-induced mass transport has not been studied to authors’ knowledge.
The subharmonic wave is often regarded as an infragravity wave as its period falls into
the infragravity band of 25~250 s (Bertin et al. 2018). They are generated by energy
transfer from short waves propagating into nearshore shallow water (Norheim, Herbers
& Elgar 1998; Sheremet et al. 2002; de Bakker et al. 2015) driven by the wave group-
modulated radiation stress gradient. When short waves break in the surf zone, infragravity
wave height may grow up to over 1 m towards the shore from a few centimetres in the
offshore. For example, the well-known surf beats observed by Munk (1949) and Tucker
(1950) are one kind of infragravity wave in the surf zone. Infragravity waves are related to
various nearshore and coastal processes such as rip currents, run-up/overtopping, as well
as beach and dune erosion (Russell 1993; de Vries et al. 2008; Castelle ef al. 2016; Bertin
et al. 2018). When the depth is shallow relative to the wave group length but not the short
wavelength, explicit theoretical solutions of the group-forced subharmonic were obtained
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for a flat bottom (Longuet-Higgins & Stewart 1962; Davey & Stewartson 1974; Mei et al.
2005) and a slowly varying bathymetry (Janssen, Battjes & van Dongeren 2003; Zou 2011).
Calvert et al. (2019) recently extended the solution to arbitrary depth relative to the wave
group length. However, those solutions diverge when the subharmonic response to wave
group forcing approaches resonance as the depth becomes shallow relative to the short
wavelength. In this case, solutions in integral form were derived for a plane sloping bed
(Symonds, Huntley & Bowen 1982; van Leeuwen 1992; Schiffer 1993) and for a slowly
varying bathymetry (Liao ef al. 2021, 2023).

However, despite improved understanding of generation and evolution of subharmonic
waves in the past years, not until recently did its effect on particle movements start to
be recognised. The low-frequency infragravity wave motion causes large excursion of
water particles because the particle excursion is proportional to wave period (Bondehagen,
Kalisch & Roeber 2024). Calvert et al. (2019) showed how the set down in a transient
wave group affects the particle drift throughout the water column. Bjgrnestad et al.’s
(2021) Lagrangian measurements in the surf zone indicate that infragravity waves may
trigger short wave breaking by enhancing the peak forward particle velocity at the surface.
Through theory and field observations, Herbers & Janssen (2016) observed energetic
infragravity fluctuations in the drift velocity of surface buoy in deep water that are several
orders of magnitude larger and out of phase with the Eulerian infragravity motions.
McAllister & van den Bremer (2019) found the Lagrangian measurement of surface
drifter is significant in the group-bounded subharmonic band, which affects the ‘apparent’
steepness derived from time histories of drifter motion and poses a potential issue for wave
buoys to measure acceleration. Flores, Williams & Horner-Devine (2022) show the first
measurements of infragravity waves’ modulation of salinity near a river plume.

Although little is known about subharmonic wave-induced mass transport, the
contribution of subharmonic waves to sediment transport are well recognised. In
intermediate water, group-forced subharmonics are in anti-phase coupling with short wave
groups, therefore, backward transport of high concentration sediment under large waves
and subharmonic wave troughs exceeds forward transport of low concentration sediment
under small waves and subharmonic wave crests, leading to net backwards sediment
transport. As waves shoal and break in the nearshore, the phase relationship between
subharmonic wave and wave groups evolves, which in turn alters the net sediment transport
by group-forced subharmonic (Deigaard, Jakobsen & Fredsge 1999; Baldock ef al. 2010,
2011; de Bakker er al. 2016a). On some occasions, infragravity waves may contribute
to up to 60 % of onshore transport of suspended sediment in the inner surf zone over
a gently sloping beach (de Bakker et al. 2016a). Besides the sediment transport due
to coupling between short waves and infragravity waves, field measurements indicated
that onshore sediment transport may be induced by tidal-modulated infragravity waves
in wave-dominated inlets or shallow and small estuaries (Bertin & Olabarrieta 2016;
Williams & Stacey 2016; Bertin et al. 2019; Mendes et al. 2020).

Currently, the literature on subharmonic wave-induced mass transport is scarce. In this
work, theoretical solutions of the mass transport and the associated drift velocity induced
by group-forced subharmonic waves in the shoaling zone are derived for the first time.
The model is validated by the GLOBEX experiment (Ruessink et al. 2013). It was also
validated against the mass transport velocity obtained by Lagrangian particle-tracking
simulations using the flow field generated by the non-hydrostatic wave model SWASH
(Zijlema, Stelling & Smit 2011). The theoretical solutions reveal two distinct kinematic
mechanisms for subharmonic wave-induced mass transport: the forward transport in
analogy to the Stokes transport of short waves, and the backward transport due to the anti-
phase coupling between subharmonic waves and wave groups. The latter is proportional
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Short-wave group

Figure 2. Definition sketch of variables and coordinate system for a short wave group propagating over an
undulating bottom topography with mild slope. Here,  and 7 denote total surface elevation and the second-
order subharmonic wave underneath the short wave group.

to the velocity skewness contributed by subharmonic waves. The theoretical model is
combined with the SWASH model and the GLOBEX experiment (Ruessink et al. 2013)
to examine the role of water depth, bed slope, wave period and bandwidth. The newly
proposed subharmonic wave-induced mass transport provides the third mechanism for
sediment transport in addition to the well-known boundary layer streaming (Nielsen 2006)
and suspension-advection mechanisms (Deigaard et al. 1999). The subharmonic wave-
induced mass transport is distributed throughout the water column hence is also expected
to affect the transport of buoyant particles such as microplastics.

The paper is organised as follows. The theoretical solution of subharmonic wave surface
elevation and velocity as well as the subharmonic wave-induced mass transport velocity
and the bulk transport are derived and compared with the GLOBEX experiment in § 2.
The set-up and postprocessing of the SWASH model and the Lagrangian particle-tracking
simulation are described in § 3.1. Results of simulated particle trajectory, mass transport
velocity and mass transport are demonstrated and compared with theoretical solutions in
§ 3.2. Discussions and conclusions are provided in § 4.

2. Theory of subharmonic wave-induced mass transport
2.1. Surface elevation and horizontal velocity of subharmonic wave

Consider shoaling unidirectional irregular waves propagating in the positive x-direction
over an undulating seabed described by z = —h(x). Let z=7n(x, t) and u(x, z, t) be the
surface elevation and horizontal velocity of the waves, respectively. The small parameter
corresponding to amplitude is denoted by short wave steepness € = ka, where a and k are
the characteristic wave amplitude and wavelength, respectively. The asymptotic expansion
of n and u is given by

2.1)

w=uD @ 4.
n=n0 4@ 4. [

where the superscript (i) denotes the variables at the order of O (eh).
Assume n(l) has frequency band [w, (1 — @), w, (1 + «)] and can be written in the form
of a discrete Fourier series

1 n1+NA
nt )(X,I)ZR€|: > an(x) expi&n},

n=n; 2.2)
6, =f;; k,dx’ — wpt,
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where w, =nAw is the radian frequency (Aw = frequency resolution) for the
nth component, k, is the wavenumber satisfying the dispersion relationship w,% =
gky tanh k,h, G, is the complex amplitude, n; is the index of the lower limit frequency
N is the number of frequency components and Re[-] denotes the real part of the complex
argument and will be omitted herein after for brevity.

Letting h, =dh/dx and h,, =d’h/dx?, we make following assumptions on the
parameters:

e (kh)?, a=0(), ekh<l, |h|=0(e"kh)(n>1), [|hel=O0(e"k*h),

2.3)
which is equivalent to the assumptions in Zou (2011).
Accordingly, the first-order horizontal velocity is given by
n1+N
h [k h
uO(x, z,1) = Z ﬁn(x)w exp i6,,
- cosh k,h
n=nj 2.4)
i, (x) = an(x)wy,
" tanh k,h’

Assuming the complex amplitude a,(x) only changes in magnitude following the

conservative shoaling
7 d tanhk,h (1 kph
) _ jet) _dop o Jsllbh b, &P ) )
a, (xo) cg (X) ok w=w, kp 2 sinh2k,h

wher.e cg is the wave group speed corresponding to central frequency ), and (2.2) can be
rewritten as

nW(x, 1) =A (x, 1) exp [i (/x k pdx’ —w,,t)], (2.6)

0
where the modulated complex amplitude A(x, ) is given by

ni+N

X
Ax )= Y an(x)exp [i (/ kn,,,dx/—wn,pt)},
= %o (2.7)
Wp,p = Wp — Wy, kn,p =kn —kp.

Substituting (2.7) into the formula for wave energy E = pg|A|?/2 yields the modulated
wave energy

E@x,0)=E (x)+E (x,1)
1 ni+N
- N 2
E@=5pg ) lan (o),
n=n (2.8)
ni+N m—1

E (x,1) =pg Z Z am (x) &: (x) exp |:1 </x kmndx/ - a)m,nt>:|’

m=n| n=n 0

Wm,n = Wm — Wy, km,n =km — kn,
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where E and E denote the steady and unsteady components of the wave energy,
respectively, ny is the index of the lower limit frequency of 7" and N is the number
of frequency components of (1. The density p is omitted hereinafter for being constant
and for brevity. Throughout this paper (-) and (-) denote the low-frequency unsteady and
steady components of a time-dependent variable, which are equivalent to averaging over
the short wave and wave group phase, respectively.

