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Abstract

Survey questionnaires are commonly used by psychologists and social scientists to measure various latent
traits of study subjects. Various causal inference methods such as the potential outcome framework and
structural equation models have been used to infer causal effects. However, the majority of these methods
assume the knowledge of true causal structure, which is unknown for many applications in psychological
and social sciences. This calls for alternative causal approaches for analyzing such questionnaire data.
Bayesian networks are a promising option as they do not require causal structure to be known a priori
but learn it objectively from data. Although we have seen some recent successes of using Bayesian
networks to discover causality for psychological questionnaire data, their techniques tend to suffer from
causal non-identifiability with observational data. In this paper, we propose the use of a state-of-the-art
Bayesian network that is proven to be fully identifiable for observational ordinal data. We develop a causal
structure learning algorithm based on an asymptotically justified BIC score function, a hill-climbing search
strategy, and the bootstrapping technique, which is able to not only identify a unique causal structure
but also quantify the associated uncertainty. Using simulation studies, we demonstrate the power of the
proposed learning algorithm by comparing it with alternative Bayesian network methods. For illustration,
we consider a dataset from a psychological study of the functional relationships among the symptoms
of obsessive-compulsive disorder and depression. Without any prior knowledge, the proposed algorithm
reveals some plausible causal relationships. This paper is accompanied by a user-friendly open-source R
package OrdCD on CRAN.
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1. Introduction

Survey questionnaires are often used in social, psychological, and behavioral sciences to measure various
traits of individuals, which are otherwise hard to assess. For example, Posttraumatic Stress Checklist is
often used for measuring post-traumatic stress disorder symptoms, Yale-Brown Obsessive-Compulsive
Scale for obsessive compulsive disorder, and Quick Inventory of Depressive Symptomatology for
depression, just to name a few.

Various causal inference methods such as the potential outcome framework and structural equation
models (SEMs) have been used to infer causal effects.
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The potential outcome framework (Neyman, 1923; Rubin, 1974) is a widely used approach to esti-
mate the effects of treatments on outcomes from observational studies. It defines the treatment/causal
effect of an experiment unit by contrasting the outcome under the treatment and the outcome under the
control. The fundamental challenge of causal inference is that only one of the two potential outcomes can
be observed for each experimental unit. Naively using observed outcomes alone to estimate (average)
causal effects will be biased due to confounding effects. Properly adjusting for confounders is therefore
key to the success of the potential outcome framework.

An SEM refers to a set of stochastic equations describing the statistical causal relationships among
observed and latent variables (Jöreskog, 2005; Tarka, 2018). In the psychological field, the latent variables
represent latent psychological states or traits, which are believed to exist but difficult to quantify or
measure directly, and the observed variables are the “symptoms” or indicators of the latent traits,
which, by contrast, can be measured by questionnaires. An SEM is comprised of two components: a
measurement/factor model and a structural/path model. The measurement model connects observed
variables to latent variables whereas the structural model specifies the relationships among the latent
variables, which reflect the causal assumptions made by investigators.

Despite the success of these causal models, alternative causal approaches are called for due to a
few prominent limitations. First, both the potential outcome framework and SEMs typically assume
the causal relationships among observed/latent variables to be known a priori. For example, in the
potential outcome framework, one has to know which variables are treatments and which variables are
outcomes. However, in many psychological applications, the true causal relationships are unknown,
and the inferential results can be quite sensitive with respect to the misspecification of the causal
relationships, which could lead to various practical issues such as the Haywood case or the negative
variance problem for SEMs (Bentler & Chou, 1987; Kolenikov & Bollen, 2012), and, more seriously,
causal effect estimation bias and misinterpretation (Kolenikov, 2011), which are partially responsible
for the replicability crisis in psychology and social science and cannot be alleviated by increasing
sample size (Vowels, 2021). Second, a latent variable in an SEM often causes multiple symptoms, which
implicitly assumes that the symptoms are conditionally independent of each other given the latent
variable. However, symptoms can affect each other directly. For example, lack of appetite can cause
weight loss and hence they are not independent of each other conditioned on their common cause such
as depression. Third, some SEMs can accommodate scenarios where the causal relationships are only
partially known. For example, the ordinal SEM (Luo et al., 2021, OSEM) learns the causal structure
among latent variables from the data. However, the causal structure is not uniquely identifiable (i.e.,
multiple causal structures can fit the data equally well), and, therefore, no definitive conclusion can be
drawn from such methods.

