
TPLP: Page 1–18. c© The Author(s), 2025. Published by Cambridge University Press. This is an

Open Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution

and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068425100148

1

Application Placement with Constraint Relaxation

DAMIANO AZZOLINI
University of Ferrara, Ferrara, Italy

(e-mail: damiano.azzolini@unife.it)

MARCO DUCA, FRANCESCO GALLO and ANTONIO IELO
University of Calabria, Calabria, Italy

(e-mails: marco.duca02@gmail.com, francescogallo0309@gmail.com, antonio.ielo@unical.it)

STEFANO FORTI
University of Pisa, Pisa, Italy

(e-mail: stefano.forti@unipi.it)

submitted 22 July 2025; revised 22 July 2025; accepted 27 July 2025

Abstract

Novel utility computing paradigms rely upon the deployment of multi-service applications
to pervasive and highly distributed cloud-edge infrastructure resources. Deciding onto which
computational nodes to place services in cloud-edge networks, as per their functional and non-
functional constraints, can be formulated as a combinatorial optimisation problem. Most existing
solutions in this space are not able to deal with unsatisfiable problem instances, nor preferences,
i.e., requirements that DevOps may agree to relax to obtain a solution. In this article, we exploit
Answer Set Programming optimisation capabilities to tackle this problem. Experimental results
in simulated settings show that our approach is effective on lifelike networks and applications.

KEYWORDS: answer set programming, logic programming applications, cloud-edge computing,
application management, distributed computing

1 Introduction

In the last decade, cloud-edge computing paradigms (e.g., fog, edge, mist computing)

have attracted increasing attention from both academic and industrial research com-

munities (Srirama (2024)). These paradigms extend the traditional cloud computing

model by incorporating resources along a computing continuum, ultimately interconnect-

ing Internet of Things (IoT) devices with cloud virtual machines through a hierarchy

of intermediate layers spanning end-user devices, enriched infrastructure assets, and

small-scale private data centres. Overall, they aim at offering computing, storage and

networking as utilities by leveraging a continuum of pervasive, heterogeneous resources

that enable low-latency processing and context-aware service delivery, especially targeting

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148
https://orcid.org/0000-0002-7133-2673
mailto:damiano.azzolini@unife.it
https://orcid.org/0009-0006-9644-7975
mailto:marco.duca02@gmail.com
mailto:francescogallo0309@gmail.com
mailto:antonio.ielo@unical.it
https://orcid.org/0000-0002-4159-8761
mailto:stefano.forti@unipi.it
https://doi.org/10.1017/S1471068425100148

D. Azzolini et al.2

latency-sensitive or bandwidth-intensive IoT applications, for example augmented reality,

remote surgery or safety monitoring (Moreschini et al. (2022); Vetriveeran (2025)).

Deploying multi-service applications across cloud-edge resources comes with significant

challenges due to the scale, heterogeneity and dynamic nature of resources, along with

stringent Quality of Service (QoS) requirements of the applications to be deployed (Apat

et al. (2025)). Such applications, composed of interacting services, must be placed to

meet constraints such as latency, bandwidth, energy consumption, and locality of IoT

devices. Traditional placement strategies often approach this as a constraint satisfaction

or optimisation problem (Mahmud et al. (2020a)). In practice, certain combinations of

constraints may be unsatisfiable, leading current methods to fail due to resource scarcity,

too demanding application requirements, or both. Notably, the current literature on

cloud-edge application placement does not address the case of requirements that should

be preferably , but not necessarily, satisfied according to given priorities.

For instance, a DevOps may request that a real-time video analytics service should be

deployed to a node capable of reaching a surveillance camera with suitable latency and

bandwidth, while also imposing strict limits on the carbon intensity of the chosen node.

If no node can satisfy all the constraints, existing approaches (Mahmud et al. (2020a))

would typically reject the deployment altogether. This highlights the need for a placement

strategy capable of reasoning over conflicting constraints and identifying which ones can

be relaxed with minimal impact, according to priorities defined by application DevOps.

In this context, we leverage Answer Set Programming (Brewka et al. (2011)) (ASP)

for determining QoS-aware placements of multi-service applications within cloud-edge

environments and propose a novel solution called FlexiPlace. The main novelty of our

approach lies in its ability to manage unsatisfiable placement instances by selectively

relaxing (dropping) constraints based on a priority hierarchy established by the applica-

tion DevOps (the “domain experts”), allowing one to determine an eligible application

deployment instead of failing. We assess our tool on a set of benchmarks and show that

it is effective on realistic-sized infrastructures and applications.

The article is organised as follows. Section 2 discusses the background. Section 3 intro-

duces the considered problem through a motivating scenario, which is encoded in ASP

in Section 4. Section 5 presents the experimental evaluation, Section 6 surveys related

work, and Section 7 concludes the paper.

2 Background

Answer Set Programming (ASP) is a popular declarative programming paradigm. Its

compact and expressive language makes it a powerful tool for handling knowledge-

intensive combinatorial problems, both in industry and academia (Erdem et al. (2016);

Falkner et al. (2018); Gamblin et al. (2022); Baumeister et al. (2024); Azzolini et al.

(2025)), also thanks to the availability of efficient reasoners (Leone et al (2006); Gebser

et al. (2019)).

Syntax. A term is either a variable, a constant, or a function symbol , where variables

start with uppercase letters and constants start with lowercase letters or are numbers.

A function term is an expression of the form f(t1, . . . , tn) where f is its name and ti
are terms. An atom is an expression of the form p(t1, . . . , tn) where p is a predicate of

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

Application Placement with Constraint Relaxation 3

arity n and t1, . . . , tn are terms; it is ground if all its terms are constants. A literal is

either an atom a or its negation not a, where not denotes the negation as failure. A literal

is said to be negative if it is of the form not a, otherwise it is positive. For a literal l,

l denotes the complement of l. More precisely, l= a if l= not a, otherwise l= not a. A

normal rule is an expression of the form h← b1, . . . , bn where h is an atom called head .

