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Abstract. The hierarchy structure of a derivative nonlinear Schrödinger equation
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1. Introduction. The nonlinear Schrödinger (NLS) equation,

iqT = 1
2

qXX + 4|q|2q, (1.1)

is one of the most celebrated examples of soliton equations. (The subscripts denote
partial differentiation with respect to the corresponding variables.) There are several
modified versions of the NLS equation that have integrability properties. Among those
equations, we consider a derivative NLS (∂NLS) equation [1, 2],

iqT = 1
2

qXX + 2iq2q̄X + 4|q|4q. (1.2)

Hereafter we will forget the complex structure of (1.2) and consider nonlinear coupled
equations, {

qt2 = 1
2 qt1t1 − 2q2rt1 − 4q3r2,

rt2 = − 1
2 rt1t1 − 2r2qt1 + 4r3q2.

(1.3)

We note that (1.3) is reduced to (1.2) under the condition r = q̄, X = it1, T = it2.
Recently the authors developed a generalization of the Drinfel’d-Sokolov hierarchy

from the viewpoint of affine Lie groups [3, 4]. The ∂NLS equation (1.3) is a typical
example of the equations that can be treated using our approach. The aim of the
present article is to give a method of constructing determinant solutions for the ∂NLS
hierarchy without using affine Lie groups. Since the ∂NLS equation is related to the
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fourth Painlevé equation [1, 4],

∂2y
∂x2

= 1
2y

(
∂y
∂x

)2

+ 3
2

y3 + 4xy2 + 2(x2 − A)y + B
y

, (1.4)

our method provides a class of solutions also to the Painlevé IV equation (1.4).
Furthermore, we can show that the symmetry of the affine Weyl group W (A(1)

1 ) can
lead to the following difference equation,

Xn−1 + Xn + Xn+1 = −2x + κ1n + κ2 + (−1)nκ3

Xn
, (1.5)

where κ1, κ2, κ3 are constants. We note that equation (1.5) is referred to as the
asymmetric discrete Painlevé I in [5], and as discrete Painlevé II in [6].

2. Hierarchy structure. We first describe the hierarchy structure associated with
the ∂NLS equation (1.2). We introduce a formal series (“formal Baker-Akhiezer
function”),

�(λ) = W(λ)�0(λ), (2.1)

W(λ) =
∞∑

n=0

wn(t1, t2, . . .)λ−n, (2.2)

�0(λ) =
[

eλt1+λ2t2+··· 0
0 e−(λt1+λ2t2+···)

]
, (2.3)

with wn(t1, t2, . . .) being (2 × 2)-matrix-valued functions:

wn(t1, t2, . . .) =
w

(11)
n (t1, t2, . . .) w

(12)
n (t1, t2, . . .)

w
(21)
n (t1, t2, . . .) w

(22)
n (t1, t2, . . .)

. (2.4)

We assume that the 0-th coefficient w0(t1, t2, . . .) is of the form,

w0(t1, t2, . . .) =
[

1 0
w

(21)
0 (t1, t2, . . .) 1

]
. (2.5)

A hierarchy associated with (1.3) is defined by the following evolution equations:

∂�(λ)
∂tn

= Bn(λ)�(λ), (2.6)

Bn(λ) = [
λnW(λ) QW(λ)−1]

≥0 , Q =
[

1 0
0 −1

]
, (2.7)

where we have used the notation [
∑

n∈� anλ
n]≥0 = ∑

n≥0 anλ
n. The compatibility

conditions for (2.6) give rise to the zero-curvature (or Zakharov-Shabat) equations,

∂ Bm

∂tn
− ∂ Bn

∂tm
+ [Bm, Bn] = 0, m, n = 1, 2, . . . , (2.8)

which gives a hierarchy of soliton equations.
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By straightforward calculations, we can obtain expressions for B1(λ) and B2(λ):

B1(λ) =
[

1 0
2r −1

]
λ +

[
2qr −2q

0 −2qr

]
, (2.9)

B2(λ) =
[

1 0
2r −1

]
λ2 +

[
2qr −2q
−rt1 −2qr

]
λ

+
[

qt1 r − qrt1 − 2q2r2 −qt1

0 qrt1 − qt1 r + 2q2r2

]
, (2.10)

where q = w
(12)
1 and r = w

(21)
0 . These matrices gives a Lax pair for the ∂NLS equation,

i.e., the zero-curvature equation (2.8) with m = 1, n = 2 gives the ∂NLS equation (1.2).
From this fact, we refer to the family of the nonlinear equations induced by (2.8) as
the ∂NLS hierarchy.