Since wpy p = wm — Op = Om—n, E(x, t) in (2.8) can be rewritten by letting m —n — [
and w,, , — w; and changing one of the double summations into the sum over new
index [

N ni+N

E@.0)=g) > am(x)}_; (x)exp [i (/X ks m—1dx’ — a)ll):|
I=1 m=n| *0
N [ni+N x
=g Z [ Z am (x) &:;171 (x)i| exp [i </ kidx’ — a)lt) + 0(8)], (2.9)
=1 Lm=ny X0
where
w = 0(ewp), ki = (c‘l — 0 (¢k), (2.10)
8

is the radian frequency and wavenumber of the wave group. The unsteady wave energy E
can be expressed in terms of discrete Fourier series

N
E(x,t)=)_E (x, ) exp (—iayt), 2.11)
=1

and comparing (2.11) with (2.9) yields

E A cg (x0) [ ,

(x, w;) = E (x0, @) exp|i [ kdx + O (¢) |,
Cg (x) X0

N (2.12)

E (xo0, ) =g [ Z am (X0) 4y, (XO)i| .

m=n

Let 7, & and Q denote respectively the low-frequency surface elevation, horizontal
velocity and volume flux, then, accurate to O(g2), Q can be written (Longuet-Higgins
1969; Monismith et al. 2007)

- E 4
O =uh+ = +0(&), (2.13)

which has contributions from both the depth-uniform subharmonic orbital velocity i (x, t)

and the modulated Stokes transport E /c. The linearised governing equations of 7 and 0
are (Longuet-Higgins & Stewart 1962; Zou 2011; Liao et al. 2023)

YY)

— 4+ ==,

at + 0x

) i (2.14)
30 3 a8
= h— = ——,
or T8y T Tax
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where S(x, t) is the modulated wave radiation stress given by (Longuet-Higgins & Stewart

1962)
~ ~(26‘g 1)
S=E(~*-3). 2.15)

N
(i, ,~5==§:n@am%ﬁ@wwxQO@MLSGJWHWM—MWL (2.16)

where the argument w; for complex amplitude will be omitted hereinafter for brevity. The

complex amplitude Q and S can be derived by substituting (2.11)—(2.12) into (2.13) and
(2.15), respectively,

A

A E E ¥
O(x)=uh+—=ih+ (x0) ¢ (x0) exp <1/ kzdx/),
c X0

¢ colx
e e g™ i (2.17)
Sx)=E it A [ (st A E (x0) Cg (X0 )exp i/ kidx' ) .
c 2 c 2 cg(x) o
Substituting (2.16) into (2.14) yields the governing equation for 7 and Q
A 190
1=
! , (2.18)
1 98  gh a7
O =—"+-=

iw; 0x  iw; Ox

We note that the derivation from (2.1) to (2.18) essentially repeats many existing
theoretical studies of the group-forced subharmonic over a mild sloping bottom (Liu 1989;
van Leeuwen 1992; Schiffer 1993; Janssen et al. 2003; Battjes et al. 2004; Zou 2011;
Contardo et al. 2021; Liao et al. 2021).

Over a mild bottom slope relative to the wave group length scale with the following
parameter regime:

f=12 0@ <1, Z 0t = 02, (2.19)
kih k2h '
the solution of 7 accurate to O(8) under the off-resonance condition
2
c
P_o@u=1-% (2.20)
2 gh

in intermediate depth is taken from the existing literature (Janssen et al. 2003; Zou 2011;
Liao et al. 2021)

s S Bl d 2 1\ 5| __d 2
)= ghu{1+u|:(1 “)dlhn[<c 2) | T qmp M)

+0w%} (2.21)
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where § (x) is given in (2.17). The parameter p describes the extent of deviation from
resonance (Janssen et al. 2003) and decreases from unity in deep water to zero at shallow
water as kh — 0, and 8 measures the bed slope relative to the wave group length scale
(Battjes et al. 2004). As kh — 0, the O (B) terms in (2.21) increase in magnitude as

n—1
o)

hence approaching O(1) when kh approaches £”~1/2 (the so-called near-resonance
condition). In this case, the off-resonant solution (2.21) starts to diverge and is no longer
valid.

Without assuming the depth and resonance regime, Liao et al. (2023) obtained the
leading-order solution of 7 as ((B11) therein)

7 () =177 (xo) i (x,%0) + 77 (x0) 7l (x, X0)

A

+fx K S (A7 (e, x') =, (x, x') ] dx’
v 2iks gh VTR h ’ (2.23)

0

) h (x) 1702 e /
n;jf (x2, x1) = [h (xf)} exp <1/x +k pdx )

1

with an error factor 1 + O(B), where ky = w;/+/gh is the wavenumber of shallow-water
waves at wave group frequency wy; ﬁ;? and ﬁ; are the complex amplitudes of forward
and backward propagating subharmonic waves of frequency «y, respectively; xo is the
boundary for integration where ﬁjﬂf(x()) is known; function ﬁf(xz,xl) describes the
change in complex amplitude as a shallow-water wave propagates from xj to x». Liao
et al. (2023) derived (2.23) using a novel Green’s function. Unlike previous solutions,
the Green’s function-based solution treats all subharmonic waves as free harmonics
continuously radiated at shallow-water wave speed away from each point source in the
forcing field of the group modulated wave radiation stress gradient, phase locked with
the wave group. The solution describes the generation, propagation and interference of
freely propagating subharmonic waves without distinguishing between free and bound
waves. It was shown that the superposition of these free harmonics results in what are
termed bound subharmonics, due to the modulation of each free harmonic’s phase by
the wave group. Additionally, it was demonstrated that, during shoaling, the radiated
subharmonic waves propagating with the wave groups accumulate energy along the
travel distance, leading to their rapid growth and the phase lag with respect to the wave
groups.

It was also shown in Liao ef al. (2023) that (2.21) can be decomposed into /) = §+ + 7~
as follows:

S ki+k d 2 1\2
)y =g |:1—i/3—1n {(3——> cg3:|

ghu 2ky dInh c 2
k; £ kf d ch 1 1 B d 5
- || — -3 — kitkf)+ O ,
IB lklﬂ dlnh n |:< C 2) CghOZSM:| lklM dInk ( l f)+ (IB )
(2.24)
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where the subscripts 4 and — denote the forward and backward propagating components
respectively. The parameter 771 in (2.24) will be used as the boundary values 7 I (xo)
at x = xg in (2.23). It follows that the model only considers the backward propagating
component generated by the forcing of radiation stress gradient and thus does not account
for subharmonic waves reflected from the bathymetry or the shoreline. This can be seen
from the fact that the decomposition of 7j =™ + 4~ in (2.24) is always valid even for
a flat bottom with B =0, where the sum 7T + 7~ recovers the equilibrium solution by
Longuet-Higgins & Stewart (1962).

As shown later, the analytical consideration of subharmonic wave-induced mass
transport requires its velocity # or #, which was not obtained in Liao et al. (2023). To
derive that, substituting (2.21) into the second equation in (2.18) and retaining terms to
order O(B) yields the solution for Q under the off-resonance condition in intermediate
depth

-8 ig (2—3u—u? d 2 1\ 3—4p—p* d
Oy= by (2wt 4y ae 1) Soduowt 4y
ghu % 1—u  dinh c 2 11— dnh
2 d
—1+M—mlnu)+0(,82)}. (2.25)

Similarly, substituting (2.23) into the second equation in (2.18) yields the leading-order
solution in shallow water

X 2

3 _ $ At At A A~ 1 At
Q(X)—§+\/gh {nf (xo) 1, (x, x0) — 14 (X0) 7, (x,xo)Jr/xO Eg_h[nh (x, ¥)

+ 75, (x, )] dy} . (2.26)

As reflected in (2.18), Q is the combined effect of the direct response of the subharmonic

volume flux to the forcing of radiation stress gradient 3S/0x and the volume flux carried
by subharmonic waves (the 97/0x term). At leading order, the former leads to the first

term S/ c¢g on the right-hand side of (2.26), while the latter is essentially multiplying the
forward and backward propagating subharmonic waves in (2.23) with their corresponding

phase speeds /gh and —./gh.
Combining (2.17) and (2.26) yields the complex amplitude of subharmonic orbital

velocity u
i) =< _21C (2.27)

As a special case, consider a bichromatic wave system over a flat bed at a water
depth deep for the primary waves but shallow for the wave group. Substituting g8 =0,

E= gaya v €Xp 1(f kidx”" — wyt)] (2.12), S= E((2cg/c) —(1/2)) and the deep-water
relationship cg =1/ 2c = g/Qw)p) into (2.25), and then into (2.27) yields

ﬁ(x)——%Lex (i/xkdx/) (2.28)
T on 11y (@kh) P\ ) '
which is equivalent to (2.3) in van den Bremer et al. (2019).
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2.2. Eulerian transport

2.2.1. Generalised theory
In an Eulerian coordinate system, the wave-induced mass transport in homogeneous media
with unit p is defined as

n 0 n
M(x, 1) =/ udz =/ udz —i—/ udz. (2.29)
—h —h 0
The horizontal velocity u can be expanded vertically around z =0 as
= o+ du +1 5 3%u (2.30)
ux,t)=ul,_g+z — -7 — .
= 9z z=0 2 922 z=0
Substituting (2.30) into (2.29) yields
M(x, 1) /0 dotum+ 2 e L s @31)
X, t)= u - — - — e .
e v MU =

where the subscript 0 indicates evaluation at z =0

Substituting the asymptotic expansion of u and 7 in (2.1) into (2.31) yields M = M) +
M (2). +M® + M® | where the superscript (i) denotes the variable at the order of
0O(e"), i.e.

