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Abstract. The paper proposes and studies new classical, type-free theories of truth and
determinateness with unprecedented features. The theories are fully compositional, strongly
classical (namely, their internal and external logics are both classical), and feature a defined
determinateness predicate satisfying desirable and widely agreed principles. The theories capture
a conception of truth and determinateness according to which the generalizing power associated
with the classicality and full compositionality of truth is combined with the identification
of a natural class of sentences—the determinate ones—for which clear-cut semantic rules
are available. Our theories can also be seen as the classical closures of Kripke—Feferman
truth: their w-models, which we precisely pin down, result from including in the extension
of the truth predicate the sentences that are satisfied by a Kripkean closed-off fixed-point
model. The theories compare to recent theories proposed by Fujimoto and Halbach, featuring
a primitive determinateness predicate. In the paper we show that our theories entail all
principles of Fujimoto and Halbach’s theories, and are proof-theoretically equivalent to
Fujimoto and Halbach’s CD™. We also show establish some negative results on Fujimoto and
Halbach’s theories: such results show that, unlike what happens in our theories, the primitive
determinateness predicate prevents one from establishing clear and unrestricted semantic rules
for the language with type-free truth.

§1. A conception of truth (and determinateness). In this work we offer a cluster of
formal theories with unprecedented features and prove several results about them. The
theories are accompanied by a conception of truth (and determinateness), which we
outline in this introductory section.’

1.1. Desiderata for truth. Following a long-standing tradition in formal theories
of truth, starting at least with [17], we believe that truth should be type-free; the truth
predicate (provably) applies to sentences containing itself.

A type-free notion of truth, as it is well-known, calls for an account of the Liar
and related paradoxes. We will shortly outline the solution implicit in our theories.
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2 LUCA CASTALDO AND CARLO NICOLAI

Independently of the details, though, the view we put forward is strongly classical: not
only the external logic of the theories should be classical, but we require the logic of
their internal theories” to be classical as well. Our reasons for countenancing a classical
external logic are the familiar ones. By endorsing a nonclassical theory of truth, one
is bound to sever the links between the theory of truth and classical mathematics.
This is a symptom of what McGee called ‘degradation of methodology’ [18, chap. 4];
the standards in one’s truth-theoretic theorizing shouldn’t be any lower than the ones
employed in theorizing about core scientific subjects.’

But, we argued, the logic of the internal theory should be classical as well. The
truth predicate, in natural and formal languages, is used to express important general
claims. To perform its generalization role in full, the truth predicate should be fully
compositional, namely, commuting with all classical logical connectives, and without
any type restrictions. Full compositionality is for instance required to establish the truth
of the laws of our classical external logic, such as ‘all instances of the law of excluded
middle are true’ [22]. Compositionality is also essential to capture logical inferences
involving arbitrary sentences (or propositions), what [12] calls blind deductions. For
instance, to directly formalize the argument

Everything that Gerhard says about cut-elimination is true. David
asserted the negation of some of Gerhard’s claims. Therefore,
something David asserted is not true.

one requires commutation of truth with negation in fully quantified form (as well as
no type restriction).

1.2. From significance to semantic (in)sensitivity. A type-free, strongly composi-
tional notion of truth requires a principled account of how the truth predicate can
self-apply sine contradictione. The naive principle

for any ¢, ‘p is true’ is true iff ¢ is true (1)

is in fact inconsistent with the assumptions above. In their recent paper [13], Kentaro
Fujimoto and Volker Halbach propose to restrict the principle (1) to what they
call determinate sentences, while retaining a fully compositional truth predicate. The
proposed restriction of (1), in turn, entails the restricted T-schema

DA™ (Tr A" < A), 2)

where D is a determinateness predicate.

Several theories satisfying (2) can be found in the context of Kripke-Feferman
truth. Well-known examples are Feferman’s KF and DT—from [5, 6], respectively.
Such theories rely on a Russellian notion of range of significance for the interpretation
of D, which in the context of Feferman’s theories can be further analyzed as the
sentences which possess a classical truth value relative to the intended semantics:

I agree with Russell (1908) that every predicate has a domain of
significance, and it makes sense to apply the predicate only to objects
in that domain. In the case of truth, that domain D consists of the
sentences that are meaningful and determinate, that is, have a definite

2 For a theory T., its internal theory is defined as {A4 | T A is true’ is provable in T'}.
3 For more on the mathematical costs of adopting a nonclassical logic, see [8, 10, 15].
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ON CLASSICAL DETERMINATE TRUTH 3

truth value, true or false. D includes various but not necessarily all
grammatically correct sentences that involve the notion of truth itself
[6, p. 206].

A similar picture is endorsed by Reinhardt, in [23, 24], who labels classically true or
false sentences ‘significant’. A well-known feature of the restriction of the T-schema
to determinate sentences, already extensively discussed in [24]. is that any such
restriction would entail the existence of sentences that are provable and yet (provably)
not determinate.

Fujimoto and Halbach, however, reject the Russellian view and claim that truth can
be (provably) applied to sentences that are not determinate. They suggest moving from
the notions of range of significance to a notion of semantic sensitivity: ‘some sentences,
including liar sentences, are sensitive to the addition of another layer of truth. Stacking
an additional layer of truth onto the liar sentence will change its semantic status; but
that does not mean that the truth predicate cannot meaningfully be applied to it’
[13. p. 256]. The shift from ‘significance’ to ‘sensitivity’ has the effect of weakening the
Reinhardt-Bacon issue; it is not problematic to prove sentences that are (provably)
semantically sensitive.

The shift from significance to semantic sensitivity is, in our view, a valuable step
forward. Fujimoto and Halbach, however, only devote a few remarks to the notion.
We sketch below our own interpretation of semantic sensitivity in the context of type-
free truth, and employ it to highlight the benefits of the theories proposed in the
paper.

Another distinctive feature of Fujimoto and Halbach’s account is that determi-
nateness cannot be explained in terms of truth. Their theories feature a primitive
determinateness predicate as well as a primitive truth predicate. Fujimoto and Halbach
suggest that this has to be so; in discussing Feferman’s notion of determinateness
from [6], they write ‘[Feferman] took D as definable in terms of truth by stipulating
Dux <> Tx V Fx; but this definition does not yield the desired properties of D in our
theory and we consequently introduce determinateness as primitive notion’ [13, p. 257].

As some of our results will indicate, the primitive nature of the determinateness
predicate significantly complicates the semantic analysis of the truth-theoretic
language. Fortunately, as we will show, virtually all of the theoretical benefits sought
for by Fujimoto and Halbach can be met by defining determinateness in terms of truth.

1.3. Logic and semantics. A formal theory of type-free truth plays, in our account,
a double role. It provides general laws for truth that are used in several theoretical
contexts, including semantic theorizing. As a result of the discussion above, these must
include compositional axioms in combination with classical (external and internal)
logic. In addition, the theory of truth provides a formalization of clear semantic rules
to be applied to a well-defined and sufficiently comprehensive class of sentences of the
(type-free) truth-theoretic language. Because of paradox, such rules may not coincide
with the classical semantic rules. We will see that this is precisely what the theories
introduced below will be able to achieve.

The semantic rules that we identify involve decomposition of semantic values
according to the familiar Strong-Kleene truth conditions, including full disquotation

4 See also [1]. One applies basic logical steps to a sentence ‘saying of itself” that it’s either not
determinate or not true.
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4 LUCA CASTALDO AND CARLO NICOLAI

for the truth predicate. In the class of models we privilege, the natural collection of
sentences to which these rules unrestrictedly apply are the Kripke-determinate ones,
that is sentences that are in the extension of the relevant consistent fixed-point model
in the sense of [17].° Relative to each such model, these are the determinate sentences,
and the T-schema holds unrestrictedly for them. Relative to the minimal fixed point,
the determinate sentences are simply the grounded ones.

As a consequence, just like in Fujimoto and Halbach’s picture, the determinate
sentences are semantically insensitive in the sense that their semantic status is not
affected by one or more iteration of the truth predicate on the sentence. However,
unlike what happens in Fujimoto and Halbach’s theory, we can provide fully general
and uniform semantic rules for the semantic analysis of the language with a type-free
truth predicate. As the results of §3 will establish, such clearly defined rules cannot be
found in Fujimoto and Halbach’s approach.

