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Abstract

Background. Major depressive disorder (MDD) is a heterogeneous with underlying mechan-
isms that are insufficiently studied. We aimed to identify functional connectivity (FC)-based
subtypes of MDD and investigate their biological mechanisms.

Methods. Consensus clustering of FC patterns was applied to a population of 829 MDD patients
from the REST-Meta-MDD database, with validity assessed across multiple dimensions, includ-
ing atlas replication, cross-validated classification, and drug-naive subgroup analysis. Regression
models were used to quantify FC alterations in each MDD subgroup compared with 770 healthy
controls, and to analyze spatial associations between FC alterations and publicly available gene
transcriptomic and neurotransmitter receptor/transporter density databases.

Results. Two stable MDD subtypes emerged: hypoconnectivity (n = 527) and hyperconnectivity
(n = 299), which had both shared and distinct regions with remarkable FC alterations
(i.e. epicenters) in the default mode network.

There were several common enriched genes (e.g. axon/brain development, synaptic transmis-
sion/organization, etc.) related to FC alterations in both subtypes. However, glial cell and
neuronal differentiation genes were specifically enriched in the hypoconnectivity and hyper-
connectivity subtypes, respectively.

Both subtypes showed spatial associations between FC alterations and serotonin receptor/
transporter density. In the hypoconnectivity subtype, FC alterations correlated with GABA
and acetylcholine receptor densities, while norepinephrine transporter and glutamate receptor
densities were linked to the hyperconnectivity subtype.

Conclusions. Our findings suggested the presence of two neuroimaging subtypes of MDD
characterized by hypoconnectivity or hyperconnectivity, demonstrating robust reproducibility.
The two subtypes had both shared and distinct genetic mechanisms and neurotransmitter recep-
tor/transporter profiles, suggesting potential clinical implications for this heterogeneous disorder.

Introduction

Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders worldwide,
with considerable heterogeneity in clinical symptoms and treatment outcomes (Cui et al., 2024).
While this heterogeneity poses a substantial challenge for accurate diagnosis and prognosis, the
underlying biological causes remain unknown. To address this, prior research has assigned MDD
patients to subtypes based on clinical symptoms (Wu et al., 2022) or cognition (Hack et al., 2023).
However, there is also growing interest in subtyping with neuroimaging biomarkers (Drysdale
et al,, 2017), especially functional connectivity (FC)-based subtyping. For example, Liang et al.
(2020) identified two subtypes with distinct FC changes in the default mode network (DMN)
areas, which was further supported by other works (Sun et al., 2023; Wang et al., 2021). However,
these studies primarily analyzed data at the network level without exploring the transregional
connectivity differences among MDD subtypes and healthy controls (HCs), and did not elucidate
the critical brain regions underlying different subtypes.

Building on this gap, it is notable that the human brain operates through extensive interregional
signaling, involving synchrony and coactivation. While this organization enables efficient com-
munication, it also introduces vulnerability, as disruptions may co-occur with abnormalities among
anatomically or functionally connected areas under pathological conditions (Zeighami et al., 2015).
Among these regions, some may act as central nodes, where functional alterations are prominent
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both locally and in their connected areas, similar to a so-called
epicenter, which may potentially play crucial roles in neurobiological
pathogenesis in MDD. As a psychiatric disorder with widely reported
dysconnectivity, different MDD subtypes may also show distinct
patterns of FC alterations concentrated in such central regions.
Although previous studies have identified MDD’s subtype-specific
structural epicenters, such as cortical thinning or thickening in the
frontal and parietal cortices (Li et al., 2024), few have explored
functional epicenters based on FC, limiting our understanding of
functional pathogenesis of MDD subtypes.

Another limitation of previous studies is that they classified
patients with MDD without thoroughly investigating the under-
lying biological mechanisms. Given the multifactorial nature of
MDD pathogenesis (Kamran, Bibi, Ur Rehman, & Morris, 2022),
it is important to integrate these factors into assessments of MDD
heterogeneity. The first factor is gene expression, which is signifi-
cantly associated with both the pathogenesis and brain functional
alterations in MDD (Liu, Abdellaoui, Verweij, & van Wingen,
2023). In view of the contribution of genetic factors to the pathoe-
tiology of MDD, researchers have identified clinical subtypes with
varied genetic correlations (from 0.55 to 0.86) within each subtype
(Nguyen et al.,, 2022), suggesting genetic implications of MDD
heterogeneity. However, the role of specific genetic factors on
varied neuroimaging subtypes and FC alterations has not been fully
elucidated. This can now be addressed using imaging transcrip-
tomics (Arnatkeviciute, Markello, Fulcher, Misic, & Fornito, 2023)
and the Allan Human Brain Atlas (AHBA; Hawrylycz et al,, 2012),
which contains comprehensive gene expression data and allows for
the assessment of relationships between transcriptional profiles and
neuroimaging data.