0
MD (x, 1) = / uDdgz, (2.324)
—h
0 1
MP (x,1) = / hu<2>dz+ug)n<1>, (2.32b)
0 ¢h)
1 ou
2 2
W) (x’t):/ u<3)dz+uf)”n(2)+ué)n“)+5 e DO, 2320
—h 7z=0
0 @)
1 du
MW (x,1) :/ u®dz + u(()l)n(3) + u(()z)n(z) + u(()3)n(1) t5 [n(l)]z
—h 2 32 7=0
au® 1 9%u® 3
D ..(2) (1)
— + - — . 2.32d
0z 7 6 972 (] ( )
z=0 z=0

Our goal is to obtain the time-averaged mass transport M at each order and seek terms
involving the second-order subharmonic velocity i to assess its contribution. Physically,
an Eulerian velocity of order O (¢?) such as u® and u® will depend on i and so will the
mass transport terms involving them. This dependence of mass transport on i, however,
is dynamic rather than kinematic. The latter may be defined as the difference in the drift
velocity of a Lagrangian particle after subtracting & from the background flow, whereby
the former requires the derivation of the change in flow field at higher orders due to
subtracting u using the momentum equations and boundary conditions. The present study
focuses on the kinematic contribution of subharmonic waves to the mass transport, thereby
u® and u™® are neglected hereinafter. The subharmonic-induced mass transport solution
will be similar to the kinematic Stokes drift velocity (1.2) without the accompanying
second-order subharmonic return flow.
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To proceed, we will first consider a more general wave velocity field without
the assumptions o = O(e) K 1, kth = O (akh) = O(ekh) < 1 to derive the result of
subharmonic-induced mass transport and then simplify it to the different parameter
regimes. The first-order horizontal velocity u(!) takes the same expression as in (2.4).
The following general form is now adopted for subharmonic velocity # contributing to
u@ as suggested by the solution of subharmonic velocity obtained in Longuet-Higgins &
Stewart (1962) ((3.10) therein):

u® =j+ (superharmonic terms),

~ ~ cosh|ky n(z+h) ) (2.33)
u(x,z,t)= Z Un.n C([)s:llzm,nh ] exp i n,

n,m

with
em,n = km,nx — Wm,nt,
km,n =k — kn, (234)

WOmn = Wy — Wy

Both indices n and m were summed over the same frequency domain of u‘.
Substituting (2.4) into (2.32a) yields MV

A

MO =3 Z—’" tanh Kyt €xp i6p,. (2.35)

m m

After obtaining M@, n® is needed for deriving M/ (j > i) and can be obtained from
the continuity equation as

(i) oMY
n®=— dr. (2.36)
0x
Substituting (2.35) into (2.36) yields n!
n D =3 2" tanh kil exp 6, (2.37)

Wm

which together with u@ in (2.33) and uV in (2.4), is further substituted into (2.31b) to
yield M®. Repeating this process, the terms in M involving subharmonic velocity &
can be identified

M@ (x, 1)

o [9] o 0 da Y o fd ([ (1)
=u, F ug B adz dt — iign dr—u, PP B udz +ugy'n ds

u'n® uy@

1 i u» 5 [ 0

- [77(1)]2— = n(l)f— / idz | dt + (terms without ).

2 8Z 7=0 82 0 0x —h

, o

(2.38)

Notice that the first term on the right-hand side of (2.38) is part of the term u(()l)n(S),
accounting for the interaction of u(()l) with @i through the component of n®. The phase
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average of this term turns out to be non-zero and therefore contributes to the mass
transport.

Invoking (2.4) for u and (2.33) for & and (2.37) for nV, the expression of (2.38) for
M® can be worked out. Maintaining only the steady terms involving the subharmonic
velocity Uy, , yields

_ 1~ =~
M(4) (x)= Z EUm,nU*

m,n

tanh kp, ph 1 NAPN
—_— 4 ZDm’numun Un.nh, (2.39)

Wm,n

Term II

k k k
Dm,n = ( il + _n)

am
om  knh

N (k_m N k_n) k. tanh Ky, ,h

WDm.n km,nh

tanh k,,h N (km,n L k_m) k_,,tanh kn,h
w, kyh

WDm.n Wm

Wm Wn

N |:(k_+k_m> kmn k2, } tanh &, tanh ky s tanh Ky uhe (2.40)

Wm Wy ) Wm,n [ ki n h

Equation (2.39) is a generalised subharmonic-induced mass transport solution for
arbitrary depth and bandwidth and can be further simplified depending on the short wave
relative depth (k,h, ky,h), subharmonic wave relative depth (kj, ,h) and bandwidth o.
Detailed derivations are provided in Appendix A.

Noteworthily, the correlation between subharmonic velocity and surface elevation ign

only contributes partly to M ® through the u(()z) n® term in (2.31). In fact, considering o7
only yields

~, tanhk,,h 1ky,, (tanhk,h tanhk,h ~
+ - +

’ ’ ®m.n 4 wm n wmh wyh
where we find the entire Term I in (2.39) but only part of the Term II.

2.2.2. Narrow-banded waves with wave groups long compared with the depth
Among the simplifications of (2.39) presented in Appendix A, the scenario of narrow-
banded waves with wave groups long compared with the depth, i.e.

a1, |knn|h <1, (2.42)

is consistent with the theory in § 2.1 and thus of particular interest in this study. The
corresponding simplified (2.39) is given by (A22). Normalising ¢ and ¢, with 4/gh yields
an alternative form of (A22)

2
] 7 (4] 7
MD @)= 4 pepm N (2.43)
Cg g
——
TermlI Term 11

where the function f (k,h) is

_3sinh 2k, h + 6k, h cosh® k,h + 2k yh sinh® k
B sinh 2k ,h + 2k ,h '

(2.44)
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The function f(k,h) increases monotonically with kj,h. For short waves in deep water
kph > 1, f(kph) approaches ~ 3 + 4a)?,h /g asymptotically; for shallow water k,h <1,
flkph) =3+ O(k[%hz). Note that, in deep water k,h > 1, the shallow-water regime for
subharmonic wave (|k,, ,|h < 1) is only valid for the subharmonic component with low
enough frequencies or when the bandwidth « is so small that |k, ,|h = O (ak,h) < 1.

2.2.3. Second definition

Alternatively, let z=1n.(x) and z =n;(x) be the wave crest and trough, i.e. the local
maximum and minimum values of 7, respectively. Below z =1n.(x) the time-averaged
Eulerian velocity is zero while between z = n.(x) and z = 1, (x) the velocity observed at
a fixed height is intermittently zero similar to (1.4). The subharmonic wave-induced mass
transport can be defined as the contribution of # to the integral

_ Ne
M(x):/ udz. (2.45)
Nt
This definition, however, is more difficult to analyse than (2.29) despite the fact that

both should yield the same results. As the first step, substituting the expansion of u into
(2.45) yields

Ne
M:/ u® + 4@ 4+ 4 Odz + 0(&d). (2.46)
un

Invoking u® in (2.33), (2.46) becomes

_ Ne —
M= / u® + dz + (terms without &) + O (&). (2.47)
Nt

As shown later, | ,Z“ iidz can be estimated from experimental data, which implies fn':‘ adz
is equal to an although we do not seek its proof in this work. However, it remains
challenging to analyse either analytically or experimentally the contribution of u to
/ n’i" uMdz through terms analogous to u(()l)n(3) in (2.31).

2.3. Lagrangian transport

In the Lagrangian system, the Lagrangian velocity up () =[up(¢), wp(¢)] describes
the velocity of a moving particle passively following the background Eulerian
velocity u(x, z, t) = [u(x, z, t), w(x, z, t)]. The mass transport is obtained by integrating
vertically the steady component in uj, i.e. f , urdz. Compared with the bulk
transport M obtained in an Eulerian system, 7. offers more information on the vertical
distribution of how fluid particles at different depths physically drift.

2.3.1. Generalised theory
The horizontal and vertical displacements of a fluid particle released from rg = (x¢, z0)
at t = 0 underneath waves Ar(t) = [Ax(¢), Az(t)] are given by the time integration of its
Lagrangian velocity uy (t)

Ar(t) = / ur(t)de, (2.48)
1016 A5-14
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where up (¢) is obtained by querying the Eulerian velocity field following the particle
coordinate in real time, i.e.

ur (t)=u(ro+ Ar (),1t). (2.49)

The right-hand side of (2.49) can be expanded around r( using Taylor series as

1
uyp (t)= {(1 + Ar-V 4+ 3 [Ar- (Ar-H)] +.. ) u}
52 52 (ro.1)
o , 2.50
AN R T (250)
ox’ 9z )’ 92 92
dxdz  ox2

where the subscript coordinates (rg, t) will be omitted hereinafter.
Applying Stokes expansion in ¢ to u, u; and Ar and then substituting them into (2.50)
yields

uVx, 2, 0 =u, (2.51a)
P,z 0)=u® + Ar®V.va®, (2.51b)

1
uf)(x, 2.0 =u® + ArW.vu® 4+ Ar@.vu 4+ E[Ar(l)-(Ar(l)-H)]u(l), (2.51¢)
P,z =u® + ArO.vu® 4 Ar®.vu® 4 Ar®.vu®

+ %[Ar(l)-(Ar(l)-H)]u(z) + [Ar(l)-(Ar(z)-H)]u(l)

2 1ax® 3 Ax DAL D Az DAL D
+6<[x ]8x3+[x ['az 8x231+[z J'ax 9x9z2
3
np 9 1
+ [AazV] 8—Z3> uV). (2.51d)

The horizontal component of u®D =[u®, w7 can be found from (2.4), while the
vertical component w!) can be obtained by integrating the continuity equation vertically

Z
0
wPx, z,0)=wh (x, —h, 1) — / a—u(l)(x, 7, nd7, (2.52)
X
—h
where wV (x, —h, 1) is the bottom vertical velocity, which is of O(eh,) due to kinematic
condition w = —uh, at the bottom z = —h. Because |h,| K O(gkh), for kh = O (1) we
have wV (x, —h, 1) = O(eh,) < O(g%) while for kh >> 1 the bottom effect is neglected.