The logical role of truth is fulfilled, in our framework, primarily by full compositional
principles. These cannot be semantically insensitive, as they are quantified sentences
with instances that cannot be determinate. In fact, one of the novel features of our
approach is the uniform combination of Kripkean fixed-point semantics with full
compositionality. This is achieved by a move that we call classical closure of Kripkean
truth. Formally, this prescribes that the extension of the truth predicate contain the
sentences that are satisfied by the relevant closed-off fixed-point model. Conceptually,
it demands that the truth-theorist engaged in semantic theorizing fully embrace the
generalizing power afforded by the truth predicate.

It is worth noting that, as a direct consequence of full compositionality, some
sentences happen to be in the extension of the classical closure of Kripkean truth
only in virtue of the generalizing role of truth. This is for instance the case of classical
logical truths. Take, e.g.. the sentence A vV —4 for 1 a liar sentence. The sentence is true,
but any further iteration of truth on it cannot be.

Ultimately, we are focusing on the classical models resulting from taking the classical
closure of consistent fixed points as extension of the truth predicate. Given the set
up. full compositional axioms will be satisfied in such models. Moreover, since the
determinate sentences can be readily defined as the ones that are recognized as true or
false (i.e., have a true negation) in the classical closure of Kripkean truth, a sentence
will be determinate precisely when the sentence stating that it is true or false is itself
true in the model. The model thus provides a strongly classical environment for the
study of a traditional notion of determinateness.

1.4. Axiomatization and N-categoricity. The paper is primarily concerned with
axiomatic theories of truth capturing the intended semantics just sketched. Without
axiomatization, semantic constructions are typically hard to pin down. Especially in
the context of classical theories, a robust sense in which an axiomatic theory captures
a semantic construction is given by the notion of N-categoricity introduced by [9].
Let £C P(w) be a collection of extensions of the truth predicate; a theory T' N-
categorically axiomatizes & just in case

(NNS)ETIff S €&
Another remarkable feature of the theories we introduce in the paper is that they turn

out to be N-categorical with respect to the models described in the previous section.

> However, we will also consider classes of models with inconsistent extensions.
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ON CLASSICAL DETERMINATE TRUTH 5

Specifically, a structure (N, S) models our theories if and only if S is the classical
closure of a consistent Kripkean fixed point. The N-categoricity of our theories marks
another key difference with Fujimoto and Halbach’s approach afforded by the defined
determinateness predicate. As the results below will indicate, while some models of
Fujimoto and Halbach’s theories are akin to the classical closure of Kripkean truth,
some others are not.

Therefore, there is a precise sense in which the conception of truth outlined in this
section—and embodied in the class of w-models just described—corresponds to the
laws of truth we propose and study in the paper.

1.5. Summary of the main results. From the technical side, we study theories that
are closely related to the ones studied by Fujimoto and Halbach in their [13], but with
important differences that will be highlighted in due course. Fujimoto and Halbach
mainly focus on two systems, CD and CD" (see Definition 1). CD" is obtained by
strengthening the axiom

Vt(Dt° — TDt) (T2)
of CD with the (plausible) biconditional
vt(Dt° <+ TD1). (T2%)

As we will explain shortly, in the paper we focus exclusively on CD™. Here is a summary
of the main results.

(a) We introduce a theory of truth, CD?, whose axioms are the axioms of
CD™ except that the determinateness predicate Dx is defined as TTx V TFx
(Definition 7). We show that the theory is consistent by displaying a natural
class of w-models for it (Proposition 10), and that the theory is mutually
reducible, in a strong sense, with CD™.

(b) We show that CD7. can be reaxiomatized as what we will call KF’s classical
closure (CKF. Definition 15), i.e., the fully compositional theory of type-
free truth (with no axioms for determinateness) obtained by axiomatizing
KF + CONS within the scope of a truth predicate satisfying unrestricted
compositional principles (Proposition 25). A particularly nice feature of CKF
(and hence of CD7) is its N-categoricity with respect to the classical closures of
consistent Kripkean fixed points (Proposition 21). This feature is not available
for CD™.

(c) While studying CD5 and CKF,, we provide additional results on both theories
CD and CD™: we show that they cannot prove most of the key axioms of CKF:
some of these axioms were proved to be conservative over CD" in [13]. Our
results show that the behaviour of CD and CD™’s truth predicate. while fully
classical and compositional on the surface, becomes highly irregular within
two or more layers of truth.

(d) We show that our results are stable under a dual definition of Dx, which is
suitable for a complete (but not consistent) truth predicate. Specifically, we
introduce the theory CDZ[COMP], whose axioms are those of CD™ except that
Dx is defined as =TTx vV -TFx, and show that it is mutually reducible with
CD". We also show that CDF[COMP] can be reaxiomatized as the classical
closure of KF + COMP.
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6 LUCA CASTALDO AND CARLO NICOLAI

The reason for focusing on CD™ is that the natural class of models referred to in (a)
and the axiomatizations mentioned in (b)—(d) license all principles of CD™.°

1.6. Technical preliminaries. We work over the language of arithmetic Ly, which
extends the standard signature {0.S.+.x} with finitely many function symbols
for elementary syntactic operations (see the next paragraph for more details).
Let L1:=LyU{T} and Lp := Ly U{D}, where T and D are unary truth and
determinateness predicates, respectively. We fix a canonical Godel numbering of Lp-
expressions and a formalization of syntactic notions and operations as it can be found,
for instance, in [14]. Following standard practice, we take Peano arithmetic to be the
first-order theory in which this formalization is carried out, although of course much
weaker systems would suffice. We write PAT for the theory obtained by formulating
the axiom of PA in the expanded language L.

The additional function symbols of Ly include a symbol for the standard numeral
function num(x) sending a number to the code of its numeral. A standard dot-notation
to denote such symbols:

OPERATION FuNCTION IN Ly
#He, #s — #(t = 5) =
#p = #(-p) -

#o. #Hy — #lAy) A
#Hur #o = #(Vurp) Y
#He — #T(1) T
#t — #D(1) D.

Using the conventions above, we define falsity as true negation, thatis, Fx <> T—-x. We
also take the following Ly-predicates to abbreviate the equations for the (elementary)
characteristic function for such sets:

Term(x) (Cterm(x)) := x is the Gddel number of a (closed) term;
Fml}(x) (Sentz(x)) := x is the Gédel number of an £-formula with at most
n (0) free distinct variables.

As in Halbach’s monograph [16], we will employ a functional notation x° abbreviating
the formula representing in Ly the evaluation function for closed terms of Ly and is
such that "¢7° = ¢ for closed terms z.

Roman uppercase letters A4, B, C, ... range over formulae of Lp. Greek lowercase
letters ¢, w, &, ... will be used to abbreviate quantification over formal sentences,
while o (v), w(v), &(v), ... will be used to abbreviate quantification over formal formulae
with at most v free. Also, for the sake of readability, we suppress codes, dots, and
Quine corners when there is no danger of confusion. Similar conventions apply
to L. The expression e(z/vy ), sometimes abbreviated as e(¢), represents the syntactic
substitution of a term ¢ for a variable v; in an expression e. So, for example, the
expressions

® It is unclear whether a strategy of the kind we employ to define the truth predicate of CD*
is available for CD.
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ON CLASSICAL DETERMINATE TRUTH 7

(Yo, w: Lp)(T(p Ay) < T ATy)
Vi(TTt — Tt°)

(Vo (v): Lp)(T(Vvp) < Vit To(t/v))
are short for, respectively,

VxVy(Sentz, (x) A Sentzy, (y) = (T(xAy) <> Tx ATy))
Vx(Cterm(x) — TTx — Tx°).
VxVy(lelﬁD(x) A Var(y) — (TVyx « Vz(Cterm(z) — Tx(z)))).

We will also write 4 € X instead of #4 € X or, for ¢ ranging over closed terms, TTT?
instead of T(TnumT?), etc.

We use standard notions of relative translation and relative interpretation as it
can be found, for instance, in [16, 27]. We use the notions of Ly-translations and
Ly-interpretations: an Ly-translation is a translation between theories in £, £ O Ly
which does not relativize quantifiers and collapses into the identity function when
restricted to Ly. An Ly-interpretation is an Ly-translation that preserves provability
in the standard way. Indeed, the special case of Ly-interpretability in which £;, £ D
Ly expand the arithmetical signature with truth predicates is the notion of truth
definability in the sense of [11].

§2. CD". Fujimoto and Halbach introduce the theory CD™ in [13].