The dysregulation of various neurotransmitter systems has
also been implicated in FC alterations and the excitation and
inhibition (E/I) imbalance in MDD (Hu, Tan, Hirjak, & Northoff,
2023), supporting the use of antidepressants that targeting specific
neurotransmitter systems (Mihaljevi¢, Pavlovi¢, Reiner, & Cadi¢,
2020). However, the treatment outcomes are inconsistent (Rost,
Binder, & Briickl, 2023), indicating heterogeneous deficits in
neurotransmitter systems among MDD patients. Using databases
offering neurotransmitter system-density data (Markello et al.,
2022), researchers can now investigate the associations between
neurotransmitter and neuroimaging data. In addition, cognitive
dysfunction is another critical characteristic of MDD, contribut-
ing to significant functional disability in MDD patients (Lam,
Kennedy, McLntyre, & Khullar, 2014). Identifying cognitive
domains associated with different subtypes by correlating com-
prehensive cognitive databases with neuroimaging data can there-
fore enhance the understanding of MDD subtypes. However,
subtype-specific neurotransmitter bases and cognitive correl-
ations have not been extensively explored.

Therefore, the primary objective of the present study was to:
(1) identify specific MDD subtypes based on FC derived from
resting-state functional magnetic resonance imaging (rs-fMRI)
using a large multisite database (829 patients and 770 controls)
with robust validations; (2) investigate the between-group differ-
ences in overall connectivity and identify the FC-based epicenter
representing each subtype; and (3) explore the shared and specific
associations between FC alterations and transcriptomics, neuro-
transmitter receptor/transporter, and cognition in each MDD sub-
type (Figure 1). We hypothesized that (1) FC-based MDD subtypes
exist with variations in overall connectivity patterns compared with
HCs; (2) the FC alterations in each subtype can be partly repre-
sented by epicenters belonging to different brain networks, such as
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DMN; and (3) some shared biological mechanisms related to the
basic pathogenesis of MDD, such as abnormal intercellular connect-
ivity, might be found in each MDD subtype, as well as different
genetic, neurotransmitter, and cognitive correlations.

Methods and materials
Participants

A total of 1300 individuals diagnosed with MDD and 1128 HCs
from 25 Chinese sites in the REST-meta-MDD consortium were
initially considered. For each participant, demographic and clinical
characteristics, including age, sex, education, illness duration,
medication status, 17-item Hamilton Depression Rating Scale
(HAMD), and Hamilton Anxiety Rating Scale (HAMA), were
recorded. All participants provided written informed consent at their
local institution. We followed the standard procedures provided by
REST-meta-MDD consortium to conduct sample selection (Yan
et al, 2019), with exclusion criteria including incomplete demo-
graphic information, age beyond 18-65 years, and poor image quality
(Supplementary Figure S1). After selection, 829 MDD patients
(523 female/306 male, mean age + SD 34.4 + 11.6 years) and
770 HCs (455 female/315 male, mean age + SD 34.6 + 13.2 years)
from 16 sites were included (Supplementary Tables S1 and S2).

MRI data preprocessing

High-resolution, three-dimensional, T1-weighted structural
images and rs-fMRI of participants were obtained at their own
local institution. The MRI scanning parameters for each site are
provided in Supplementary Table S3. Imaging preprocessing was
conducted by DPARSEF software (rfmri.org/DPARSF), where time
series from 112 Harvard-Oxford ROIs atlas (Makris et al., 1999)
were extracted and FC between these ROIs was computed (see
Supplementary Methods). ComBat was applied to harmonize our
multisite imaging data before conducting subtyping to control
scanner/site effects with empirical Bayes methods (Johnson, Li, &
Rabinovic, 2007). The diagnostic label for each participant was
specified as a biological variable of interest to protect the group-level
FC differences during harmonization.

To evaluate site-related effects in the MRI data before harmon-
ization, the Kruskal-Wallis test was used to determine whether the
median FC values differed significantly across imaging sites (Lin
et al, 2021), and Levene’s test was employed to assess variance
homogeneity across sites (Soave & Sun, 2017). These tests allowed
us to examine potential site-driven heterogeneity in FC patterns
before data harmonization. These preharmonization tests revealed
that 6190 FC exhibited significant median differences associated
with site variation and 2771 FC showed significant variance het-
erogeneity; in contrast, following ComBat harmonization, the site
effects have been effectively controlled, with post-harmonization
analyses demonstrating non-significant inter-site differences across
all whole-brain FC (P > 0.05), highlighting the efficacy of ComBat
in controlling site-related biases.