3. Wronskian solutions. We apply a modified version of Date’s method [7, 8] to
construct a special class of solutions for (2.6), which we shall seek in the form

�̃(λ) = W̃N(λ)�0(λ), (3.1)

W̃N(λ) = w̃0 + w̃1λ
−1 + · · · + w̃Nλ−N (3.2)

with w̃n = w̃n(t1, t2, . . .) being (2 × 2)-matrix-valued functions. The 0-th coefficient w̃0

and the N-th coefficient w̃N are assumed to be of the form,

w̃0 =
[

1 0
w̃

(21)
0 1

]
, w̃N =

[
w̃

(11)
N w̃

(12)
N

0 w̃
(22)
N

]
. (3.3)

As the data for the solution constructed below, let us consider a formal series

�(λ, t) =
∑
j∈�

ξ j(t)λ−j, (3.4)

where ξ j(t) = ξ j(t1, t2, . . .) are (2 × 2N)-matrix-valued functions of the form,

ξ j(t) =
[

f (j)
1 (t) · · · f (j)

2N(t)

g(j)
1 (t) · · · g(j)

2N(t)

]
. (3.5)

Here we assume

det

 f (0)
1 · · · f (N−1)

1 g(0)
1 · · · g(N−1)

1
...

. . .
...

...
. . .

...
f (0)
2N · · · f (N−1)

2N g(0)
2N · · · g(N−1)

2N

 �= 0. (3.6)

We furthermore impose the following conditions for �(λ, t):

∂

∂tn
�(λ, t) = λn Q�(λ, t) + �(λ, t)βn (n = 1, 2, . . .), (3.7)

λ�(λ, t) = �(λ, t)γ , (3.8)

where βn, γ are (2N × 2N)-matrices.
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The polynomial (3.2) is characterized uniquely by the linear equation,∮
dλ

2π i
λN−1W̃N(λ)�(λ) = 0. (3.9)

Solving (3.9) by Cramer’s formula, we have

w̃
(21)
0 (t) = (−1)N |0, 1, . . . , N − 2, N − 1, N ; 0, 1, . . . , N − 2|

|0, 1, . . . , N − 2, N − 1 ; 0, 1, . . . , N − 2, N − 1| , (3.10)

w̃
(12)
1 (t) = (−1)N+1 |1, 2, . . . , N − 1 ; 0, 1, . . . , N − 2, N − 1, N|

|1, 2, . . . , N − 1, N ; 0, 1, . . . , N − 2, N − 1| , (3.11)

where we have used the notation due to Freeman and Nimmo [9, 10]:

|k1, . . . , km; l1, . . . , ln| def=

∣∣∣∣∣∣∣
f (k1)
1 · · · f (km)

1 g(l1)
1 · · · g(ln)

1
...

. . .
...

...
. . .

...
f (k1)
2N · · · f (km)

2N g(l1)
2N · · · g(ln)

2N

∣∣∣∣∣∣∣ . (3.12)

PROPOSITION 1. If W̃N(λ) satisfies (3.9), then the corresponding Baker-Akhiezer
function (3.1) solves the linear equations (2.4).

Proof. From (3.8), we obtain∮
dλ

2π i
λN+n−1W̃N(λ)�(λ) = 0, (3.13)

for any non-negative integer n. Differentiating (3.9) with respect to tn and applying
(3.7), we have ∮

dλ

2π i
λN−1

{
∂W̃N(λ)

∂tn
+ λnW̃N(λ) Q

}
�(λ) = 0. (3.14)

There exist polynomials Bn(λ) and R(λ) such that

∂W̃N(λ)
∂tn

+ λnW̃N(λ) Q = Bn(λ)W̃N(λ) + R(λ), (3.15)

where the degree of R(λ) is at most N − 1. In view of (3.13) and (3.14), we obtain∮
R(λ)�(λ) dλ = 0. The condition (3.6) implies R(λ) = 0 and that W̃N(λ) satisfies

∂W̃N(λ)
∂tn

= Bn(λ)W̃N(λ) − λnW̃N(λ) Q, (3.16)

Bn(λ) = [
λnW̃N(λ) QW̃N(λ)−1]

≥0 , (3.17)

which gives the desired result. �
Thus we can obtain special solutions of the ∂NLS equation (1.3) by setting q(t) =

w̃
(12)
1 (t) and r(t) = w̃

(21)
0 (t). The solutions obtained are expressed in terms of “double

Wronskians” (3.12). We remark that the double Wronskian solutions for the ∂NLS
equation have been obtained in [11] by using Hirota’s bilinear formulation.
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4. Affine Weyl group symmetry. Let W̃ = 〈s0, s1, π〉 be the extended affine Weyl
group of A(1)