DEFRINITION 1. CD™ consists of the following extension of PA in the language Lp (where
D and T are allowed to appear in induction):

VsVt(T(s =t) « s° =1°) (T1)
Vt(Dt° < TD¢) (T2%)
Vt(Dt® — (TTt < Tt°)) (T3)
(Vo1 Lp)(T(=¢p) < —Typ) (T4)
(V.1 Lp)(T(p A y) < To ATy) (Ts)
(Vo(v): Lp)(T(Vop) < Vi Tp(t/v)) (T6)
VsVt D(s = 1) (D1)
Vi(DTt + Dt°) (D2)
Vt(DDt + Dt°) (D3)
(Ve: Lp)(D(—¢) <> Dy) (D4)
(Vo.w: Lp)(D(p Ay) <+ (Dp ADy) V (Dp AT—p) V (Dy AT-y)))  (D5)
(Veo(v): Lp)(D(Yop) < (V1 Dep(t/v) V 3t Dp(t/v) A T-p(1/v)). (D6)
(Veo(v): Lp)VsVi(s® = 1° = (Te(s) < Tep(1))) (R1)
(Vo (v): Lp)VsVi(s® = 1° = (D (s) <> De(r))). (R2)

Fujimoto and Halbach establish the consistency of CD*—and, of course, of CD—by
exhibiting an w-model. Since the construction will be relevant later on, we repeat it
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8 LUCA CASTALDO AND CARLO NICOLAI

here. Let D(x) be the positive inductive definition associated with the (right-to-left
direction) of the D-axioms D1-D6 [13, sec. 4]. Let

ry(X)={n|(N.X.Y)ED®{®)}.

and define
Dy =2 Ty:= @
D1 :=T7,(D,) To1:={A€Lp]|(N,D,.T,)F A}
D; =Dy T, == (Dp N Tp).

p<a <2

Then D, is a fixed point of I" To - Let us denote D, and T, by Do and T.
respectively. Let:

Too ={4 € Lp | (N, Doo.Too) F A}
LemMa 2 [13, theorem 4.8]. (N, D..T.) F CD™.

The proof-theoretic analysis of CD™ is quite straightforward. It reduces the system to
a theory resulting from a combination of typed truth with standard Kripke—Feferman
systems. It employs CT[KF + CONS]. which is the result of enriching the Kripke—
Feferman theory with consistency with a typed, Tarskian truth predicate T on top, but
a version of KF with the completeness axiom would work as well.

DEerINITION 3. KF is the system in L1 extending PAT with the following axioms:
VsVt (T(s = 1) <> s° = 1°) AVsVI(T(s # 1) > s° # t°) (KF1)
Vt(TTt <+ Tt°) AVt(FTt < Ft° vV =Sent(¢°)) (KF2)
(Vi L1)(Fmp < Top) (KF3)
(Vo.y: LT)(T(p Ay) < To ATy) A (F(p Ay) < Fo vV Fy)) (KF4)
(Vo (v): L1)((T(Vop) < Vi Te(t/v)) A (T(Fvp) < 3t Tp(t/v))). (KF5)

KF + CONS is obtained by adding to KF the axiom

(Vo : L1)(Fo — —Typ): (Cons)
KF + COMP is obtained by adding to KF the converse claim
(Vo: L1)(=Te — Fop). (Comp)

DEFINITION 4 (CT[KF + CONS]). We expand Lt with an additional truth predicate T
and call the resulting language Lt y. CT[KF + CONS] is the theory in Lt extending
KF + CONS with the following axioms:

(T(s =1t) +» s°=1°) ATTt < T¢° (T1)
(Ve: L1)(T(=¢p) « —Top) (T2)
(Voo i L) (T(p Aw) < T ATy) (T3)
(Vo (v): LT)(T(Vop) < Vi T(p(t/v))). (T4)

We assume a standard notation for ordinals below the Feferman—Schiitte ordinal
Iy (see, e.g.. [20. chap. 2]). In particular, we denote with &, the (code of) the o™ fixed
point of the function Ax. w*.
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ON CLASSICAL DETERMINATE TRUTH 9

LemMA 5[13, theorem 7.12]. CD™ is mutually Ly-interpretable with CT[KF + CONS].
and therefore with ramified truth/analysis up to any o < e, .

Proof Idea. To interpret CD" in CT[KF + CONS]. external occurrences of T
are translated by the Tarskian T, whereas internal occurrences of T are translated
homophonically as T. D becomes T U F (the sentences with ‘a classical truth value’
in KF 4+ CONS). Conversely, to interpret CT[KF + CONS] in CD ™, the Tarskian T is
translated as T, and the KF 4+ CONS truth predicate T is instead translated as the
‘determinate truths’ of CD",i.e., TN D. O

§3. CDJTr and its intended models. Our first result consists in displaying a natural
class of models for type-free truth, the classical closures of (consistent) Kripkean fixed
points. We will also show that such structures model the axioms of Fujimoto and
Halbach’s CD™. Crucially, in these models, D is defined in terms of the notion of
Kripkean determinateness. In the next section, we will provide direct axiomatizations
of such structures in the language L.

We recall the arithmetical operator associated with the Strong-Kleene version of the
fixed-point semantics.

DEFINITION 6 (K-jump). For any X C Sentg,.
ne JHX) <> n e Sentz A
(FsTt(n=(s=1)Ns°=1°)V
AsTt(n = (s £ 1) As° #1°)V
Jt(n=(Tt) A t° € X)V
Jt(n = (=Tt) A—t° € X V1° € w\ Sentz )V
Jpn=-—pAp € X)V
Jp.yn=(pAy)Np e X Ny € X)V
Jp.y(n==(pAy)A-p € X V-ycX)
Jp(v)(n = (Vop) AVt p(t/v) € X)
Jp(v)(n = ~Vop A3t —p(1/v) € X)).
X occurs positively in (X ) and the K-jump is monotone. Therefore, it will have fixed
points. Note that fixed points of J#are closed under Strong-Kleene logic and are such
that (=) € X iff (=)Tp € X
In this section and the next we are interested in consistent fixed points of ¢ (and
theories that are sound with respect to them), that is, sets X such that X = J#(X)
and such that there’s no ¢ such that ¢ A ¢ € X: we will consider other fixed points
in a later section. The reason for this is both technical and conceptual. Technically,
consistency delivers a simpler definition of determinateness and provides a basis for
results about complete models and theories presented in later sections. Conceptually,
we believe that a consistent extension of truth provides a more attractive notion of

determinateness, as well as being in continuity with the above-mentioned works on
truth-theoretic determinateness by Kripke, Reinhardt and Feferman.

7" For more details on fixed-point semantics, we refer to [16, sec. 15.1] and [18, secs. 4 and 5].
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10 LUCA CASTALDO AND CARLO NICOLAI

For a consistent fixed-point X, let
Ty ={AeLlr|(N.X)F A4}. (3)

Incidentally, this set is considered by Fujimoto and Halbach as a model of
CT[KF + CONS] [13. p. 251]. We will now show that this set can be used to provide a
direct model construction for the principles of CD™, and not only for a typed theory
of truth interpreting CD ™.

DEFINITION 7 (CD7). CDF is the theory in Lt whose axioms are the axioms of CD", but
where D is now defined in terms of T as

Dx :¢» TTnum(x) V TFnum(x) (abbr. TTx V TFx). (4)

CD7. just like CD™, delivers the intended restriction to the T-schema to determinate
sentences.

OBSERVATION 8. For any A € Lr: CDJTr FDTAY — (TTA7 <> A).

Proof. By external induction on the complexity of 4. Note that the case in which 4
is Tt is an axiom of CD7. O

Our next goal is to show that, given a consistent fixed-point X, the structure (N, Ty)
is a model of CD%. Since (N, X) F KF 4+ CONS, and since KF + CONS - Tr 4™ — 4,
we have the following.

FACT 9. For any consistent fixed-point X = M X), N, X)ET A" — A.
ProrosiTION 10. (N, Ty) = CD7.