MDD subtyping and validation analysis

Consensus clustering was applied to characterize MDD subtypes.
Age, sex, education, and head motion (i.e. framewise displacement
[ED]) were regressed out from harmonized FC matrices (constructed
using both positive and negative FC values) before clustering. Then,
the distance between MDD patients u and v (d,,,) was calculated
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Figure 1. Study overview for identifying MDD subtypes and associated biological mechanisms. Note: GO, ‘gene ontology’; HCs, ‘healthy controls’; HOA, ‘Harvard-Oxford atlas’; FC,
‘functional connectivity’; MDD, ‘major depressive disorder’; MRI, ‘magnetic resonance imaging’.
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based on the Euclidean distances of FC between each ROI (i) and any
other ROIs in the network:

. . 2
D=di = \/ > (Foy—Fcy)

where D' denotes the distance matrix between each participant i # j,
and N is the total number of ROIs (here is 112 in our study). Then,
each distance matrix D’ was partitioned into k clusters using k-
medoids method, yielding a consensus matrix C for the current k.
The k value corresponds to a different scale or resolution of clus-
tering, that is, larger k results in more and smaller clusters, meaning
higher resolution but less overall information. According to the
optimizing strategy for capturing both large-scale and small-scale
structural details, a final consensus matrix was evaluated by aver-
aging all Cvalues over the k range in the interval (2-20 in our study;
Rasero et al,, 2017). The final consensus matrix C was further
partitioned into communities by Newman and Girvan-like modu-
larity maximization (Newman & Girvan, 2004) to obtain an opti-
mal output partition (i.e. FC-based MDD subtypes for the present
study) that maximized the network modularity. Bootstrapping was
applied to assess the stability of each subtype and the 95% confi-
dence intervals (CIs) of the estimated maximum modularity which
reflects the statistical difference from zero.

To evaluate the robustness of our subtyping solution, we further
validated our results across multiple strategies (Figure 1), including
(1) replication using a high-resolution brain atlas (i.e. Power-264);
(2) alternative clustering method via multiresolution hierarchical
clustering, given the resolution dependence of clustering algorithms
(Reichardt & Bornholdt, 2006); (3) cross-validated support vector
machine prediction of subtype labels with matched halves generated
by stratified sampling on demographic and head motion variables;
and (4) replication in a first-episode, drug-naive MDD cohort to
exclude medication effects (Yan et al., 2019). The details of MDD
subtyping and validations are provided in Supplementary Methods.

Clinical and FC characteristics of MDD subtypes

After we found robust FC-based MDD subtypes, the differences in
age, education, illness duration, HAMD, and HAMA total scores
between MDD subtypes (two subtypes identified in the present
study; see Results) were tested by two-sample t-test, while sex,
episode status, and medication by chi-square test. Multiple linear
regression was applied to assess the differences in the overall
connectivity per participant between (1) the whole MDD group
and HCs and (2) each MDD subtype and HCs group with age, sex,
education, and FD value as covariates. The overall connectivity for
each participant was defined as the average value of both positive
and negative FC of the abovementioned harmonized connectivity
matrix in the main analysis. To ensure robustness of this comparison,
we additionally computed overall connectivity using alternative met-
rics, including the median of all FC values, the 10% trimmed mean
(i.e. excluding the top and bottom 10% of values), the mean of all
positive FC values, and the mean of absolute FC values. A significance
P-value of 0.05 was set for all the clinical and overall connectivity
comparisons.

Epicenter identification

After subtyping, multivariate distance matrix regression (MDMR;
Shehzad et al., 2014) was first applied to quantify the FC alterations
in all brain regions. MDMR was used for calculating a pseudo-R>
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effect size, where a higher pseudo-R” suggested greater FC alter-
ations (see Supplementary Methods). After calculating pseudo-R>
in every ROI, we attained pseudo-R*> maps for each subtype group,
which will be used for subsequent identification of epicenters and
correlation analyses.

Following the epicenter identification approach as a prior work
did (Shafiei et al., 2020), we defined a brain region as a potential
epicenter if it showed large FC alterations (pseudo-R*) and its
FC-connected neighbors also exhibited high alterations. Neighbor
influence was quantified as the weighted mean FC alteration of
connected regions (see Supplementary Methods). Regions were
ranked separately by their own pseudo-R* and by neighbors’
alterations, and those ranked highly on both lists were tested for
significance via spatial permutation (spin test; 1000 iterations,
P <0.05). All significant epicenters were reported without additional
top-N criteria.