Therefore, w (x, —h, 1) will be excluded in both w® and w®. Substituting (2.4) into
(2.52) and taking w " (x, —h, r) =0 yields

ni+N .
. sinh [k, (z + h)] .
wV(x,z, 1) = § —mn(x)cos’;l—knh exp i6y. (2.53)

n=np

Substituting (2.4) and (2.53) into D = [«™, wD] and then into (2.51a) yields u'".
Then the Ar™) can be obtained following Ar®) = f ug)(t)dt. After Ar() is obtained,
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u@ is still needed to evaluate ug) The horizontal component of u® =[u?®, w?] can

be found from (2.33), while the vertical component w® is obtained similar to w! as
w® =u + (superharmonic terms)
~ sinh [kpa(z+h)] (2.54)

w(x, z,t) = —iU, exp i,
w(x,z,t) rgr% 1Wm,n COShkm,nh XP 10m,n

Substituting u@ =[u®, w1, Ar® and u® into (2.50) yields u(LZ) and, by Ar® =
i u(’)(t)dt, Ar® Repeating this process, the expression of u “ can be worked out after

o)

lengthy algebra. Since we are interested in the resultant u;~ involving ﬁmﬁ, it will be

useful to write out the expression of u( )

2,,(1)

dit dii i)
uP(x, 2, N=Ax® "+ Az <2>8 +AxVAx® =

u®
+[Ax(l)Az(z)—FAz(l)Ax(z)]aa oA (1)Az(2)aa 5 +ax®2

X z ax
NG KL 1[A wyp e 20% L a0 28 0% +1[Az(1)]282—ﬁ
9z 2 ax2 0xdz 2 0z
+ (terms without & or w), (2.55)

and evaluate each part separately. Note that in (2.55) the exclusion of terms without & or w
were not exhausted (e.g. expanding Ax® in Ax(MAx@ (92uM)/(9x?) also generates
those terms). The steady terms in each part are

K. cosh [2km n(z +h)]
Omn  2cosh® ky ,h

A

Bl i unUm n

mnm

4 cosh ky, h cosh k,h cosh kyy, b

ou o
AX(2)8—+AZ(2)— Z mn mn

+ (terms without & or w),

I R (2.56)
(1 (Y] ur i
Ax(3) au —|—AZ(3) 8u =Z an m nUm,n
0x 0z — 4 cosh k;,,h cosh k,h cosh ky, . h
+ (terms without & or w), (2.57)
24,(1) 24,(1) 2,4(1)
Ax®Ax® L L [Ax DAz 4 az0ax@] T 4 Az a0 2
9x2 x0z 0z
BUL ox o [
:Z mpn_m 7.0 + (terms without i or W), (2.58)
~ 4 cosh k,,h cosh k,h cosh kyy, nh
1 2 020 92 1 2 320
Z[AXxD]" —= £ AxWAZzD —_[AzD]" Z——=
7 [ O) g+ ax Ao 4o (A0 o
BIIII 1% i 0
=> monm 2R + (terms without & or ), (2.59)

p 4 cosh k;, h cosh k,h cosh ky, nh
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with the coefficients By, , to B}

B k ky, knm 7
mn {— cosh [2k, (z + h)] + — cosh [2k,, (z + h)]}
Om.n | Om Wy
B:L n kimky {wcosh [2k(z + h)1}n k,% "
’ SO— h [2k h
BH WOy Omn O n Ccos [ m,n(Z + )]
m,n _
gl - 2 J
e ——"" cosh [2kp,n(z + h)]
BHII [P OM
m.,n
{wk? cosh [2k(z + M1},
L Wiy W Wm,n

(2.60)

where all the subscripts m, n on the right-hand side denote the difference between the mth
and nth frequency components. Collecting (2.56)—(2.59) yields u(L4)

kn.n €OSh 2k (2 + )]
Omn 2 cosh? kim.nh

Term I

)(X 7) = ZUan*

(BrIn,n 4 BH + BIH + BHH) 12* I:in ﬁm
4 cosh k;,,h cosh k,h cosh ky, nh

Term II

iy (2.61)

)

and integrating u( vertically yields the mass transport M® (x) = / Eh u(L4) (x, z)dz

- 1~ tanhk,, ,h 1
MO )= S OnnT ™ 4 =Dy ity iy U, (2.62)
o 2 ®m.n 4 ’
with
1 tanh k,,h —tanh k,, ,h 1 tanh k,h +tanhky, nh\ ki
Dppn=\— + —
Wy h wy h Wm,n

kimkn oy tanh k,h + tanh ky, ,h w, tanhk,h —tanhk, ,h
+ —
WOm,n kmh W n kyh

Wm Wp

2kZ ,, tanh k,,h — tanh k,h

Wi Wy km.nh

wmk (tanh k,h + tanh ky, nh) — @nky (tanh ky,h — tanh ky, ,h)

W W W nh

(2.63)

Term I on the right-hand side of (2.62) is the same as in (2.39) obtained in Eulerian
system. Also, both equations are equivalent for the coefficient Dy, , (see Appendix B for a
proof). Therefore, the result of M® derived in the Lagrangian system (2.62) is consistent
with that in the Eulerian system (2.39).
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At the leading order, the mass transport is the sum of Term I and II, as labelled in

(2.39) and (2.61). Term I originates from the term [ u®d¢-Vu® and accounts for the net
displacement solely due to the subharmonic motion (self-interaction), in analogy to the
Stokes drift velocity due to the primary wave orbital motion. Term II takes the form of the
weighted sum of all bispectral components of horizontal velocity skewness Re[it},it, Uy ]
arising from the triad-difference interaction among two primary and one subharmonic
components. Therefore, Term Il may be regarded as the effect of subharmonic wave-
induced skewness on the mass transport velocity. Note that these two terms do not
necessarily balance with each other, and the residual of their sum has to be compensated
at least partly by a steady component of u® depending on the boundary conditions.

2.3.2. Narrow-banded waves with wave groups long compared with the depth

As shown in Appendix C, (2.61) for u(L4) can be further simplified depending on the short
wave relative depth (k,h, k;,h), subharmonic wave relative depth (k,, ,#) and bandwidth
o similar to the simplifications to (2.39) in Appendix A. In the case of narrow-banded
waves with wave groups that are long compared with the depth, equation (2.61) reduces to

(C16), i.e.
2
— z w0 | @
4) _u z [ =0
W= (ko ) e (2.64)
where
z 5 kph cosh [2k,(z + h)]
kph, ~)=|=+ —L — 42k h) tanh |2k h
g(” h) [2+Sinh2kph+ p(eth)tan [ pt )]:| coshzkph
(2.65)

The second term of (2.64) is the product of the characteristic transport velocity

[uM|,=0]%it/(cc,) and the depth-dependent coefficient ¢ which is a function of k,h and
the z/h, as shown in figure 3(a). For short waves in deep water k,h > 1, ¢ approaches
(4a)f,h) /(g) exp(Za)f,z/ g) asymptotically; for shallow water k,h < 1, becomes 3 +
O (k2h?).

In (2.64) the weighting coefficient for all bispectral components of velocity skewness
Relit}, ityUp »] in (2.61) is the same and therefore Term II is simply proportional to

> m.n Relity ity (/J\m,n] o [uM],—0]%%, which is non-zero due to phase coupling between
the subharmonic wave and wave groups. As shown by Fiedler et al. (2019), the correlation
i[uM]? can be found through expanding the velocity skewness (u(1) + )3 as the
contribution of subharmonic waves to the total velocity skewness.
For each pair of m and n, the ratio [Term I/Term IIl in M® by (2.43) is given by
~ 2
2gh |Upi |
fkph)eg |Re[iiinUnn]|’

which relies on a function of k,/ and the dependence of I/J\m’ n on i) i,. This dependence
can be evaluated based on the equilibrium subharmonic wave solution on a flat bottom
by Longuet-Higgins & Stewart (1962) and also the Green’s function-based solution in
§ 2.1 and shown in figure 3(b). Both models indicate that Term I exceeds Term II for
n <0.36 (kyh <0.72), while the Green’s function-based solution indicates decreasing
critical u or kph as |8l increases and exceeds ~0.01. The relative importance of Term I
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Figure 3. (a) Contour line of ¢ (k,h, z/h) in (2.64) which describes the vertical distribution of the skewness-

induced transport velocity due to subharmonics proportional to [u(D|.—q1%i/(ccg) at different short wave
relative depths k,h. (b) Theoretical prediction of (2.66), i.e. the ratio of Term I (‘Stokes drift’ type contribution)
over Term II (velocity skewness contribution) for each pair of bichromatic waves in the subharmonic wave-
induced mass transport given by (2.43). Dashed lines: flat bottom solution of Longuet-Higgins & Stewart
(1962); solid lines: Green’s function-based solution in § 2.1 based on Liao et al. (2023). 8 =h,/(kih) is
the relative bottom slope at wave group length scale, u=1— c§ /(gh) is the parameter of departure from
resonance.

increases with decreasing p due to increasing subharmonic wave energy during shoaling
and with decreasing B. As B decreases, the predictions of the Green’s function-based
solution asymptoticly approaches that of the equilibrium solution for a flat bottom. Notice
that at given depth for equilibrium solution or small enough relative slope |§] this ratio
becomes independent of 8 and hence subharmonic wavenumber k;, suggesting that it also
measures the ratio between the entire Term I over Term II.

2.4. Comparisons with GLOBEX experiment

2.4.1. Experimental set-up and data processing
The test series A of GLOBEX experiment (Ruessink ef al. 2013) of unidirectional irregular
waves normally incident onto a beach of 1/80 bed slope is employed to validate the
model in §2.1 for subharmonic surface elevation and velocity. Then, the theoretical
model in §§2.2 and 2.3 is evaluated both analytically and experimentally to analyse the
subharmonic wave-induced mass transport. Note that the experiment did not provide direct
measurement of the kinematic effect of subharmonic wave-induced mass transport and
therefore does not allow validation of the mass transport model proposed. This will be
addressed in § 3 through comparative Lagrangian particle-tracking simulations.

Because the model in §2.1 ignores the reflected subharmonic waves, the incident
subharmonic surface elevation 7 and orbital velocity i were obtained using the weakly
nonlinear method detailed in Appendix D. The significant wave height of the incoming

subharmonic wave was then obtained as Hjr =44/ (7)?. The phase coupling between
subharmonic waves and short wave groups (biphase) was calculated following Fiedler
etal., (2019) as

U 7 H D)2
Biphase:taln_l {n}T{nz} , (2.67)
] [n(l)]
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where {-} denotes the Hilbert transform and ‘") the short wave surface elevation with
frequency > 0.5/T),.

To calculate the subharmonic wave-induced time-averaged velocity & between wave
crest z =1, and trough z =1, described in §2.2.3, the incident subharmonic orbital
velocity # measured at a fixed height above the bed was assumed to be uniform throughout
the water column. At each cross-shore location with velocity measurements, 21 equidistant
points from z=1; to z =7, were defined and at each point i is assigned with the
simultaneous value of the i measured for the timepoints when it is below the free surface
and otherwise zero. Time averaging the resultant & at the defined points yields the i
between the wave crest and trough.

