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Supersonic turbulent channels subjected to sudden spanwise acceleration at initial friction
Reynolds numbers of approximately 500 and different Mach numbers are studied through
direct numerical simulations. The response to the spanwise acceleration creates a transient
period where the flow exhibits three-dimensionality in the mean statistics. This enables a
detailed study of the thermal transport and development of velocity transformations and
Reynolds analogies for compressible turbulent flows in swept-like conditions. Extensions
of velocity transformations to three-dimensional (3-D) flows demonstrate near-wall
self-similarity of the velocity, providing evidence for Morkovin’s hypothesis in non-
equilibrium conditions. A similarity solution for the spanwise velocity, valid during the
initial transient, is also presented. During the transient, both the thermal fluctuations
and turbulent kinetic energy (TKE) decrease, consistent with previous observations in
incompressible flows (Lozano-Durán et al. 2020 J. Fluid Mech. 883, A20, Moin et al. 1990
Phys. Fluids A: Fluid Dyn. 2, 1846–1853). For sufficiently strong spanwise acceleration,
Q3 (+T ′, +v′) and Q1 (−T ′, −v′) events become more significant than sweep and ejec-
tions across the channel, creating changes in sign in the velocity–temperature covariances.
The temporal evolution of the orientation and sizes of the TKE and temperature-carrying
structures is quantified through structure identification and spectra. Finally, the generalized
Reynolds analogy (Zhang et al. 2012 Phys. Rev. Lett. 109, 054502) is derived for a transient
3-D flow, allowing predictions of the mean temperature from the velocity.
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1. Introduction
Swept wings are commonly used in transonic and supersonic aircraft to delay or reduce
high-speed drag and introduce mean three-dimensionality to the velocity statistics (Vos &
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Farokhi 2015). Apart from swept wings, high speed applications also exhibit three-
dimensional (3-D) wall-bounded turbulent compressible flow when encountering surface-
mounted obstacles (Subbareddy, Bartkowicz & Candler 2014), serpentine diffusers
(Harrison et al. 2013) and rotating detonation engines (Bennewitz et al. 2018), to name but
a few. Despite the engineering relevance of supersonic 3-D flows, the majority of detailed
compressible turbulent flow studies focus on statistically planar flows where the mean
velocity is in the streamwise and wall-normal directions. As a result, many of the models
commonly used to predict velocity and thermal statistics are agnostic to effects stemming
from spanwise accelerated flows. In this study, commonly used velocity–temperature
relations and near-wall velocity transformations are extended to supersonic turbulent
wall-bounded flows with swept-like conditions. These relationships are tested with direct
numerical simulations (DNS) of fully developed statistically stationary compressible
channels at moderate friction Reynolds number, Reτ , and subsonic and supersonic bulk
Mach numbers, Ma, subjected to a sudden spanwise acceleration. During the transient
response, the flow exhibits swept-like conditions as the flow adjusts to the new forcing
direction.

Due to viscous heating, supersonic flows experience significant wall-normal mean
temperature variation which in turn introduce wall-normal variation of the transport
properties like the mean density and viscosity, as well as their fluctuations (Bradshaw
1977; Lele 1994; Anderson Jr. 2006). These property variations affect the velocity statistics
in compressible flows. In compressible laminar boundary layer similarity solutions, the
property variations are accounted for with similarity variables (Dorodnitsyn 1942; Lees
1956; Schlichting & Gersten 2016). In turbulent flows, Morkovin’s (1962) hypothesis states
that for sufficiently small turbulent Mach numbers or sufficiently small density fluctuations
relative to the mean density, the compressible wall bounded turbulent flow can be mapped
to an equivalent incompressible turbulent flow by accounting for property variations.
These observations have inspired various velocity transformations in the literature that
are able to apply the near-wall incompressible viscous scaling to compressible flows (Van
Driest 1951; Zhang et al. 2012; Trettel & Larsson 2016; Griffin, Fu & Moin 2021; Hasan
et al. 2023), some of which have been applied to flows with exotic property variations (Bai,
Griffin & Fu 2022). In addition to velocity transformations, near-wall mean temperature
fields have been shown to exhibit near-wall self-similarity when normalized with a friction
temperature (Kader 1981; Kong, Choi & Lee 2000; Pirozzoli, Bernardini & Orlandi 2016).
Further attempts to characterize and predict the temperature field began with the work of
Reynolds (1874) who argued that the temperature is quadratically related to the velocity,
developing the Reynolds analogy. This was shown to be true from compressible laminar
flows (Busemann 1931; Crocco 1932). Further developments generalized the Reynolds
analogy to non-unit Prandtl number and turbulent flows, even allowing for relations
between the temperature and velocity fluctuations (Van Driest 1951; Morkovin 1962; Walz
1962; Gaviglio 1987; Huang, Coleman & Bradshaw 1995; Duan & Martin 2011; Zhang
et al. 2014). These velocity transformations and Reynolds analogies focus primarily on
statistically stationary two-dimensional (2-D) flows, and their extension to flows with
temporal non-equilibrium or three-dimensionality has not received much attention. These
studies can improve compressible wall-bounded turbulence modelling (Zhang et al. 2014;
Griffin, Fu & Moin 2023), yet the lack of extensions to flows with 3-D effects can limit
their predictive capability in realistic engineering applications (Lozano-Durán et al. 2020).

Statistically stationary 2-D flows have received much attention in turbulent studies
as canonical flow configurations. Incompressible studies have developed and provided
evidence of the mean velocity scaling and multiscale energetic motions in wall-bounded
flows (von Kármán 1934; Millikan 1938; Coles 1956; Lee & Moser 2015) as well as various
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tools to uncover the turbulent structure of the flow (Wallace, Eckelmann & Brodkey 1972;
Lozano-Durán et al. 2012; Wallace 2016). Low Ma turbulent studies have been used to
consider heat transfer and temperature transport as a passive scalar (Perry & Hoffmann
1976; Kader 1981; Nagano & Tagawa 1988; Kong et al. 2000; Pirozzoli et al. 2016). The
majority of supersonic wall-bounded turbulent simulations have focused on supersonic
boundary layers (Duan, Beekman & Martin 2010; Duan & Martin 2011; Pirozzoli &
Bernardini 2011; Cogo et al. 2022) and channel flows (Coleman, Kim & Moser 1995;
Huang et al. 1995; Modesti & Pirozzoli 2016; Yu, Xu & Pirozzoli 2019; Hasan et al. 2025),
to name but a few. These studies have enabled detailed assessment and development of the
velocity transformations and Reynolds analogies, while enabling studies of the turbulent
structure and turbulent statistics.

Much of the studies of 3-D wall-bounded turbulent flows stem from incompressible
studies. Initial experimental studies of swept-like conditions demonstrated a reduction in
turbulent kinetic energy (TKE) and misalignment between the mean velocity and Reynolds
shear stress directions (Bradshaw & Pontikos 1985). These studies were then corroborated
with DNS of fully developed turbulent channels subjected to a sudden spanwise pressure
gradient (Moin et al. 1990; Coleman, Kim & Le 1996; Lozano-Durán et al. 2020). These
studies revealed that the reduction in the TKE, despite the net acceleration, occurs because
of a decrease in the pressure-strain reducing the wall-normal velocity fluctuations that
subsequently reduces the production of the streamwise Reynolds shear stress. This then
reduces the production of the streamwise turbulent fluctuations faster than the spanwise
turbulent fluctuations are generated. Structural studies have revealed that the reduction in
the Reynolds shear stress can be attributed to a mismatch between the orientation of the
near-wall small-scales and the larger structures farther from the wall. Additional cases
of spanwise flows include drag-reduction studies where the walls are oscillated in the
spanwise direction (Quadrio & Sibilla 2000; Choi, Xu & Sung 2002; Ge & Jin 2017;
Marusic et al. 2021; Ricco, Skote & Leschziner 2021; Chandran et al. 2023; Rouhi et al.
2023), among others. The physical arguments that explain the reduction in the TKE in
the spanwise accelerated channels are similar to those that explain the drag reduction in
the spanwise oscillated channels. The spanwise oscillations have been used to study drag
reduction in turbulent supersonic channel (Yao & Hussain 2019) and turbulent boundary
layer (Ni et al. 2016) flows as well. However, compressible flows mimicking swept-like
conditions through non-zero mean spanwise velocity are missing.

This paper uses DNS of fully developed compressible turbulent channels at an initial
Reτ ≈ 500 and Ma = 0.3,, 1.5 and 3.0 that are suddenly accelerated in the spanwise
direction through a spanwise body force to study the temporal evolution of the velocity and
temperature statistics. The paper is organized as follows. The configuration and numerical
details are described in § 2. In § 3, the near-wall velocity transformations and temperature
scaling are extended to transient 3-D flows. The mean velocity and temperature are then
presented, along with a similarity solution for the spanwise flow, valid for initial times.
The turbulent statistics and structural organization of the flow are discussed in § 4. The
generalized Reynolds analogy (GRA) of Zhang et al. (2014) is extended to temporally
varying, 3-D flows in § 5. Conclusions are presented in § 6.

2. Methodology
The compressible turbulent flow of a calorically perfect ideal gas within a channel
is simulated with DNS using periodic streamwise and spanwise directions. The
streamwise, wall-normal and spanwise coordinates are x ∈ [0, Lx ], y ∈ [0, 2h], z ∈ [0, Lz],
respectively, where Lx and Lz are the channel dimensions and h the channel half-height.
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Figure 1. Schematic of the flow configuration and coordinates at t = 0 (a) and t > 0 (b).

The unit vectors ex , ey and ez are along the streamwise, wall-normal and spanwise
directions, respectively. At time t � 0, the flow is a fully developed canonical turbulent
channel driven by a streamwise body force, gx . For t > 0, a spanwise body force, gz = Πgx
is applied which creates a transient period of 3-D mean flow. A schematic of these
configurations is presented in figure 1. Driving the flow with body forces is analogous
to the pressure gradients used in incompressible studies of 3-D transient flow (Moin
et al. 1990; Lozano-Durán et al. 2020). Previous literature has also shown that driving
a compressible channel with a body force gives only slight differences in the statistics
compared with a pressure-driven one (Huang et al. 1995). For the flow to react solely to
the imposed body forces, the commonly applied source term in the momentum equations
that constrains the bulk mean velocity in compressible channel simulations (Coleman et al.
1995; Modesti & Pirozzoli 2016; Yu et al. 2019; Hasan et al. 2025) is omitted.

The flow evolves under the compressible Navier–Stokes equations,

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −∇ p + ∇ · τ + ρg, (2.2)

cv

(
∂ρT

∂t
+ ∇ · (ρT u)

)
= −p∇ · u − ∇ · q + τ : ∇u, (2.3)

along with the ideal gas law, p = ρRT , and stress tensor, τ = μ(∇uT + ∇u − 2/3∇ ·
uI), where ρ denotes the density, T the temperature, p the pressure, u = uex + vey + wez
the velocity with its respective components, R the universal gas constant, cv the specific
heat capacity at constant volume, μ the dynamic viscosity, q = qx ex + qy ey + qz ez the
heat flux and g = gx ex + gz ez the body force. For t � 0, gz = 0 and t > 0, gz = Πgx .
In (2.3), the cooling term that is commonly applied to the energy equation to enforce a
constant bulk temperature (Coleman et al. 1995; Yu et al. 2019; Hasan et al. 2025) is
omitted to also study the transient response in the temperature. The dynamic viscosity
follows Sutherland’s law

μ(T )

μw

=
(

T

Tw

)3/2 Tw + S

T + S
, (2.4)

with S = 110.4 K, and μw is μ evaluated at the wall. The heat flux follows Fourier’s
heating law, q = −cpμ∇T/Pr , where cp is the specific heat capacity at constant pressure
and Pr = 0.7 is the Prandtl number. At the bottom and top walls (y = 0, 2h), the flow
satisfies the no-slip condition, the viscous boundary condition for pressure, ∂y p = ∂yτyy ,
and the walls are isothermal with wall temperature Tw = 300 K.