Proof. By induction on the length of the proof in CD7. We verify some key axioms,
noting that T1 and T4-T6 are immediate by definition.
T2*: (N.Ty) F TTp V TF@iff (N, X) E To V Foiff {p. ~¢} N X # @iff {Tp, Feln
X # @ (by the fixed-point property), iff (N, X) F TTy V TFp iff (N, Ty) = T(TTp Vv
TFyp).
T3: Assume (N, Ty) F TTy V TF¢p, which is the case iff {¢, ~¢} N X # @. To show
(N, Ty) E TTe — T, we reason as follows, letting p = ~47:%
(N,Ty) ETTyp iff
(N.X)E Ty hence. by Fact 9,
(N,X)E A, iff
(N, Ty) E Tep.
We notice that—due to the fact that we are reasoning in a consistent fixed-point
model—the assumption Dy has not been employed in this part of the argument.
Conversely, to show that (N, Ty)F T — TTe, assume (N, Ty)F Ty, which
is equivalent to (N,X)F A. Towards a contradiction, suppose (N, Ty)# TTep,

hence (N, X) & Te. Then, since {p, ~p} N X # & by assumption, (N, X) F Fyp, and
therefore (N, X) F =4 by Fact 9, which contradicts (N, X) F A.

8 We assume that ¢ denotes a sentence without loss of generality, as X' C Sent,.
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ON CLASSICAL DETERMINATE TRUTH 11

D3: We need to show that (N, Ty) E TTe V TF is equivalent to
(N.Tx) E TT(TTy V TFp) V TE(TT¢ V TFp).
The latter is equivalent to
(N, X) £ T(TTyp vV TFy) or (N, X) £ F(TTe V TFp).

dy dy

Since d; and d, are equivalent to, respectively, (N, X) = Ty V Fp and (N, X) E
Fo A Ty, by consistency of X it can be observed that their disjunction is equivalent
to dy, which is equivalent to (N, Ty) F TT¢ V TF¢, as required.

D5: Assume (N, Ty)ETT(p Aw)VTF(eAw). If (N,Ty)ETT(p Aw). then
(N,Ty) F TTo A TTy by the closure properties of X, hence both ¢ and y are
determinate. If (N, Ty) F TF(¢ A w) then (N, Ty) F TFp V TFy by the properties
of X. If (N, Ty) = TFp, then (N, X) F Fy and hence (N, X) F -4 by Fact 9, for
@ = "A7. This in turn yields (N, Ty) F TFp A Fep, hence ¢ is determinate and false.
Similarly if (N, Ty) = TFy.

Conversely, if (N, Ty) F (TTe V TFp) A (TTy V TFy), then we get immediately
(N,Ty) FTT(o A w) V TF(p A w) by closure properties of X. If (N.Ty) F (TTe V
TFyp) A Fp, then (N, X) &£ (Te V Fp) A =4, which by consistency of X is equivalent to
(N, X) E Fp,hence (N, X) F F(p A w) forany . It follows that (N, Ty) F TF(¢ A w).
Similarly if we assume (N, Ty ) = (TTw V TFy) A Fy. O

It is clear that CD7 can interpret CD™.
OBSERVATION 11. There is an Ly-interpretation of CD" in CDF.

Proof. We employ the recursion theorem to define an Ly-translation d: Lp — Lt
which systematically replaces D with its definition from (4). In more detail, the
recursion theorem for primitive recursive functions’ can be employed to define an

Ln-translation 0 : Lp — Lt such that
(Dx)° 14> TTnum(d(x)) V TFnum(d(x)).

The expression § (x ) abbreviates the formula representing § in Ly. The verification that

CD' - A4 only if CDf + 4° (5)

is immediate given some basic syntactic facts, provable in a subtheory of PA, including:
Vx(Sentz, (x) — Sent., (6(x))). (6)

O

It will follow from the identity of CKF. and CD7. (Proposition 25) that CD" and
CD; are mutually Ly-interpretable. It would be too hasty to think, however, that CD*
and CDJTr are “notational variants”; CD" cannot define D in the manner prescribed
by CD7. This can be seen from the following observation. With reference to Fujimoto
and Halbach’s semantic construction for CD™ described on page 7. let

Ty := T U{B},

9 See. for instance, [25, sec. 11.2].
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12 LUCA CASTALDO AND CARLO NICOLAI

for B an Lp-sentence, and
Ts:={A € Lp | (N.Du.Ts) E 4}.
LeMMA 12. If B ¢ D, then (N, Do,.Tp) F CD™.
Proof. We first show, by induction on 4, that if 4 € D, then
(N,Doo, Too) E A iff (N, Do, Tp) F A. (7)

The crucial case is when A4 =Tp: (N,Dy.Ts)FTe iff ¢ € T, hence
(N, Do, T) E Te. For the converse direction, (N, Do, Tg) F Ty iff either ¢ € T, in
which case we are done, or ¢ = B. However, since Ty € D, it follows that ¢ € D,
hence ¢ # B.

Having shown (7), we proceed with the main claim by induction on the length of
proofs of CD™. We check two cases where the use of (7) is relevant, letting ¢ = "A4™.

- For T3, assume A € Do.. Then (N, Do, T) F Aiff A € T since (N, D, Too)
models CD*. Then (N,Do.Tp)ETe iff (N,Ds.Tp)E A iff, by (7).
(N.Dwo.Too) EA iff A€ T iff, since A#B., (N,Ds.Tg)E Ty iff
(N, Dy, Tp) E TTep.

- For DS, the left-to-right direction is immediate. As for right-to-left direction,
it suffices to consider the case where, e.g.. (N, Do.Tp)F Dy A Fp. This is
the case iff (N, Do, T5) F Do A=A iff, by (7), (N, Dy, Tso) F D A=A iff
(N, Do, Too) E Do A Fp, hence o A w € D for any y, hence (N, Do,.Tp) F
D(p A w). O

While CD* - (Vo: Lp)(Dy — TTy V TFp). Lemma 12 yields that the converse
implication is not provable.

COROLLARY 13. CD" I/ (Vo: Lp)(TTe V TFp — D).
COROLLARY 14. CD™ does not prove any of the following sentences:

(i) Vi(TTTt — TTi):

(ii) Vt(TTt — TTTt);

(ili) (Vo: L1)(TTp < TT-—p):

(iv) (V. w: L) (TT(p Ay) <> TTo ATTy):
(v)  (Vo,w: LT)(TF(p Ay) <> TFp V TTy):
(Vi) (Yo(v): L1)(TTV(v) <> TV T (1):
(vil) (Vo(v): L1)(TFVp(v) < TItFep(z).

Proof. For (i), to construct the required countermodel use —/. for 4 a liar sentence,
in place of Bin Lemma 12; the model invalidates TTTA — TTA. For (ii), use 4 in place
of B so to invalidate TTA — TTTA. The other cases can be dealt with by emploing
suitable truth-teller sentences. For instance, for (iv), define parametrized truth-tellers
70 and 77, and replace 79 A 7; for Bin Lemma 12. O

§4. KP’s classical closure. The definition of CD; is parasitic on Fujimoto and
Halbach’s CD™. As such, they are axiomatizations of both truth and determinateness.
It is then natural to ask whether there is an axiomatization of truth that can be directly
inspired by the models (N, Ty ) introduced above and yet deliver the required principles
for determinateness. In such models, full disquotation is allowed only under two or
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ON CLASSICAL DETERMINATE TRUTH 13

more layers of truth (or falsity): outside those layers, fully classical principles are
licensed at the expense of disquotation. We will now answer the question positively. We
will then explain in the final section how the theories capture the conception of truth
(and determinateness) outlined in the opening section.

We introduce the theory CKF (standing for the classical closure of KF 4 CONS).
CKF combines full compositionality (T1 and T4-T6) with Kripkean truth conditions
in the inner layers of truth, along with a disquotation principle for truth ascriptions
that will ensure the consistency of the inner truth predicate.

DEFINITION 15 (CKF.). The axioms of the Lt-theory CKF are the axioms of PAT
together with:

VsVt(T(s =t) +» 5s° =1°) (T1)
(Veo: L1)(T(—¢) < —Top) (T4)
(Vo w: LT)(T(p Aw) < T ATy) (TS)
(Vo (v): LT)(T(Vop) < Vi Tp(t/v)) (T6)
VsVt(TTs =t <> s° = t°) (T7)
VsVi(TFs =t <> s° # 1°) (T8)
(V: L1)(TTp <> TT-—p) (T9)
(Vo w1 L1)(TT(p A w) <> TTp ATTy) (T10)
(V. w1 L1)(TF(p Ay) <> TFp V TTy) (T11)
(Vo (v): L1)(TTVe(v) < TVITe(1)) (T12)
(Vo (v): L1)(TFVe(v) + T3tFp(r)) (T13)
V¢(TTTt < TTi) (T14)
vt(TFT: < TFt) (T15)
Vi(TTt — Tt°) (TDel)
(Ve (v): L1)VsVi(s° =1° — (Te(s) <> Te(r))). (R1)

REMARK 16. In the definition of CKFs, the version of KF that ‘lives’ inside one layer
of truth is slightly different from the one presented in Definition 3. Specifically, axiom
T15 of CKF s does not feature, internally, the extra disjunct of KF2. This reformulation,
albeit inessential either conceptually or from the perspective of proof-theoretic strength,
is required by our arguments to obtain the identity of CKF and CDF established in
Proposition 25.