Biological characteristics of MDD subtypes

Transcriptomics

Brain gene transcription data were obtained from AHBA (Hawrylycz
et al,, 2012). The dataset was derived from six healthy postmortem
adult brains, including more than 20,000 gene expression data at
3702 brain regions. We mapped the gene expression data to the
112 ROIs of Harvard-Oxford template using abagen toolbox
(Markello et al., 2021), with a proposed preprocessing pipeline
(see Supplementary Methods). After preprocessing, there were
15,633 genes survived. As AHBA includes genes expressed in any
body tissue, we focused on the 1920 brain-specific genes, relative
to other tissues, extracted from the Human Protein Atlas (www.
proteinatlas.org). The precise list of these 1920 brain-specific
genes is provided in Supplementary Table S5.

Associations between FC alterations and transcriptomics

Because only two of the six AHBA donors had bilateral sampling,
we restricted our association analysis between gene expressions and
FC alterations (i.e. pseudo-R* map) in the 56 ROIs to the left
hemisphere data. Partial least squares (PLS) regression was used
to estimate the association between FC alterations in each MDD
subtype relative to HCs and the gene expression measurements for
1920 brain-specific genes. Among all components, the first (PLS1)
showed the strongest correlation with the FC alteration map and
explained the largest variance (approximately 28.5%). To mitigate
false positives from spatial autocorrelation in the gene expression
data, we followed the recommendations of (Fulcher, Arnatkevi-
ciute, & Fornito, 2021), in which the statistical significance of PLS1
was tested by permuting the response variables (FC alterations map,
here) 1,000 times to build a null distribution while keeping the genetic
expression matrix unchanged. The P value was estimated as the
percentage of null correlations that exceeded the primary correlations
between PLS1 and FC alterations map estimated on the original data.
The genes with PLS1 weights Prpg < 0.05 were set as significant and
were divided into two groups (PLS1+ and PLS1—) according to their
positive or negative correlation coefficients, which were used for
subsequent analyses (details in Supplementary Methods).

To gain deeper insights into the functional roles of these genes,
gene ontology (GO) analyses and hub genes identification were
performed separately for significant genes in PLS1+ and PLS1— in
each subtype. GO biological process enrichment analysis was con-
ducted using Metascape toolbox (Zhou et al., 2019) with Pgpg < 0.05
set as significant, and the top 10 significant GO terms were reported
here. Next, to identify the hub genes, we first constructed the
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protein—protein interaction networks with the significant genes and
then calculated maximal clique centrality (MCC) values reflecting
network centrality for each gene (see Supplementary Methods).
Subsequently, the top three MCC-ranked genes in each network
were selected as hub genes and reported.

Associations between FC alterations and neurotransmitter receptor/
transporter

Neurotransmitter receptor/transporter density maps were down-
loaded with neuromap toolbox (Markello et al., 2022). The maps
with the same neurotransmitter receptor/transporter were averaged
after scaling between 0 and 1, and then we mapped those brain
maps to the Harvard-Oxford atlas for subsequent association ana-
lysis. Eighteen items of neurotransmitter receptor/transporter were
finally extracted (Supplementary Table S7). Pearson correlation
analysis was used to explore the association between FC alterations
of each MDD subtype and neurotransmitter receptor/transporter.
Instead of PLS, Pearson correlation was used for neurotransmitter
and subsequent cognitive associations because the number of
neurotransmitter density maps and cognitive terms was relatively
small (n = 18 and 124, respectively), and each variable was bio-
logically interpretable, allowing for a direct spatial correspondence
analysis with FC alterations. Spin permutation tests (1,000 times)
were applied to examine the statistical significance of correlations
(Alexander-Bloch et al., 2018). Statistically significant correlations
were set as Prpr < 0.05.

Associations between FC alterations and cognition

We also explored the association between FC alterations of each
MDD subtype and 124 cognitive domains’ maps derived from
Neurosynth and Cognitive atlas (http://neurosynth.org/; http://cog
nitiveatlas.org/) databases using Pearson correlation with spin per-
mutations test (see Supplementary Methods).

Results
MDD subtypes

The modularity of consensus clustering, derived from bootstrap-
ping significantly differed from zero (0.168, 95% CI 0.158-0.178),
indicating the existence of MDD subtypes, where two stable MDD
subtypes were further identified: 527 patients (63.57% of all patients
with MDD) were assigned to subtype 1, and 299 patients (36.07%)
were assigned to subtype 2. The two major subtypes were stably
replicable during bootstrapping with the stability score of 0.946 and
0.821 for each subtype, respectively. In addition to these two main
subtypes, there were three residual subtypes (0.36%), each with only
one participant and stability scores all <0.5 (0.049, 0.137, and 0.235,
respectively), suggesting low consistency and replicability, which
were excluded for further analyses.

We validated our subtyping results in varied aspects and found high
stability scores in all subtypes in validation analyses (from 0.75 to
0.989), high similarities between validation and our primary results
(from 0.6 t0 0.77), and a high predictive accuracy (95.7%) in a machine-
learning validation analysis (details in Supplementary Results and
Supplementary Figure S2).