Because the flow is temporally evolving as a response to the sudden spanwise
acceleration, the statistics are averaged across the streamwise and spanwise directions. A
quantity, f , can be decomposed via a Reynolds decomposition, f (x, y, z, t) = f (y, t) +
1022 A17-4
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f ′(x, y, z, t), or a Favre decomposition, f (x, y, z, t) = f̃ (y, t) + f ′′(x, y, z, t) where the
Reynolds average, f , is

f (y, t) = 1
Lx Lz

∫ Lx

0

∫ Lz

0
f (x, y, z, t)dzdx, (2.5)

and the Favre average, f̃ , is

ρ(y, t) f̃ (y, t) = 1
Lx Lz

∫ Lx

0

∫ Lz

0
ρ(x, y, z, t) f (x, y, z, t)dzdx . (2.6)

These averages are also averaged over the different ensembles and channel half-height,
exploiting the symmetry or antisymmetry of f across y = h. Finally, the wall-normal
average of a quantity g(y, t) is defined as

〈g〉(t) = 1
h

∫ h

0
g(y, t)dy. (2.7)

This average is then used to define the bulk density, ρb = 〈ρ〉, and bulk velocity, ub =
〈ρu〉/ρb, where the former is constant in time from (2.1). Finally, a quantity with a
subscript w or c is defined at the wall or centre such that fw(t) = f (0, t) and fc(t) =
f (h, t).

Due to the temporal transient, the mean flow direction, es , is a function of y and t .
Here, es = e1ex + e3ez where e1 = u/‖u‖ and e3 = w/‖u‖. At the wall, es is set to
the mean shear direction such that e1 = uy/‖uy‖ and e3 = wy/‖uy‖ to avoid division
by zero. Though different definitions can be prescribed for the instantaneous flow
direction (Bradshaw & Pontikos 1985; Moin et al. 1990), this choice is used because
of its interpretability and success in defining temporally local velocity transformations
in § 3.1. To avoid confusion, the streamwise and spanwise directions here refer to ex
and ez , respectively, while es is the mean flow direction. The wall shear stress is
τw = (τw,x ew,1 + τw,zew,3)es,w = τwes,w. The friction velocity is then uτ (t) = √

τw/ρw

which introduces �ν(t) = μw/ρwuτ as the viscous length scale. The speed of sound at
the wall is aw = √

γ RTw, where γ = 1.4 is the ratio of specific heats. Henceforth, units
of time with a + superscript will be normalized with the initial viscous time unit such
that t+ = tuτ (0)/�ν(0). Finally, the use of the Einstein summation convention will be
used where applicable with the indeces 1, 2 and 3 denoting streamwise, wall-normal and
spanwise components.

2.1. Simulation set-up
The flow is studied with DNS using the HTR (hypersonics task-based research) solver
code (Di Renzo et al. 2020). The flow is statistically stationary for t � 0 driven by gx ex
to achieve a fixed friction Reynolds number, Reτ = ρwuτ h/μw, and bulk Mach number,
Ma = ub/aw. The semilocal Reynolds number, Re∗

τ = μc/μw

√
ρw/ρcReτ is not matched

at t � 0. The simulations use Nx = 768, Ny = 256 and Nz = 512 grid points in x , y and z,
respectively, where the discretization uses a sixth-order hybrid Euler scheme and the time
stepping uses the strong-stability-preserving third-order Runge–Kutta scheme keeping the
Courant–Friedrichs–Lewy number below 0.5. The points are uniform in x and z, while the
wall-normal grid points are stretched as y = h tanh (sy ỹ)/ tanh (sp) where ỹ ∈ [−1, 1] are
equispaced points. The stretching parameter sy is chosen such that the first grid point away
from the wall, 	ymin, has 	ymin/�ν(0) < 1.

From the initial stationary period, eight statistically independent snapshots separated
in time by at least an eddy-turnover with a time separation of 	t ≈ 550�ν(0)/uτ (0) are
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Case Reτ Re∗
τ Ma Π Lx Lz 	ymin/�ν(0) Style

1 505 497 0.3 10 4πh 2πh 0.34
2 560 376 1.5 10 4πh 2πh 0.22
3 550 179 3.0 10 6πh 2πh 0.25
4 505 497 0.3 40 4πh 2πh 0.34
5 560 376 1.5 40 4πh 2πh 0.22
6 550 179 3.0 40 6πh 2πh 0.25

Table 1. Streamwise and spanwise domain lengths, Lx and Lz , respectively; ratio of the driving body forces,
Π = gz/gx ; smallest wall-normal grid spacing, and the initial Reτ , Re∗

τ and Ma for each simulation studied. In
some figures, the cases are distinguished by the colours and line styles shown above.
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Figure 2. Temporal variation of ũ (a), w̃ (b), normalized by the initial uτ , T̃ normalized by Tw (c), ρ

normalized by ρb (d) and p normalized by RρbTw (e) for Ma = 3 and Π = 10 (dashed) and Π = 40 (solid).
The plots of Π = 40 are offset vertically by 20, 0.5, 1 and .075 in (a), (c), (d) and (e), respectively, for visibility.
The colours from dark to light and arrows indicate increasing time in increments of 	t+ = 100. The green lines
in (a) plot u/uτ (0) = y/�ν(0), the viscous sublayer for a canonical incompressible flow.

chosen to initialize the eight ensembles to average over. For t > 0, these initial conditions
are integrated for a total time of 550�ν(0)/uτ (0) and are driven by gx ex + Πgx ez . The Lx ,
Lz , Π and initial Reτ and Ma are listed in table 1. The grid resolution is similar to that used
in Modesti & Pirozzoli (2016) at similar Reτ . The Ma = 3.0 cases use a longer streamwise
domain because the increased μ make the local viscous length scales larger across the
channel (Modesti & Pirozzoli 2016). Snapshots are saved in increments of 	t+ = 10 for
postprocessing.

3. Scaling of the mean flow field
As a representative case, the mean flow fields of the Π = 10 and Π = 40, Ma = 3 channels
are presented in figure 2 to highlight their temporal evolution and the wall-normal variation
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in ρ and T̃ . The other cases are presented in § 3.1 and are qualitatively similar to the
Ma = 3 cases. In figure 2(a,b), ũ and w̃ are plotted, normalized by the initial uτ . Due to
the sudden application of gz , w̃ increases monotonically with time throughout the channel
for both Π . For ũ, gz primarily affects the outer region with a more pronounced effect
for Π = 40. Similarly, the effect of gz on T̃ is most appreciable for Π = 40 in figure 2(c),
attaining a local near-wall temperature peak commonly observed in turbulent boundary
layers (Duan et al. 2010; Cogo et al. 2022). Due to the increase in viscous heating opposing
the spanwise acceleration, T̃ increases with t . The density decreases in the near-wall
region, and increases in the outer region to maintain a constant ρb, as shown in figure 2(d).
The net increase in T̃ increases p, despite the constant ρb. In the following sections, the
temporal evolution and property variations are accounted for in ũ and T̃ using viscous
scaling, velocity transformations and self-similar solutions.

3.1. Extension of velocity-transformations to 3-D non-equilibrium flows
Morkovin’s (1962) hypothesis has inspired various velocity transformations for
statistically stationary 2-D flows, like channels and boundary layers, using mean property
variations to collapse the compressible mean velocity onto an equivalent incompressible
mean velocity in the near-wall region (Van Driest 1951; Zhang et al. 2012; Trettel &
Larsson 2016; Griffin et al. 2021; Hasan et al. 2023). However, extensions to statistically
3-D or temporally varying compressible flows have not yet been applied in the literature.
Previous studies in transient 3-D non-equilibrium incompressible flows have shown that
the initial uτ and �ν do not appropriately collapse the near-wall u (Lozano-Durán et al.
2020), while rescaling the 3-D velocity magnitude, ‖u‖, with the local uτ (t) and �ν(t)
can collapse the near-wall statistics to the canonical counterpart (Moin et al. 1990). This
suggests that an appropriate compressible velocity transformation for the near-wall region
must be local in time and account for the variation in the transport properties.

First, the mean stress balance is projected along the mean flow direction as

es ·
∫ y

0

∂ρ ũ
∂t

dy + es · (ρṽũ + ρṽ′′u′′) = es · (τ ey − τw) + es ·
∫ y

0
ρgdy. (3.1)

Now this stress balance is considered in a region where y � h. In this region, ρṽũ +
ρṽ′′u′′ is negligible because of the no slip condition. The no slip condition also causes∫ y

0 ρgdy ∼ O(y) and
∫ y

0 ∂ρ ũ/∂t dy � O(y). Furthermore, τ ey ≈ μ∂y ũ such that the
dominant stress balance is μ∂y‖ũ‖ = es · τw. This implies that the near-wall ‖ũ‖ should be
agnostic to the spanwise acceleration and determined only by its viscous scales, uτ (t) and
�ν(t), and the near-wall mean property variations. Since the time derivatives are negligible
here, the transport properties and viscous scales can be assumed to be quasisteady. In
figure 3(a,b) ‖ũ‖ is plotted using the incompressible viscous scaling by normalizing
with uτ (t) and �ν(t). These wall-evaluated scales are not capable of ensuring near-wall
self-similarity as even near y/�ν(t) = 10, the Ma = 3.0 profiles begin to depart from the
incompressible law-of-the-wall. While outer-layer self-similarity is not ensured with these
viscous scales, even for an incompressible flow (Lozano-Durán et al. 2020), these wall-
scaled flows exhibit a clear Ma dependence in the wakes seen most prominently in the
Π = 10 cases in figure 3(a).

Based on the mean-stress balance and observations of near-wall self-similarity in the
incompressible spanwise accelerated flow (Moin et al. 1990), a velocity transformation
is pursued using the Trettel & Larsson (2016) (TL) velocity transformation. In Gomez
(2025), the Griffin et al. (2021) (GFM) velocity transformation was presented. By
construction, the GFM and TL transformations are equivalent near the wall where the
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Figure 3. Quasisteady friction scaling of ‖ũ‖ for Π = 10 (a) and Π = 40 (b). Here T̃ normalized by Tw with
y normalized by �ν(t) (c). The TL transformation of ‖ũ‖ for Π = 10 (d) and Π = 40 (e) and friction scaling of
T̃ by normalizing with Tτ (t) (f ). The colours and line styles follow from table 1. The colours from dark to light
are offset by time increments of 	t+ = 100. In (a), (b), (d) and (e), the green line plots the viscous sublayer of
an incompressible flow as u+ = y+ and the green dashed line plots the mean velocity of an Reτ = 550 turbulent
channel (Lee & Moser 2015).

self-similarity is expected to hold. With the TL transformation, the compressible
mean stress balance is assumed to map to an equivalent incompressible balance as
μwd‖ũ‖T L/dy∗ = μ�ν/uτ ∂‖ũ‖∂y = 1 where y∗ = √

ρ/ρwμw/μy/�ν(t) is the semilocal
coordinate and ‖ũ‖T L the transformed velocity. Following arguments from Trettel &
Larsson (2016), the velocity transformation is then

‖ũ‖T L = 1
uτ

∫ y

0

√
ρ

ρw

(
1 + 1

2
1
ρ

∂ρ

∂y
y′ − 1

μ

∂μ

∂y
y′

)
∂‖ũ‖
∂y

dy′, (3.2)

where all the properties and wall quantities are evaluated locally in time. This
transformation omits any viscous-scaling in t since temporal gradients are not present
in the mean stress balance close to the wall. The Zhang et al. (2012) and Van Driest
(1951) velocity transformations do not create an analogous transformation between the
compressible and incompressible mean stress balance, thus they are not applicable here.
In figure 3(d,e), the TL transformation is applied, illustrating an improved near-wall
collapse to the wall scaling from figure 3(a,b). For the Π = 10 cases, the TL transformation
mitigates the Ma dependence in the wakes collapsing them closer to the incompressible
canonical flow in green. While the collapse in the near-wall region improves for the
Π = 40 case up to y∗ = 10 by reducing the wake and bringing the buffer layer closer to the
wall for the supersonic cases, the rapid evolution in the wake limits the transformation from
extending farther from the wall. As evidenced in (3.1), away from the wall the acceleration
terms are dominant and not governed by viscous scales. Thus, velocity transformations
relying on viscous scales cannot collapse the wake in strongly accelerated flows, even
for incompressible flows. However, wake-deficit scaling with outer units was shown to
collapse the wake in Gomez (2025).
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Following the success of the quasisteady scaling in the velocities and the use of the
friction temperature in the literature (Kader 1981; Kong et al. 2000; Pirozzoli et al.
2016), a quasisteady friction temperature, Tτ , is presented. The assumption here is that
the near-wall temperature is governed by the total wall-shear stress such that Tτ (t) =
qw(t)/(cpρw(t)uτ (t)). This temperature scale is presented in figure 3(f ) for T̃ where
the wall-normal coordinate is normalized by �ν(t). The near-wall collapse in T̃ suggests
that the near-wall temperature is also influenced by its friction scales and mean flow
direction. The Ma = 1.5 and Ma = 0.3 cases also exhibit a near-wall T̃ peak for Π = 40.
The emergence of this peak is casused by elevated viscous heating due to the significant
increase in turbulent intensities attributed with the Π = 40 case after the initial decrease
discussed in § 4.1.