When n≥ 0, b1, . . . , bn is a conjunction of literals called body . A normal rule is said to be

a constraint if its head is omitted, while it is said to be a fact if n= 0. A programme is a

finite set of normal rules. We will also use choice rules (Niemelä et al. (1999)). A choice

element is of the form h : l1, . . . , lk, where h is an atom, and l1, . . . , lk is a conjunction

of literals. A choice rule is an expression of the form {e1; . . . ; em}← b1, . . . , bn. We also

consider aggregate atoms in the body of rules (Alviano and Faber (2018)) of the form

#sum{ε0; . . . ; εn} > k where k is called guard and can be a constant or a variable and

ε0, . . . , εn is such that each εi has the form t1, . . . , tn : F and each ti is a term whose

variables appear in the conjunction of literals F .

Semantics. Given a programme P and r ∈ P , ground(r) is the set of ground instanti-

ations of r obtained by replacing variables in r with constants in P . For aggregates, a

variable is called local if it appears only in the considered aggregate; global otherwise.

The grounding of a rule with aggregates first requires replacing global variables and then

replacing local variables appearing in aggregates with ground terms. We denote with

ground(P) the union of ground instantiations of rules in P . An aggregate is true in an

interpretation I (i.e., a set of atoms) if the evaluation of the aggregate function under

I satisfies the guards. We refer the reader to Calimeri et al. (2020) for a more in-depth

treatment of aggregates. Given a programme P , an interpretation I is an answer set (also

called stable model) of P iff (i) I is a model, that is for each rule r ∈ ground(Π) either

the head of r is true w.r.t. I or the body of r is false w.r.t I; and (ii) I is a minimal

model of its GL-reduct (Gelfond and Lifschitz (1991)). If P has no answer sets, it is

called unsatisfiable.

Optimisation. Weak constraints (Buccafurri et al. (2000)) are expressions of the form

:∼ l1, . . . , lm.[w@p, t1, . . . , tn] where l1, . . . , lm are literals, w ∈N is the cost, p∈N is the

priority, and t1, . . . , tn is a tuple of terms. Such rules associate each answer set with a

cost with a priority level , which can be intuitively understood as an objective function,

to be optimised in order of priority. These enable one to tackle optimisation problems

in ASP (Alviano et al . (2020)). An answer set with costs c0, c1, . . . ck has a “lower cost”

than an answer set with costs c′0, c
′
1, . . . , c

′
k if there exist i such that ci < c′i and cj = c′j

for all j < i. An answer set is optimal if there does not exist an answer set with a lower

cost.

3 Motivating scenario: the application placement problem

In this section, we illustrate the considered problem by means of a simple, yet complete,

motivating example adapted from the literature (Forti (2022)). The depicted scenario

epitomises a broader class of placement problems in which functional (e.g., hardware, IoT)

and non-functional requirements related to sustainability (e.g., energy efficiency, carbon

intensity), performance (e.g., latency, bandwidth), and reliability (e.g., availability, secu-

rity) must be satisfied simultaneously, despite being often conflicting and constrained by

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

D. Azzolini et al.4

Fig. 1. Example application.

Fig. 2. Example infrastructure.

limited resources. Typical deployments involve hundreds of services and nodes, leading

to a combinatorial explosion of potential candidate solutions (Smolka and Mann (2022))

(e.g., mapping 30 services on 100 nodes yields up to 10030 = 1060 candidates to check).

The application in Figure 1 manages street lighting using machine learning (ML) and

includes two services: the ML Optimiser, which processes video streams to determine

optimal lighting strategies, and the Lights Driver, which controls the street lights. The

ML Optimiser requires a GPU co-processor to train models that update the driver’s

control rules while the Lights Driver interfaces with both a lighting hub and a video

camera, which monitors ambient conditions and streams footage to the optimiser. Each

service has functional and non-functional requirements. For instance, the ML Optimiser

requires 16 GB RAM, access control and anti-tampering mechanisms, minimum node

availability (av min) of 99%, carbon intensity of the node energy mix (ci max) below 300

gCO2-eq/kWh, and power usage effectiveness1 (PUE max) under 2.5. Additionally, com-

munication constraints specify a maximum latency of 50 ms and a minimum bandwidth

of 1 Mbps from the ML Optimiser to the Lights Driver, and 5 ms and 16 Mbps in the

reverse direction.

Figure 2 sketches the target infrastructure for the described application. It consists of

three interconnected computing nodes – Private Cloud, Access Point, and Edge Node – with

1 PUE is a standard computing efficiency metric defined as the ratio of total energy consumption of an
IT system to the energy used by computing equipment alone. A value of 1.0 indicates ideal efficiency.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

Application Placement with Constraint Relaxation 5

a different availability of resources. For instance, the Edge Node is located closest to end

devices, being directly connected to the lights hub and the video camera, and is equipped

with 8 GB of RAM, a GPU, and 100 Mbps mobile connectivity. It has 90% availability,

a PUE of 1.2, and is powered up through an energy mix with a carbon intensity of 100

gCO2-eq/kWh. While the Private Cloud is assumed to feature all security mechanisms, the

other two nodes are only equipped with an anti-tampering system to mitigate the damage

in case of physical access to deployment resources. Network communication latencies are

symmetric and range from 5 ms between adjacent nodes to 15 ms between the Private

Cloud and the Edge Node.

Determining an eligible placement of the application of Figure 1 to the resources of

Figure 2 requires mapping each service to a node that satisfies all its functional and non-

functional requirements, without exceeding the node’s hardware and bandwidth capacity,

which is an NP-hard problem (Brogi and Forti (2017)). In the described scenario, there

is no solution placement that can satisfy all application requirements in the target infras-

tructure. To address this, however, the DevOps team in charge of application deployment

is willing to relax certain non-functional requirements (i.e., soft) based on predefined pri-

orities, where higher values indicate greater importance and less flexibility. Latency and

bandwidth constraints have the highest priority (10) and are thus the least negotiable.

Availability follows with priority 2, indicating moderate flexibility. Conversely, PUE and

carbon intensity have the lowest priority (1). Security, hardware and IoT requirements

remain non-negotiable (i.e., hard) and must always be strictly enforced.

Hereinafter, we show how FlexiPlace leverages ASP and accounts for constraint priori-

tisation to relax a minimal set of requirements to compute feasible placements with the

least impact on the original constraints. That is, we aim at answering the following ques-

tion: How can we determine a constraint-relaxed placement of a cloud-edge application

that is both feasible and minimally deviates from our original deployment intent?