We list some basic theorems of CKF that will be explicitly used below.'’

OBSERVATION 17. The following are derivable in CKF:

Vt(TFt + TTFt) (8)
TFp — —TTy (TCons)
(Yo, w: L1)(TT(p V y) < TTp V TTy) 9)
(V. w: L1)(TF(p V y) <> TFp A TFy). (10)

10 The statement TCons amounts to the consistency axiom Cons under one additional layer of
truth. Similarly to TDel, it ensures the consistency of the inner truth predicate. We will come
back to this below, §5.
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14 LUCA CASTALDO AND CARLO NICOLAI

As mentioned, the theory CKF is directly inspired by the models (N, Ty ) introduced
in the previous section. Our next results provide a full characterization of standard
models of CKF in these terms: we show that they are exactly the classical closures of
consistent fixed points.

LeMMA 18. For any consistent fixed-point X, (N, Ty) F CKF.

Proof. Axioms T1 and T4-T6 are immediate by definition. Axioms T7-T15 and R1
readily follow from properties of X. As for T16, we reason as in the argument for case
T3 in the proof of Proposition 10. O

For any set S, let S := {4 | (N, S) E T"T"477}. Then

Lemma 19. Let (N, S) E CKF. Then S is a consistent fixed point.

Proof. Let (N, S) F CKF. By induction on the positive complexity of 4, one shows

that 4 € S iff 4 € #(S*). For example, if A4 is of the form —T¢, one uses T15, or if
A is of the form Vx B, one uses T6 and T12. O

LEMMA 20. Let (N, S) F CKFe. Then S = Tg.s.

Proof. Let (N, S)F CKF.. Again by positive induction on A, one shows that
(N,S)ET 47 iff (N,S?) E A. For example, if 4 is T"B7, then (N, S) E T T B™"
iff B ¢ S7iff (N, S) E A. O

From Lemmata 18-20, we obtain the following characterization theorem.
ProPOSITION 21 (N-Categoricity). (N, S) F CKF iff S = Ty.s.

There’s also a precise sense in which the logical strength of CKF . coincides with the
one of CT[KF + CONS], and therefore of CD*.

PROPOSITION 22. CKF,, CT[KF 4 CONS]. and CD" are mutually Ly-interpretable.

Proof. To Ly-interpret CKF.s in CT[KF 4+ CONS], one defines an Ly-translation
7: Lt — Lt 1 that replaces outer occurrences of T with T:
t(s=1t)>s=1t
7(Tx) :¢> Tx
7(=A) > —1(A)
7(AAB) <+ 7(4) At(B)
t(VwAd) <> Vx 1(A(x/v)).
The translation 7 is only external, and does not require applications of the primitive
recursion theorem in its definition. The verification that 7 is an Ly-interpretation is
fairly straightforward. The compositional principles (T1 and T4-T6) follow from the
definition of the translation v and the compositional axioms for T of CT[KF 4+ CONS].
Axioms T7-T13 follow from the definition of 7, T1, and the corresponding axiom of
KF. For instance, for T7 (in non-abbreviated form):
7(TTnum(s=t) <+ s° = ¢°) iff TTnum(s=¢) < s° =¢° def. of 7
iff T(s=t) > s°=1¢° by T1.
The last line is an axiom of CT[KF + CONS]. Axiom R1 is proved by formal induction
on the complexity of ¢ (v).
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ON CLASSICAL DETERMINATE TRUTH 15

For TDel, one notices that, by the definition of 7 and T1, the translation of TDel
becomes

Tt® — Tt°. (11)

Now either —Sent. (¢°) or Sent.,(7°). In the latter case we can then prove (11) by
formal induction on the positive complexity of #°. Notice that in the case in which #°
is of form =T, we employ Cons. If —Sent ., (t°), then FT¢ by KF2, and =TTt by Cons,
thus —=Tz° and T¢° — T¢° follows trivially.

To interpret CT[KF + CONS] in CKF, we first define the internal translation
1: L1 — Lt operating on codes of Lt r-formulae as follows:

1(p) = o, for A atomic of Ly
(y) ="0=1" for y € Sents, . \ Sent,,
1(Tx) := Tu(x)
(=) = ()
o Ay) i=1(p) Nily)
1(Yvp) = Vxi(p(x/v)).

We then define the full translation ¢: L1 — Lt, which replaces T with one single
layer of CKF-truth and T by two, and behaves internally according to i:
g(d) = A, for A atomic of Ly

a(Tx) 4> Ti(x)
a(Tx) :+> TTnum(z(x))
a(=A) > —o(4)
a(ANB) > a(d) No(B)
a(VwA) > Vxa (A(x/v)).

It remains to verify that ¢ is the required Ly-interpretation of CT[KF + CONS] in
CKFs. We consider the crucial case of KF2. The translation of its first conjunct is

TToum(Te(2)) <> TT((2)). (12)
which follows immediately from T14. The translation of the second conjunct of KF2 is
TToum—Ti(¢) < TT(7u(1)) V =Sentz (7). (13)

The left-to-right direction of (13) follows directly from T15. Similarly for the
right-to-left direction, if TT(-z(z)) holds. If —Senty (¢°). 1(°)="0=1", so
TToum(T-u(t)). O

Next, we turn to the question how CD%’ and CKF are related. Corollaries 13 and 14
show that some of the axioms of CKF are not provable in CD". However, as we shall
see shortly, these are all provable in CD5.. In fact, we shall see that CD; and CKF are
identical theories.

LeEMMA 23. CD is a subtheory of CKF .

Proof. We verify a few key axioms, reasoning informally within CKF.
For T2*, we use T14, (8), and distribution of T over V.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 12 Nov 2025 at 21:36:53, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51755020325100968


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020325100968
https://www.cambridge.org/core

16 LUCA CASTALDO AND CARLO NICOLAI

For T3, since TTt — Tt° is an axiom of CKF, we have TTt — (TT¢ < Tt°). So
assume TF7. Then Fr°, hence —T¢° and therefore T¢° — TT¢, hence Tt° < TTt.

For D3, we use TCons and (10)—derivable in CKF.—along with axioms T14 and
T15.
For D5, assume TT(p A w) V TF(p A ). By T10 and T11, this is equivalent to

(TTe ATTy) V (TFp V TFy).
Since we have TFt — F¢°, by a series of propositional inferences we obtain

((TTyp VTFp) A (TTw V TFy)) V ((TTe V TFp) AFp) Vv ((TTw vV TFy) A Fy).

91 2] 03

Conversely, each combination obtainable from the conjuncts of J; entails TT(p A
w)VTF(p Ay). As 8, and J3, use T16 and T4 to obtain TFp A Fo. respectively,
TFw A Fy. which entail the desired conclusion via T11. O

LEMMA 24. CKF is a subtheory of CDF.

Proof. The key observation is that, since CD = TTy V TFp — (Tp « TTy), we
can perform the necessary quotation and disquotation steps to prove compositionality
within layers of T. For example, to see that CD7. - T9, assume TT¢ (or TT——¢). Then
TTy vV TFp and TT—p V TF—, therefore we have both TTy <> Ty and TT——¢ +
T——¢. But then TTy <> Ty <> T-—p <> TT=—p. The derivability of other axioms
follows a similar pattern. We show some examples, reasoning informally within CD.

T10: Assume TT(¢ A w). Then TT(p A ) — T(p A w) by T3.!! hence Ty A Ty,
and therefore -Fo A =Fy. This together with TT(p A ) yields, via D3, that ¢ and
are determinate, i.e.. TTyp V TFp and TTy vV TFyw. Hence we conclude TTp A TTy
from Ty A Ty.

For the converse direction, TTe A TTy entails TT(p A w) V TF(p A w) by D5.
Moreover, since TTo A TTy also entails To A Ty, we get T(p A w), hence TT(p A w)
by T3.

T16: If TTe, then TTe V TF¢p, hence Ty by T3. O

As a corollary we obtain the following.

PROPOSITION 25. CD? and CKF are identical theories.