3.2. A self-similar velocity transformation for the spanwise velocity
The x- and z-averaged spanwise momentum equation is

∂

∂t
(ρw̃) + ∂

∂y
(ρ ˜w′′v′′) + ∂

∂y
(ρw̃ṽ) − ρgz = ∂τ yz

∂y
= ∂

∂y

[
μ

∂w

∂y
+ μ′ ∂w′

∂y
+ μ′ ∂v′

∂z

]
.

(3.3)
Due to mass conservation and an unsteady ρ, ṽ is non-zero for t > 0. However, the

magnitude of ṽ remains negligible compared with w̃ and ũ and its contribution is omitted
for the rest of this section. For t � 0, the spanwise Reynolds shear stress, ρ ˜w′′v′′, and
spanwise turbulent viscous stresses, μ′∂yw′ + μ′∂zv′, are initially zero due to the lack of
net transport in the spanwise homogeneous direction and spanwise homogeneity. As time
advances, the development of w̃ will lead to the generation of ρ ˜v′′w′′ (Moin et al. 1990;
Lozano-Durán et al. 2020) and turbulent viscous stresses via the net transport of μ′ in ez

through μ′∂yw′, though the latter are negligible (Bradshaw 1977).
The time evolution of these terms is shown in figure 4(a–c) for Π = 40 and the three

Ma. The acceleration term, ∂t (ρw̃), is estimated from the saved snapshots using finite
differencing. The acceleration term primarily balances ρgz in the outer region of the flow,
while for short times, the viscous stress balances ρgz near the wall. As time advances,
ρ ˜v′′w′′ intensifies, balancing the viscous stresses. This can be seen more clearly in
figure 4(d–f ) where the magnitudes of each of the terms is integrated in y to measure
their effect across the channel. These plots show a period where the spanwise Reynolds
stresses are negligible. An estimate for τ yz via μ∂yw is included, demonstrating that the
turbulent viscous stresses are indeed negligible (Bradshaw 1977). Hence, for a short time
interval, the effect of the Reynolds stresses and turbulent viscous stresses on the spanwise
momentum equation may be neglected. For the supersonic cases, this interval extends
much longer than the Ma = 0.3 case due to the increase in near-wall viscosity that dampens
the production of the spanwise Reynolds shear stress. The time interval, tI , is defined as
the time where

∫ 2h
0

∣∣∂yτ yz
∣∣ dy = ∫ 2h

0

∣∣∣∂y(ρ ˜w′′v′′)
∣∣∣ dy, that is the time where the viscous

stress is no longer dominant over the Reynolds stress.
To model the initial development of the spanwise mean flow for t � tI , several

assumptions are made. Following the observations from figure 4, it is assumed that
the turbulent viscous stresses can be neglected such that τ yz ≈ μ∂yw̃ and that ρ ˜v′′w′′
is negligible compared with τ yz . The third assumption is that the mean properties are
quasisteady. This means that ρ and μ are treated as constant in time with their values
updated locally at each time and their temporal gradients are negligible. Finally, it

1022 A17-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
78

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10780


S.R. Gomez

f/ρ
bg

z
0

–2

–4

–6

–8

1

0

–1

–2

1

0

–1

–2

10–2 10–1 100

y/h
10–2 10–1 100

y/h
10–2 10–1 100

y/h

∂yτ̄yz

–ρ̄gz

∂y(μ̄∂yw̄)

∂y(ρ̄w′′v′′)˜

∂t(ρ̄w̃)

(a) (b) (c)

(d ) ( f )

100

10–1

10–2

10–3

100

10–1

10–2

10–3

100

10–1

10–2

10–3

100 200 300 400 500

t+

100 200 300 400 500

t+

100 200 300 400 500

t+

(e)

∫ 0
2

h | f
 |d

y/
ρ

bg
zh

Figure 4. Spanwise mean momentum balance for Π = 40 and Ma = 0.3 (a,d), 1.5 (b,e), 3.0 (e,f ). In (a)–(c),
the colours from dark to light denote different time instances, in increments of 	t+ = 100. The quantity, f , is
labelled in the legend of (a).

is assumed that density fluctuations play a minor role such that w ≈ w̃. With these
approximations, (3.3) can be simplified as

∂w̃

∂t
− gz = 1

ρ

∂

∂y

[
μ

∂w̃

∂y

]
. (3.4)

These assumptions essentially assume that a laminar prediction for w̃ holds. This has been
shown to hold only for short times in incompressible simulations similar to the cases
studied here (Moin et al. 1990; Lozano-Durán et al. 2020) and for spanwise oscillating
walls in drag reduction (Quadrio & Sibilla 2000; Choi et al. 2002). The extent of the
laminar prediction is expected to hold for a much longer time for the supersonic cases
because of the larger tI .

In Gomez (2025), (3.4) was solved using separation of variables and a series solution
with the eigenmodes of 1/ρ∂y[μ∂y]. The series solution is an exact solution to (3.4) under
the assumptions described above. Here, a similarity solution is presented which provides
a velocity transformation for w̃. First, it is assumed that

w̃ = gzt f (η) (3.5)

where

η(y, t) =
√

ρ(y)μ(y)

t

∫ y

0

dξ

μ(ξ)
(3.6)

is the similarity variable and the explicit time dependence of μ and ρ is neglected. For
an incompressible flow with constant transport properties, ηinc(y, t) = y/

√
νt , where ν =

μ/ρ is the kinematic viscosity, is the same similarity variable as that used in Stoke’s
first problem (Schlichting & Gersten 2016). The similarity variable η is different to the
one introduced by the Lees–Dorodnitsyn transformation (Dorodnitsyn 1942; Lees 1956;
Anderson Jr. 2006; Schlichting & Gersten 2016), even when converting x to uet , because
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the quantity in the square-root is wall-normally varying and the integrand is μ−1 rather
than ρ. It can then be shown that using (3.5), (3.4) becomes

f − η

2
d f

dη
− 1 = d2 f

dη2 . (3.7)

Note that (3.7) is the same for both incompressible and compressible flow. The difference
in the solutions is the similarity variable, η. Reducing (3.5) to the same incompressible
similarity equation via η demonstrates the applicability of Morkovin’s (1962) hypothesis
where the same incompressible mechanisms govern the compressible spanwise response,
provided that the mean property variations are accounted for.

For (3.5) to be a valid solution, it must satisfy the no-slip boundary conditions at
y = 0, 2h and the initial condition w̃ = 0 at t = 0. Since (3.7) is a second-order differential
equation, it can only satisfy two boundary conditions. To reconcile the boundary condition
at y = 2h, the solution proposed in (3.5) will only be valid for y ∈ [0, h] and w̃ will
be assumed to be an even function in y about y = h so that its wall-normal derivative
is continuous. The boundary condition at y = 0 and the initial condition at t = 0 on w̃

translate to the boundary conditions that f = 0 at η = 0 and f = 1 at η → ∞, respectively.
The latter condition ensures that f is bounded as t → 0. Due to the additional assumption
of symmetry about y = h, there is an additional constraint that d f /dη = 0 at η(h, t).
This presents an additional boundary condition that cannot be reconciled analytically.
However, it will be assumed that η(h, t) � 1 so that this symmetry constraint becomes
equivalent to d f /dη = 0 as η → ∞. This is equivalent to assuming that the viscous
length scales in the laminar solution are much smaller than h. An order of magnitude
estimate for η(h, t) can be found using viscous wall units and approximating η with the
incompressible counterpart as η(h, t) ∼ h/

√
νt = Reτ /

√
t+. The smallest η(h, t) can be

is at t+ ≈ 550 during the duration of the simulation, which for the cases studied here is
η ≈ Reτ /

√
550 ≈ 23. It will be shown that for this estimate, d f /dη = 0 can be satisfied to

numerical round off error.
The solution to (3.7) that satisfies the boundary conditions at η = 0 and η → ∞ is

f = 1 −
(

η2

2
+ 1

)
erfc

(
η

2

)
+ η√

π
e− η2

4 , (3.8)

where erfc is the complimentary error function (Boas 2006). The solution’s derivative,
d f /dη = 2/

√
π exp(−η2/4) − ηerfc(η/2), using the incompressible estimate of η ≈ 23

evaluates to O(10−60). The smallest value for all six compressible cases is η(h, t) ≈ 10 at
the end of the simulation, which evaluates d f d/η ≈ 10−13. Though not exactly zero, it is
a sufficient approximation for symmetry about y = h. The value of η(h, t) is much larger
during the interval t ∈ [0, tI ] where the laminar assumptions are expected to hold which
only improves the approximation regarding symmetry about y = h.

The instantaneous w̃ are plotted in figure 5(a,b) for all six cases, normalized by gzt ,
against η(y, t). The similarity solution, f , is also included where η is evaluated using
(3.6) for the compressible solution and ηinc to illustrate an incompressible approximation.
For short time intervals, f (η) and w̃/gzt agree because of the absence of spanwise
turbulent stresses for all six cases. As time advances, the laminar approximation breaks
creating departures from the compressible-laminar similarity solution. This departure is
most severe in the Ma = 0.3 cases where tI , the time it takes ρ ˜v′′w′′ to dominate over
τ yz , is smallest. For the Ma = 3 cases, w̃/gzt and f (η) agree during the full simulation
time as ρ ˜v′′w′′ remains negligible compared with τ yz . Although figure 2(a) demonstrates
significant temporal variation in ρ for case 6, the agreement between the data and the
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colour coded with table 1 are DNS data, with the dashed lines plotted for t > tI , and colours from dark to
light indicate increasing time, plotted from t+ = 60 in increments of 	t+ = 60. The green dashed line is the
compressible similarity solution, f (η(y, t)). The magenta dotted line is the incompressible similarity solution,
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similarity solution demonstrates that the quasisteady approximation is valid and any
discrepancies in the smaller Ma flows are indeed from the turbulent stresses. Finally,
the incompressible solution, f (ηinc), agrees well with the Ma = 0.3 cases, but exhibits
significant departures from f (η) and w̃/gzt in the near-wall region as the Ma increases.
Properly accounting for the mean property variations in η allows the similarity solution,
f , to accurately predict w̃ for small times.

3.3. Mean shear and heat transfer
The evolution of τw,x is shown in figure 6(a) for all six cases. The temporal evolution of
τw,x depends both on Ma and Π and is a direct result of the evolution of ub, which is not
here constrained as the streamwise flow is driven with a constant gx . In incompressible
studies of sudden spanwise acceleration (Lozano-Durán et al. 2020) and in the drag
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reduction observed in spanwise oscillations with constant dp/dx (Ge & Jin 2017; Ricco
et al. 2021), τw,x is also affected by the spanwise acceleration.

Owing to the success of the laminar prediction of w̃ for initial times, a laminar prediction
of τw,z is also included via τw,z = μwgz∂y f (η)|y=0 = 2gz

√
ρwμwt/π in figure 3(b). This

prediction agrees well for Π = 10 and for Π = 40 begins to deviate substantially for t < tI
despite the success of the similarity solutions. The departure is present even for Ma =
3, indicating discrepancies in the near-wall prediction of w̃ from the similarity solution
because of the production of turbulent stresses. Due to the net acceleration in the flow, τw,z
increases monotonically during the transient. The increase in kinetic energy then results
in additional viscous heating (Lele 1994), raising both T and qw, as shown in figure 6(c).
The temporal evolution of τw,z and qw show more similarity for matched value of Π rather
than Ma.

A common predictive tool in turbulent boundary layers is the Reynolds analogy
factor, relating the friction coefficient, C f and the Stanton number, St (Bradshaw 1977).
While Fanning flow uses a friction coefficient based on the bulk velocity, here C f
is related to the centreline quantities as an analogy for the free stream conditions.
Here, C f = 2‖τw‖/(ρc‖ũc‖2) and St = qw/(ρccp‖ũc‖(Tc − Tw)). Other definitions for
these quantities have been used in the literature, primarily in the context of boundary
layers. The ratio, C f /St Pr , begins at 1 and promptly evolves as gz is applied in
figure 3(d). The Reynolds analogy factor, fR A = 2St/C f , (Bradshaw 1977) is observed
to be approximately 2Pr for the canonical channels simulated herein at t = 0 and during
the simulation time of the Π = 10 cases whereas fR A varies significantly for Π = 40. The
choice of C f and St is non-unique. It is possible that different choices could lead to a
constant ratio throughout the simulation time, though this is outside of the scope of this
work.