1 -type. The generators s0, s1 and π obey the relations s2
0 = s2

1 = 1, πs0 =
s1π . A realization of W̃ is given by (2 × 2)-matrices as follows:

s0 �→ S0
def=

[
0 λ−1

λ 0

]
, s1 �→ S1

def=
[

0 1
1 0

]
, π �→ �

def=
[

0 1
λ 0

]
. (4.1)

We define an action of W̃ on �(λ, t) of 3.4:

s0 : �(λ, t) �→ S0�(λ,−t) (4.2)

s1 : �(λ, t) �→ S1�(λ,−t) (4.3)

π : �(λ, t) �→ ��(λ,−t) (4.4)

Note that the form of the differential relation (3.7) is unchanged under the
transformations above. These transformations on �(λ, t) induce an action of W̃ on
W̃N though the relation (3.9).

PROPOSITION 2. The action of W̃ on the variables q(t), r(t) are written as follows:

s0 : q(t) �→ 1
q(−t)

, r(t) �→ −q(−t)2r(−t) + 1
2

qt1 (−t), (4.5)

s1 : q(t) �→ −q(−t)r(−t)2 − 1
2

rt1 (−t), r(t) �→ 1
r(−t)

, (4.6)

π : q(t) �→ r(−t), r(t) �→ q(−t). (4.7)

Proof. Here we prove the s0-case only. The cases of s1 and π can be proved in
similar manner.

Define ŴN(λ, t) as

ŴN(λ, t) def=
[

1/w̃
(12)
1 (−t) 0

− λ −w̃
(12)
1 (−t)

]
W̃N(λ,−t)S0. (4.8)

It may be shown in a straightforward way that∮
dλ

2π i
λN−1ŴN(λ)S0�(λ,−t) = 0, (4.9)

and thatŴN(λ, t) is of the form,

ŴN(λ, t) =
 1 0(

w̃
(12)
1

)
t1

/
2 −

(
w̃

(12)
1

)2
w̃

(21)
0 1

 +
[

∗ 1/w̃
(12)
1

∗ ∗
]

λ−1 + · · · .

(4.10)

By the same line of argument as Proposition 1, one can show that �̂(λ, t) def=
ŴN(λ, t)�0(λ, t) solves the linear equations (2.6). Namely, the transformation (4.5)
maps a solution to another one. �

REMARK. The transformations (4.5), (4.6) are different from sL
0 , sL

1 of [4] because
of different choice of S0 and S1.
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5. Similarity reduction to Painlevé IV. We consider the following condition on
W(λ, t) of 2.2:

W(kλ, t) = kα QW(λ, t̃)k−α Q, t̃ = (kt1, k2t2, k3t3, . . .). (5.1)

This induces the similarity conditions for q(t), r(t):

q(t̃) = k−1−2αq(t), r(t̃) = k2αr(t). (5.2)

PROPOSITION 3. Define y(x) by

y(x) def= 2q(t)r(t)|t1=x, t2=1/2, t3=t4=···=0 . (5.3)

Under the condition (5.2), y(x) satisfies the Painlevé IV equation (1.4) with A = 4α +
3C + 1, B = −2C2, where C is an integration constant.

Proof. Differentiating (5.2) with respect to k and setting k = 1, we have

t1qt1 (t) + 2t2qt2 (t) + · · · = −(1 + 2α)q(t), t1rt1 (t) + 2t2rt2 (t) + · · · = 2αr(t). (5.4)

We introduce another dependent variable ϕ(x) defined by

ϕ(x) def= {
qt1 (t)r(t) − q(t)rt1 (t)

}∣∣
t1=x, t2=1/2, t3=t4=···=0 . (5.5)

From these relations and (1.3), we can show that the variables y(x) and ϕ(x) satisfy the
following relations:

ϕ − 1
2

y2 + xy = C, (5.6)

y′′

2y
−

(
y′

2y

)2

+
(

ϕ

y

)2

+ 2ϕ − 2y2 + 2xϕ

y
+ 1 + 4α = 0, (5.7)

where ′ = d/dx and C is an integration constant. Eliminating ϕ, we obtain the
Painlevé IV (1.4). �

The Weyl group action still works under the conditions (5.2).