To experimentally evaluate (2.43), 2 is calculated from the incident subharmonic i
while @[uV],—0]? is evaluated using the measured it[u(D]? at z, +h above the bed

according to
R —
i [u(l)}zzo] - {a [um]z}

2.4.2. Validation of theoretical model for subharmonic wave

Figure 4(a—c) shows the flume set-up, significant wave height of the primary wave and
the incoming subharmonic wave of A3 case of GLOBEX experiment. In figure 4(c),
also shown is the theoretical wave height of subharmonic waves forced by wave groups,
Hjp =4,/ (i1} /2), where the complex amplitude of subharmonic wave 7; is given by
(2.23). The theory predicted the observed growth of group-forced subharmonic waves in
the shoaling zone and the outer surf zone very well, but overpredicted the observation in
the inner surf zone. The overprediction in the surf zone is likely due to drastic modification
of the phase of group forcing by a breaking process not included in the model (figure 4d),
which is crucial for capturing the wave height decay in the inner surf zone (Liao et al.
2023).

The subharmonic wave-induced time-averaged velocity i between wave crest z = . and
trough z =7y is illustrated in figure 4(e). Below the wave trough z = n;, the oscillatory
subharmonic wave leads to a zero time-averaged velocity u. In the shoaling zone and outer
surf zone, u is negative near the wave crest z = 1, but positive near the wave trough z = n;.
This is because only the largest waves in the wave train can achieve the crest, when the
subharmonic wave troughs and backward orbital velocity occurs since the group-forced
subharmonic wave is in anti-phase with the wave group. The dominant forward velocity
near the subharmonic wave trough leads to a net positive contribution of the term |, n’:‘ udz
to the mass transport (2.47), which increases with decreasing depth towards the shore.
In the inner surf zone, the negative velocity near the surface becomes positive, due to
the transition from anti-phase to in-phase coupling between the subharmonic wave and
wave groups (figure 4d). Although the model is no longer accurate for x > 70 m in this
region, the & value evaluated from experimental measurements still offers insights into the
mass transport, especially the effect of growing subharmonic waves and decaying short
waves.

Figure 5 compares the measured and theoretically predicted mass transport component
pun in the shoaling zone. In all three cases, the theoretical predictions agree with the
observations very well, validating the model in § 2.1 for subharmonic surface elevation and

velocity. Noteworthily, the experimental results of the term [ ?ZC iidz are nearly identical to

cosh? kph
=z cosh? kp (Zp + h) '

(2.68)

af, suggesting that [ rZ" adz =un although a theoretical demonstration is desired.
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Figure 4. (@) Numerical flume set-up and wave conditions of Case A3 in the GLOBEX experiment.
Significant wave height of (b) short wave (c) incident subharmonic waves (frequency < 0.5/7)).
(d) Biphase for the triad-interaction between incident subharmonic waves and short wave groups. (e¢) Measured
time-averaged Eulerian velocity induced by subharmonic waves # between the maximum (crest, z = 7.) and
minimum (trough, z = n,) surface elevation level.

2.4.3. Subharmonic wave-induced mass transport
Figure 6 shows the mass transport M® (2.43) evaluated in the shoaling zone using

measured and theoretical velocity statistics (#z2 and #[u(D|,—¢]?). As mentioned above,
the experiment did not actually measure M® and thus does not allow comparison with
(2.43). The comparison in figure 6 is essentially between the experimental and theoretical
subharmonic velocity instead of M®.

The theory agrees with the experiment very well for case Al. For cases A2 and
A3 the theory slightly underestimated the magnitudes of both term I (‘Stokes drift’
effect) and term II (skewness effect), indicating an underestimation of subharmonic
velocity magnitude. Nevertheless, the theory aligns with experimental results regarding
total transport, primarily due to the opposite signs of the two terms that cancel out the
underestimations.
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Figure 5. Subharmonic wave-induced mass transport components pii7j and p fﬂ?" iidz in the shoaling zone for
(a) Al, (b) A2 and (c¢) A3 irregular wave cases of GLOBEX experiment. Dots: experiment; lines: theoretical
predictions. Here, p = 1000(kg m—>) was adopted.

Term I contributes to a forward drift as it is proportional to the energy of the
subharmonic velocity, whereas Term II accounts for a backward drift because the near
anti-phase coupling between subharmonic wave and wave group results in a negative

i[uM]2. In all three cases as depth decreases towards the shore the total transport
is initially negative (seaward) and turns positive (shoreward) near the end of the
shoaling zone due to the positive Term I growing faster than the negative Term II and
becoming predominant prior to wave breaking. The results also suggest that the transition
of total transport occurs at shallower relative depth k,h for larger wave period and
smaller bandwidth.

The measured Eulerian mass transports (crosses) in all three cases were lower than term
I (red dots) alone but greater than the total transport (black dots), especially for a smaller
period (figure 6a) and greater depth. This aligns with (2.41) that &7 (the subscript of g
for z =0 omitted since subharmonic waves are in shallow water in this case) accounts
for the entire Term I contribution but only a fraction of the Term II contribution that
is generally negative. It also stresses the necessity to include those negative velocity

skewness contributions not accounted for by 7 to correct its overprediction.

3. Numerical model of subharmonic wave-induced mass transport
3.1. Non-hydrostatic wave model SWASH

To validate the theoretical model for subharmonic wave-induced mass transport, a
Lagrangian particle-tracking simulation is conducted, which requires a high-resolution
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Figure 6. Subharmonic wave-induced mass transport M®™ (2.43) in the shoaling zone for (a) Al, (b) A2 and
(c) A3 irregular wave cases of GLOBEX experiment. Dots: experiment; lines: theoretical predictions. Red and
blue markers and lines denote the Term I (‘Stokes drift’ effect) and Term II (skewness effect) components in
(2.43), respectively. Green crosses denote the same result as the dots in figure 5, i.e. the component 7). Here,
p = 1000 (kg m~3) was adopted.

flow field in space and time not available from the experiment. Thus, the non-hydrostatic
wave model SWASH (Zijlema er al. 2011) was used to investigate the subharmonic-
induced mass transport for bichromatic wave groups propagating over a plane sloping
ramp. The multilayer non-hydrostatic model SWASH is essentially a RANS (Reynolds-
Averaged Navier—Stokes) solver without VOF (Volume Of Fluid) and level set type of
free-surface capturing scheme, capable of resolving strong nonlinear wave motion. It
solves the momentum and mass conservation equations

ou OJuu n Jwu _ _l o(pn + pnh) n 0Ty N 0Ty

e , 3.1
at + ax 0z o ax 0z ax 3-)
ow Jduw  Jdww 10pun 0Ty 0Ty
el et , 32
8t+3x+8z ,082+8z+8x (3-2)
ou Jdw
— 4+ —=0, 33
ax + 0z 3-3)

where pj is the hydrostatic pressure, p,; is the non-hydrostatic pressure and t is
the turbulent stress described by the standard K-e¢ model, where K is the turbulent
kinetic energy and € is its dissipation rate in the present work. The model has been
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Figure 7. Schematic configuration of numerical flume set-up used for the SWASH model; i, = dh/dx is the
bottom slope.

Rimax Rmin _h;l ap () ap (@) 1Bl = |hx|/kgh u=1- (Cz/gh)
[m] [m] [m] [rad—s'] [m] [rad—s]]

15.5 2 30/60/90//120  0.27 09676  0.09  0.7917 0.020~0.388 0.147~0.711

Table 1. Bathymetry parameters and bichromatic wave conditions for SWASH model.

extensively validated against both laboratory (de Bakker, Tissier & Ruessink 20165) and
field data (Rijnsdorp, Ruessink & Zijlema 2015) of the nearshore nonlinear evolution of
subharmonic waves. Detailed descriptions of the model can be found in Rijnsdorp, Smit
& Zijlema (2014) and Smit et al. (2014).

3.1.1. Model set-up and data processing

The numerical flume has a bed profile of a plane sloping ramp with bottom slope ranging
between 1/30 and 1/120 connected with two flat bottom plateaux (figure 7). The toe of
the ramp is 300 m away from the incident boundary and the plateau at the shallow end is
480 m long equipped with a 140 m sponge layer near the outgoing boundary to minimise
reflection of short waves. The depth at the shallow end was carefully chosen to prevent
wave breaking, thereby no surf zone occurs in the model domain. Eight sigma layers with
thicknesses 6.06, 7.27, 8.73, 10.47, 12.57, 15.08, 18.10, 21.71 per cent of full depth were
adopted. The bottom boundary layer and the associated mass transport caused by boundary
layer streaming was not considered in the numerical model by adopting a zero bottom
friction factor. The bathymetry and wave condition parameters are summarised in table 1.

Preliminary analysis of incoming and outgoing subharmonic waves using the same
method as in § 2.4 indicated that the reflection is less than 5 % for the subharmonic
wave amplitude. The following analysis is based on the result before decomposition into
incoming/outgoing components as there is no fundamental difference.

The SWASH model outputs the horizontal velocities at the centre of each vertical layer,
where the absolute z-coordinate varies in time with the undulating surface elevation. To
derive the Eulerian velocity at fixed heights, the velocity output at a time-dependent height
was first vertically mapped onto fixed heights, including ten equidistant layers between
the wave crest z =71, and wave trough z = 7, and eight sigma layers between the bottom
z = —h and wave trough z = 7;, using spline interpolation.

The horizontal Eulerian velocity # and surface elevation 7 were first demeaned and then
low-pass filtered with cutoff frequency of 0.5w, where w = (w1 + wy)/2 is the central
frequency of bichromatic waves, to obtain the surface elevation 7 and Eulerian velocity i
of the subharmonic wave. The first-order velocity u(! was obtained by filtering through
the band [0.5w, 1.5w].
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To make best use of the vertical distribution of velocity resolved by SWASH, the
following relationship:

cosh [2kp(z + h)] [ a
u
cosh? kph

2
z:o] = [1+ tanh? k(z + W) ][V T, (3.4)

is used to change (2.64) into an alternative form
[u®D] i

CCq

—_ =
u® = ﬁ_g te (kph, %) [1 4 tanh® k, (z + )] (3.5)

Equation (3.5) is evaluated both theoretically and numerically for comparison with
the result from the Lagrangian particle-tracking simulation. The numerical evaluation

calculates #? and [uD]2 first and then substitutes them into (3.5). The theoretical
evaluation calculates 2 and [u(D )24 as

1

, [u(l)]zft = —std{[u(l)]z} |121| cos ¢, (3.6)

P

where |il;| cos ¢ (¢ = biphase) is theoretically predicted from (2.27) while std{[u(D]2}
(i.e. the standard deviation of low-pass filtered [#D1? in time dimension) is calculated
from simulated uV.