An alternative class of models for causal analyses is Bayesian networks Pearl (1988), which can
overcome the aforementioned limitations of the potential outcome framework and SEMs because
BNs typically do not assume the underlying causal structure to be known a priori. BNs are a type of
probabilistic graphical model that can be used to represent and learn causal relationships of a set of
variables in an unbiased, objective, data-driven way. Many fields of science, such as neuroscience (Shen
et al., 2020), climate science (Ebert-Uphoff & Deng, 2012), and robotics (Lazkano et al., 2007), have
seen rapidly growing enthusiasm for using BNs to discover unknown causal structures. For example,
in systems biology, BNs have been shown to successfully recover gene regulatory networks from
observational, cross-sectional genomic data without any prior biological knowledge (Chai et al., 2014;
Choi et al., 2020; Choi & Ni, 2023; Friedman et al., 2000; Sachs et al., 2005; Zhou et al., 2023).

The potential of BNs to characterize complex causal relationships for survey data in social and behav-
ior sciences has, however, only been demonstrated in a few recent works (Bird et al., 2019; Briganti, 2022;
Briganti et al., 2022; Fried et al., 2017; Luo et al., 2021; McNally et al., 2017). Although they already
provided compelling evidence that BNs are powerful causal analysis tools, which complement the
potential outcome framework and SEMs, their techniques tend to suffer from causal non-identifiability
with observational data. For example, Bird et al. (2019) wrote “as distinct causal models can lead to the
same patterns, it is not possible to learn all the causal links from observational data.” However, since
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the seminal paper (Shimizu et al., 2006) published in 2006, numerous BNs (e.g., Hoyer et al., 2009;
Zhang & Hyvärinen, 2009) have been proven to be fully identifiable under various assumptions. Most
relevant to the survey questionnaire data is the recent development of ordinal BNs (Ni & Mallick, 2022).
They theoretically proved that the causal structure is fully identifiable by exploiting the ordinal nature
of categorical data, which had not been thought to be important for causal discovery, and empirically
validated it with multiple real datasets such as discretized protein expression data.

Furthermore, non-identifiable BNs such as the commonly used categorical BNs can lead to unin-
tended negative consequences if one is not careful in interpreting the inferred causal networks. Because
multiple causal networks can fit the data equally well for non-identifiable BNs, it would be generally
incorrect to interpret the causal relationships from a single causal network.

In this paper, we advocate the use of ordinal BNs in social and behavior sciences as a lot of
questionnaire data collected are naturally ordinal. We develop a causal structure learning algorithm
with bootstrapping, which aims to identify optimal causal structures with finite-sample uncertainty
quantification and large-sample guarantee. Using simulation studies, we demonstrate the power of the
proposed learning algorithm by comparing it with competing BNs. Subsequently, we apply the ordinal
BNs to a dataset of obsessive-compulsive disorder and depression, which reveals some plausible causal
relationships without resorting to any prior knowledge. For reproducibility and broad applicability, we
make a user-friendly R package [name hidden] freely available on CRAN.

Our main contributions are four-fold:

1. We develop a new causal structure learning algorithm with uncertainty quantification.
2. We make a new user-friendly R package available to the scientific community.
3. We introduce a novel application of ordinal BNs to psychological survey data.
4. We provide an asymptotic justification of our method, which guarantees the correctness of the

estimated causal graph for a large enough sample size.

2. Overview of probabilistic graphical models

Let X = (X1, . . . ,Xq) denote a vector of q random variables. For questionnaire data, Xj represents the
available choices of question j, e.g., Xj may take value from “Strongly Disagree”, “Disagree”, “Neutral”,
“Agree”, and “Strongly Agree” for a 5-point Likert scale question. For convenience, Xj is often coded
numerically, e.g., Xj ∈ {1,2,3,4,5}; however, note that the actual number does not have an absolute
interpretation but its relative ordering is informative in the sense that Xj = 1 is closer to Xj = 2 than to
Xj = 5. To represent the (causal or non-causal) dependencies among a set of random variables, proba-
bilistic graphical models are often used. Let G = (V,E) denote a graph with a set of nodes V = {1, . . . ,q}
corresponding to the random variables X and a set of edges E representing the dependencies. The type
of edges that the edge set E contains dictates the type of dependencies that a graph can represent. We will
restrict our discussion to two commonly used types of graphs, undirected graphs and directed acyclic
graphs, with a focus on the latter.