LEMMA 1. The Weyl group action on the parameters α, C are given by

s0 : α �→ −α − 1, C �→ −C + 2α + 1, (5.8)

s1 : α �→ −α, C �→ −C + 2α, (5.9)

π : α �→ −α − 1
2
, C �→ C. (5.10)

Proof. Define q0 = s0(q), r0 = s0(r), α0 = s0(α), C0 = s0(C), which satisfy the
relations,

q0(t̃) = k−1−2α0 q0(t), r0(t̃) = k2α0 r0(t),

(5.11)C0 = q′
0r0 − q0r′

0 − 1
2

q2
0r2

0 + xq0r0.
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Inserting (4.5) into the relations above, we can obtain (5.8). The actions of s1 and π

can be proved in a similar way. �

We focus attention on the action of the translation T def= s0π ∈ W̃ . Using the
formulas (4.5) and (4.7), we can write down the action of T on y(x):

T(y) = −y − r′

r
, T−1(y) = −y + q′

q
. (5.12)

Using these equations together with (5.6), we obtain

T(y) + y + T−1(y) = −2x + 2C
y

. (5.13)

PROPOSITION 4. If we define Xn = Tn(y), then Xn solves the difference equation (1.5),
where the parameters κ1, κ2, κ3 are given by

κ1 = 1
2
, κ2 = −α − 1

4
, κ3 = C − α − 1

4
. (5.14)

Proof. It follows from Lemma 1 that

Tn+1(α) = Tn(α) − 1
2
, Tn+1(C) = −Tn(C) − 2Tn(α). (5.15)

Solving these equations, one obtains

Tn(α) = α − n
2
, Tn(C) = n

2
− α − 1

4
+ (−1)n

(
C − α − 1

4

)
. (5.16)

Applying Tn to (5.13) and using (5.16), we obtain the equation (1.5) as desired. �

6. Similarity reduction of Wronskian solutions. We shall consider when the special
solution in Section 3 have the similarity property (5.2). First we define the Euler
operator Ê as

Ê def= t1
∂

∂t1
+ 2t2

∂

∂t2
+ 3t3

∂

∂t3
+ · · · . (6.1)

PROPOSITION 5. If the data matrix �(λ, t) of (3.4) satisfies the relation(
−λ

∂

∂λ
+ Ê + α Q

)
�(λ, t) = �(λ, t)�, (6.2)

where � is a (2N × 2N)-matrix, then the corresponding solution W̃N(λ) obeys the
condition (5.1).

Proof. Applying λ∂/∂λ − Ê to (3.9) and using (3.13), (6.2), we have∮
dλ

2π i
λN−1

{
λ

∂W̃N(λ)
∂λ

− ÊW̃N(λ) + αW̃N(λ) Q
}

�(λ) = 0, (6.3)
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which leads to

λ
∂W̃N(λ)

∂λ
− ÊW̃N(λ) − α

[
Q, W̃N(λ)

] = 0. (6.4)

Integrating (6.4), we obtain the desired result. �

To show an example of the data �(λ, t) that satisfies (6.2), we prepare the
elementary Schur polynomials pn(t):

exp(zt1 + z2t2 + · · ·) =
∑
n∈�

pn(t)zn. (6.5)

If we choose f (j)
k , g(j)

k of (3.5) as

f (j)
k = pk−j−1(t), g(j)

k = pk−j−1(−t) (k = 1, . . . , 2N), (6.6)

then �(λ, t) satisfies (3.7), (3.8) with βn = 0, γ = [δi+1,j]1≤i,j≤2N , and simultaneously
obeys (6.2) with α = 0, � = diag[0, 1, . . . , 2N − 1]. Putting t1 = x, t2 = 1/2, t3 = t4 =
· · · = 0, we thus obtain a class of rational solutions for the Painlevé IV equation (1.4)
and the discrete Painlevé equation (1.5).

In this case, the Schur polynomials pn(t) degenerate to the Hermite polynomials
Hn(t):

exp(zt1 + z2t2 + · · ·)∣∣t1=x, t2=1/2, t3=t4=···=0 = exp(xz + z2/2) =
∑
n∈�

Hn(t)zn. (6.7)

We remark that the rational solutions for the discrete Painlevé I constructed in [12] are
essentially the same as the above.

7. Concluding remarks. We have formulated the hierarchy of the ∂NLS equation
and constructed solutions expressed in terms of determinants. The Weyl group
symmetry introduced in this article is isomorphic to W̃ (A(1)

1 ), which does not seems
to be a subgroup of the W̃ (A(1)

2 )-symmetry discussed in [13, 14]. To understand the
relationship of our W̃ (A(1)

1 )-symmetry to the whole symmetry of the Painlevé IV, it
seems that we need to consider a larger group that contain both W̃ (A(1)

1 ) and W̃ (A(1)
2 )

as individual subgroups.
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