3.1.2. Lagrangian particle tracking and subharmonic wave-induced mass transport
velocity

The Lagrangian particle tracking was conducted using the velocity field by the SWASH

model. Let x7 (#) and z7 () be the horizontal and vertical coordinates of a tagged particle,

uy (t) and wy (¢) be the horizontal and vertical velocities, the particle displacement in one

time step from ¢ to ¢ 4+ At was given by

xp (t+ At —xp () =uy (t) At,
zp (t+ At) —zp (t) =wp (t) At,

3.7

where the velocities uy (f) and wy () were interpolated from the simultaneous SWASH
flow field to the particle location xz(¢) and z(t) using the square inverse distance
weighted interpolation (Shepard 1968).

To derive the mass transport velocity at a given location (x, z), a particle is released
from (x, z) and tracked for one wave group cycle of 35.72 s. This procedure is repeated 40
times with the release timepoint being increased by 1/20 wave group period successively
to establish an ensemble average. A linear regression with respect to the tracking time ¢ is
applied to the resultant 40 records of x (¢) to obtain the mass transport velocity at (x, z).

3.2. Model results

3.2.1. Trajectories of Lagrangian particles

Figure 8(a) shows the numerical results of time-averaged total horizontal Eulerian velocity
profiles over a 1/120 bed slope. Similar to the illustration in figure 1, the velocity is positive
between the wave trough and crest, leading to a forward mass transport. Below the wave
trough, a return current is formed and offsets the forward mass transport, resulting in a
zero net mass transport in the numerical flume. The return current is skewed towards the
surface and becomes more uniform vertically as the water depth decreases.
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Figure 8. (a) Time-averaged total Eulerian horizontal velocity for the i, = —1/120 case simulated by the

SWASH model. (b)—(d) Trajectories of fluid particles initially released at the timepoint of wave crest along
the vertical profile of local depths (b) koh = 0.33, (¢) koh = 0.25 and (b) koh = 0.17 and tracked for one wave
group cycle. The magenta dashed lines in (a) denote the wave crest and trough heights. Here, kg = »?/g is the
deep-water wavenumber. Green and red circles denote the starting and ending positions of the tagged particles,
respectively.

Figure 8(b—d) shows the trajectories of particles released at various heights for three
water depths shown in figure 8(a). Each particle was tracked over one wave group cycle,
after which the particles near the surface moved backward while those near the bottom
moved forward. This phenomenon results from the stronger return Eulerian current near
the surface, as shown in figure 8(a), overpowering the forward Stokes drift near the surface,
while the opposite is true near the bottom. At greater depths (figure 8b), a small proportion
of particles near the surface moved backward while, as depth decreases, more particles
moved backwards as the return current becomes more uniformly distributed in shallow
water (figure 8d). Figure 8 also shows that particles move downward after a wave group
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Figure 9. Profiles of mass transport velocity induced by subharmonic wave forced by bichromatic wave groups
with amplitudes [a;, a2] =[0.27, 0.09] m and radian frequencies [w, w2] =1[0.9676, 0.7917] rad s~! over
bottom slopes of 1/30 (a,d), 1/60 (b,e) and 1/120 (c,f). Upper: kh =0.54; lower: kh = 0.44. Black dots:
difference between the mass transport velocity evaluated using Lagrangian particle-tracking model driven by
SWASH flow field (cf. § 3.1.2) with and without the subharmonic velocity. Black, red and blue lines denote

the subharmonic wave-induced mass transport velocity u(L4), the Term I (‘Stokes drift’ effect), and Term II
(skewness effect) components predicted by (3.5). Equation (3.5) was evaluated using both simulated velocity
(SWASH, solid lines) and theoretical subharmonic velocity (theory, dashed lines).

cycle, more so at a shallow depth (figure 8d) than at a deeper depth (figure 8b). Near
the bed, however, particles no longer move downward and can only move forward along
the bed.

3.2.2. Validation of subharmonic wave-induced mass transport solution
Figure 9 compares the profile of the subharmonic wave-induced mass transport velocity

obtained by using Lagrangian particle tracking (dots), the value of u(L4) by (3.5)
evaluated numerically (SWASH, solid lines) and theoretically (theory, dashed lines). Both
predictions using numerical and theoretical velocities agree well with the particle-tracking
results, validating the theoretical model of subharmonic wave-induced mass transport.
The total mass transport velocity is positive at the bottom and decreases upwards,
approaching zero or even a negative value towards the surface. This is well captured

by the theoretical profile of u(L4), especially when evaluated using the simulated profile
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Figure 10. (a) Subharmonic wave induced mass transport M® (40) evaluated with SWASH-simulated
velocity. (b) Percentage ratio between M® and Stokes transport E/c. Here, p=1000(kgm™3) was
adopted.

of [u(D]2z. The theoretical profiles indicate that this is due to the greater negative Term II
near the surface whereas profiles of Term I were almost vertically uniform, aligning with
the theoretical assumption of shallow water for a subharmonic wave. Term I increases
significantly in magnitude with decreasing bed slope and depth while Term II does not,
resulting in the enhanced dominance of Term I over Term II over a mild slope and in
shallow water, consistent with figure 3(b). Over the 1/30 bed slope at kh = 0.44 (figure 9d),
Term I marginally surpasses Term II while the advantage becomes apparent for 1/60 bed
slope and (figure 9¢). As the bed slope decreases to 1/120, Term I increases significantly
while Term II does not, making Term I predominant and hence close to the total velocity

(figure 9f).

3.2.3. Influences of bed slope on subharmonic wave-induced mass transport

Figure 10(a) presents the numerical results of M@ (2.43) for bed slopes 1/30-1/120,
showing that the mass transport increases with decreasing depth at a greater rate for
gentler bed slopes. However, as the bed slope decreases from 1/90 to 1/120, the increase in
mass transport becomes marginal. For bed slopes 1/30 and 1/60, the transport is negative
(seaward) at deeper depths while it is positive near the end of the shoaling zone, consistent
with the results derived from experimental data (figure 6). The results also indicate that,
when the bed slope is not too mild (seemingly greater than 1/90 in this case), the transition
from negative to positive transport occurs at deeper depths for milder bed slopes, which
also aligns with figure 2(b).

The percentage ratio of M® to the Stokes transport of short waves E/c (figure 10b)
shows a similar trend to M® in figure 10(a), indicating little effect of the bed slope
on the Stokes transport. Specifically, as the bed slope decreases from 1/30 to 1/90, the
maximum subharmonic wave-induced mass transport at the shallow-water end increased
from approximately 0.5 % to 2 % of the Stokes transport but remained almost unchanged
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Figure 11. Fluid particle trajectories over ten wave group cycles (fifty wave cycles). Upper: particles driven by
flow field simulated by SWASH model initially released at 5 different heights at water depth (a) koh = 0.27 and
(b) koh = 0.17; lower: particles driven by flow field after removing the subharmonic orbital velocity. Releasing
profiles in (¢) and (d) are same as in (a) and (), respectively. The red circles in (¢)—(d) are duplicates of
those in (a)—(b) for comparison. kg = w?/g is the deep-water wavenumber. Here, Ax denotes the horizontal
displacement of particles. Green and red/yellow circles denote the starting and ending position of the tagged
particles with/without subharmonic orbital velocity, respectively.

as the bed slope decreases further from 1/90 to 1/120. It is also noticed that for bed slope
1/30 the negative M® around kh = 0.57 is nearly 0.5 % of the Stokes transport, which is
comparable to the ratio of the maximum M ® to the Stokes transport at the end of shoaling
zone. Although the ratio between M@ and the Stokes transport is generally low, below
2 %, according to (2.13) and (2.26), u generally scales with E /(hc), thus this ratio relates
to the short wave amplitude approximately as

—1
, (3.8)

] £V n
M® (m) e  (may/h)?  [(W® K?
E/c E/c ajy +a; ay  a;

therefore, higher relative importance of M@ is expected for larger waves. This is natural
since M scales with a* while E scales with a?. More results are needed to exam this
relationship.

3.2.4. Long-term effect of subharmonic wave-induced mass transport

Despite being secondary to Stokes transport of short waves, the effect of subharmonic
wave-induced mass transport on particle movements accumulates with time and travel
distance and becomes important in the long term. Figure 11(a—b) illustrates the trajectories
of particles across 10 wave group cycles released at 5 heights at two water depths over a
1/120 bed slope. At the greater depth in figure 11(a), the particle movement maintained a
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similar trend as that over one wave group cycle (figure 8c). At a shallow depth (figure 115),
the particle movement near the bed maintained a similar trend along the bed as depicted in
figure 8(d), while those released near the surface initially moved backward after one wave
group cycle (figure 8d) but eventually moved forward after ten wave group cycles. This is
due to the marked downward movement of particles initially near the surface (figure 8d),
ultimately aligning them with the forward-moving trajectories of particles in the middle
and lower water column.

Figure 11(c,d) demonstrates the same results as (figure 1la,b) but without the
subharmonic velocity. A comparison between figure 11(a) and ¢ and the difference
between the red and yellow circles in figure 11(c,d) reveal that the subharmonic orbital
motion induces a weak net forward drift. This forward drift becomes more significant at
shallow depths (figures 115 and 11d) especially for those released near the surface that
drifted slowly at the leading order, which by contrast highlights the importance of the
contribution of subharmonic wave-induced drift.

4. Conclusion and discussion

This study develops and validates a theoretical solution for the first time for mass
transport as well as the associated drift velocity induced by group-forced subharmonic
(infragravity) waves over an undulating bottom topography. The fourth-order solution for
Lagrangian mass transport velocity incorporates the kinematic effects driven by both the
subharmonic wave-induced velocity variance and skewness. The theory was validated by
GLOBEX experiment and Lagrangian particle-tracking simulations driven by the SWASH
model. Additionally, the analytical solution was applied to the experimental data from the
GLOBEX campaign to demonstrate its applicability under field conditions.