4 ASP encoding

The core idea of our encoding is to match services to nodes in the infrastructure, discard-

ing candidate solutions that do not satisfy application requirements over infrastructure

capabilities . As we will formalise in the following, we represent an infrastructure as a

graph extended with attributes. Analogously, applications are represented as graphs and

their requirements consist of simple arithmetic relationships between a (constant) thresh-

old value for an attribute that a given service “requires” and the value of that specific

attribute over the node where a service is placed . Rather than considering a fixed set

of attributes for the nodes (and application requirements), our solution provides a way

(by means of input facts) to define the attributes of each node (and the corresponding

requirements), that can be thus customised by users.

We first describe how to encode an input instance (infrastructure & its capabilities,

application & its requirements) into a set of ASP facts, then how to model the application

placement problem in ASP (“base encoding”), and finally how to address its relaxed

version through ASP optimisation, using the clingo (Gebser et al. (2019)) input language.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

D. Azzolini et al.6

4.1 Reification of infrastructures & applications

Modelling the infrastructure. We model a target deployment infrastructure by means of

predicates node/1 and link/2. We use an atom node(x) for each vertex x in the network,

and an atom link(x, y) for each edge that connects nodes x and y. Informally, both node

attributes and link attributes are modelled as “key-value pairs,” by means of predicates

node attr/3 and link attr/4. Atoms node attr(x, k, v) mean that attribute k has value v

on node x, and link attr(x, y, k, v) mean that attribute k on edge (x, y) has value v. This

representation accommodates several kinds of infrastructure and application properties.

Example 1 (Infrastructure).

The node Private Cloud of Figure 2 is encoded via the following set of facts:

node("prvt_cloud").
node_attr("prvt_cloud","access_control",true). node_attr("prvt_cloud","anti_tampering",true).
node_attr("prvt_cloud","availability",9999). node_attr("prvt_cloud","bandwidth_in",1000).
node_attr("prvt_cloud","bandwidth_out",1000). node_attr("prvt_cloud","carbon_intensity",350).
node_attr("prvt_cloud","gpu",true). node_attr("prvt_cloud","pue",19).
node_attr("prvt_cloud","ram_gb",128).

Similarly, the link that connects such node to the Edge Node is denoted by the fact:

link_attr("prvt_cloud", "edge_node", "latency", 15).

Modelling the application. We use the predicates service/1 and dependency/2, with an

analogous meaning to node/1 and link/2, to describe the application to be placed. That

is, service(s) denotes that s is a unique identifier for a service, and dependency(s, t) that

service s “depends on” service t. The counterpart of infrastructure attributes are service

requirements, which intuitively act as “constraints”2 to forbid deployments. Intuitively,

as services are deployed onto nodes and have pairwise dependencies, we can label each

service with properties its matchee must abide. Thus, while infrastructure attributes refer

to its vertices and edges, service requirements will refer to the node the service is deployed

onto (during stable model search).

A (simple) requirement is a statement about infrastructure properties a node should

possess in order to host a service. Here, we focus on requirement expressions that consist

of comparisons between attributes’ value and constants. That is, expressions of the form

r ◦ t where r is an attribute, ◦ ∈ {<,>,≤,≥,=, �=} or reserve(r, t). Intuitively, these

respectively mean that the value (on a node) of an attribute r should compare in a spe-

cific way against a threshold value t. The requirement expression reserve(r, t) expresses

that (i) attribute r should be understood as consumable resources (ii) a given service

requires t units of r on the node to which it is deployed. Application deployments often

require that each service has access to a dedicated amount of computational resources

(e.g., RAM or bandwidth). Whenever multiple services are placed onto the same node

or link asset, it must be ensured that the consumable resources are enough to host all

services.

We encode requirement expressions by means of function terms such as lt(r, v) (“less-

than”), gt(r, v) (“greater-than”), eq(r, v) (“equals-to”), in addition to the aforementioned

2 In the rest of the section, we purposefully avoid using the word deployment constraints as it is
semantically overloaded with the notion of constraints in ASP.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

Application Placement with Constraint Relaxation 7

reserve(r, v). Given a requirement expression, we say that it holds on a given service

using the atoms hreq/2 and sreq/2, which stand respectively for hard requirement and

soft requirement. The atom hreq(s, e) denotes that the service s can be deployed onto a

node if and only if the node satisfies the requirement e. The atom sreq(s, e) denotes that

the service s should be deployed onto a node that preferably satisfies the requirement e.

Similarly, the atoms sreq((x, y), e) and hreq((x, y), e) state that the requirement e must

be satisfied by the link between the nodes that host the services x and y.

Example 2 (Application requirements).

The following encoding denotes the requirements of service ML Optimiser of Figure 1 :

hreq("ml_opt",eq("access_control",true)). hreq("ml_opt",eq("anti_tampering",true)).
sreq("ml_opt",gte("availability",99),2). hreq("ml_opt",reserve("bandwidth_in",16)).
hreq("ml_opt",reserve("bandwidth_out",1)). sreq("ml_opt",lte("carbon_intensity",300)).
hreq("ml_opt",eq("gpu",true)). sreq("ml_opt",lte("pue",25)).
hreq("ml_opt",reserve("ram_gb",16)).

Akin to infrastructure links, dependencies between services are denoted as:

sreq(("ml_opt", "lights_driver"), lte("latency", 50)).
sreq(("lights_driver", "ml_opt"), lte("latency", 5)).

4.2 Encoding application deployment

We now present the “base” encoding that solves the deployment problem. It is based on

a guess-and-check procedure, where choice rules guess a candidate assignment of services

to infrastructure nodes and constraints prune assignments that violate requirements.

We denote such a programme Πdeploy. For now, we assume no distinction between hard

requirements (hreq/2) and soft requirements (sreq/2). Given an application network A

and an infrastructure R, the answer sets of Πdeploy ∪ [R]∪ [A] can be mapped back to

assignments that solve our problem. A solution placement can be decoded by projecting

answer sets onto the deploy/2 predicate.