Clinical and FC characteristics, and epicenters of each subtype

There were no significant differences in age, sex, education, illness
duration, HAMD and HAMA total scores, or episode status
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Table 1. Demographic and clinical characteristics of two subtypes of major
depressive disorder in our study

Variable Subtype 1 Subtype 2 P value®
Sample size, N 527 299 -
Age, years, mean * SD 34.1+11.6 349+115 0.373
Sex, N, female/male 331/196 190/109 0.833
Education, years, mean + SD 12.0+3.3 11.8+3.4 0.365
Head motion (FD), mm, mean+SD 0.066 + 0.037 0.071+0.034 0.036
Illness duration®, months,

mean * SD 38.7+59.4 39.8 £ 64.5 0.828
HAMD total scoreb, mean + SD 209 +6.6 219+6.7 0.061
HAMA total score®, mean + SD 19.1+94 19.6 + 8.6 0.576
Episode status

First-episode, N (%) 259(49.1%)  156(52.2%)  0.279

Recurrent, N (%) 139(26.4%) 69(23.1%)

Unknown, N (%) 129(24.5%)  74(24.7%)
Medication status

Drug-naive, N (%) 183(34.7%) 130(43.5%) 0.005

On medication, N (%) 154(29.2%) 65(21.7%)

Unknown, N (%) 190(36.1%)  104(34.8%)

Abbreviations: FD, framewise displacement; HAMD, Hamilton Depression scale; HAMA,
Hamilton Anxiety scale.

?Data were available for 452 participants for subtype 1, and 242 participants for subtype 2.
PData were available for 467 participants for subtype 1, and 275 participants for subtype 2.
“Data were available for 326 participants for subtype 1, and 193 participants for subtype 2.
9P value was calculated by two-sample t test or chi-square test. Bold values indicate
statistically significant differences (p < 0.05).

between the two MDD subtypes, but subtype 2 included a higher
proportion of drug-naive participants than subtype 1 (Table 1).

Compared with HCs, the whole MDD group (f = —0.0125,
tis593 = —2.689, P = 0.007) and subtype 1 patients (f = —0.085,
t1201 = —17.014, P < 0.001) showed significant overall hypoconnec-
tivity, whereas subtype 2 patients showed significant hyperconnec-
tivity (8 = 0.100, fjp63 = 14.106, P < 0.001; Figure 2A). When
different FC metrics defining overall connectivity were used, the
same connectivity patterns of the whole group and each subtype
were observed (Supplementary Table S4).

Nominally significant correlations (P < 0.05) were found between
FC and symptom scores in both MDD subtypes. For HAMD,
specifically, subtype 1 had 232 associated FCs and subtype 2 had
298, with 13 overlaps. For HAMA, subtype 1 had 387 FCs and
subtype 2 had 163, with only eight overlaps. Pearson correlation
analysis revealed shared cognitive classifications associated with FC
alterations for both subtypes in language, reasoning and decision-
making, perception, and multisensory, but subtype 2 was specifically
associated with learning and memory, and attention (details in
Supplementary Results, Supplementary Tables S8 and S9, and
Supplementary Figure S3).

Overlapping epicenters of the two identified subtypes were
found in the bilateral planum temporale (PT). Additionally,
distinct epicenters of subtype 1 were found in the left frontal pole,
right precentral gyrus, and Heschl’s gyrus, whereas distinct epicen-
ters of subtype 2 were found in the left pars opercularis of the inferior
frontal gyrus, right posterior cingulate gyrus, and precuneus
(Figure 2B).
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participants with MDD without subtyping (brown), and two MDD subtypes (pink and orange). The median value of the HCs group was marked as the connectivity baseline by a
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warm colors were used for participants to show within-group hypoconnectivity and hyperconnectivity relative to HCs, respectively. (B) Brain epicenter maps of two MDD subtypes.

Note: L, ‘left’; R, ‘right’.

Associations between FC alterations and transcriptomics

The FC alteration patterns in both MDD subtypes were associated
with brain gene expression profiles (subtype 1, 7 = 0.40, Pperm, = 0.002;
subtype 2, 7 = 0.49, Pperyy, = 0.001). For subtype 1, 132 genes with
positive weights and 199 with negative weights in the PLS1 reached
statistical significance (Pgpgr < 0.05, Figure 3A), while for subtype
2, 113 genes with positive weights and 146 with negative weights in
PLS1 reached statistical significance (Prpg < 0.05, Figure 3D).