4. Turbulent fluctuations
Apart from changing the mean quantities, the spanwise acceleration also affects the
turbulent structure throughout the channel. As a motivating picture, the instantaneous
velocity and temperature fluctuation fields of Ma = 1.5 and Π = 40 at two different wall-
normal heights are shown in figure 7(a–h) for the canonical state at t = 0 and t+ = 415,
where the spanwise flow has become significant. Qualitatively, the near-wall plane in
figure 7(b,d) demonstrate structures more uniformly aligned with the direction of the flow
than the structures in the log-layer plane in figure 7(f ,h). In the near-wall planes, the u′
and T ′ fields demonstrate a strong degree of correlation for both t+ = 0 and t+ = 415.
The correlated u′ and T ′ fields are also present at t+ = 0 for the log-layer plane. Due to
the acceleration from the spanwise flow, these fields are anticorrelated at t+ = 415. These
qualitative observations from the instantaneous flows motivate the quantitative measures
in the rest of this section.

4.1. Drop in TKE and thermal fluctuations
Spanwise acceleration has been shown to reduce the TKE via flow control strategies with
active walls (Quadrio & Sibilla 2000; Choi et al. 2002; Ge & Jin 2017; Marusic et al. 2021;
Ricco et al. 2021; Chandran et al. 2023; Rouhi et al. 2023) or the initial development
of a spanwise flow (Bradshaw & Pontikos 1985; Moin et al. 1990; Coleman et al.
1995; Lozano-Durán et al. 2020). From the sudden spanwise acceleration, incompressible
studies (Moin et al. 1990; Lozano-Durán et al. 2020) have concluded that due to the
spanwise flow, the pressure-strain term, p′∂zv′, drops, leading to a reduction in v′v′. This

1022 A17-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
78

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10780


S.R. Gomez

0.5

0

1.5

1.0

2
4

–2
–4

0

1

–1

0

0.5

–0.5

0

2

–2

0

0.5

0

1.5

1.0

0.5

0

1.5

1.0

0.5

0

1.5

1.0

(a)
z/

h

(c)

z/
h

(e)

z/
h

(g)

(b)

(d )

( f )

(h)

z/
h

u′
/
u τ

(0
)

T′
/
T τ

(0
)

T′
/
T τ

(0
)

u′
/
u τ

(0
)

10 2 3 4 65

x/h
10 2 3 4 65

x/h

Figure 7. Instantaneous flow fields of (a,b,e,f ) u′/uτ (0) and (c,d,g,h) T ′/Tτ (0) for Ma = 1.5 and Π = 40. The
planes in (a)–(d) are at y/�ν(0) = 15, (e)–(h) are at y/�ν(0) = 100, (a), (c), (e) and (g) are at t+ = 0 and (b),
(d), (f ) and (h) are at t+ = 415. The black arrow denotes the instantaneous direction of ũ at the wall-normal
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leads to a reduction of the streamwise Reynolds shear stress production, v′v′∂yu, which
reduces the magnitude of u′v′. Finally, this causes a reduction in the production of the
TKE, u′v′∂yu, leading to the reduction in the TKE. Once the spanwise flow is sufficiently
developed, the additional spanwise Reynolds shear stresses lead to additional production
in the TKE, ultimately increasing it. Mechanistically, the reduction in the Reynolds shear
stresses occurs because of a misalignment between the near-wall structures and those
farther away from the wall leading to less efficient Reynold shear stress production
(Lozano-Durán et al. 2020). The misalignment in the flow structures is described in more
detail in § 4.4. In this section, the mechanisms described will be shown to be similar for the
compressible Reynolds stresses and concludes with a description of the thermal turbulent
transport.

The TKE, ρk̃ = ρ(˜u′′u′′ + ṽ′′v′′ + ˜w′′w′′)/2 and some representative Reynolds stresses
are plotted in figure 8(a–f ) for Ma = 1.5 and Π = 40. The evolution of the Reynolds
stresses can be divided into two stages. The first stage is characterized by a reduction
in ρ˜u′′u′′ due to decreased production from the drop in ρũ′′v′′. This coincides with a
reduction in ρṽ′′v′′ due to the decrease in the production of ρũ′′v′′ (Moin et al. 1990;
Lozano-Durán et al. 2020). While this is occurring, there is an increase in ρ˜w′′w′′ due
to the net transport in the spanwise direction’s role in generating ρ ˜v′′w′′, leading to
production of spanwise turbulent fluctuations. Despite the increase in the mean kinetic
energy and spanwise turbulent fluctuations, there is a reduction in the TKE driven by the
reduction in production from ρũ′′v′′ in agreement with various incompressible studies
with imposed spanwise flows (Bradshaw 1977; Moin et al. 1990; Lozano-Durán et al.
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2020). During the second stage, the ρũ′′v′′ intensifies, leading to an increase in ρ˜u′′u′′
while ρ˜w′′w′′ continues to rise. As a result, the TKE increases at this point as well. In
Gomez (2025), the Π = 10 and Ma = 1.5 case was shown to follow the same trends as
the Π = 40 case, although the decrease in the magnitude of ρũ′′v′′ was smaller, leading
to a smaller reduction in the TKE. Furthermore, the TKE and Reynolds stresses of the
other cases were shown to follow similar trends, with cases 1 and 2 demonstrating almost
identical temporal evolution.

While the Reynolds stresses follow similar behaviour between the Π = 10 and Π = 40
cases, the velocity–temperature covariances, ˜u′′T ′′, have qualitatively different responses
to the spanwise acceleration. Focusing first on the Π = 10 and Ma = 1.5 case in figure 9(a–
d), the covariances illustrate a slight reduction in ˜u′′T ′′ and ˜v′′T ′′ and an increase in ˜w′′T ′′.
The latter reflects the increased transport in the spanwise direction. The slight changes in
˜u′′T ′′ reflect that the u fluctuations remain correlated with the T fluctuations while the
anticorrelation between v′′ and T ′′ reflect the importance of sweep and ejection events
even in the presence of spanwise acceleration. Despite the change in the magnitudes, ˜u′′T ′′
and ˜v′′T ′′ behave similar to canonical compressible flows (Coleman et al. 1995). Finally,
˜T ′′T ′′ decreases despite the net increase in T̃ , similar to the reduction in TKE.

The Π = 40 and Ma = 1.5 case’s velocity–temperature covariances and thermal
fluctuations in figure 9(e–h), illustrate a significantly different response. For initial times,
˜u′′T ′′ and ˜v′′T ′′ decrease in magnitude while ˜w′′T ′′ increases. Eventually, the velocity–
temperature covariances change signs along y at t+ ≈ 280. This behaviour can be observed
in the instantaneous visualizations of u′ and T ′ in figure 7(b,d,f ,h) and highlights a
difference in the turbulent thermal transport absent in the Π = 10 case. These differences
can be explained by comparing T̃ in figure 3. For Π = 10, T̃ remains monotonic in the
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Figure 9. Temporal variation of (a–c,e–g) the velocity–temperature covariances normalized by uτ (0) and
Tτ (0) and (d,h) the thermal fluctuations normalized by Tτ (0)2 for Ma = 1.5 (a–d) Π = 10 and (e–h) Π = 40.
The lines are coloured with the colourbar in figure 8(a) and the arrows illustrate the direction of time in the
statistics.

wall-normal direction, whereas for Π = 40, a near-wall T̃ peak emerges for t+ ≈ 200.
Thus, for t � 200, the lift-up mechanisms change the transport of T ′ above this near-
wall T̃ peak. Below this peak, ũ, w̃ and T̃ are all monotonically increasing like in the
Π = 10 case, maintaining the same behaviour in the velocity–temperature covariances.
Away from the peak, T̃ is monotonically decreasing whereas ũ and w̃ increase in y. This
means that the lift-up mechanism advects low-speed, high temperature fluid up away from
the temperature peak and high-speed, low temperature fluid down towards the peak. Thus,
the change in sign in ˜u′′

i T ′′ above the near-wall T̃ peaks stems from changes in the lift-
up mechanism. Similar observations have been made in turbulent boundary layers (Duan
et al. 2010; Pirozzoli & Bernardini 2011). In § 4.2, the lift-up mechanisms are discussed in
more detail. Finally, ˜T ′′T ′′ also decreases for initial times as shown in figure 9(h), similar
to what happened in the Π = 10 case. For later times, ˜T ′′T ′′ increases and produces two
peaks likely stemming from decreased production near the zero-crossing of ˜v′′T ′′ and
∂y T̃ .

The reduction in the TKE and ρ˜T ′′T ′′ can be explained by considering their budgets.
First, the Reynolds stress budget is

∂t

(
ρ˜u′′

i u′′
j

)
=Pij + Tij + Sij + Eij +Aij + Cij (4.1)

where Pij = −ρ(˜u′′
i u′′

k∂xk ũj + ˜u′′
j u′′

k∂xk ũi ), is the production, Tij = −∂xk
˜ρu′′

i u′′
j u′′

k is the

turbulent transport, Sij = −(u′′
j ∂xi p′ + u′′

i ∂xj p′) is the pressure-strain, Eij = −(u′′
i ∂xk τ

′
jk +

u′′
j ∂xk τ

′
ik) is the dissipation, Aij = −ṽ∂y(ρ

˜u′′
i u′′

j ) is the wall-normal advection and

Cij = u′′
i ∂xk (τ jk − pδ jk) + u′′

j ∂xk (τ ik − pδik) are the compressibility terms. The thermal

1022 A17-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
78

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10780


Journal of Fluid Mechanics

0.6

0.4

0.2

G
ai

n

0

–0.2

0.2

0.1

0

–0.1

0.1

0

–0.1

–0.2

0.2

0

–0.2

–0.4

1000 200 300

t+

1000 200 300

t+

1000 200 300

t+

1000 200 300

t+

∂t
P A

CT
S

E
(a) (b) (c) (d )

Figure 10. The gains of the ρṽ′′v′′ (a), ρ˜u′′v′′ (b), ρ˜u′′u′′ (c) and ρ˜T ′′T ′′ (d) budgets integrated from
y/�ν(0) ∈ [5, 75] for Ma = 1.5 and Π = 40. The gains in (a) are normalized by the initial pressure-
strain whereas (b) and (d) are normalized by their initial production terms. In (d), the red-dashed line is
−2ρ ˜v′′T ′′∂y T̃ .

budget is

∂t

(
ρ˜T ′′T ′′

)
=PTT + TTT + STT + ETT +ATT + CTT, (4.2)

where STT = 2c−1
v (T ′′S′′

ijτ
′
ij − T ′′∂xi u

′′
i p′) is the thermal pressure-stress strain, PTT =

2(−ρ˜v′′T ′′∂y T̃ − (γ − 1)ρ˜T ′′T ′′∂y ṽ + c−1
v T ′′τyi∂yũi + c−1

v S′′
ij T

′′(τ ij − pδij)) is the ther-
mal production, ETT = 2c−1

v ∂xi T
′′qi is the heat dissipation, TTT = −∂y(ρT ′′T ′′v′′) −

2c−1
v ∂yT ′′qy is the turbulent and heat transport, CTT = 2c−1

v T ′′τ yi∂yui is the

compressibility term and ATT = ∂y(ρṽ˜T ′′T ′′) the wall-normal convection. Here, Sij =
(∂xj ui + ∂xi uj )/2 is the strain rate tensor and δij is the Kronecker delta. Each individual

term in (4.1)–(4.2) is integrated as φI (t) = ∫ 75�ν(0)

5�ν(0)
φ(y, t)dy with the gains computed as

(φI (t) − φI (0)) as in Lozano-Durán et al. (2020).
The gains for ρṽ′′v′′, ρũ′′v′′, ρ˜u′′u′′ and ρ˜T ′′T ′′ budgets are plotted in figure 10(a–d)

for Ma = 1.5 and Π = 40. The temporal evolution of the Reynolds stress budgets follows
the incompressible pattern (Moin et al. 1990; Lozano-Durán et al. 2020) in that a drop
in S22 causes a reduction in ρṽ′′v′′. The decrease in ρṽ′′v′′ then causes a drop in P12
via ρṽ′′v′′∂yũ, which subsequently reduces ρũ′′v′′. This reduction further causes a drop
in P11, leading to a decrease in both ρ˜u′′u′′ and the TKE. The temporal evolution of the
gains are similar to those reported by Lozano-Durán et al. (2020), including even the initial
drop in S12 before it rises. The decrease in ρ˜T ′′T ′′ comes from a reduction in PTT despite
the increase in ETT, TTT and STT similar to what is observed in ρ˜u′′u′′. The term most
responsible for the decrease in PTT is the −2ρ˜v′′T ′′∂y T̃ term, which is analogous to the
ρṽ′′u′′∂yũ production term in the TKE and ρ˜u′′u′′ budget.