4.3 Relaxing soft requirements on application deployment

Distinguishing between hard and soft requirements naturally corresponds to an ASP opti-

misation task. The idea is to abduce over possible constraints to remove atoms matching

sreq/2 by means of choice rules; this disables the corresponding constraint in the logic

programme. To do so, (i) we replace line 9 in the base encoding (Figure 3) with the

rules in Figure 4 and (ii) if we wish to weight (e.g., assign a preference score) to soft

requirements to remove, we introduce atoms violation cost(S, E, (C, L)) to denote that

we will pay a cost of C at level L if we renounce the soft requirement sreq(S, E).

Optimal answer sets correspond to optimal solutions of the deployment problem,

where atoms lift(S, E) denote that we renounce the requirement E on the deployment

of service S. If this logic programme is unsatisfiable, it means that even removing all

sreqs, this would not be sufficient to ensure existence of a deployment . That is, (at least

one of) the reason(s) for the inconsistency lies in hreqs alone, and further analysis would

be required. The logic programme is satisfiable if there exists an assignment that per-

fectly fits all the requirements. As we are interested in detecting soft requirements to

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

D. Azzolini et al.8

3 resource(R) :- node_attr(_,R,_).
4 % Deploy each service onto one node in the infrastructure.
5 { deploy(S,X): node(X) } = 1 :- service(S).
6 % hreq: hard requirements (can t be relaxed)
7 % sreq: soft requirements (can be relaxed)
8 req(S,E) :- hreq(S,E).
9 req(S,E) :- sreq(S,E).

10 % Cumulative usage of resource
11 shared_resource(R) :- req(_,reserve(R,_)).
12 % Sum of all quantities Q of resource R reserved by services deployed in X
13 % must be below availability of R on Q
14 :- node_attr(X,R,T), shared_resource(R), #sum{Q,S: deploy(S,X), req(S,reserve(R,Q))} > T.
15 :- req(S,reserve(R,Q)), deploy(S,X), node_attr(X,R,V), V < Q.
16 % Enforcing requirement expressions (nodes).
17 :- req(S,eq(R,V)), deploy(S,X), not node_attr(X,R,V).
18 :- req(S,neq(R,V)), deploy(S,X), node_attr(X,R,V).
19 :- req(S,lt(R,T)), deploy(S,X), node_attr(X,R,V), V >= T.
20 :- req(S,gt(R,T)), deploy(S,X), node_attr(X,R,V), V <= T.
21 :- req(S,gte(R,T)), deploy(S,X), node_attr(X,R,V), V < T.
22 :- req(S,lte(R,T)), deploy(S,X), node_attr(X,R,V), V > T.
23 % Enforcing requirement expressions (edges).
24 :- req((S1,S2),eq(R,V)), deploy(S1,X), deploy(S2,Y), not link_attr(X,Y,R,V).
25 :- req((S1,S2),neq(R,V)), deploy(S1,X), deploy(S2,Y), link_attr(X,Y,R,V).
26 :- req((S1,S2),lt(R,T)), deploy(S1,X), deploy(S2,Y), link_attr(X,Y,R,V), V >= T.
27 :- req((S1,S2),gt(R,T)), deploy(S1,X), deploy(S2,Y), link_attr(X,Y,R,V), V <= T.
28 :- req((S1,S2),gte(R,T)), deploy(S1,X), deploy(S2,Y), link_attr(X,Y,R,V), V < T.
29 :- req((S1,S2),lte(R,T)), deploy(S1,X), deploy(S2,Y), link_attr(X,Y,R,V), V > T.

Fig. 3. FlexiPlace main encoding.

30 { req(S,E) } :- sreq(S,E,_).
31 lift(S,E) :- sreq(S,E), not req(S,E).
32 :˜ violation_cost(S,E,(C,L)), lift(S,E). [C@L,S,E]

Fig. 4. Additions to the main encoding of Figure 3 to address the relaxed problem.

relax rather than finding deployments, we consider projection of answer sets on the lift/2

predicate. From the ASP modelling point of view, it would have been equivalent (in terms

of optimal solutions) to directly express soft requirements as weak constraints. However,

our design choices have several practical advantages: (i) the lift/2 predicate enables to

easily inspect answer sets and retrieve which requirements have been relaxed to achieve

the solution, (ii) it is possible to control by means of facts (i.e., those matching sreq/2

and hreq/2) which requirements are mandatory and which ones can be relaxed, and (iii)

atoms lift/2 could be naturally used as objective atoms to compute minimal unsatisfiable

subprograms for explainability purposes (Alviano et al. (2023)).

Example 3.

Consider again the motivating scenario of Section 3. As discussed above, there is no

eligible placement that meets all the requirements for the application of Figure 1 to the

infrastructure of Figure 2 . For instance, the only node that can support the execution of

the ML Optimiser (i.e., the Private Cloud node) features a carbon intensity of 350 gCO2-eq

which exceeds the required 300 gCO2-eq. Note that our model relies on facts like

violation_cost(("ml_optimiser","lights_driver"),lte("latency",50),(10,1)).

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

Application Placement with Constraint Relaxation 9

to set the cost (i.e. priority) for relaxing soft constraints. Running the encoding of

Figures 3 and 4 over the input denoting our motivating scenario returns an eligible

placement that suggests deploying ML Optimiser to Private Cloud and Lights Driver to

Access Point, and is obtained by relaxing constraints on carbon intensity for both ser-

vices. Such a solution is optimal, as it only relaxes two of the lowest-priority constraints,

as indicated by the DevOps team in charge of managing the application.

5 Experiments

We perform a set of experiments to assess the effectiveness of our approach in comput-

ing cost-optimal relaxed deployments. We first analyse the behaviour of available ASP

systems on our encoding. Then, we conducted a more in-depth analysis to investigate

the trade-off between model-guided (Gebser et al (2011)) and core-guided (Andres et al.

(2012)) optimisation algorithms for our application scenario.

The experiments3 were run on a server with Intel(R) Xeon(R) CPU E7-8880 v4 @ 2.20

GHz CPU, equipped with 500 GB RAM, with a timeout of 180 s using GNU Parallel

and executing at most 16 jobs in parallel. A timeout in our setting refers to not being

able to find an optimal model or proving unsatisfiability within 180 s.