The shared GO enrichment functions of significant genes in
both subtypes included transmembrane transport, synaptic transmis-
sion/organization, and regulation of neurotransmitters, axon/brain
development, and cell projection. Glial cell differentiation was spe-
cifically enriched in subtype 1, whereas neuron differentiation was
specific to subtype 2 (details in Figure 3 and Supplementary Results).
The shared hub genes’ function in both subtypes was related to
membrane potential and neurotransmitter release. Genes related to
GABA receptors were specifically found in subtype 1, while genes
related to glutamate receptors were found in subtype 2 (details in
Supplementary Results and Supplementary Table S6).
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Associations between FC alterations and neurotransmitter
receptor/transporter

Densities of serotonin receptor (5-HT2a: subtype 1, r = 0.32,
Pepr = 0.009; subtype 2, r = 0.288, Pgpr = 0.018) and serotonin
transporter (5-HTT: subtype 1, r = —0.321, Prpgr = 0.009; subtype
2, r=—0.176, Pppg = 0.03) spatially correlated with FC alterations
in both MDD subtypes. Densities of GABA receptor (GABAa,
r = 0258, Pppr = 0.012) and acetylcholine receptor (a4b2,
r = —0.328, Prpr = 0.032) were spatially correlated with FC alter-
nations only in subtype 1, while norepinephrine transporter (NET,
r=0.427, Prpgr = 0.018) and glutamate receptor (mGluR5, r = 0.306,
Prpr = 0.041) were correlated with FC alternations only in subtype
2 (Figure 4 and Supplementary Table S7).

Discussion

Our findings revealed two FC-based MDD subtypes. Compared with
HCs, subtype 1 was characterized by hypoconnectivity, whereas
subtype 2 was characterized by hyperconnectivity. These subtypes
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Figure 3. Associations between functional connectivity alterations and transcriptomics for the two subtypes of major depressive disorder. Panels A and D listed the PLS1+ and
PLS1— genes for subtypes 1 and 2, respectively. Panels B, C, E, and F were the bubble plots of the GO enrichment results for PLS1+/PLS1— genes for each subtype. The vertical
coordinate represented the corresponding GO set, while the horizontal coordinate represented the ratio of significant genes found by PLS to the total number of genes in this GO set.
The size of the bubble represented the significant gene counts of the corresponding PLS set, while color of which was related to the —logy, (P). Note: AC, ‘adenylate cyclase’; CPO,
‘cell projection organization’; GO, ‘gene ontology’; GPCR, ‘G protein-coupled receptor’; PLS, ‘partial least squares’.

had shared epicenters and distinct ones, some of which were located
in the DMN. FC alterations in both subtypes correlated with inter-
cellular communication and membrane potential, serotonin recep-
tor/transporter, and multiple cognitive domains. However, FC
alterations for subtype 1 exhibited spatial associations with glial cell
differentiation and GABA and acetylcholine receptors, whereas FC
alterations for subtype 2 specifically correlated with neuronal differ-
entiation, norepinephrine transporters and glutamate receptors, as
well as cognition of learning and memory, and attention.

Overall FC patterns

We found that, while the whole MDD group exhibited hypocon-
nectivity compared to controls, this pattern was driven by only one
subtype. The opposing hyperconnectivity pattern in a second sub-
type was masked by the group-level analysis. This demonstrates
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that averaging across all MDD patients obscures fundamental FC
heterogeneity and underscores the necessity of subtyping to reveal
neurobiologically distinct subgroups. Furthermore, the two MDD
subtypes with opposite overall FC patterns did not exhibit dramat-
ically different clinical profiles, which suggested that this neuro-
biological difference may not be fully captured by traditional
clinical assessments, possibly due to divergent biological mechan-
isms (Wang et al., 2021). Despite the absence of clinical differen-
tiation, the neurobiological differences revealed by FC patterns
could guide the development of more nuanced diagnostic criteria
that better capture the underlying heterogeneity of MDD; this idea
was corroborated by the varied cognitive correlations observed for
each subtype in our findings.

The distinct FC patterns observed in the two MDD subtypes may
reflect divergent underlying neurobiological processes from a neu-
rodevelopmental perspective. For example, hypoconnectivity in
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Figure 4. Associations between functional connectivity alterations and neurotransmitter receptor/transporter for two subtypes of major depressive disorder. In the center of the
circle, there were the density maps of each neurotransmitter receptor/transporter. The circular bar plot showed the correlations between neurotransmitter receptor/transporter
and subtype 1 (red) and subtype 2 (blue), respectively. The height of the bars represented the correlation coefficients (r), and the r values are listed in Supplementary Table S7. We
marked * or # on the top of the bars to show if the correlation survived the false-discovery rate (FDR) correction or r was negative (i.e. r <0).

subtype 1 could indicate delayed or impaired neuroplasticity with
reduced synaptic efficiency or axonal connectivity (Price & Duman,
2020). Indeed, the GO enrichment analysis in our study also revealed
associations for subtype 1 with biological processes such as axon
development and brain development, indicating that these processes
could be crucial to the pathogenesis for this subtype. In contrast,
hyperconnectivity in subtype 2 may result from overcompensation
for neurodevelopmental disruptions, with pathological strengthen-
ing of connections between certain regions to offset deficits (Wade-
Bohleber et al, 2020). This could lead to heightened emotional
reactivity, a symptom often observed in MDD (Burkhouse et al.,
2017), linking altered FC and depression symptoms in this subtype.