4.2. Organization of turbulent and thermal transport
In § 4.1, the presence of the near-wall peak in T̃ leads to a change in sign in the velocity–
temperature covariances that is only observed in the Π = 40 case. Additionally, the
development of w̃ leads to the production of ρ˜w′′w′′ via the generation of ρ ˜v′′w′′. In this
section, quadrant decompositions (Wallace 2016) will be used to study the organization of
the turbulent and thermal transport. While the quadrant decomposition is most commonly

1022 A17-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
78

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10780


S.R. Gomez

˜

–
〈ρ̄

w
′′ v

′′ |Q
2
〉/W

w
v

(a) (b)

(c)

1000 200 300 400 500

t+
1000 200 300 400 500

t+

1000

0.18

0.20

0.22

0.24

0.26

0.15

0.17

0.19

0.21

0.08

0.10

0.12

0.14

0.16

˜

〈 ρ̄
w

′′ v
′′ |Q

1
〉/W

w
v

0.08

0.10

0.12

0.14

˜

〈ρ̄
w

′′ v
′′ |Q

3
〉/W

w
v

200 300 400 500 1000 200 300 400 500

(d )

˜

–
〈ρ̄

w
′′ v

′′ |Q
4
〉/W

w
v

Figure 11. Temporal evolution of the (a) Q2, (b) Q1, (c) Q3 and (d) Q4 contributions to 〈ρ ˜w′′v′′〉,
normalized by Wwv(t). The colours and line styles are defined in table 1.

used to quantify contributions of u and v based on their signs (Wallace et al. 1972), the
quadrant decomposition has also been used to bin T and v fluctuations (Perry & Hoffmann
1976; Nagano & Tagawa 1988; Kong et al. 2000). For a variable a and wall-normal
velocity v, the quadrants are organized into four quadrants, Qi , where Q1 = {(a, v) : a′′ >
0 and v′′ > 0}, Q2 = {(a, v) : a′′ < 0 and v′′ > 0}, Q3 = {(a, v) : a′′ < 0 and v′′ < 0} and
Q4 = {(a, v) : a′′ > 0 and v′′ < 0}. For u, the Q4 and Q2 events are commonly denoted
as sweeps and ejections, respectively. To avoid additional nomenclature, the Q4 and Q2
events for w and T will also be denoted as sweeps and ejections.

The time evolution of the probability distributions of the Qi events was presented
in Gomez (2025). Here, the contributions of the Qi events to ρ ˜w′′v′′ and ρ˜T ′′v′′ are
measured through

〈ρa′′v′′|Qi 〉 = 1
h

∫ h

0
ρ(ã′′v′′ : (a, v) ∈ Qi )dy, (4.3)

for a = w, T where
∑4

i=1〈ρa′′v′′|Qi 〉 = 〈ρa′′v′′〉 and are normalized by Wav where

Wav(t)
2 = 1

h2

∫ h

0
ρ˜a′′a′′dy

∫ h

0
ρṽ′′v′′dy = 〈ρa′′a′′〉〈ρv′′v′′〉 > 0, (4.4)

for a = w, T . Normalizing with 〈ρã′′v′′〉 can be problematic since at t = 0, 〈ρ ˜w′′v′′〉 = 0
and for the Π = 40 cases, due to the change in sign in ˜v′′T ′′, 〈ρ˜T ′′v′′〉 could be zero.
Additionally, 〈ρa′′v′′|Qi 〉/Wav(t) ∈ [−1, 1] via the Cauchy–Schwarz inequality.

The Qi contributions to 〈ρ ˜w′′v′′〉 are shown in figure 11. At t = 0, they all contribute
roughly equal amounts since 〈ρ ˜w′′v′′〉 = 0 initially due to the lack of net transport in the
spanwise direction. As the flow develops a net spanwise shear, w̃y , the sweeps and ejection
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events are expected to play a role via lift-up effects. Indeed, as time advances, Q2 and Q4
events play a larger role while the Q1 and Q3 become less relevant in contribution to
〈ρ ˜w′′v′′〉. There is a slight preference towards ejections rather than sweeps by comparing
figure 11(a,d), especially as the Ma increases.

The contributions to 〈ρ˜T ′′v′′〉 from the Qi events are presented in figure 12. At t = 0,
the Q2 and Q4 contributions to 〈ρ˜T ′′v′′〉 are the most dominant, in agreement with the
dominance of sweep and ejection events in the thermal transport of canonical shear flows
(Perry & Hoffmann 1976; Nagano & Tagawa 1988; Kong et al. 2000). As expected from
the change in sign in the velocity–temperature covariances in figure 9, the Qi contributions
reveal distinct behaviour for the Π = 10 and Π = 40 cases once the spanwise flow is
sufficiently developed. For Π = 10, the Q2 and Q4 event contributions are dominant
throughout the duration of the simulation, with only slight reductions in their magnitudes
towards the end. The Π = 40 cases behave similar to the Π = 10 cases initially. For
t+ ≈ 200, coinciding with the time that the near-wall T̃ peak emerges, the Q2 and Q4
events begin to lose their dominance while the Q1 and Q3 contributions dominate.
The change from Q2 and Q4 events to Q1 and Q3 events in T support the explanation
for the change in sign in the velocity–temperature covariances. That is, between the wall
and the near-wall peak, the lift-up mechanism is dominated by sweeps and ejections such
that ∓v′′ coincide with ±T ′′. Between the near-wall peak and h, the sweeps and ejections
are no longer dominant as ±v′′ coincide with ±T ′′ which give rise to Q1 and Q3 events.
Since the near-wall peaks occur for y/�ν(0) < 100, the majority of the channel is no longer
governed by sweeps and ejections of T . Because of the dominance in the Q1 and Q3

events, 〈ρ˜v′′T ′′〉 changes sign in the Π = 40 case. The trends in the Qi events for T
align with the qualitatively different behaviour in the velocity–temperature covariances
from figure 9 for the two Π . They further suggest that the Ma is not responsible in
changing the overall organization of the turbulent-thermal transport. The observations in
figure 12 agree with the results from Gomez (2025) where the contributions of the Qi
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events were measured through the time evolution of the probabilities of the Qi across the
entire channel.

4.3. Temporal evolution of the wavenumber spectra
The previous sections focused on one-point statistics highlighting differences between the
Π = 10 and Π = 40 cases. Here, the effects of Π on the turbulent structure will be further
studied by comparing the temporal evolution of the spectra. While this section considers
Fourier transforms along the streamwise and spanwise directions, it could be possible
to define the the Fourier transforms along es and its perpendicular, es ∧ ey , or other
directions defined by the flow statistics. However, the alignment of the identified structures
in the next section is shown to lie between es and the Reynolds shear stress direction,
suggesting that axes based on the turbulent statistics do not capture the alignment of the
structures. Thus, for ease of interpretation and avoiding wall-normally varying axes, the
Fourier transforms here are taken along the fixed streamwise and spanwise directions, ex
and ez , respectively.

First, the streamwise Fourier modes of a variable f are defined as

f̂ (y, t; kx ) = 1
Lz Lx

∫ Lz

0

∫ Lx

0
f (x, y, z, t)eikx x dxdz, (4.5)

averaged over the eight ensembles and over the channel half-height, where kx = 2π/λx
is the streamwise wavenumber and λx is the wavelength. The streamwise premultiplied
power spectrum of the variable f is then E f f (y, kx , t) = kx

∣∣ f̂ (y, t; kx )
∣∣2 for kx > 0. The

spanwise premultiplied power spectrum, E f f (y, kz, t), is defined similarly by swapping x
and z using the spanwise wavenumber, kz , and spanwise wavelength, λz .

The premultiplied kinetic energy spectra, Ekk = (Euu + Evv + Eww)/2, and premul-
tiplied temperature spectra, ETT, are compared for the Ma = 1.5 and Π = 40 case
in figure 13 for four representative times and the initial canonical configuration. At
t+ = 0, Ekk(y, kx , t) and ETT(y, kx , t) peak near (y/�ν(0), λx/�ν(0)) = (20, 1000) and
(10, 1000), respectively, as expected for the near-wall cycle in wall-bounded turbulent
flows (Lee & Moser 2015). Figure 13(a,e) reveal that the most significant initial temporal
evolution in the spectra is seen in the near-wall small-scales while the spectra in the
large-scale outer region mostly coincide with the canonical spectra. As time advances, the
near-wall peaks move to smaller values of λx/�ν(0) for both Ekk and ETT. For t+ � 200,
the contours for large λx away from the wall still coincide with the contours from t+ = 0,
suggesting that the effect of gz on the large-scales lags behind its effect on the small-scales.
Similar observations were made with structural observations of wall-attached Reynolds
shear-stress carrying eddies in incompressible flow (Lozano-Durán et al. 2020) and are
expanded in § 4.4. Eventually, the large-scale structures become less energetic as they too
orient away from ex .

The movement of the near-wall peak to smaller λx and y is related to two mechanisms.
The first is as τw increases, the viscous length scale decreases causing the characteristic
size of the near-wall structures to subsequently shrink. The second is that the extent of the
near-wall structures along ex decreases as these structures turn in the direction of the net
acceleration. As a result of these two mechanisms and assuming these near-wall structures
have an orientation of θ , the characteristic streamwise wavelength, l, and wall-normal
location, yl , of the structures in the near-wall peak can be approximated as

(l(t), yl(t)) ≈ (1000 cos(θ(t)), y0)�ν(t), (4.6)
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Figure 13. Instantaneous contours of the streamwise premultiplied spectra for Ma = 1.5 and Π = 40 with
hEkk(y, kx , t)/uτ (0)2 (a–d) and hETT(y, kx , t)/Tτ (0)2 (e–h). The solid lines are isocontours of 5 %, 10 %,
20 %, 50 % and 95 % of the maximum instantaneous premultiplied spectra. The black solid lines and coloured
contours are at the time listed while the red solid lines are taken at t+ = 0 as a comparison. The solid orange
crosses denote the predicted location of the near-wall peak via (4.6).
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Figure 14. Similar to figure 13, except Ekk(y, kz, t) (a–d) and ETT(y, kz, t) (e–h) are plotted for Ma = 1.5,
Π = 40 in (a), (b), (e) and (f ) and Ma = 1.5, Π = 10 in (c), (d), (g) and (h).

where y0 = 20�ν(0) and 10�ν(0) for Ekk(y, kx , t) and ETT(y, kx , t), respectively. These
are shown to approximately fall near the location of the near-wall peaks, albeit in log-
space.

The premultiplied spanwise spectra, Ekk(y, kz, t) and ETT(y, kz, t), at Ma = 1.5 are
compared between the Π = 40 case in figure 14(a,b,e,f ) and the Π = 10 case in
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figure 14(c,d,g,h). At t = 0, both Ekk and ETT peak around y/�ν ≈ 15 and λz/�ν(0) ≈ 200,
which are characteristic of the near-wall cycle in both incompressible and compressible
flows (Lee & Moser 2015; Cogo et al. 2022). Unlike the streamwise spectra, Ekk(y, kz, t),
reacts slower to the spanwise acceleration such that the isocontours for up to t+ = 199
approximately overlap with those at t+ = 0 for Π = 40. As time advances, the peak Ekk
move to larger λz due to the increased alignment of the kinetic energy structures towards
ez . The isocontours of ETT for the Π = 40 case depart from the t+ = 0 isocontours faster
than Ekk . The near-wall peaks of ETT move significantly closer to the wall while also
moving towards larger λz . Both figures 13(h) and 14(f ), reveal a secondary peak in ETT
of small-scales in the buffer layer away from the primary near-wall peak. This secondary
peak is responsible for the secondary peak in the plots of ˜T ′′T ′′ from figure 9(h). On the
other hand, the temporal evolution in the Π = 10 case does not substantially affect the
spanwise spectra. This suggests a small gradual change in the spanwise organization of
the flow due to the weaker acceleration, despite the changes to the mean flow during the
simulation time.