2.1. Undirected graphs
The edge set E of an undirected graph contains only non-directional edges X −Y , which are useful
for representing symmetric associations. The presence (absence) of an edge between two variables
indicates a statistically significant marginal correlation or partial correlation (the lack thereof). For
ordinal variables, the polychoric correlation may be used. Partial correlation is often deemed more
appropriate than marginal correlation as partial correlation is a measure of conditional dependence
accounting for all the other variables of interest and, therefore, can avoid detecting spurious indirect
association from marginal correlation. However, by design, undirected graphs based on marginal
or partial correlation cannot be used to represent causal relationships, which are asymmetric and
directional.
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2.2. Directed acyclic graphs and Bayesian networks
The edge set E of a directed acyclic graph (DAG) contains only directed edges or arrows X → Y . In
addition, we assume that there is no directed cycle, i.e., one cannot return to the same node by following
the arrows. A DAG, by itself, is a pure mathematical object, which needs to be connected to data through
probability models. The most well-known probability model of such kind is the Bayesian network (BN)
proposed by (Pearl, 1988). A BN is a pairB = (G,P)where G is a DAG and P is a probability distribution
that is linked to the DAG G through the BN factorization,

P(X∣G) =
q

∏
j=1

P(Xj∣Xpa(j)), (1)

where pa(j) = {k ∈V ∣k→ j} is the parent set of node j and P(Xj∣Xpa(j)) is the conditional probability dis-
tribution of node j given its parents. For categorical variables, P(Xj∣Xpa(j)) is conditionally multinomial,
typically specified by a conditional probability table. For example, if Xj ∈ {Low, Medium, High} is an
employee’s pay grade and Xpa(j) =Xk ∈ {Elementary School, High School, College, Advanced Degrees}
is the employee’s education level, then P(Xj∣Xpa(j)) = P(Xj∣Xk) can be specified by a 3 × 4 condi-
tional probability table with the first row and second column being the probability P(Xj = Low∣Xk =
High School) that an employee is at the low pay grade if his/her highest degree is high school. The
BN factorization (1) implies a set of conditional independence assertions, also known as the Markov
property, which can be directly read off from G (Lauritzen, 1996). For instance, the probability distribu-
tion P must respect the following conditional independence (known as the local Markov property): any
variable is conditionally independent of its non-descendants given its parents, Xj ⊥ Xnd(j)∣Xpa(j) where
nd(j) =V/{j}/de(j) denotes the set of non-descendants of node j with de(j) = {k ∈V ∣j→⋯→ k} being
the set of descendants of node j. Importantly, the reverse is also true, i.e., if a distribution P satisfies
the local Markov property of a DAG G, it must factorize with respect to G as in (1). For example, for
the three-node DAG (h) in Figure 1 where, say, X3 is an employee’s pay grade, X2 is the employee’s
education level, and X1 is the education level of the employee’s mother, specifying the joint distribution
of (X1,X2,X3) through the conditional distribution P(X3∣X2) of the employee’s pay grade given his/her
education level, the conditional distribution P(X2∣X1) of the employee’s education level given his/her
mother’s education level, and the marginal distribution P(X1) of the education level of the employee’s
mother is equivalent to assuming that the employee’s pay grade is independent of the education level of
the employee’s mother given the employee’s education level.

2.3. Causal DAGs and causal BNs
The arrows of a DAG do not have physical interpretations and, consequently, a BN is merely a probability
model that encodes certain conditional independence assertions and factorizes in a certain fashion
with respect to its associated DAG. To equip BNs with causal interpretations, we need to first define
a causal DAG. A causal DAG is a DAG for which the directed edges are causal. For example, DAG (h)
in Figure 1 means that node 1 (e.g., blood pressure) is a direct cause of node 2 (e.g., heart attack), which
is in turn a direct cause of node 3 (e.g., death), and node 1 is not a direct cause of node 3. Then we
assume a probability distribution P is causal Markov with respect to G, i.e., any variable is conditionally
independent of its non-effects given its direct causes, Xj ⊥Xne(j)∣Xdc(j) where dc(j) = {k ∈V ∣k→ j} is the
set of direct causes of j and ne(j) =V/{j}/eff(j) is the set of non-effects of j with eff(j) = {k ∈V ∣j→⋯,k}.
For instance, in DAG (h), death is conditionally independent of blood pressure given the patient has
heart attack (although in real life, abnormal blood pressure can cause death in many ways other than
heart attack but the missing arrow between nodes 1 and 3 in DAG (h) excludes alternative causal paths
between blood pressure and death in this illustrative example).

Noticing the equivalence in definition between the parents pa(j) and the direct causes dc(j), and
between the non-descendants nd(j) and the non-effects ne(j), one can immediately conclude that the
probability distribution P must factorize with respect to the causal DAG G as in (1) given the causal
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Figure 1. All possible three-node DAGs. The conditional independence assertion encoded by each graph is shown at the top of each

DAG.