§5. Alternative axiomatizations. As mentioned, the theory CKF contains, along
with Kripkean truth conditions in the inner layers of truth, an axiom (TDel) restricting
the class of fixed points to those that are consistent. In this section, we discuss
alternative consistency axioms.

The axiom TDel is reminiscent of the schema often called T-Out: T" 47 — A. It
is also known (see [4]) that T-Out is equivalent to the consistency axiom Cons:
Vo : LT(Fp — —Ty). It may be asked whether TDel is equivalent to TCons from
Observation 17: TFp — —TTep. The fact that the latter follows from the former is
straightforward: TFp — Fp — —-Ty — —TTp. However, the converse employs an
extra axiom stating that only sentences are truly true.

LeEMMA 26. CKF. — TDel + TCons + TTr — Sent,, (1°) - TDel.

1" Under the definition Dx :4» TTx V TFx. Same remark applies below.
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Proof. We distinguish cases. If 1° ¢ Sent,.. then =TT, hence trivially TTt — Tt.
Else, we reason by induction on the formal complexity of 1° = . If ¢ is an equality,
the claim follows from T7 and T8. If ¢ = Tt, the claim follows from T14. If ¢ = —Tt,
we use T15 and the additional axiom: TT-Tt — TFt — -TTr — T-Tt. O

Additionally, it can be observed that TCons is equivalent to TFT¢ — FTz.

LEMMA 27. The theories CKF.s — TDel 4+ TCons and CKF.s — TDel + TFt — —TTt
prove the same theorems.

Proof. To derive TCons from TFTt — FTt, we use T15: TFt — TFTt — FTt —
—TTz. Conversely, the claim follows from the previous lemma observing that, for
t € CTerm, we have TFr € Sent,.. O

Collecting these observation together, we obtain the following proposition (cf. [16,
lemma 15.9]).

PrOPOSITION 28. Over CKF. — TDel + TTt — Sent. (1°). the following state-
ments are equivalent:

(i) TTtr — Tt;
(ii) TFt — —TT¢;
(iii) TFTt — FT¢.

Some formulations of KF (e.g., [3. 23]) do include the axiom Tt — Sent(z°).
However, we decided not to include TTz — Sent,(¢°) in our official formulation
of CKFs in order to simplify its comparison with CD7.. If CKF were defined without
TDel but with, for example, TCons along with TTs — Sent,, (¢°). then the equivalence
stated in Proposition 25 would need to be reformulated as follows.

LEMMA 29. The theories CKF, := CKF¢s — TDel + TCons + TT¢ — Sent,. (¢°) and
CDf + Dt — Sent,.(¢°) are identical.'?

Proof. For the inclusion of CD} + D7 — Sent,, (7) into CKF(, the crucial axioms
are T3 and Dt — Sent. (¢°). As for the latter, TTr — Sent, (¢°) is just an axiom
of CKF,. As for TFs — Sent. (¢°). it follows from TT-¢ — Sentz,(-¢°). hence
Sent, (1°).

For T3. we distinguish two cases. If #° ¢ Sent. . then -¢° ¢ Sent,, hence TTt —
1L ATFt — L. hence trivially TTt V TFt — (TTt «» Tt°). If ¢t € Sent(¢), by Lemma
26 we have TTt¢ — Tt°, hence TTt <+ (Tt° <+ TTt). For the second disjunct, using
Proposition 28 we have TFt — Fr° — —Tt° — (Tt° — TT¢).

For the converse inclusion of CKF,, into CD7 + D7 — Sent,, (). the crucial cases
are TCons and TTt — Sent, (¢°). The latter follows from Dz — Sent. (7). The
former can be derived thus: TFt — Ft — —-Tt — —TTz. O

§6. Complete, symmetric, and mixed fixed points. In this section, we verify whether
the results from previous sections carry over if one focuses on different classes of
fixed points of _#. We provide a positive answer for the class of complete fixed points
as well as for the class of consistent or complete fixed points. Specifically, given a
complete fixed-point X of 7, the structure (N, Ty ) can be shown to be a model of the

12’ The same would hold for CDf + TTt — Sent, (¢°).
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18 LUCA CASTALDO AND CARLO NICOLAI

determinateness axioms of CD" with D defined in terms of T. Moreover., the resulting
theory can be shown to be identical to a variant of CKF . Similarly for the class of fixed
points which are either consistent or complete. The question whether similar results
are available for mixed fixed points, i.e., fixed points which are neither consistent nor
complete, will be left open.

6.1. Complete models. Since the structure of the arguments is very similar, we limit
ourselves to highlighting the necessary modifications.

DEFINITION 30 (CD7[COMPY)). Let CDF[COMP] be the Lr-theory whose axioms are
those of CD™, but where D defined in terms of T as

Dx <+ =TTx vV —TFx. (14)

It can be shown that, given a complete fixed-point X = J#(X), the structure (N, Ty),
where Ty := {4 € Lt | (N, X) F A},isamodel of CD}:[COMP]. The argument follows
the blueprint of Proposition 10. We first observe that, since a complete fixed-point X
of #is such that (N, X) F KF + COMP, and since KF + COMP derives the schema
A — TT A7, we have the following.

Fact 31. For any complete fixed-point X, forany A, (N, X)E A — T" A",

Just as Fact 9 was used in the proof of Proposition 10, Fact 31 will play a similar
role in the proof of the following.

PROPOSITION 32. For a complete fixed-point X, (N, Ty) = CDF[COMP].

Proof Sketch. By induction on the length of proofs in CDZ[COMP]. We verify T3
and D3, whose arguments are symmetric to those in the proof of Proposition 10.

T3: Assume (N, Ty) F =TTy V ~TF¢p, which is the case iff {¢, =p} € X. To show
(N,Ty) E TTp — Tep. let ¢ =" A47 and assume (N, Ty) F TTy, which is equivalent
to ¢ € X. Towards a contradiction, suppose (N, Ty ) & Te. hence (N, X) ¥ A. By Fact
31, we get (N, X) E Fyp iff ~¢ € X, contradicting our assumption.

Conversely, to show (N, Ty ) F Ty — TTe, we reason as follows without using the
assumption on the determinateness of ¢:

(N, Ty) £ Tcp, iff

(N,X)E hence, by Fact 31
(N X) E T(p iff

(N.Ty) E TTe.

D3: We need to show that (N, Ty) F =TT¢ V =TF is equivalent to
(N.Tx) £ =TT(=TT¢ V ~TFg) V =TF(-=TTy V —TFep).
The latter is equivalent to
(N.X) £ =T(-TTe V - TFyp) or (N.X)F —-F(-TT¢ V -TFyp).

dy )

Since d; and d, are equivalent to, respectively, (N, X) F =Ty A =Fp and (N, X) F
—F¢ vV =Ty, by completeness of X it can be observed that their disjunction is
equivalent to d», which is equivalent to (N, Ty) F ~TTy V =TFyp, as required. O
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A collection of principles inspired by the models (N, Ty) for X a complete fixed
point can be obtained by modifying CKF in the obvious way, that is, by replacing the
axiom expressing consistency with one expressing completeness, leaving the remaining
axioms characterising the closure of KF unmodified.

DEFINITION 33 (CKF,). CKFe, is the system obtained from CKF s by replacing TDel with
Tt — TTt. (TRep)

Axiom TRep readily yields completeness TT¢ v TFt via =TTt — —T¢° — Ft° —
TFt.

PROPOSITION 34. CDF[COMP] and CKF, are identical theories.

Proof Sketch. As in the proof of Lemma 24, the key observation to show that CKF,
is a subtheory of CDF[COMP] is that CDF[COMP] - =TTy V =TFyp — (Tp « TTep).
We can derive the counterpositive of each axiom of CKF, by performing the necessary
quotation and disquotation step. For example, for T10 we assume =TT (¢ A ), which
implies =T(¢ A y), hence =Ty V -Ty. Via D3, at least one between ¢ and y is
determinate, hence we conclude =TTy V =TTyw. In a similar way we can derive the
counterpositive of TRep: if =TTz, then Tt <+ TTt, hence —Tt.

Conversely. to show that CD:[COMP] is a subtheory of CKF,. the reasoning
is similar to the proof for Lemma 23. We only verify T3: Since Tt — TTz, we
have immediately -TT¢ — (Tt <+ TT¢); for the other disjunct, = TFt — —Ft — Tt —
(TT — Tt). O

In fact, the well-known duality between consistency and completeness is preserved in
the present setting, in that CKFs and CKF, are mutually Ly-interpretable via Cantini’s
dual translation, mapping T to —F [3]. More precisely, let ¢ be a map of Ly into itself
preserving the arithmetical vocabulary, commuting with logical operations in the usual
way, and mapping Tx to —Fx.