The structure of the outer-layer turbulent eddies is now studied by extending the
characteristic length scale, �1,2(y) ∼ (uτ h)1/2(∂yu)−1/2, introduced in Pirozzoli (2012)
for canonical wall-bounded flows to the compressible transient 3-D flow. The success of
�1,2 is in agreement with the attached eddy model (Townsend 1976; Perry & Marusic
1995) which argues that the length scales of the turbulent eddies grow with wall-
normal height. By consideration of the Ma-independence under an appropriate velocity
transformation, �1,2 has been extended to compressible flows by replacing ∂yu in �1,2 with
the appropriately transformed mean shear. Modesti & Pirozzoli (2016) used the Van Driest
(1951) transformation whereas Cogo et al. (2022) noted an improvement when using the
GFM transformation due to a better agreement with the incompressible flow in the mean
flow field. Using the velocity transformation in (3.2), a time-dependent, compressible �1,2
is introduced as

�∗
1,2(y, t) = (uτ (t)h)1/2

(
uτ (t)

�ν(t)

∂‖ũ‖T L

∂y∗

)−1/2

= (h�ν(t))
1/2

(
∂‖ũ‖T L

∂y∗

)−1/2

. (4.7)

Since �1,2 relied on an assumption that the outer scale is characterized by uτ , h and
the local shear, it is expected then that �∗

1,2 should only hold in regimes where uτ , h
and the velocity transformation define a Ma- and time-independent outer region. From
figure 3(d,e), this is only satisfied for the Π = 10 cases. The normalized premultiplied
spanwise spectra, Ekk(y, kz, t)/̃k(y, t), are plotted as a function of λz/h in figure 15(a–d)
and a function of λz/�

∗
1,2(y, t) in figure 15(e–h). For the Π = 10 cases, �∗

1,2(y, t) collapses
the spectra at the different wall-normal heights by accounting for the temporal and wall-
normal variation in the transport properties, further demonstrating that ideas presented in
Pirozzoli (2012), Modesti & Pirozzoli (2016) and Cogo et al. (2022) extend to this 3-D
transient compressible flow. Similar to Cogo et al. (2022), ETT(y, t; kz) also exhibits the
same outer-layer self-similarity as a function of λz/�

∗
1,2 for Π = 10, though this result

is omitted for brevity. In line with the theory, the Ma = 1.5, Π = 40 case is not able
to appropriately collapse the spectra due to the time-dependence in the wake using the
TL transformation. Though not shown, the other Π = 40 cases do not admit this �∗

1,2
scaling. The lack of collapse for Π = 40 is a consequence of the strong acceleration
creating non-equilibrium effects in ũ rather than compressibility effects. The success of
�∗

1,2 in characterizing the spanwise scales may suggest that the eddies in the Π = 10 cases
evolve in quasiequilibrium whereas the eddies of the Π = 40 cases are in non-equilibrium,
using the definition of equilibrium from Lozano-Durán et al. (2020). Additionally, it
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Figure 15. Normalized premultiplied spanwise spectra as a function of λz/h (a,b,c,d), λz/�
∗
1,2(y, t) and

λz/�̃
∗
1,2(y, t) (off-set vertically by 0.3 for visibility) (e,f ,g,h) for case 1 (a,e), case 2(b,f ), case 3(c,g) and case

5(d,h). The different colours denote different y/h and dark to light indicate increasing time, in increments of
160�ν(0)/uτ (0).

may be a consequence of a strong deviation from the log-law. To remedy this, �∗
1,2(y, t)

is replaced with �̃∗
1,2(y, t) = √

h�ν y∗ in line with the attached-eddy theory. Using this
scaling in figure 15(e–h) provides an improvement for the scaling, even the Π = 40
case. Thus, despite the non-equilibrium conditions, the typical eddy size grows with the
vertical distance using the semilocal coordinate as

√
�ν y∗. The success of the �̃∗

1,2 scaling
highlights the delayed response in the turbulent organization in the outer region to the
spanwise acceleration relative to the near-wall, as discussed in § 4.4.

4.4. Transport of turbulent and thermal coherent structures
Although the spectra provide insight into the structural organization of the flow, it
is limited to scales defined along ex and ez despite the 3-D statistics. To study the
organization of the turbulent eddies in an axis-free manner, the structure identification
proposed by Lozano-Durán et al. (2012) is used. Based on the spectra in § 4.3 and
previous work on the structural characteristics of 3-D boundary layers, the near-
wall structures respond to the spanwise acceleration before the large-scale structures
creating misalignment. This misalignment is the mechanism responsible for inhibiting
the Reynolds stress production (Lozano-Durán et al. 2020). This conceptual picture is
illustrated in figure 16(a,b) for the canonical channel at t = 0 and sometime after the
spanwise body force has been imposed. Here, the organization of the kinetic energy-
and temperature-carrying eddies will be studied to quantify the misalignment between
the near-wall and large-scale structures.

To define the kinetic energy structures, the instantaneous kinetic energy is first defined
as K = (u2 + v2 + w2)/2 and the fluctuating kinetic energy is then K ′ = K − K . The
kinetic energy structures and temperature structures are defined as connected regions, Ω ,
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Figure 16. Cartoon of the near-wall small scale structures and large-scale structures at t = 0 (a) and t > 0
(b) demonstrating the faster alignment of the near-wall structures than the larger structures farther from the
wall. Representative near-wall kinetic energy structures identified at t+ = 0 and t+ = 145 with their spines in
red (c). Instantaneous realizations of identified kinetic energy structures (d,f ) and their spines (e,g) at t+ = 0
(d,e) and t+ = 145 (f ,g) for Ma = 1.5 and Π = 40. The shading of the isosurfaces reflects the wall-normal
distance, darker colours are closer to the wall, and the blue and red denotes positive and negative fluctuations,
respectively. The spines in (e) and (g) are coloured based on their angle with respect to ex as shown in the
colourbar. Note that the figures plot a subset of the full computational domain to highlight some representative
structures and their spines.

where ∣∣K ′∣∣� 1.75
√

K ′K ′ (4.8)

and ∣∣T ′∣∣� 1.75
√

T ′T ′, (4.9)

respectively. Note that because K = (u′
i u

′
i + ui ui )/2, K ′K ′ is different from the TKE

– it is the variance of the instantaneously fluctuating kinetic energy. The coefficient
1.75 determines the threshold size and this structure identification has been shown to be
robust in response to changes in its value (Lozano-Durán et al. 2012). Connected regions
whose volume is smaller than (30�ν(0))3 are rejected to avoid the accumulation of small
disconnected structures. Each of the structure’s sign can be computed based on the sign of
K ′ or T ′ within each of the kinetic energy or temperature structures. To compute the angle
of each structure, the centre of mass of each structure, xm = xm ex + ym ey + zm ez , is first
computed as

xm V =
∫

Ω

xdxdydz, (4.10)
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where V is the volume of each Ω . Then, for each structure, the matrix, X is computed as

X jk V =
∫

Ω

(xj − x j,m)(xk − xk,m)dxdydz. (4.11)

Since, X is symmetric, it can be written in its spectral representation as X = ∑3
j αj pj ⊗ pj

where α1 � α2 � α3 and pj are orthonormal eigenvectors often denoted as the principal
axes. The principal direction of each structure is then p1. The direction along the wall-
parallel plane is ep, the unit vector parallel to p1 − ( p1 · ey)ey . Finally, the length of each
structure is defined as r1 = max(d) − min(d), where

d = [(x − xm)ex + (z − zm)ez] · ep : (x, y, z) ∈ Ω (4.12)

is the wall-parallel distance of Ω along ep. The angle of the structure is defined as θ , the
angle between ep and ex , as cos(θ) = ep · ex . Finally, the spines are defined as the line
segment that intersects xm parallel to p1 with a wall-parallel length of r1.

In figure 16(c), the structure identification is illustrated for two representative near-
wall kinetic energy structures at t+ = 0 and t+ = 145 for the Ma = 1.5 and Π = 40 case.
Their spines are included as well for visualization, illustrating that they can recover the
statistical length of the structures and their change in orientation as the flow is sufficiently
accelerated. Two snapshots at t = 0 and t+ = 145 are presented in figure 16(d,f ) with
the surface contours of the identified structures within a subset of the channel domain.
At t+ = 0, one can qualitatively note that the small-scale near-wall structures and large-
scale structures are aligned along the streamwise direction, like in the cartoon presented
in figure 16(a). At t+ = 145, the data reflects figure 16(b) as the near-wall small-scale
structures are aligning towards the spanwise direction while the large-scales are mostly
streamwise aligned. Figure 16(e,g) plot the spines of each of the identified structures in
figure 16(d,f ), respectively, colour-coded by their angle θ , the angle between the spine
and ex . At t+ = 0, the spines all primarily have θ ≈ 0◦. There are some spines with large θ

corresponding to smaller-scale structures that are longer in their spanwise extent than their
streamwise extent. Thus, the spine detection algorithm treats these structures as spanwise
aligned. At t+ = 145, the near-wall small-scale spines have θ � 45◦ while the longer spines
away from the wall’s θ reflect their streamwise alignment with smaller θ . After a long
enough time, the large-scale structures will eventually align with and equilibrate with the
new direction of the flow. However, the focus of this section is on the initial period of the
sudden spanwise acceleration.

To further quantify the orientation of the spines, instantaneous weighted histograms of
ym and θ , H(ym, θ), are computed for each time instance across all 8 ensembles for each
case and are weighted by the length r1(ym, θ). The weighted histograms are computed as

R1 H(θ, ym) =
	θ2∑

θ̆−θ=	θ1

	ym,2∑
y̆m−ym=	ym,1

r1(y̆m, θ̆ ), (4.13)

where R1 = ∑
θ

∑
ym

r1(ym, θ) is the total length of all the structures and 	θ1, 	θ2,
	ym,1 and 	ym,2 denote the edges of the bins. The histograms use 22 linearly spaced
bins in θ ∈ (−20◦, 70◦) and 16 logarithmically spaced bins in ym/�ν(0) ∈ (2, 450). The
structures above the channel half-height are mapped to ym → 2h − ym in (4.13) to
take advantage of the statistical symmetry across the channel half-height. Weighing the
histograms with r1 removes the influence of small-scale structures away from the wall
whose alignment is poorly defined, like those pictured in figure 16(e,g). The orientation of
the identified structures are also compared with the angle between two statistical quantities,
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Figure 17. Weighted histogram of identified (a–d) kinetic energy structures and (e–h) temperature structures
as a function of ym and θ for Ma = 1.5 and Π = 40. The solid black, dashed black and solid red lines denote
θũ,w̃ , θ

˜u′′v′′,˜w′′v′′ and θ
˜u′′T ′′,˜w′′T ′′ , respectively.

ã and b̃, as θ̃a,̃b = tan−1(̃a/b̃), where ã and b̃ represent a streamwise and spanwise
flow statistic, respectively. These angles are used to measure the orientation of the wall-
parallel flow field, θũ,w̃, the Reynolds shear stresses, θ

ũ′′v′′,˜w′′v′′ , and velocity–temperature
covariances, θ

˜u′′T ′′,˜w′′T ′′ , with respect to ex . Both θũ,w̃ and θ
ũ′′v′′,˜w′′v′′ have been used in

incompressible studies, demonstrating a lag between the mean flow field and Reynolds
shear stresses (Bradshaw & Pontikos 1985; Moin et al. 1990; Lozano-Durán et al. 2020).
The addition of θ

˜u′′T ′′,˜w′′T ′′ serves to define a direction based on the velocity–temperature
covariances.