FC epicenters

The identified functional alteration epicenters for each MDD sub-
type provided more specific FC indicators. In particular, PT, the
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shared epicenter for both subtypes, has been implicated in auditory
function and related cognitive processes, such as speech perception
(J. Jiang et al., 2024; Ramos Nuiiez, Yue, Pasalar, & Martin, 2020), a
cognitive domain found to be significantly associated with both
subtypes in our study. These findings suggest that the FC alterations
in PT may contribute to auditory symptoms observed in some
MDD patients, such as auditory verbal hallucinations (Toh,
Thomas, & Rossell, 2015). In addition, the cognitive control circuit
summarized by Williams (Williams, 2016), which covers epicenters
of both subtypes (i.e. the precentral gyrus for subtype 1 and the
inferior frontal cortex for subtype 2), could be a key neural circuit
for both subtypes. This idea is consistent with our findings showing
the two subtypes’ significant association with cognitive functions,
highlighting the crucial roles of these regions in the development of
cognitive deficits in MDD patients.

Subtype-specific epicenters were also identified. For subtype
1, epicenters located in the frontal pole and Heschl’s gyrus
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(a subregion of superior temporal gyrus [STG]), and previous
studies have also reported decreased FC in the STG and
prefrontal regions in depression patients at early stage (Zou
et al., 2016), suggesting that these regions may be critically
involved in not only central but also early functional changes
in MDD pathogenesis. However, findings related to STG have
not been consistent across the literature, with both increased
and decreased FC reported (Pan et al., 2020). This inconsistency
could be attributed to the small sample size, clinical heterogene-
ities, and so forth; however, our identification of PT (a STG’s
subregion) as a shared epicenter may help reconcile these
discrepancies, as FC alterations may commonly be concentrated
in PT across patients, but the direction of alteration varies
between subtypes, contributing to heterogeneity in network-level
findings.

In subtype 2, the identified epicenters were located primarily
in the inferior frontal cortex and DMN regions, including the
posterior cingulate cortex and precuneus. Prior studies have
consistently reported increased FC in the inferior frontal areas
among MDD patients (Xiao et al., 2024; Zhang et al., 2022), and
both heightened FC and cortical thickening in DMN regions
have also been observed (van Eijndhoven et al.,, 2013; Zhang
et al., 2022). These findings may suggest compensatory prolifer-
ation along with increased FC in DMN regions in MDD patients,
supporting the abovementioned idea of overcompensation for
mental regulation in this subtype, as the DMN is vital in neuro-
physiological processes such as cognition, emotion, memory,
and attention (Berman et al., 2011). These crucial roles of the
DMN may also contribute to the specific cognitive correlations
found for this subtype, as they can be classified into learning and
memory, and attention, highlighting the importance of epicen-
ters in understanding MDD pathogenesis.

Genetic mechanisms

Our enrichment analysis revealed that the biological processes shared
by these two subtypes were related to the development and function
of axons and of the brain, cell projections, and chemical/electrical
signal conduction. Among these processes, the importance of elec-
trical signal conduction was further corroborated by the shared hub
genes encoding potassium (KCNAI and KCNAB3) and sodium
(SCN1A and SCN1B) channels. These findings were in line with
prior studies highlighting the roles of cellular dysconnection, brain
development, and electrophysiological properties in the pathogenesis
of MDD (Kamran et al., 2022).

Despite these shared genetic mechanisms, these two subtypes
showed notable differences. In subtype 1, the GO enrichment
results indicated that FC alterations might be influenced by genes
associated with glial cell differentiation. One possible explanation
is that dysregulation of glial differentiation, which contributes to
neuronal pathology in MDD (Ongiir, Bechtholt, Carlezon, &
Cohen, 2014), damages neural activity, potentially leading to
connectivity impairments. Another possible explanation involves
the dysfunction of glial cell communication via gap junctions,
which are crucial for regulating electrical synapses and brain
development (H. Jiang, Zhang, Wang, & Chen, 2023), indicating
that disruptions in these processes may further contribute to the
pathogenesis of subtype 1. In contrast, the gene enrichment
results identified the neuronal differentiation process as associ-
ated with subtype 2. The abnormal activation of such regulation
may cause excessive neuronal regeneration (An et al., 2022),
potentially contributing to increased FC in this subtype.
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Moreover, the dysregulation of neuronal differentiation may also
be associated with impaired natural mechanisms for synaptic
pruning, where excess connections are typically eliminated dur-
ing development (Goda & Davis, 2003), contributing to hyper-
connectivity.