PROPOSITION 35. CKFs and CKF, are mutually Ly-interpretable via c.

Proof Sketch. For R1 and T1-T15, it suffices to observe that, within both CKF
and CKF, their instances A are self-dual, in the sense that 4 <+ A°. For example, for
T15 we have (tacitly using the fact that r € Cterm)

(TFTt + TFt) iff = F-F—=—T—¢ <+ = T-=F-¢ def of ¢
iff -F-FT—-¢ & -TF—-¢ T9
iff = TFT—¢ <+ —=TF—¢ def of F, T9.
The last line is a counterpositive instance of T15.
Similarly for TDel and TRep, just note that TDel = ~F-Ft — —F¢ <> (~TFr —

—F1), which is the counterpositive of TRep, and TRep® = —-Ft — -F—-Ft < (=Fr —
—TF¢t), which is the counterpositive of TDel. O

The duality between KF + CONS and KF + COMP can be lifted to intertranslatabil-
ity a.k.a. synonymy (see [19]): the same holds for CKF and CKF,.

COROLLARY 36. CKF s and CKF, are synonymous.

In particular, this means that the logical strength of CKF,. too. coincides with that
of CD™.
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6.2. Symmetric models. Combining the results on consistent and complete fixed
points, it can also be shown that the definition of D can be adapted to obtain that the
class of symmetric (i.e., consistent or complete) fixed points of .# satisfies the axioms
of CD5 with D defined disjunctively as follows.

DEFINITION 37 (CDF[SYM]). Let CDS[SYM] be the Lr-theory whose axioms are those
of CD™, but where D defined in terms of T as

Dx :¢+ (TTx V TFx) A (=TTx vV =TFx). (15)

Using Facts 9 and 31, it can then be shown that symmetric fixed-point X can be
used to obtain models of CDL[SYM].

PROPOSITION 38. For any symmetric fixed-point X, (N, Tyx) F CDF[SYM].

Proof. By induction on the length of proofs in CDZ[SYM]. For T3, one assumes
(N,Ty) E TTe V TFp A (-TT¢ V =TF¢) and may then reason by cases, depending
on whether X is consistent or complete, following the arguments for Propositions 10
and 32. O

Accordingly, a corresponding CKF system is obtained by a disjunction of TDel and
TRep.

DEFINITION 39 (CKFgym). CKFgy is the system obtained from CKF by replacing TDel
with

(TTt — T¢°) V (Ts® — TTs). (TSym)

To see that axiom TSym yields consistency-or-completeness (TTt A TFt) — (TTs Vv
TFs). assume TT¢ A TFz. If (TTt — Tt°), then Tt A Fr, which is impossible, hence
(Ts° — TTs) and therefore -TTs V —=TFs.

It can also be observed that the translations 7 and ¢ defined in the proof of Propo-
sition 22 yield mutual interpretability of CKFgyn with CT[KF + (CONS v COMP)].
hence we obtain the following equivalence.

COROLLARY 40. The theories CD', CKF, CKFep. and CKFsym have the same
arithmetical consequences as the system RT<., of ramified truth up to ..

6.3. Mixedmodels. Mixed fixed-point models are those in which the truth predicate
can feature both gaps and gluts. Can mixed (i.e.. neither consistent nor complete)
fixed-point model CDF under a suitable definition of D? We leave this question open.
However, we observe that mixed fixed points are not models of CDf under any of the
definitions of D considered above.

PROPOSITION 41. Let X be a mixed fixed point and let CDFx range over the theories
CD5, CDE[COMP], CDF[SYM]. Then (N, Ty) i CDF.

Proof. In light of Proposition 10, we show that (N, Ty) & T3 v D5.'? which are the
two axioms where Facts 9 and 31 played a crucial role.

To show (N, Ty) i T3, let 4 and 7 be such that AA -4 € X and 7V -1 ¢ X, and
assume moreover that PAT - 4 <» =TAand PAT + 7 «» Tz. Since —(t V 1) ¢ X, it can
be observed that the following jointly hold:

13 This is of course redundant, but it clarifies the reasons why each of the axiom is not satisfied.
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(N,X)E-F(r Vi),
(N.X)ET(zVA),
(N.X) E=(rVva).

We derive, for D defined by (15),
(NNTy) EDEVA)ATT(z VA A-T(zVA),

hence (N, Ty) # T3.
To show (N, Ty) ¥ D5, let similarly ¢ be such that ¢ A = € X, and let v be such
that v V -y ¢ X. This entails

(NNX)EF(oAw)A=T(p Ay), iff
(N.Ty) F TF(o Aw) A=TT(p A w), hence
(N.Ty) E D(p A w).

with D defined as per (15). However, (N,Ty) Dy V Dt for any of the
above definitions of D, since (N,Ty) E (TTp A TFp) A (=TTy A =TFy), hence
(N, Ty) & D5. O

The reason why the class of symmetric, but not that of mixed, fixed points is suitable
for modeling CD7 can be explained as follows. The former, but not the latter, features
a specific interplay between the notions of determinate and having a classical semantic
value. Within both the class of consistent and the class of complete fixed points, we
can single out an intended interpretation, where being determinate can be defined as
having a classical semantic value. These intended models are the least fixed point, and
the largest fixed point, where the set of sentences with a classical value are those which
are grounded in Kripke’s sense. Proposition 41 clarifies why this is not possible in mixed
models: in each of them, Boolean combinations of gluts and a gaps result in sentences
which are strictly true or strictly false.'*

§7. Assessment. The theories introduced in this work have unique features that
place them among the most promising theories of truth available in the literature. In
this section, we elaborate on some of these features, comparing variants of CKF with
related approaches to truth and determinateness along the key dimensions outlined in
the introductory section.

The generalizing function of truth, we argued. requires a strongly classical and fully
compositional theory of truth. In our theories, such a function is realized in virtue of
axioms T4-T6. For example, T4 is sufficient to exclude the existence of sentences that
are both true and false and of sentences that are neither true nor false. In this sense,
all variants of both CD and CKF are classical theories of classical truth. To state this
formally, recall that the internal theory of a theory of truth S be defined as

AS)={4|SFT A}

14 This is essentially the same reason why the version of KF in [5] cannot satisfy the D-axioms
of CD and CD* when

Dx :++ (Tx V Fx) A =(Tx A Fx).
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For every variant CKF and CD, the logic of their internal theories is classical: (i) all
(universal closures of) classical logical axioms in Lt are true, and (ii) all classical
logical inferences preserve truth, hence, (iii) all (universal closures of) theorems of
classical logic in L are true.'”

By contrast, systems such as KF or DT are classical theories of nonclassical truth:
they are formulated in classical logic, yet the logics governing their internal theories is
nonclassical. As noted in the introduction, this compromises the generalizing power
of its truth predicate. Advocates of such theories—e.g., [24]—stress that their internal
theories, despite not obeying the laws of classical logic, enjoy other truth-theoretic
virtues. For instance, the internal theory of KF + CONS is not only closed under
Strong-Kleene Logic, but it is fully disquotational too: A € #(KF 4+ CONS)iff T" 4™ ¢
H(KF 4+ CONS). Full disquotation is often taken to be crucial by truth theorists (see,
e.g.. [7]). This property provably fails for the inner theory of any classical theory of
classical truth that admits a standard model.

However, our results show that, in addition to the internal theory, another notion
plays a prominent theoretical role in this context. Define the deep theory of S as

HS)={A4|SFT T AT}

In theories of classical determinate truth such as the ones studied in this paper, the
internal and deep theories provably differ.'® One of the main virtues of the theories
we propose is that the logics of their deep theories can be associated with well-known
logics admitting a transparent truth predicate. For CKF . the logic of its deep theory
amounts to the familiar Strong-Kleene logic with a transparent truth predicate. Thus,
although not every classical axiom will be in #(CKF), whatever is inside it can be
closed under the relevant nonclassical rules of inferences and under iterations of T.
Analogously, the logic of Z(CKF,) corresponds to the Logic of Paradox [21], and the
logic of #(CKFgym) to Symmetric Strong-Kleene [2, 26].