Beginning with Ma = 1.5 and Π = 40, figure 17(a–d) present H(θ, ym) for the kinetic
energy structures. As expected, the structures begin statistically likely to be streamwise
aligned at t = 0 regardless of their wall-normal centroid, ym . As evidenced by H(θ, ym),
the kinetic energy structures closest to the wall are the first to respond to the spanwise
acceleration while the structures farther from the wall are more likely to be aligned
closer to ex . The H(θ, ym) of the temperature structures in figure 17(e–h) follow similar
trends as the kinetic energy structures with near-wall structures more statistically likely to
align in the spanwise direction. The kinetic energy and temperature structures’ H(θ, ym)

suggest that the temperature structures are more likely to be closer to the wall than the
kinetic energy structures once gz has been applied. Similar to incompressible channels,
for t > 0, θũ,w̃ is greater than θ

ũ′′v′′,˜w′′v′′ such that the direction of the Reynolds shear
stresses lag compared with the direction of the mean flow field. For initial times (t+ � 54),
both θ

ũ′′v′′,˜w′′v′′ and θ
˜u′′T ′′,˜w′′T ′′ are similar, albeit with a slight lag in the orientation of

the velocity–temperature covariances’ orientation with respect to the Reynolds stresses.
For later times, near the wall, the θ

ũ′′v′′,˜w′′v′′ < θ
˜u′′T ′′,˜w′′T ′′ , coinciding the the increased

presence of temperature structures closer to the wall. At the same time, θ
ũ′′v′′,˜w′′v′′ and

θ
˜u′′T ′′,˜w′′T ′′ differ away from the wall as the velocity–temperature covariances change sign,
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Figure 18. Weighted histogram of identified (a,b) kinetic energy structures and (c,d) temperature structures as
a function of ym and θ for Ma = 1.5 and Π = 10. The solid black, dashed black and solid red lines denote θũ,w̃ ,
θ
˜u′′v′′,˜w′′v′′ and θ

˜u′′T ′′,˜w′′T ′′ , respectively.

reflecting differences in the thermal fluctuation transport not reflected in the Reynolds
stresses. For the times plotted here, the peaks of H(θ, ym) occur between θ

ũ′′v′′,˜w′′v′′ and
θũ,w̃.

Figures 18(a,b) and 18(c,d) plot the H(θ, ym) of the kinetic energy and temperature
structures, respectively, for Ma = 1.5 and Π = 10 for two representative times. Similar
to the Π = 40 case, the near-wall structures align away from ex before the outer layer
structures and the temperature structures are closer to the wall than the kinetic energy
structures. However, the orientation angles of Π = 10 are much smaller while the
misalignment between the near-wall and large-scale structures is less than 10◦ for Π = 10
and up to 30◦ in Π = 40. Similar to the observations of Lozano-Durán et al. (2020), the
more substantial misalignment in the strongly accelerated flow inhibits the production of
ρũ′′v′′ and ρ˜T ′′v′′ by pushing the turbulent structures out of equilibrium and creating
a less efficient state for production. The success of the �∗

1,2 scaling of the spectra in
figure 15(e–g) for Π = 10 suggested a quasiequilibrium state in the turbulent flow. The
organization of this quasiequilibrium state reveals that the turbulent eddies are closely
aligned such that the underlying turbulent structure is unchanged, consistent with the
definition in Lozano-Durán et al. (2020).

5. Extension of the GRA for non-equilibrium flows
Of engineering relevance is the prediction of the mean temperature and its fluctuations.
There has been a long history in relating or predicting the temperature from velocities
through Reynolds analogies (Reynolds 1874; Busemann 1931; Crocco 1932; Van Driest
1951; Morkovin 1962; Walz 1962; Gaviglio 1987; Huang et al. 1995; Duan & Martin
2011; Zhang et al. 2014). However, these Reynolds analogies have only been developed
for unidirectional flows, like channels and boundary layers. Here, the GRA of Zhang et al.
(2014) is extended for 3-D, unsteady flows and tested for the six cases studied herein.

Generally, the GRA predicts T̃ and ˜T ′′T ′′ from the velocity statistics, heat transfer at the
wall, free stream temperature, wall temperature and fluid properties. In the channel, the
free stream temperature will be replaced with Tc, the centreline temperature. The initial
assumptions for the GRA, and other Reynolds analogies, begin with an assumption of
steady flow for a unidirectional flow. The Reynolds analogies then assume fluctuations
of either the total enthalpy or recovery enthalpy are equal to Uwu′′, where Uw is a
constant velocity factor. They then show that the difference between the mean recovery
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Figure 19. Prediction of T̃ from the GRA, Tm , (red thick lines), T̃ (black) and Tm computed with a constant rg
(blue dotted lines) normalized by Tw with the Ma and Π labelled in each plot. Lines are offset vertically and
plotted in increments of 	t+ = 100.

enthalpy and Uwũ is constant. From this relationship, the modelled temperature, Tm , can
be recovered as a quadratic polynomial of ũ. In Appendix A, it is shown that a transient
and 3-D flow with a similar Reynolds analogy between the enthalpy and u′′ results in a
constant difference between a recovery enthalpy and Uw · ũ. Hence, the mean temperature
can be modelled as a quadratic polynomial in ‖ũ‖ as well. The modelled mean temperature
is then

Tm(‖ũ‖, τw, qw, β)

Tw

= 1 + Trg − Tw

Tw

( ‖ũ‖ cos(β)

‖ũ‖c cos(βc)

)
+ T c − Trg

Tw

( ‖ũ‖
‖ũ‖c

)2

, (5.1)

where the subscript c is evaluated at the centreline, Trg is the recovery temperature and
β is the angle between u and τw such that cos(β) = es · es,w. The recovery temperature
depends on thermal transport properties, heat transfer, centreline velocity and wall shear
stress as

Trg(‖ũ‖, τw, qw, βc) = Tc +
(

Tw − Tc

‖ũ‖2
c/2cp

− 2Prqw cos(βc)

‖ũ‖cτw

)‖ũ‖2
c

2cp
= Tw − Prqw‖ũ‖c cos(βc)

τwcp
,

(5.2)
where the quantity in parenthesis is often referred to as the recovery factor, rg(t) (Zhang
et al. 2014). If the flow is unidirectional, (5.1) reduces to the GRA of Zhang et al. (2014).
Here Tm accounts for the 3-D flow by incorporating the misalignment between ũ and τw

as well as the velocity magnitude.
A comparison between Tm and T̃ is shown in figure 19 for all six cases. Additionally,

Tm where rg is set to rg(0) is included to consider the importance of modelling rg(t). The
Π = 10 cases in figure 19(a–c) demonstrate the best agreement between the model and T̃ .
Although the temporal evolution of T̃ was small for Π = 10, the GRA is able to account
for the significant changes in ũ in the prediction of T̃ . For Π = 40 in figure 19(d–f ), there
are discrepancies between Tm and T̃ , primarily for Ma = 0.3 and Ma = 1.5, though Tm is
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Figure 20. Prediction of ˜T ′′T ′′ from the GRA (red dotted lines) and ˜T ′′T ′′ (black) normalized by Tτ (0) with
the Ma and Π labelled in each plot. Here, y is normalized by h to visualize the outer region. Each line is an
increment of 	t+ = 100 with a vertical offset denoted by the horizontal grey lines for visibility.

able to capture the near-wall T̃ peaks that emerge. The constant rg prediction is similar to
Tm for Ma = 0.3 and 1.5 but over predicts in case 6. This suggests that a constant rg can
provide a useful prediction of T̃ in a 3-D transient flow if the spanwise acceleration and
Ma are small.

In Appendix A, similar arguments from the GRA are used to create a model for
the thermal fluctuations in the spanwise accelerating flow. The thermal fluctuations are
modelled as

˜T ′′T ′′
m =

(
˜v′′T ′′

ei ṽ′′u′′
i

)2
˜(ei u′′

i )
2, (5.3)

relating ˜T ′′T ′′ to the fluctuating velocity along es . The term inside the parenthesis is
similar to what appears in unidirectional flows, except the Reynolds shear stresses are taken
along es . For a streamwise-aligned flow, this reduces to ˜T ′′T ′′

m = (˜v′′T ′′/ṽ′′u′′)2˜u′′u′′.
In figure 20, ˜T ′′T ′′

m and ˜T ′′T ′′ are compared for all six cases. The model and data
agree throughout the channel for Π = 10 and Ma = 0.3 and 1.5. The Ma = 3.0 case under-
predicts the near-wall ˜T ′′T ′′ peak, though the outer region is well predicted. For Π = 40
in figure 20(d–f ), significant disagreements emerge in the near-wall region. Namely,
˜T ′′T ′′

m ≈ 0 near the zero-crossing in ˜v′′T ′′. These discrepancies arise from a lack of
correlation between ˜v′′T ′′ and ei ṽ′′u′′

i in the presence of strong spanwise acceleration. In

the outer region of the flow, both ˜T ′′T ′′
m and ˜T ′′T ′′ agree since ˜v′′T ′′ and ei ṽ′′u′′

i are well
correlated. Future work will need to address the lack of correlation between the Reynolds
shear stresses and ˜v′′T ′′ as improvements to the GRA predictions. These are particularly
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Figure 21. Measures of the sweep angle via βc, the angle of the centreline velocity relative to the angle of the
wall shear stress (a) and θc, the angle of the centreline velocity (b) against t+ in degrees. The colours and line
symbols are denoted in table 1. Note that in (b), the lines corresponding to Ma = 0.3 are just underneath the
lines for Ma = 1.5.

important when changes in sign are present in the velocity–temperature covariances, even
in unidirectional flows.

5.1. Discussion
The two choices of Π create two qualitatively distinct responses to the spanwise
acceleration despite the Ma. These effects are primarily observed in the temperature field
where a secondary peak in T̃ emerges for Π = 40 that is not observed in the Π = 10 cases.
This is indicative of increased viscous heating from increased turbulent intensity. The near-
wall T̃ peak is also associated with an increased qw for the Π = 40 cases compared with
the Π = 10 cases. Furthermore, the presence of the near-wall T̃ peak changes the turbulent
transport of temperature fluctuations by creating a change in sign across the peak in the
velocity–temperature variances and an increased contribution of Q1 and Q3 in ˜T ′′v′′. This
change in sign is not reflected in the Reynolds shear stresses, making ũ′′v′′ and ˜T ′′v′′
uncorrelated, which ultimately limits the predictive capabilities of the GRA. Despite their
differences, both the Π = 10 and Π = 40 cases observed a decrease in ˜T ′′T ′′ across the
channel for early times despite the net increase in T̃ .

If the angle of uc relative to τw (β) is taken as a measure for the sweep angle, the sweep
angles are at their peak, above 20◦ for Π = 40. Taking instead the relative velocity of uc
to ex as the sweep angle gives, for the largest Π , sweep angles around 60◦ at the end of the
simulation time. These sweep angles, plotted in figure 21, are similar to the sweep angles
of supersonic aircraft, such as Λ = 55◦ for Concorde. However, the acceleration is much
different in the case of the aircraft as opposed to the ones shown herein. Using Concorde
as an example once again, its spanwise acceleration can be estimated as (U∞ sin(Λ))2/Lc
(Vos & Farokhi 2015), where the cruising velocity is U∞ ≈ 600 m s−1 and the chord is
Lc ≈ 20 m. This will be normalized with a2

w/δ, where the boundary layer thickness, δ,
is estimated as δ ≈ 0.1 m using a 1/5 power-law estimate (Schlichting & Gersten 2016).
Concorde’s normalized acceleration is then Aa = U 2∞ sin(Λ)2δ/Lca2

w ≈ 1.2 × 10−2. The
normalized acceleration can also be calculated for the channel as Ac = gzh/a2

w. For the
Π = 10 cases used herein, the normalized acceleration is Ac ≈ 2.5 × 10−3, 6.9 × 10−2 and
3.3 × 10−1 for Ma = 0.3, 1.5 and 3.0, respectively. Thus, for similar Ma as the Concord,
case 2 would be at a similar normalized spanwise acceleration as those expected from
real operations. Both Tm and ˜T ′′T ′′

m showed the best predictive capability for Π = 10,
suggesting that these approaches may have applicability in realistic conditions.
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The success of T̃ can help the development of wall models in non-equilibrium
conditions. In Griffin et al. (2023), the GRA of Zhang et al. (2014) and GFM velocity
transformation were combined to develop a wall-model for supersonic flows. The
extensions to the TL velocity transformation in § 3.1 and the GRA may also show promise
in predicting ũ and T̃ in 3-D non-equilibrium conditions. A challenge for a wall-model of
this type is that the self-similarity only extends to the viscous sublayer for large spanwise
acceleration which can limit grid-size requirements. As a possible remedy for this, the
Lagrangian relaxation towards equilibrium plus laminar non-equilibrium wall model
(Fowler, Zaki & Meneveau 2022) can show some promise by treating the equilibrium
and non-equilibrium effects separately. Future work will use the DNS data along with ex-
tensions to these models in pursuit of wall-models for non-equilibrium compressible flow.

