B.M. Peterson, F.-Z. Cheng, and A.S. Wilson (eds.)

Spectral Monitoring of NGC 4151 and 3C 390.3 at the 6-m Telescope

A. I. Shapovalova and A. N. Burenkov

Special Astrophysical Observatory of the Russian Academy of Sciences. Nizhnij Arkhyz, 357147 Russia

N. G. Bochkarev

Sternberg Astronomical Institute, Moscow, 119899 Russia

Observations 1.

Since 1986, we have carried out spectral monitoring of several Sevfert galaxies with the 6-m telescope of SAO RAS to study the structure and kinematics of the broad-line regions (BLR). Here we present the observational results for NGC 4151 and 3C 390.3.

In 1986–96, about 150 spectra of the NGC 4151 nucleus were obtained with SP124+TV scanner and 24 spectra with a long-slit (UAGS+CCD) or a multipupil field spectrograph (MPFS + CCD). About 20 spectra of 3C 390.3 were obtained in 1995-96 with the UAGS + CCD and with MPFS+CCD. More detailed information about observations, data processing and results will appear in Shapovalova et al. (1996).

2. Results for NGC 4151

- 1. The observed integrated fluxes of the broad component of H β range over a factor of 8 between minimum (spring 1987) and maximum (spring 1995).
- 2. During 1986-91, the red wing of H β was weaker than the blue wing. The red and blue wings were of comparable strength in 1993-95, and in 1996 the red wing was stronger than the blue one.
- 3. On average, the line and continuum fluxes increased by factors of 5-6 from 1986 to 1996. In some years the intensities of the broad component and continuum varied during several days by a factor of 1.5-2, and on a time scales of 1-3 months by factors of 1.5-3.
- 4. The integrated fluxes in the blue and red wings of H β varied in phase without any time lag. Quasi-simultaneous flux variations in the wings of $H\alpha$ and $H\beta$ were reported by Maoz et al. (1991) based on observations during 1987-88, and our data confirm this result on a time scale of 10 years.
- 5. The integrated flux ratios in the blue and red wings of $H\beta$ for each year lead us to suspect a periodicity of 2-3 years (1986-92) in the flux variations

of the blue and red wings, and a periodicity of an attenuating amplitude in 1994-95.

3. Results for 3C 390.3

- 1. The flux density in the continuum (I_{cont}) increased compared to 1974–88 (Veilleux & Zheng 1991). I_{cont} was a factor of two higher in 1996 February than during the 1975 maximum and six times higher than the minimum value of 1980. The integrated H β flux $F_{total}(H\beta)$ showed the same behavior, but with lower-amplitude variations.
- 2. The I_{cont} and $F_{total}(H\beta)$ variations were not in phase, probably on account of light travel-time delays.
- 3. The flux intensities in the H β wings (F_{blue} and F_{red}) of increased in 1995–96, as did $F_{broad}(H\beta)$, with F_{blue} was always larger than than F_{red} . The flux ratios in the blue and red wings are close to the values obtained by Veilleux & Zheng (1991) in 1975–85, and follow well the periodic (\sim 10 years) sinusoidal dependence for the flux ratios in the blue and red wings of H β .
- 4. The fluxes in the wings vary quasi-simultaneously.

The continuum and H β broad-component fluxes presented in Table 1 (the wavelength integration limits and flux units are as in Veilleux & Zheng 1991).

Julian Date	I_{cont}	$F_{total}(\mathrm{H}eta)$	$\overline{F_{broad}}({ m H}eta)$	F_{blue}	F_{red}
2449833.4	1.26	1.34	1.08	4.08	2.55
2449864.4	1.39	1.59	1.33	4.39	2.96
2450039.2	2.49	1.49	1.04	4.39	3.12
2450051.1	2.67	1.81	1.37	4.95	3.54
2450052.1	2.72	1.92	1.46	5.48	3.57
2450126.6	2.93	2.09	1.68	6.24	3.99
2450162.6	2.48	2.14	1.75	5.83	4.30

Table 1. Measured Fluxes for 3C 390.3.

This research is supported through grant 94-02-4885 from the Russian Foundation of Fundamental Research.

References

Maoz, D., et al. 1991, ApJ, 367, 493.

Shapovalova, A.I., Burenkov, A.N., & Bochkarev, N.G. 1996, Bull. SAO – North Caucasus, 41, in press.

Veilleux, S., & Zheng, W. 1991, ApJ, 377, 89.