Neurotransmitter mechanisms

We found that serotonin receptors/transporters were spatially
associated with FC alterations in both MDD subtypes, which
reinforced the long-standing monoamine hypothesis of depression
(Hirschfeld, 2000). Despite the distinct FC patterns observed in
each subtype, the common involvement of the serotonergic system
suggested that serotonin dysregulation may serve as a common
pathway across the various presentations of MDD. This finding
could have significant therapeutic implications, as traditional treat-
ments targeting the serotonergic system, such as selective serotonin
reuptake inhibitors (Mace & Taylor, 2000), may still be effective in
most patients with MDD.

However, subtype-specific neurotransmitter systems beyond
serotonin suggested by our findings may provide insight into the
inconsistent treatment outcomes often observed in MDD patients
(Rost et al., 2023) and inform targeted treatment strategies. For
example, serotonin-norepinephrine reuptake inhibitors or keta-
mine could be particularly effective for patients in subtype 2, of
which FC alterations were uniquely associated with norepineph-
rine transporter and glutamate receptor. Besides, recent studies
have proposed a 5-HT-glutamate/ GABA long circuit for rapid
regulation of E/I imbalance (Li, 2020). Interestingly, given further
support by the identified hub genes (e.g. GABBR for subtype
1, whereas GRIA1 for subtype 2), the dysregulation of the GABA
and glutamate systems may be specific to subtypes 1 and
2, respectively, further indicating more targeted and precise effi-
cacy in patients if these findings were used for treatment refer-
ences for each subtype.

Our findings of distinct neurotransmitter-subtype correl-
ations, together with prior work on neurotransmitter modulation
of FC, suggest potential neurochemical bases for the observed
alterations. In some networks, GABAergic activity tends to cor-
relate negatively with FC (Chen et al., 2019), whereas noradre-
nergic and glutamatergic systems show positive correlations
(Kapogiannis, Reiter, Willette, & Mattson, 2013; Ruggiero et al.,
2021). Based on these findings, the hypoconnectivity observed in
subtype 1 could be linked to the upregulation of functions in the
GABAergic system, whereas hyperconnectivity in subtype 2 may
correspond to the upregulation of norepinephrinergic and gluta-
matergic systems. However, acetylcholinergic—FC associations
can be bidirectional (Keeley et al., 2022; Ruggiero et al.,, 2021),
and the relationship between the glutamatergic system
(e.g. mGluR5) and FC is inconsistent; they are positively correl-
ated within MDD patients but negatively correlated within
healthy individuals (Kim et al., 2019). These complexities further
underscore the multifaceted nature of the relationship of neuro-
transmitter systems with FC alterations, providing more insights
into MDD heterogeneity.

Limitations

This study has limitations that should be considered. Methodo-
logically, the inability to control for covariates such as MDD
episodes, medication status, or psychosis comorbidity due to
incomplete data (e.g. only 10 out of 16 sites included in our study
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offered comprehensive information on medication use for all
participants) may have introduced bias. Similarly, the lack of
cognitive-scale data directly from the participants limits the
accuracy of the cognitive associations explored. Although we
performed internal validation using cross-validation strategies,
external validation with independent datasets is necessary to
assess the generalizability of the identified subtypes. Regarding
imaging transcriptomics, gene expression data were derived from
a small number of healthy donors (n = 6) of different ethnic
backgrounds (Hispanic and Caucasian) from our Asian sample,
potentially introducing demographic bias. Additionally, only
left-hemisphere data were used. Importantly, AHBA reflects
normative expression and lacks patient-specific profiles, limiting
our ability to capture individual variability. Future studies
incorporating subject-level genetic or transcriptomic data and
multiple MRI modalities (Li et al., 2023; Wang et al., 2024, 2025;
Youetal., 2022) will be valuable for directly and comprehensively
exploring and validating the molecular distinctions between
MDD subtypes.

Conclusions

We identified two FC-based MDD subtypes exhibiting divergent
overall FC patterns with both unique and shared epicenters in
critical brain networks such as the DMN. By exploring genetic,
neurotransmitter, and cognitive associations, we have further pro-
vided insights into the complex underlying mechanisms of MDD
heterogeneity and highlighted the importance of considering
FC-based subtypes in understanding the neurobiological hetero-
geneities of MDD. More broadly, such findings may inform the
development of more targeted and precise treatments for patients
in each MDD subtype.
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