Data. We provide an instance generator for the problem, following standard practice

in literature (Gupta et al. (2017); Forti et al. (2022); Ghobaei-Arani and Shahidinejad

(2022)). We focus on the infrastructure attributes in Table 1 and define a set of realis-

tic templates for infrastructure nodes and for application services. Infrastructure graphs

and application graphs are obtained by sampling from Barabási-Albert (Barabási and

Albert (1999)) and Erdős-Renyi (Erdős and Rényi (1959)) topologies, respectively. On

one hand, the Barabási-Albert model captures the scale-free property of real-world ICT

networks, where node degree distribution usually follows a power-law (Newman (2010)).

This reflects the heterogeneity and hierarchy typical of cloud-edge infrastructures, where

a small number of nodes act as high-bandwidth hubs and others as resource-constrained

peripheral nodes. On the other hand, the Erdős-Renyi model neutrally approximates

application topologies, where dependencies between services are established with uniform

probability (Newman (2010)). This reflects the loosely coupled and stochastic nature

of microservice-based applications, where interactions do not follow any hierarchical

patterns (Soldani et al. (2018); Velepucha and Flores (2023)). Each node is assigned

(uniformly at random) a “configuration” from a finite set. In our case, the only link

attribute is latency, which we model as a random integer between 10 and 50. Nodes that

are not directly connected by an edge are assigned an edge with a latency equal to the

sum of the latencies in the shortest path between the two nodes. As an example, if a gen-

erated graph contains the edges (a, b) and (b, c), we introduce the edge (a, c) with latency

�(a, b) + �(b, c), where �(x, y) is the latency on edge (x, y). Following these procedures,

we generated 10 infrastructures of size {50, 100, 150, . . . , 500}, and 6 applications of size

{5, 10, 15, . . . , 30}. For each combination, we generated 100 input pairs (i.e., application

and infrastructure). This yields a total of 10 · 6 · 100 = 6 · 103 instances. We denote by

I(n, k) the set of instances considering the deployments of an application of size k over

3 All experimental code and data are available at https://github.com/ainnoot/flexiplace.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

D. Azzolini et al.10

Table 1. Considered node properties. The table does not contain latency since it is a
link property. The “Shared” column denotes whether the property is considered shared
among all services hosted on the considered nodes. The “Constr” column reports the
constraint instantiated for the attribute during the generation process, for each service

Attribute Type Shared Constr Attribute Type Shared Constr

Access Control Bool No Equals CPU Int Yes Reserve
Anti-tampering Bool No Equals Encryption Bool No Equals
Availability Int No At Least GPU Bool No Equals
Bandwidth (In) Int Yes Reserve Latency Int No At Most
Bandwidth (Out) Int Yes Reserve PUE Int No At Most
Carbon Intensity Int No At Most RAM Int Yes Reserve
Cost Int No At Most Storage Int Yes Reserve

infrastructures of size n. We also use the notation I(·, {k0, k1, . . .}) to denote “all problem
instances that deal with applications of size k0, k1,, . . .” and I({n0, n1, . . .}, ·) to denote

“all problem instances that deal with infrastructures of size n0, n1, . . .”. Lastly, each

of the considered applications consists of constraints over all infrastructure properties

defined in Table 1. Note that we use a weight of 1 for all constraints that can be relaxed,

with a single priority level, but the encoding we provide is more general.

5.1 Solver selection

We consider four ASP systems, obtained by pairing up the ASP solvers clasp (Gebser

et al. (2007a)) and wasp (Alviano et al. (2015)) with the ASP grounders I-DLV (Calimeri

et al. (2017)) and gringo (Gebser et al. (2007b)). Note that the gringo+clasp and

IDLV+wasp combinations are, essentially, the combinations adopted in the clingo

(Gebser et al. (2019)) and DLV (Leone et al (2006)) solvers. We refer to each system as

gringo+wasp, gringo+clasp, IDLV+wasp, IDLV+clasp. We execute the systems using

both a model-guided (BB) (Gebser et al (2011)) and a unsatisfiable core-guided (USC)

(Andres et al. (2012)) algorithm, which typically yield complementary performances

(Alviano et al. (2020)). In brief, model-guided algorithms attempt to iteratively improve

lower bound solutions, à la branch & bound, while unsatisfiable core-guided algorithms

try to treat all weak constraints as standard (strong) constraints, using unsatisfiable cores

found within the optimisation routine to shrink the search space. We consider the bb and

oll algorithms for clasp, and the basic and one algorithms for wasp, which are the

default for the model-guided and core-guided algorithms in these solvers, respectively.

This yields a total of 8 configurations that we run over the 10% of the total instances,

selecting 60 instances for each network size, for a total of 600 instances.

Figure 5 shows that, overall, clasp-based configurations outperform all wasp-based

configurations in terms of execution times. In particular, the core-guided configuration

of the gringo+clasp system (i.e., clingo with default parameters) essentially overlaps

with the virtual best solver . Recall that the virtual best solver is a fictitious system that is

assumed to perform (instance-wise) as the best among the available solvers. The scatter

plots provide an instance-wise comparison of the systems. We can observe in Figure 6

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

Application Placement with Constraint Relaxation 11

0 100 200 300 400 500

0

50

100

150

Solved instances

E
x
ec

u
ti

o
n

T
im

e
(s

) gringo+clasp - BB

gringo+clasp - USC

idlv+clasp - BB

idlv+clasp - USC

gringo+wasp - BB

gringo+wasp - USC

idlv+wasp - BB

idlv+wasp - USC

Virtual Best

Fig. 5. Solvers comparison.

0 45 90 135 180

0

45

90

135

180

Model Guided (s)

C
o
re

G
u
id

ed
(s

) gringo + clasp

gringo + wasp

idlv + clasp

idlv + wasp

0 45 90 135 180

0

45

90

135

180

idlv + solver (s)

g
ri

n
g
o

+
so

lv
er

(s
)

wasp BB

wasp USC

clasp BB

clasp USC

Fig. 6. Left: a point (x, y) denotes that a given problem instance is solved in x seconds using
the model-guided and in y seconds using the core-guided algorithm. Right: a point (x, y)

denotes that a given problem instance is solved in x seconds using the IDLV and in y seconds
using gringo grounder.

(left) that the default core-guided algorithm outperforms the default model-guided algo-

rithm across all systems. Moreover, Figure 6 (right) confirms that the grounder plays a

less important role in our problem, with points distributed along the bisector.