The theory identifies two key kinematic mechanisms contributing to subharmonic wave-
induced mass transport: (i) a forward drift analogous to Stokes drift, arising from the
self-interaction of subharmonic orbital motion that is proportional to the variance (energy)
of the subharmonic velocity, and (ii) a depth-decaying backward drift arising from the
negative velocity skewness induced by the near anti-phase coupling between subharmonic
waves and short wave groups. For relative bed slope 181 less than ~0.01, these two
mechanisms are comparable at around kA = 0.72, and this critical value decreases with
increasing bed slope, wave period and decreasing bandwidth. In deeper water or over
steeper bed slopes, the backward drift can exceed the forward drift near the surface,
producing a net seaward transport in the upper water column. As water depth decreases,
forward drift increases and dominates net positive mass transport, especially over mild
slopes.

Although subharmonic-induced transport is typically smaller than the classical Stokes
transport (e.g. reaching up to ~2% of Stokes transport at kh =~ 0.42 over a 1/120
slope), its influence on material transport accumulates over time and distance and is
vertically distributed across the entire water column. These characteristics, therefore, make
subharmonic-induced transport particularly relevant in shallow coastal regions, especially
where Stokes drift is nearly cancelled by the Eulerian return flow, leaving subharmonic
contributions the key driver of particle motion. Based on the expression of mass transport
obtained, it is evident that the relative importance of subharmonic-induced transport to
Stokes transport increases with short wave amplitude.

The subharmonic wave-induced mass transport provides the new third mechanism for
sediment transport. Despite the skewness-induced sediment transport (Deigaard et al.
1999; Yu, Hsu & Hanes 2010; Baldock et al. 2011) arising from group-modulated sediment
concentration near the bottom, however, the present skewness-induced mass transport

1016 A5-30


https://doi.org/10.1017/jfm.2025.10323

https://doi.org/10.1017/jfm.2025.10323 Published online by Cambridge University Press

Journal of Fluid Mechanics

is a purely kinematic effect of subharmonic wave motion so that it affects the whole
water column from surface to bottom, therefore, influences the movement of non-inertial
particles at the wave surface (e.g. buoyant microplastics). The latter was previously
thought to be affected solely by Stokes drift from short waves.
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Appendix A. Subharmonic wave-induced mass transport in Eulerian system
1. Broad-banded waves with @« = O(1) then

ki nh = O (akyph) = O (kyh) . (A1)
1.1. Deep water |k, ,|h = O (kyyh) > 1

In this case tanhk,, ,h =sign(k,, ,)[1+ O (e *mhy = sign(wp )1+ O (e Fmhy),
equation (2.39) becomes

_ 1 Up nU* max (ky, wp, kyw ~
M® = Z L ¥mn¥mn (kmwm, knwp) A;knﬁnUm,na (A2)
m,n 2 |wmv"| ®mBn |wm’”|

with an error factor 1 4+ O (e *n").

Invoking the deep-water dispersion relationship

w2

k= —2[1+ O (e #nM)], (A3)
8
equation (A2) reduces to

T Tr* 3 3\ Ax A
=3 1UnnUp,  max (@5, 03) iy iy Un,n

, (A4)
m,n 2 |wmv”| ®m®n |wm’”|
with an error factor [1 + O (e~ 2kn")].
1.2. Intermediate depth |k, ,|h = O (k;yh) = O(1)
In this case the generalised solution (2.39) must be invoked.
1.3. Shallow water |k, »1h = O (kyh) < 1
In this case, the dispersion relationship becomes
Bm _Dn_Dmn _ Jeh[1+ 0(K3h?)], (A5)
and (2.39) reduces to
_ h 1~ =~ 3 ... =~
M(4) — \/; 5 m,n ;lk’l n + ; zu;knbtnUm’n, (A6)
e i 1016 A5-31
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with an error factor 1 + O (k,%lhz).
Furthermore, recall & and «! in (2.33) and (2.4), respectively, we have the relationships

L‘ZZ

,=Re [Z Um,,,elf’nm} Re {Z Um,nelemﬁ:| =5 > UnnUy s (A7)
m,n m,n m,n

=

i [u]

= Re |:Z ﬁmeigm:| Re |:Z ﬁneie{| Re |:Z lf]\m,neigm’"i| = ! Z ﬁ;ftnl’]\mn
z=0 m n m,n 2 m,n
(A8)
And therefore (A6) can be recovered in the time domain as

_ h= 37 13-
M(4)=\/jﬁ2+_[u(l)]2ﬁ, (A9)
g

8

where the velocities at arbitrary depth instead of at z =0 are used with the same error
factor 1 + O(kﬁlhz).

2. Narrow-banded waves with o < 1 with central frequency/wavenumber w,/k,, then

k| b= O (aknh) = O (akph) < O (k,h) . (A10)

2.1. Deep water for both short and subharmonic waves 1 < |k, ,|h < O (kph)

In this case, equation (A4) applies but with the coefficient of the second term
approximated as

33
max(w?,, @ ®
@i @) _ 21140 @y, (A1)
Wy W || |, n |
hence it becomes
i =y Nl Op Gutn U (A12)
m,n 2 |60m,n| |wma”| 8
with an error factor 1 4+ O (a, e~ 2kmnlhy,

2.2. Deep water for short wave, intermediate depth for subharmonic waves |k, ,|h =
o(1) € O(kph)

Let (knh, kyh) = O(kph) > 1 but keep ky ,h=O(1) and invoke the deep-water
dispersion relationship (A3), equation (2.39) becomes approximately

i} . tanhk, ,h tanh k,, nh 00 i1, U,
D =3 Ty Ty sty Op B Emn Unlln T - (a3
mon ’ 26Um,n ®Om,n g

with an error factor 1 + O («, k;lhfl) for the second term.

1016 A5-32


https://doi.org/10.1017/jfm.2025.10323

https://doi.org/10.1017/jfm.2025.10323 Published online by Cambridge University Press

Journal of Fluid Mechanics

2.3. Deep water for short wave, shallow water for subharmonic waves |k, ,|h <1 <K
O(kph)

Let |k nlh < 11n (2.39), it becomes

M@ = Z (’jm U* km.nh i @pkim b 1, 1ty U n , (A14)

n~m,n
2CUm,n WOm,n 8

with an error factor 1 + O (kfn nh3). For narrow-banded waves introduce the approximation

k=24 P 4 0wy —wp)’]
wc wmc_gw ) (A15)
ki = =2+ ——L + O[(wm — wp)”]
C Cg
where
_%_ 8 )], g = 02 kot
C_kp_wp[1+0(e ”)],Cg—ak o pr[l+0( ”)], (A16)

are the deep-water wave phase and group speed corresponding to central frequency w,,
respectively. The coefficient of Term I in (A14) is thus approximately

K _ 1 [14+0 ()] = 2%[1 + O(e, e_kl’h)]. (A17)

Omn  Cg
Therefore, (A14) reduces to

- wph o~ 20ih
MY ==L=N"T, Uy, + —> 0 fiy U (A18)

with an error factor 1 + O(k h3 o, e~ Zkphy,
Like (A6), (A18) can be recovered in time domain as

_ o 20,— 407 2
M@ =222 4 —2l,o) 1, (A19)
g g2 z=0

2.4. Intermediate depth for short waves, shallow water for subharmonic waves |k, ,|h <
O(kph) = 0(1)

Let (kyh, knh) =kph[1 + O(a)] = O(1) and k;, nh < O(1), equation (2.39) becomes

. 1 1\tanhk,h 1+4tanh®k,h | i@* G, Upnnh
(4)_ U U* _ _ P p mAnYm,n
2¢q er; e |:<ccg + cz) kph + ccq :|% 2 ’
(A20)
with an error factor [1 + O(krzn,nhz, a)] and ¢ and ¢, take the general expressions
tanh k,h B 1 kyh
c=2r o BRI 222 =c(—++)- (A21)
kp kp dk w=wp 2 sinh2k,h
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Equation (A20) can be recovered in time domain as

(A22)

i2h <3tanhkph 2cosh2kph—l—1>[u(l)lzzo]zﬂh

MO =—+ -
Cg 2 kph 2cosh’k ,h ccq

And for k,h > 1 (A22) reduces to (A19).
2.5. Shallow water for both short and subharmonic waves |k, ,|h < O (k,h) < 1
In this case the result is given by equations (A6) and (A9), which can also be obtained

for kyh < 1in (A22).

Appendix B. Proof of equivalence between D,, , in Eulerian and Lagrangian systems
The coefficient D,, , obtained in Lagrangian system (2.63) writes as

( 1 tanhk,,h — tanh k,, ,h 1 tanhknh—ktanhkm,nh) km.n
Dm,n = + —

Wm h wp h Om.n

N kinkn (a)m tanh k,h 4 tanh k,, ,h

Om®n \ Om.n ki h

w, tanhk,h —tanhk, ,h
Om.n knh
N wmkm (tanh k,h + tanh ky, nh) — @nky (tanh kyh — tanh Ky, /1)

O OO nh

2kZ ,, tanh k,,h — tanh k,h

B1
W Wy km,nh (B
Using the following relationship of the tanh function:
tanh k,,, ,h — tanh k,,,h + tanh k,,h = tanh k,,, ,h tanh k,, h tanh k, h, (B2)
the first term in (B1) may be rewritten as

1 tanhk,h —tanhk,, ,h n 1 tanh k,h +tanh ky, ph\ k.