6. Conclusion
While the use of a compressible flow enables the study of the heat transfer and temperature
responses to spanwise acceleration, the velocity response in the compressible flow is
qualitatively similar to that of the incompressible spanwise response (Moin et al. 1990;
Lozano-Durán et al. 2020). By properly accounting for the property variations and new
flow direction, the TL velocity transformation is able to collapse the mean velocity
in the viscous sublayer. Velocity transformations were also illustrated in the similarity
variable for the spanwise flow, whereby introducing the similarity variable η the spanwise
compressible mean momentum equation could be transformed into the same similarity
equation for the incompressible flow. The similarity solution for w̃ held for short times,
until ρ ˜w′′v′′ became non-negligible. From this similarity solution, τw,z could also be
predicted for short times.

The turbulent fluctuations were also qualitatively similar to the incompressible regime.
Both the incompressible and compressible flows observe an initial decrease in ρũ′′v′′
leading to a reduction in ρ˜u′′u′′ and thus a reduction in ρk̃′′. While this is occurring,
ρ ˜w′′v′′ increases in magnitude leading to an increase in ρ˜w′′w′′ and eventually, an increase
in ρk̃′′. The ρ˜u′′u′′ and ρ˜T ′′T ′′ revealed analogous mechanisms, with the reduction in
ρ˜T ′′T ′′ stemming from a decrease in production as well.

The temperature response depends on the strength of the spanwise acceleration. For
Π = 10, T̃ varies little and remains monotonic in y, though there is a slight increase
in overall temperature. For Π = 40, T̃ rises substantially along with the emergence of
a near-wall peak. Despite the different responses, there is near-wall collapse of T̃ when
rescaled using the friction temperature, Tτ (t), and viscous length, �ν(t), which both
account for the new direction of τw. Due to the presence of the near-wall peak, the
turbulent transport of thermal fluctuations fundamentally changes. This manifests itself
as a change in sign in the velocity–temperature covariances for Π = 40 while for Π = 10,
their signs remain unchanged. Additionally, for Π = 40, the non-monotonic T̃ presents an
increase in Q1 and Q3 and decrease in Q2 and Q4 events in the thermal transport not seen
in Π = 10. These observations hint at different transport mechanisms between the thermal
and momentum fluctuations away from the wall. Similar to the drop in kinetic energy, the
thermal fluctuations were shown to decrease before eventually increasing. This reduction
stems from an initial decrease in the thermal production of the ρ˜T ′′T ′′ budgets.

As the flow is accelerated for Π = 40, the spectra reveal that the energetic near-
wall structures move closer to the wall and their streamwise extent shrinks due to their
change in orientation. The spanwise size of these structures increases as the flow moves
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primarily to the spanwise direction. Between the kinetic energy-carrying structures and
the temperature-carrying structures, the latter move closer to the wall as τw increases. The
Π = 10 cases were shown to evolve in quasiequilibrium due to the collapse of the spanwise
premultiplied spectra when normalized with �∗

1,2(t). When normalized with �̃∗
1,2, the

spectra in the Π = 10 and 40 cases also collapsed providing evidence of the attached eddy
hypothesis even in non-equilibrium conditions. The orientation of the turbulent eddies
was quantified with structure identification showing that the near-wall and large-scale
structures are misaligned, with the former aligning in the direction of the flow first. This
misalignment was severe for the Π = 40 case, possibly hinting at how this non-equilibrium
state in the turbulent eddies significantly reduces the production of ρũ′′v′′.

The GRA was shown to extend to statistically 3D transient flows, provided that the
mean velocity’s three-dimensionality is accounted for via the velocity magnitude and
angle between τw and ũ. Tm agreed well for both the Π = 10 and Π = 40 cases, though
discrepancies were observed in the latter. A simplified Tm with a constant rg showed

promise in predicting T̃ without the need for qw. For Π = 10, the modelled ˜T ′′T ′′ agrees
well for Ma = 0.3 and 1.5. For Π = 40, the change in sign in ˜v′′T ′′ that is not present in
ũ′′

i v
′′ei limits the predictions of ˜T ′′T ′′ in the near-wall region since the GRA assumes ˜v′′T ′′

and ũ′′
i v

′′ei are correlated. Future work will need to account for this lack of correlation to

account for the zero-crossings in ˜v′′T ′′ to improve the model for ˜T ′′T ′′.
This flow introduces spanwise flow via a transient response to a strong, suddenly applied

spanwise body force. In the case of swept wings, the spanwise flow occurs because of
changes in geometry where spanwise pressure gradients cause the flow to accelerate. From
estimates of real supersonic aircraft with swept wings, it can be argued that the spanwise
pressure gradients are on a similar order of magnitude as the acceleration from the Π = 10,
Ma = 1.5 case, when normalized with the speed of sound and boundary layer thickness.
Thus, one may expect that the observations from the Π = 10, Ma = 1.5 case may extend
to realistic aircraft design, provided that these observations hold for large Reτ .
Acknowledgements. S.R.G. thanks C.T. Williams and Professor P. Moin for insightful discussions and
acknowledge the use of computational resources from Lawrence Livermore National Laboratory, which were
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Appendix A. Derivation of GRA for transient, 3-D flows
The derivation follows similar assumptions to Zhange et al. (2014) except, the averaged
quantities are functions of x and y rather than x and y. This derivation assumes
negligible density and viscosity fluctuations such that f̃ ≈ f̄ , τ̄ij ≈ μ(∂xi ũj + ∂xj ũi ) and
q y ≈ −cp∂y h̃e/Pr , where he = cpT is the enthalpy and ṽ � ũ. Finally, the kinetic energy
is approximated as ui ui/2 ≈ ũi ũi/2 + ũi u′′

i because mean kinetic energy is large relative
to the TKE. It is convenient to work with the total enthalpy, H = he + u2/2 and total stress,
τ̄T,i j = τ̄ij − ρ̄˜u′′

i u′′
j . The Reynolds averaged momentum and total enthalpy equations are

ρDt ũi = ∂y(μ∂yũi − ρũ′′
i v

′′) + ρgi , (A1)

ρDt H̃ = ∂y(μũi∂yũi − ρ˜H ′′v′′) + ρgi ũi + ∂t p̃, (A2)

where Dt = ∂t + ṽ∂y .
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The GRA of Zhang et al. (2014) is based on extensions of the Crocco–Buseman
relationship (Busemann 1931; Crocco 1932) and strong Reynolds analogies (Morkovin
1962) to Pr �= 1 through a recovery enthalpy, Hg = he + rgui ui/2 where rg is a recovery
factor. Similar to the GRA, it is assumed that

H̃g + H̃w = Uw,i ũi , (A3)
H ′′

g + cpφ
′′ = Uw,i u

′′
i , (A4)

for some to be determined wall velocity, Uw,i , temperature difference, φ, and constant wall
enthalpy, Hw. It is assumed that Uw,i is quasisteady in time, similar to how it is considered
quasiparallel in a turbulent boundary layer.

Manipulation of Hg and (A3) and (A4) identifies the following relationships:

H̃ = H̃g + (1 − rg )̃ui ũi/2, (A5)
μũi ũi∂yrg = (Uw,i − rgũi )τ i,y + Prq y, (A6)

ρ˜v′′H ′′ = ρ˜v′′H ′′
g + (1 − rg )̃uiρũ′′

i v
′′, (A7)

ρṽ′′h′′
e = (Uw,i − rgũi )ρũ′′

i v
′′ − ρcp˜φ′′v′′, (A8)

μũi∂yũi = μ∂y H̃g − μ∂y h̃e + μ∂y((1 − rg )̃ui ũi/2). (A9)

An equation for the evolution of H̃g can be found by combining (A5), (A9) and (A7) into
(A2) as

ρDt H̃g = ∂y

[
μ∂y H̃g − ρ˜v′′H ′′

g

]
+ ρgi ũi + ∂t p + Rg, (A10)

Rg = ρDt
[
(rg − 1)̃ui ũi/2

] − ∂y
[
(rg − 1)τ T,i ũi + (1 − Pr)q y + μũi ũi∂yrg/2

]
. (A11)

By applying ρ̃(∂t + ṽ∂y) to (A3) and using (A1), an expression for h̃e is found as

ρDt h̃e = ρDt ((1 − rg )̃ui ũi/2) + ρgi (Uw,i − ui ) + (Uw,i − ũi )∂yτ T,i . (A12)

Subtracting ũi times (A1) from (A2) and using (A8) provides an alternate expression for
h̃e as

ρDt h̃e = ∂t p̃ + τ T,i∂yũi − ρṽ′′u′′
i ∂y(Uw,i − rgũi ) − cpρ˜v′′φ′′ − cpμ∂y T̃ /Pr. (A13)

From (A12) and (A13), an expression for the recovery kinetic energy emerges as

ρDt ((rg − 1)̃ui ũi/2) =∂y

((
Uw,i − rgũi

)
ρṽ′′u′′

i − cpρ˜v′′φ′′ + cpμ∂y T̃ /Pr
)

+ ρgi (Uw,i − ũi ) + Uw,i∂yτ T,i − ∂y (̃uiτ T,i ) + ∂t p.
(A14)

Equations (A14) and (A6) are then used to simplify (A11) as

Rg = −cp∂y

(
ρ˜v′′φ′′

)
+ ρgi (Uw,i − ũi ) − ∂t p̃. (A15)

With the simplified expression of Rg and (A4), (A10) can be simplified as

ρDt H̃g = ∂y

(
μ∂y H̃g − ρUw,i ṽ′′u′′

i

)
. (A16)

Subtracting this expression from the product of Uw,i and (A1), reveals that

(ρDt − ∂y(μ∂y))(H̃g − Uw,i ũi ) = 0 (A17)

which confirms (A2).
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To determine Uw,i , the dot product Uw,i ũi is rewritten as ‖Uw‖‖ũ‖ cos(β), where
β is the angle between Uw and ũ and ũi ũi as ‖ũ‖2. Using these expressions, (A2) is
differentiated with respect to y and evaluated at the wall such that

cp∂y T̃ |w = ‖Uw‖(∂y‖ũ‖)|w cos(βw). (A18)

By introducing τw and qw, the expression for ‖Uw‖ is then ‖Uw‖ = qw Pr/τw cos(βw).
Since ‖Uw‖ is defined with respect to wall quantities, βw is chosen to be 0 such that Uw

is parallel to τw and es,w. Hence, combining the expression fro Uw and (A2) gives the
modelled expression for T̃ from (5.1).

In Zhang et al. (2014), the expression for φ gives T ′′ = Pr−1
t ∂ T̃ /∂ ũu′′ where Prt is a

turbulent Prandtl number. This linear relationship between T ′′ and u′′ is also reflected in
the strong Reynolds analogy with stronger assumptions (Morkovin 1962). Motivated by
these observations, φ′′ is chosen such that a linear relationship emerges between T ′′ and
u′′

i . By taking the derivative of H̃g with respect to ‖ũ‖, it can be shown that

rg = ‖Uw‖ cos(β)

‖ũ‖ − cp

‖ũ‖
∂ T̃

∂‖ũ‖ . (A19)

By using this expression in (A4), it can be shown that

cpT ′′ − cp
∂ T̃

∂‖ũ‖
ũi

‖ũ‖u′′
i + cpφ

′′ = 0. (A20)

In line with the results from the literature, φ′′ is chosen to achieve a linear relationship
between T ′′ and u′′

i as

T ′′ =
[
(1 − cos(β))

Prqw

cpτw

+ ∂ T̃

∂‖ũ‖
]

es,i u
′′
i . (A21)

By then multiplying (A21) with ρv′′ and averaging, it can be shown that

˜v′′T ′′

es,i ṽ′′u′′
i

− (1 − cos(β))
Prqw

cpτw

= ∂ T̃

∂‖ũ‖ . (A22)

It is important to note that because the second term on the left-hand side is small, (A22)
suggests that ˜v′′T ′′ and es,i ṽ′′u′′

i are correlated. This is not entirely true, especially in the
near-wall region of the Π = 40 cases. However, it is shown that this agreement holds in the
outer region. Finally, by squaring both sides of (A20), multiplying by ρ, and averaging,
provides the relationship in (5.3). Corrections for the lack of correlation between ˜v′′T ′′
and es,i ṽ′′u′′

i will in the future motivate better choices of φ′′.
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