5.2 Assessment of FlexiPlace

From the previous set of experiments the gringo+clasp system (i.e.,, clingo) obtained

the best overall performance among the tested configurations. Thus, we focus on that

system and perform a more in-depth assessment of our approach on all the generated

instances (6 · 103). We start by discussing the easy instances and then continue with an

in-depth analysis of the results in the harder instances. Memory-wise, in all settings, we

do not report significant memory usage.

Easy instances. Applications of size up to 15 yield solvable instances for both opti-

misation techniques. Figure 7 reports average runtime (up to the first optimal solution)

over instances I(·, {5, 10, 15}), where we can observe indeed an exponential-like effect

of the application size w.r.t. infrastructure size on the overall runtime regardless of the

solving algorithm. Here, BB and USC have similar performances. Overall, this is already

sufficient to show applicability of our technique on non-trivial deployments, over realistic-

sized infrastructures. We continue our analysis, focusing on deployments with 20, 25 and

30 applications, being these more challenging.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

D. Azzolini et al.12

100 200 300 400 500

0

10

20

Network Size

E
x
ec

u
ti

o
n

T
im

e
(s

) BB 5

BB 10

BB 15

100 200 300 400 500

0

10

20

Network Size

E
x
ec

u
ti

o
n

T
im

e
(s

) USC 5

USC 10

USC 15

Fig. 7. Mean (solid) and standard error (dashed) on execution time to find the first optimal
solution over I(·, {5, 10, 15}) using BB (left) and USC (right) algorithms.

services
20 25 30

size BB USC BB USC BB USC

50 28 3 35 38 28 37
100 39 6 82 50 99 94
150 32 4 83 49 98 94
200 18 0 68 28 96 89
250 24 1 75 28 99 95
300 21 3 62 37 96 89
350 22 1 68 40 96 91
400 19 5 76 46 100 95
450 25 14 64 44 93 89
500 21 6 65 43 93 83

Fig. 8. Number of timeouts per application size and network size.

Harder instances. Instances I(·, {20, 25, 30}) yield more interesting behaviour and

deserve further analysis. First, we observe in Table 8 that several instances hit the time-

limit, with both optimisation algorithms. Figure 9 reports the overall performance of the

two optimisation algorithms over these instances, in terms of a cactus plot. Overall, we

can observe that these instances are better suited to be solved with USC techniques, as

it is able to solve many more instances to optimality. Instance-wise, the scatter plot in

Figure 10 confirms the result, usually with USC outperforming BB. However, USC also

accrues more and more time-limits as the application size increases.

Temporal Distribution of Sub-optimal Answer Sets in BB. In practical scenarios,

obtaining sub-optimal solutions in a fast way might still be useful. Thus, one might be

interested in investigating whether sub-optimal solutions are obtained at all, whenever

optimal solutions are unavailable. Figure 11 provides a plot on how non-optimal answer

sets are found and distributed within allowed runtime when using the model-guided BB

algorithm. We observe that overall some solutions (for all instances) are found within

the first minute, then answer sets become more sparse, up to timeout – that typically

occurs whenever the solver “hits an optimal model,” but is not able yet to certify it as

optimal (e.g., proving non-existence of a model with lesser cost).

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

Application Placement with Constraint Relaxation 13

0 500 1,000 1,500

0

50

100

150

Solved Instances

E
x
ec

u
ti

o
n

T
im

e
(s

)

BB

USC

Fig. 9. Cumulative runtime of BB and USC algorithms over all instances.

0 50 100 150

0

50

100

150

20 services.

0 50 100 150

0

50

100

150

25 services.

0 50 100 150

0

50

100

150

30 services.

(a) (b) (c)

Fig. 10. Execution time over instances of size 350 (blue), 400 (red), 450 (orange), and
500 (green) in (a) I({350, 400, 450, 500}, 20), (b) I({350, 400, 450, 500}, 25), and

(c) I({350, 400, 450, 500}, 30). A point (x, y) denotes that the USC algorithm solves an
instance in y seconds, while BB solves it in x seconds.

Overall, USC and BB performance are comparable over 5–10–15 instances, regardless

of network size, while USC is generally preferable for “harder” instances in the 20–25–30

range. However, BB is a way to obtain sub-optimal solutions quickly, whereas USC

would time-out. We remark that, in a real-world setting, it would be totally feasible to

run both approaches in parallel, so as to pick the first (optimal) solution found by either

approach.

6 Related work

As aforementioned, the problem of deciding how to place application services to cloud-

edge nodes in a QoS- and context-aware manner has been thoroughly studied. Here,

we focus on the most closely related work, and we refer the readers to recent surveys

by Pallewatta et al. (2023); Apat et al. (2025), and Aı̈t-Salaht et al. (2021) for further

details.

Many solutions exist that rely on different techniques to determine application place-

ments that meet functional and non-functional requirements. Among these, most of the

approaches relied on informed (heuristic) search (Brogi and Forti (2017); Gupta et al.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

D. Azzolini et al.14

Fig. 11. Temporal distribution of answer sets using the BB algorithm. Each cell reports, in a
dotted chart, data about I(n, k) (with label n—k). A point (x, y) denotes that invoking the

ASP solver on the y-th instance of I(n, k) yields a model at time x.

(2017)), mathematical programming (Skarlat et al. (2017); Mahmud et al (2020b)), bio-

inspired meta-heuristics (Ghobaei-Arani and Shahidinejad (2022)), and deep learning

solutions (Goudarzi et al. (2023)). Different solutions aims at optimising one (or more)

aspect(s) of application placements, for example operational costs, latency, energy con-

sumption, and resource usage. Logic programming solutions, mainly written in Prologue,

have recently been proposed to tackle the application placement problem, with a focus

on aspects such as data locality (Massa et al (2022)), security and trust requirements

(Forti et al. (2020)), environmental impact (Forti and Brogi (2022)), or high-level net-

work intent satisfaction (Massa et al. (2024)). Notably, by classifying intent properties

as either hard or soft, the latter approach supports recommending changes to original

intents aimed at resolving emerging conflicts.