(™ h Wy h Wm.,n
_kmon ( km tanhk,h N k, tanh kyh k%, tanh ky, ,h B3)

© Omn \On kmh wn kph Onwn  kpah

The second and third terms can be combined as
knkn ( wy tanh k,h + tanh ky, nh w, tanhk,h — tanh km,nh)

Om®n \ Om.n ki h Om.n knh
kinky, oy tanhk,h +tanh k, ,h w, tanhk,h —tanhk, ,h
+ —
Om®n \ Om.n knh Om.n ki h

_ kmky ( wp, tanhk,h + tanh &, ,h tanh k,,, h tanh k,, h

Wm®n \ Om.n ki h
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wy tanhk,h — tanh k,, ,h tanh k,,, h tanh k,, h )

WOm.n knh
kiky, wy, tanh k,h 4 tanh k,, ,h w, tanhk,h —tanhk, ,h
+ WmWp <a)mn knh B Om.n kmh )
. kimkn (tanh kynh  tanhk,h . oy, tanhky, ,htanh k, h tanh k, b
Wy kimh knh Om.n kmh
w, tanhky, ,htanhk,htanhk,h N wy,, tanhk,h w, tanh kmh)
Om.n knh Om.an  knh Omn  kmh
knk, (tanhk,h tanhk,h
" onon ( ko knh
1 (a),, + a)m,n) tanh &, ,h tanh k,,,h tanh k,h + (a)m — a)m,n) tanh ky, ,h
Om.n kmh
L] (wm — @m,n) tanh ky, b tanh ky o tanh kb + (wn + @,y ) tanh km,nh>
Om.n knh
_ kmky (tanhkmh N tanhknh) (a)_m &) km n tanh ky, nh
Wy Wy kinh knh km  kn) omn  kmah
4 (ﬂ N a)_m) km_n tanh k,, ,h tanh k,,h tanh &, h kfn’n tanh k,,h — tanh knh.
km  kn ) omn km.nh kmkn km.nh
(B4)

Substituting (B3) back into (B1) and using the relationship

ki o tanh&y,h Ky, , tanhk,h —tanhk,h _ ki, tanhk,h tanh k,h tanh Ky, ./

Wy W km,nh Wy Wn km,nh N W Wy km,nh '
(BS)
equation (B1) becomes
km.n (tanhk,h tanhk,h knk, (tanhk,h tanhk,h
Dm n=— + —+
Om.n wmh wyh Wiy Wy knh kyh
. (w_m + &) km n tanh ky, ,h
ki ky Wm,n km,nh
N ( Kn | kn ) kmn k%, | tanh k,,h tanh k,h tanh km,nh’ (B6)
Wm Wn ) Wm,n W Wy kmnh
which is same as that obtained in Eulerian system (2.40).
Appendix C. Subharmonic wave-induced Lagrangian mass transport velocity
1. Broad-banded waves with « = O (1) then
km.nh = O (akyph) = O (kyh) . (C1)
1.1. Deep water |ky n|lh = O (kp,h) > 1
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In this case we have the following approximations:

cosh [2ky, (z + h)] = %eZk’”(”h)[l + O (e~ Hnhy], (C2)

cosh [2km,n(z + h)] — %62|km,n|(Z+h)[1 + O(e_4kmh)], (C3)
cosh? ko wh = %ezlk”“"w[l L 0(e M), (C4)

cosh kynh cosh knh cosh ki, uh = e e? maxtm bk 4 0 (e Hnh)], (C5)

and equation (2.61) becomes approximately

@ Kmn = Ss okl
ML :Z Um’nUm’ne | 1n,n|Z

o ®m,n

km.n max (wmkp , wpky) + knk, max (op, w,) + max (a)mki, a)nk,%)

Wy Wp |a)m,n|

% ’2* lzn Um,n€2 max (ky, ,kn)z

~ 2 max (k2 wpm, k2w ~

m n m&Yms Ypn ) o 4 A

2 : U nU* 2|kmn |z ( )u* i,0 ’neZmax(km,kn)z’
®m,n Wy Wy |a)m,n|

(Co)

—2km

with an error factor 1 + O (e ). Invoking the deep-water dispersion relationship (A3),

equation (C6) becomes

2 o~
¢ 2max (), @) it i 2 2)\z
(4) Z Wm + Wy ~ Um nU* # + ( m> n) umunUm,n eZmax(wm,wn)E’

"= mon 8 WmWn |a)m,n| g2

(C7)
with an error factor [14 O (e 2kn")]. Integrating (C7) from z=—-oco to z=0
recovers (A4).

1.2. Intermediate depth |k, ,|h = O (ky,h) = O(1)
In this case the generalised solution (2.61) must be invoked.
1.3. Shallow water |k, ,|h = O (ky,h) < 1

In this case we substitute the shallow-water dispersion relationship (AS5)
u® = Zumn +—ZA*A Unon. (C8)

which can be recovered in time domain as
O 30012 -

=—4+—|u u. (C9)
Multiplying (C9) with £ yields (A9).
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2. Narrow-banded waves with o < 1 then
[km.n|h = O (akinh) = O (akyh) < O (kph). (C10)

2.1. Deep water for both short and subharmonic waves 1 < |k, ,|h < O (k,h)

In this case equation (C7) applies but with w;, and w, replaced by w,[1 + O ()]

2w ~ daplonal . 200 4% 0,U, 2B
I e 27 /5 el L L LR SN (T
m,n |a)m” | 8
with an error factor [1 4+ O (a, e 2lkmnlhy], Integrating (C11) vertically from z = —oo to

z =0 recovers (A12).

2.2. Deep water for short wave, intermediate depth for subharmonic waves |k, ,|h =
O(1) < O (k,h)

Let (kyh, kyh) = O(kph)>1 but keep kj ,h=O(1) and invoke the deep-water

dispersion relationship (A3), then equation (2.61) becomes approximately

cosh [ka,n(z + h)] 260?, tanh k,, ,h
2

0% G Uy ne®r?, (C12)

m“n

“4) wp 7Y%
u; = Un U
L % g e mn cosh? km.nh g

Wm,n

with an error factor [1 4+ O («, k;lh_l)]. For |k, 1k > 1, (C12) reduces to (C11).

2.3. Deep water for short wave, shallow water for subharmonic waves |ky, ,|h <1 <K
O(kph)

In this case the following result can be obtained either from (2.61) similar to the
derivation of (A14) or considering |k, ,|h < 1 in (C12)

2
w ~ p*
W= Z OnnU%, + 0% G U, ,,e © (C13)
which becomes in time domain
4) 2wP P2+ 80)4h u
=2 0P (C14)

8 8

with an error factor [1+0(a,k =1 k2 h?)].

> m,n

2.4. Intermediate depth for short waves, shallow water for subharmonic waves |k, »|h <
O(kph) =0(1)

1016 A5-37


https://doi.org/10.1017/jfm.2025.10323

https://doi.org/10.1017/jfm.2025.10323 Published online by Cambridge University Press

Z. Liao and Q. Zou

Let (kyh, knh) =kph[1 + O(a)] = O(1) and k;,, ,h < O(1), equation (2.61) becomes
approximately

- U, U 2 cosh 2k h
Wl =3 2 +( cosh 2Kz + )+——{wcosh[2k(z+h)]}
C

s 2cq cecg
1 9 AT
- ok? cosh [2k(z + )1} Utn U
wy, w dcosh” k,h
Up nU*

=Z’—””’+< L (24 2K, + b tanh [26, z + )] + 1)
m,n 2Cg “Ce i

8 ke AnUm n cosh 2k2(z + h)’ (C15)
2 cosh” k,h

with an error factor [1 + O(ki’nhz, a)] and ¢ and c, take the general expressions as in
(A16). Equivalently in time domain (C15) becomes

ﬁju el + 2kp(z + h) tanh [2k,(z + )]
= — -t — an
ce L2 sinh2k,h ¢ ¢

2
 cosh 2k, (z+ ) [M( .o ]

Cl6
cosh? kph cCg (Cl16)

For k,h > 1 (C16) reduces to (C14). Integrating (C16) vertically from z=—hto z=0
recovers (A22).

2.5. Shallow water for both short and subharmonic waves |k, ,|h < O (kph) < 1

In this case the result is given by equations (C8)—(C9), which can also be obtained for
kph < 1in (C16).

Appendix D. Separation of incident and reflected subharmonic waves

The subharmonic surface elevation was decomposed into the incident (7) and reflected
(n™) components in the time domain using the weakly nonlinear method proposed by van
Dongeren (1997) as per Ruju, Lara & Losada (2012) and Liu et al. (2023)
ﬁ_‘__\/ 77+Q ~__Cgﬁ_Q
Cg + Veh' Cg + Veh’

where ¢ is the group velocity corresponding to the peak frequency; Q is the low-
frequency volume flux per unit obtained by filtering the volume flux Q through in the
infragravity frequency band [0, 0.5/T,]. The volume flux Q was estimated using the
surface elevation /h(x, f) and the horizontal velocity u(x, z, f) measured at a fixed height
above the bed as follows.

The volume flux per unit width Q is defined as

(DD

n
Q(t)zf u(z,1)dz, (D2)
—h
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where we assume the velocity was measured at a fixed height of the probe z =z, which
can be expressed as the discrete Fourier series

1.5,
u(zp. )=y ii(zp. f)exp (—2mift), (D3)
f=0
where i denotes the complex amplitude. The upper limit of frequency 1.5 f,, is used here
to remove the contributions from the flume resonance and superharmonics.

The profile of i(z, f) was then calculated from the single point value of i(z,, f)
using the linear wave theory as ii(z, f) =u(zp, f) cosh[k(h + z)]/ cosh[k(h + z})], with
k being the wavenumber at frequency f. Therefore, the horizontal velocity in the time
domain is given by

1.5/,
R cosh [k (h + 2)] A
u(z, 1) = fzz;) i (zp, f) coh [k (1 52,)] exp (=2mift). (D4)
Substituting (D4) into (D2) yields
15f . .
N~ Az f)  sinhlk(itm]
(1) = ;} cosh [k (1 + 23)] p exp (—=27ift) . (D5)

Accurate to the second order in wave steepness, the Taylor expansion sinh[k (% + n)] =
sinh kh + kn cosh kh + 0(772) is adopted to further reduce (D5) to

15, A . 1.5fp «
_ u(zp,f) sinh kh A u(zp,f)coshkh A
Q(t)_z T oosh [k (h+zp)] exp ( 2nzft)+nj§) ~osh [k (h—i—zp)] exp (—2mift).

f=0
(D6)

The orbital velocity of incident subharmonic wave is obtained by subtracting the
reflected component from the total velocity as

it =d+ i %. (D7)
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