As anticipated, our theories also provide clear semantic rules for the analysis of
the language with type-free truth. To see this, we note that we can uniformly define a
‘semantic’ truth predicate Tye, as Tsemx 1< TTx. For such a predicate, the theories can
prove universally quantified laws corresponding to the Strong-Kleene truth conditions
for £1.'7 In addition, the theories prove unrestricted positive and negative truth
ascriptions for Tgy,. In formalizing semantic rules for L1, our theories also provide
definite information on the space of ‘models’, or extensions of Ty, that are admissible.
While CKF only allows consistent interpretations of Teem, CKF, forces inconsistent
but complete interpretations.

This is in stark contrast with CD and its variants, as they do not prove the Strong-
Kleene conditions for T, (cf. Corollaries 13 and 14). This means that, in such theories,
truth behaves transparently and according to logical principles only on a restricted
fragment of the language, namely, on determinate sentences. In addition, CD and

15 For this induction to hold, it is important that the induction schema of CKFcs and variants
is extended to T.
® Forinstance, in CKFes. 4 VV —/ can be used to separate the two. Dually, one can use 4 A =4 to
separate the deep and the internal theory of CKFcp. since the latter theory derives TT(A A —1).
17 Essentially, the compositional axioms of KF.
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its variants do not impose clear conditions of admissible interpretations of the true
and determinate sentences—the analogue of our Tg.y,. As the results in Fujimoto
and Halbach show [13, theorems 7.11 and 8.1], the theories are compatible with
consistent or inconsistent interpretation of the true and determinate sentences. In our
approach, there is a clear choice to be made depending on one’s chosen definition of
determinateness: while the axioms of CD™ formulated by means of the definition of D
as TTx V TFx result in the theory CKF, the dual definition as -TTx A =TFx yields
the theory CKF., whose deep theory is inconsistent.

Combining these observations together, we see that variants of CKF (i) are
fully compatible with the generalizing function of truth—unlike classical theories of
nonclassical truth and (ii) capture a transparent and well-behaved notion of truth
inside their deep theory—unlike CD and its variants.

Another fundamental feature of the theories introduced in this work is that the
notion of determinateness, just like what happens in well-known formal approaches
to truth, is defined in terms of truth. Feferman [6], for example, despite assigning
priority to the axioms for determinateness over those for truth, defines a sentence to be
determinate iff it is true or false (and not both). A similar case for a determinateness
predicate defined in this way can be made for KF—see especially [5, 24].

Feferman’s definition of determinateness is well suited for theories like DT and
KF, which employ a self-applicable but nonclassical truth predicate. As Fujimoto and
Halbach rightly point out, however, the definition Dx :<+ Tx V Fx is not appropriate
for theories of a thoroughly classical conception of truth, such as CD and CD", or
classical closures of Kripke-Feferman truth developed in this paper. This is why CD
and CD" treat determinateness as a primitive.

By contrast, in our theories a strongly classical and compositional truth predicate co-
exists with a defined determinateness predicate. In particular, our results show that the
desiderata imposed to the notion of truth and determinateness by theories such as CD "
can in fact be realized by theories based on a defined determinateness predicate. While
the definition Dx :+» Tx V Fx is unsuitable in this context, the alternative Dx :+>
TTx v TFx is just right to license the principles of CD", and more generally to meet
the core desiderata for a thoroughly classical, self-applicable conception of truth.

One might object that our definition of D seems more artificial than Feferman’s,
which rests on the natural thought that being determinate just means ‘having a
determinate (classical) truth value’ in a paracomplete or paraconsistent model. But
the definition we propose is in fact a rather natural incarnation of this standard
notion. In particular, it puts CKF’s determinateness in continuity with the notion of
determinateness available within KF + CONS. Since in KF + CONS determinateness
is defined as Tx V Fx, extending the theory to its classical closure naturally requires
introducing an additional layer of truth into the definition of D. If one endorses
Feferman’s extension of determinateness as given in various manifestations of the
Kripke-Feferman theory, its extensions will remain unchanged in our theories. What
changes is the generalizing power afforded by the classical truth-theoretic layer. More
precisely, the N-categoricity of our theories (Proposition 21) tells us that any w-model
of our theory features a standard, Kripke—Feferman notion of determinateness. And
in each such model compositional axioms and classical logic are fully satisfied in a
strong sense because it amounts to a classical closure of a Kripkean fixed point. In
particular, if we consider the classical closure of the minimal fixed point of Kripke’s
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theory of truth, the extension of its determinateness predicate is just the set of grounded
sentences of L.!8

We can reformulate the above observations without reference to Kripkean semantics.
The Kripke—Feferman notion of determinateness amounts to being true or false.
Its extension remains unchanged in (the consistent variant) of our theories, but its
definition takes into account the strong classicality of our truth predicate required by
its generalizing role. Determinateness is now defined as being semantically true or false,
where ‘semantically true’ can be explicitly defined as the predicate Ty, just introduced.

Taken together, the above observations point to a novel approach to truth and
determinateness, yielding a family of axiomatic theories with distinctive features.
Known theories that define determinateness in terms of truth and falsity—such as
KF or DT—employ a compositional and self-applicable truth predicate, but one
that, due to its nonclassical nature, does not perform well on generalizations such
as the ones required in blind deductions.'” Conversely, theories of classical truth like
the Tarskian theory CT, variants of CD, or Friedman and Sheard’s FS, feature a
strongly compositional truth predicate, but one that is not suitable to capture the
Kripke-Feferman notion of determinateness. In addition, for CT and FS, no equally
satisfactory notion of determinateness is likely to be found.

However, the classical closures of KF show that it is possible to combine, in a single
framework, both kinds of virtues: a classical, strongly compositional notion of truth
that supports blind inferences, and the possibility of defining a class of determinate
sentences satisfying desirable principles.”’

§8. Extensions and open questions. To conclude, we list some open questions and
potential lines of research stemming from our work.

(1) Each of the introduced variants of CKF restrict, in different ways, the class
of Kripkean fixed points. For example, the axiom TDel in CKF restricts the
fixed points to the consistent ones. Let CKF := CKF — TDel. Then:

(i) Is there a definition of D that ensures the identity of CKF and the
appropriate reformulation of CD7 in terms of such a definition?

(ii) Would this definition of D ensure the soundness of CD;. with respect to
mixed models?

Moreover, one can ask whether there are natural principles that can be used to
expand CKF, and how strong the resulting theories become. We mention two possible
such expansions.

(2) Given the semantics of CKF, one might treat the least fixed point of .# as
the intended interpretation for its deep theory. One can then axiomatize this

18 This makes fully transparent a link adumbrated by Fujimoto and Halbach, when they state:
“call the sentences in D determinate. If it were not for the additional predicate D, they
would be the sentences that are grounded in Kripke’s [17] sense (with some qualifications)”
[13, p. 222]. In our setting, this connection is made completely explicit without the need to
reinterpret sentences featuring the primitive determinateness predicate.

See again [12].

As already mentioned in the introduction, a thorough philosophical assessment of the
conceptual import of CKF¢s will be carried out in future work. Our focus in this paper
was on its formal properties.

19
20
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conception by adding a minimality schema to CKF. So let CKF, be the theory
obtained by expanding CKF with the schema

K(p(x)) = Vx(TTx — ¢(x)).

where, for ¢ € L1, K(p(x)) expresses that (x) is a closed point of .# Then:
(iii) What is the proof-theoretic strength of CKF,?

(3) One may also consider extensions of CKF by means of reflection principles. It
is well-known that the theory of truth enables one to directly express soundness
extensions of theories in the form of Global Reflection Principles for a theory
S: for any ¢. if ¢ is provable in S. then Tep. It is also well-known that the most
prominent type-free theories of truth don’t sit well with Global Reflection.”!
However, for such theories Global Reflection may not be the right soundness
extension to focus on. Reinhardt [24] proposed to consider instead a partial
reflection principle for provably true sentences. A similar strategy is available
in CKF and its variants, if one looks at theorems under two layers of truth.
The principle

(Ve : L1)(Proveke. (TTy) — TTep) (16)

is sound with respect to the semantics for CKF and can be safely added (and
iterated) over our theories. It can then be asked:
(iv) What is the strength of the reflection principle (16) and iterations
thereof 7
(4) Finally, for technical interest, it remains to be explored whether an analogue of
our results is available for the theory CDt—as well as its variant CD[COMP].
Specifically:
(v) Does CDt have a natural semantics validating the principle T2, i.e.,
Dt — TDt, but not necessarily its converse?
(vi) Can the semantic construction be axiomatized in such a way that the
resulting theory is identical to CDt?
(vii) What is the proof-theoretic strength of the resulting systems?
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