Forti et al . (2022) relied on continuous reasoning mechanisms to enable incremen-

tal updates of solution placements in response to changes in application requirements

or infrastructure capabilities, rather than recomputing solutions from scratch. On a

similar, yet complementary line, Azzolini et al. (2025) proposed a solution combin-

ing ASP optimisation and Prologue-based continuous reasoning to distribute container

images in cloud-edge settings. ASP is also adopted by Le et al. (2017), where the

authors addressed the distributed constraint optimisation problem. The constraint-based

approach of Amadini et al. (2024) complements our solution by addressing sustainable

cloud-edge application placement via adaptive service flavour and topology selection

under cost and carbon constraints.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

Application Placement with Constraint Relaxation 15

Similarly to other declarative programming efforts, FlexiPlace allows modelling con-

straints including, for example hardware resources, availability, bandwidth, security

policies, inter-component latency PUE, and carbon intensity. Differently from all pre-

vious work, it features the possibility of automatically relaxing lower-priority constraints

when no feasible deployment can be determined. This flexibility goes beyond the state

of the art, by implementing a graceful degradation of determined solution placements

while guaranteeing critical constraints are met. To the best of our knowledge, FlexiPlace

is the first approach integrating logic-based placement with priority-based constraint

relaxation.

7 Concluding remarks

We proposed a declarative approach based on ASP for placing multi-service applica-

tions in cloud-edge environments, and its open-source prototype FlexiPlace. Our solution

addresses satisfiable instances, allowing their declarative specification through a cus-

tomisable and extensible taxonomy. Besides, it extends the state-of-the-art by solving

unsatisfiable application placement instances through the selective relaxation of lower-

priority constraints, according to priorities set by DevOps. Experimental results confirm

the feasibility of the approach on realistic infrastructures (up to 500 nodes) and applica-

tions (up to 30 services). As future work, we plan to support more expressive requirements

and integrate explanations for unsatisfiable placement instances by relying on the notion

of minimal unsatisfiable subprogram (Alviano et al. (2023)).

Acknowledgments

This work has been partly supported by projects “FREEDA” (CUP: I53D23003550006),

funded by the framework PRIN (Ministry of University and Research, Italy)

and “SEcurity and RIghts In the CyberSpace - SERICS” (PE00000014 - CUP:

H73C2200089001) under the National Recovery and Resilience Plan (NRRP) funded

by the European Union - NextGenerationEU. DA is a member of the Gruppo Nazionale

Calcolo Scientifico – Istituto Nazionale di Alta Matematica (GNCS-INdAM).

References

Äıt-salaht, F., Desprez, F. and Lebre, A. 2021. An overview of service placement problem
in fog and edge computing. ACM Computing Surveys 53, 3, 65:1–66:35.

Alviano, M., Dodaro, C., Fiorentino, S., Previti, A. and Ricca, F. 2023. ASP and subset
minimality: Enumeration, cautious reasoning and MUSes. Artificial Intelligence 320, 103931.

Alviano, M., Dodaro, C., Leone, N. and Ricca, F. 2015. Advances in WASP. In Logic
Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015,
Lexington, KY, USA, September 27-30, 2015 , F. Calimeri, G. Ianni and M. Truszczynski,
Eds. Lecture Notes in Computer Science, Vol. 9345, Springer, Lexington, KY, USA, 40–54.
Proceedings

Alviano, M., Dodaro, C., Marques-Silva, J. and Ricca, F. 2020. Optimum stable model
search: Algorithms and implementation. Journal of Logic and Computation 30, 4, 863–897.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

D. Azzolini et al.16

Alviano, M. and Faber, W. 2018. Aggregates in answer set programming. KI-Künstliche
Intelligenz 32, 2-3, 119–124.

Amadini, R., Gazza, S., Soldani, J., Vitali, M., Brogi, A., Forti, S., Giallorenzo, S.,
Plebani, P., Ponce, F. and Zavattaro, G. (2024) Pick a flavour: Towards sustainable deploy-
ment of cloud-edge applications. In Logic-Based Program Synthesis and Transformation, J.
Bowles and H. Søndergaard, Eds. Springer Nature Switzerland, Cham, 117–127.

Andres, B., Kaufmann, B., Matheis, O. and Schaub, T. 2012. Unsatisfiability-based
optimization in clasp. In ICLP (Technical Communications) LIPIcs, A. Dovier and
V. Santos Costa, Eds., Vol. 17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 211–221. https://drops.dagstuhl.de/entities/document/10.4230/

LIPIcs.ICLP.2012.211.

Apat, H. K., Goswami, V., Sahoo, B., Barik, R. K. and Saikia, M. J. 2025. Fog service
placement optimization: A survey of state-of-the-art strategies and techniques. Computers 14,
3, 99.

Azzolini, D., Forti, S. and Ielo, A. 2025. Continuous Reasoning for Adaptive Container Image
Distribution in the Cloud-Edge Continuum. Cluster Computing. In press

Barabási, A.-L. and Albert, R. 1999. Emergence of scaling in random networks. Science 286,
5439, 509–512.

Baumeister, J., Herud, K., Ostrowski, M., Reutelshöfer, J., Rühling, N., Schaub, T.
and Wanko, P. 2024. Towards industrial-scale product configuration. In LPNMR. Lecture
Notes in Computer Science, Vol. 15245, Springer, 71–84.

Brewka, G., Eiter, T. and Truszczyński, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Brogi, A. and Forti, S. 2017. QoS-aware deployment of IoT applications through the fog. IEEE
Internet of Things Journal 4, 5, 1185–1192.

Buccafurri, F., Leone, N. and Rullo, P. 2000. Enhancing disjunctive datalog by constraints.
IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,
N., Maratea, M., Ricca, F. and Schaub, T. 2020. ASP-Core-2 input language format.
Theory and Practice Logic Programming 20, 2, 294–309.

Calimeri, F., Fuscà, D., Perri, S., Zangari, J., Maratea, M., Adorni, G., Cagnoni, S.
and Gori, M. 2017. I-DLV: The new intelligent grounder of DLV. Intelligenza Artificiale 11,
1, 5–20.

Erdem, E., Gelfond, M. and Leone, N. 2016. Applications of answer set programming. AI
Magazine 37, 3, 53–68.

Erdős, P. and Renyi, A. 1959. On Random Graphs I. Publicationes Mathematicae Debrecen
6, 290–297. https://www.bibsonomy.org/bibtex/2420b83c1533188c0b54bd1f6eea2b782/

krevelen.

Falkner, A. A., Friedrich, G., Schekotihin, K., Taupe, R. and Teppan, E. C. 2018.
Industrial applications of answer set programming. KI-Künstliche Intelligenz 32, 2-3,
165–176.

Forti, S. (2022) Keynote: The fog is rising, in sustainable smart cities. In PerCom Workshops
2022 . IEEE, 469–471.

Forti, S., Bisicchia, G. and Brogi, A. 2022. Declarative continuous reasoning in the cloud-IoT
continuum. Journal of Logic and Computation 32, 2, 206–232.

Forti, S. and Brogi, A. 2022. Green application placement in the cloud-IoT continuum. In
PADL, LNCS, Vol. 13165, Springer, 208–217.

Forti, S., Ferrari, G.-L. and Brogi, A. 2020. Secure cloud-edge deployments, with trust.
Future Generation Computer Systems 102, 775–788.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICLP.2012.211
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICLP.2012.211
https://www.bibsonomy.org/bibtex/2420b83c1533188c0b54bd1f6eea2b782/krevelen
https://www.bibsonomy.org/bibtex/2420b83c1533188c0b54bd1f6eea2b782/krevelen
https://doi.org/10.1017/S1471068425100148

Application Placement with Constraint Relaxation 17

Gamblin, T., Culpo, M., Becker, G. and Shudler, S. 2022. Using answer set programming
for HPC dependency solving. In SC , IEEE, 35:1–35:15.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2011. Multi-criteria optimization in
answer set programming. In Technical Communications of the 27th International Conference
on Logic Programming (ICLP’11), J. P. Gallagher and M. Gelfond, Eds., Vol. 11, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1–10.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2019. Multi-shot ASP solving with
clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007a. clasp : A conflict-driven
answer set solver. In Logic Programming and Nonmonotonic Reasoning, 9th International
Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007 , C. Baral, G. Brewka and J.
S. Schlipf, Eds. Lecture Notes in Computer Science, Vol. 4483, Springer, 260–265. Proceedings

Gebser, M., Schaub, T. and Thiele, S. 2007b. Gringo: A new grounder for answer set program-
ming. In Logic Programming and Nonmonotonic Reasoning, 9th International Conference,
LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007 , C. Baral, G. Brewka and J. S. Schlipf,
Eds. Lecture Notes in Computer ScienceLecture Notes in Computer Science, Vol. 4483,
Springer-Verlag, Berlin, Heidelberg, 266–271.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3-4, 365–386.

Ghobaei-ARANI, M. and Shahidinejad, A. 2022. A cost-efficient IoT service placement
approach using whale optimization algorithm in fog computing environment. Expert Systems
with Applications 200, 117012.

Goudarzi, M., Palaniswami, M. and Buyya, R. 2023. A distributed deep reinforcement learn-
ing technique for application placement in edge and fog computing environments. IEEE
Transactions on Mobile Computing 22, 5, 2491–2505.

Gupta, H., Vahid dastjerdi, A., Ghosh, S. K. and Buyya, R. 2017. iFogSim: A toolkit for
modeling and simulation of resource management techniques in the internet of things, edge
and fog computing environments. Software: Practice and Experience 47, 9, 1275–1296.

Le, T., Son, T. C., Pontelli, E. and Yeoh, W. 2017. Solving distributed constraint optimiza-
tion problems using logic programming. Theory and Practice of Logic Programming 17, 4,
634–683.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F.
2006. The DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic 7, 3, 499–562.

Mahmud, M. R., Srirama, S. N., Ramamohanarao, K. and Buyya, R. 2020a. Profit-aware
application placement for integrated fog-cloud computing environments. Journal of Parallel
and Distributed Computing 135, 177–190.

Mahmud, R., Ramamohanarao, K. and Buyya, R. 2020b. Application management in fog
computing environments: A taxonomy, review and future directions. ACM Computing Surveys
53, 4, 1–43.

Massa, J., Forti, S. and Brogi, A. 2022. Data-aware service placement in the cloud-IoT
continuum. In SummerSOC – Revised Selected Papers. CCIS , Vol. 1603, Springer, 139–158.

Massa, J., Forti, S., Paganelli, F., Dazzi, P. and Brogi, A. 2024. A declarative reasoning
approach to conflict management in intent-based networking. In ICIN 2024 , IEEE, 228–233.

Moreschini, S., Pecorelli, F., Li, X., Naz, S., Hästbacka, D. and Taibi, D. 2022. Cloud
continuum: The definition. IEEE Access 10, 131876–131886.

Newman, M. E. J. 2010. Networks: An Introduction. Oxford University Press.

Niemelä, I., Simons, P. and Soininen, T. 1999. Stable model semantics of weight constraint
rules. In LPNMR. Lecture Notes in Computer Science, Vol. 1730, Springer, 317–331.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

D. Azzolini et al.18

Pallewatta, S., Kostakos, V. and Buyya, R. 2023. Placement of microservices-based IoT
applications in fog computing: A taxonomy and future directions. ACM Computing Surveys
55, 14s, 321:1–321:43.

Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M. and Leitner, P. 2017. Optimized
IoT service placement in the fog. Service Oriented Computing and Applications 11, 4,
427–443.

Smolka, S. and Mann, Z.á. 2022. Evaluation of fog application placement algorithms: A survey.
Computing 104, 6, 1397–1423.

Soldani, J., Tamburri, D. A. and Van den Heuvel, W. 2018. The pains and gains of
microservices: A systematic grey literature review. Journal of Systems and Software 146,
215–232.

Srirama, S. N. 2024. A decade of research in fog computing: Relevance, challenges, and future
directions. Software: Practice and Experience 54, 1, 3–23.

Velepucha, V. and Flores, P. 2023. A survey on microservices architecture: Principles,
patterns and migration challenges. IEEE Access 11, 88339–88358.

Vetriveeran, D. 2025. Resource Provisioning in Fog Computing-a Survey. ACM Computing
Surveys.

https://doi.org/10.1017/S1471068425100148 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100148

	Introduction
	Background
	3 Motivating scenario: the application placement problem
	4 ASP encoding
	Reification of infrastructures & applications
	Encoding application deployment
	Relaxing soft requirements on application deployment

	5 Experiments
	Solver selection
	Assessment of

	6 Related work
	Concluding remarks
	References