Markov assumption. Such a pair of causal DAG G and probability distribution P is called causal BN
B = (G,P). While a non-causal BN says nothing about the true data-generating mechanism, a causal
BN does – first, root nodes (i.e., nodes without direct causes) are generated independently from their
marginal distributions, and then recursively, a node is generated from the conditional distribution given
its direct causes when all of its direct causes have been generated.
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A causal BN entails not only the observational distribution P but also distributions subject to various
interventions. Formally, let Q⊂V and I ⊂V denote the query and intervention sets, and we are interested
in calculating the distribution of XQ if we set XI to xI by intervention. Under the Judea Pearl’s do-
calculus paradigm (Pearl, 1988), that amounts to finding the interventional probability distribution
P(XQ∣do(XI = xI),G) where the do-operator do(XI = xI) highlights the fact that XI is set to xI by
intervention, not observed to be xI . This interventional probability distribution is generally not equal to
the conditional distribution P(XQ∣XI = xI,G) induced from the joint observational distribution P(X∣G).
In fact, P(XQ∣do(XI = xI),G) = P(XQ∣XI = xI,GI) where GI is a “mutilated” version of G with all
incoming arrows to I removed. Intuitively, when there is no intervention, the value of XI is influenced
by its direct causes whereas when XI is set to a certain value by intervention, such a value only depends
on the intervention1. Therefore, in the presence of intervention, the incoming arrows to XI should be
removed to reflect the fact that XI is no longer influenced by its natural causes. Take DAG (t) in Figure 1
as an example. From basic probability theory, the conditional distribution of X3 given that X2 is observed
to be x2 is P(X3∣X2 = x2) =∑X1

P(X3∣X1,X2 = x2)P(X1∣X2 = x2). However, if X2 is not naturally observed
to be x2 but instead we set its value to x2 by intervention, the mutilated version of DAG (t) is given by
DAG (o) where the arrow from node 1 to node 2 is removed, and the interventional distribution is

P(X3∣do(X2 = x2)) =∑
X1

P(X3∣X1,X2 = x2)P(X1), (2)

because X1 and X2 are marginally independent in DAG (o). Being able to derive various interventional
distributions using causal BNs is crucial to social and behavior sciences as it does not require real-
world interventions, which may be expensive, unethical, or impossible to carry out. For instance, let
X1 denote age, X2 cortical thickness, and X3 intelligence in the study of the relationship between brain
structure and intelligence (Shaw et al., 2006). Suppose the causal relationships of X1, X2, and X3 are
represented by DAG (t). To identify the average causal effect of cortical thickness on intelligence, i.e.,
ACE = E(X3∣do(X2 = 1))−E(X3∣do(X2 = 0)) (say, X2 = 0 and 1, respectively, represent thin and thick
cortex), the gold standard would be to intervene on cortical thickness, which, however, cannot be done.
Causal BNs enable such causal effect estimation without carrying out the actual intervention via (2);
notice that the right-hand side of (2) does not have the do-operator and hence can be calculated based
on observational probability distribution P alone.

2.4. Learning of causal DAGs and BNs
The preceding paragraphs concern the problem of representation, i.e., given a causal DAG, how one
can represent the (stochastic) data-generating mechanism using a probability model. The remaining
question is whether one can learn the unknown structure of DAG G given a sample generated from the
probability model, x = (x1, . . . ,xn) ∼ P(X∣G). One intuitive approach is to test for independence. For
instance, consider three-node DAGs (there are 25 in total shown in Figure 1), and suppose DAG (h) in
Figure 1 is the true data-generating DAG and a large number of observations are available. Assuming
causal faithfulness2, we sequentially test for independence (i) between X1 and X2, which comes to be
dependent X1 /⊥ X2 and hence eliminates all DAGs in the blue boxes as they all encode X1 ⊥ X2, (ii)
between X2 and X3, which comes to be dependent X2 /⊥ X3 and hence eliminates all DAGs in the green
boxes as they all encode X2 ⊥ X3, (iii) between X1 and X3, which eliminates DAG (k) in the yellow
box, and (iv) finally between X1 and X3 given X2, which comes to be independent X1 ⊥ X3∣X2 and
hence eliminates all DAGs in the purple boxes as they assert dependence X1 /⊥ X3∣X2. This example
demonstrates that just by applying independence tests on observed data, one can narrow down from
25 possible DAGs to just three DAGs (h-j) that are plausible data-generating mechanisms. This type

1Such intervention is also known as the hard intervention in causal discovery literature.
2A distribution P is said to be faithful to a causal DAG G if all conditional independence relationships of P are encoded in

G through its Markov property.
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Figure 2. Conditional probability tables from two Markov equivalent BNs.

of approach is called the constraint-based approach. The PC algorithm (Spirtes et al., 2000) is perhaps
the most well-known one. However, there are obvious drawbacks of constraint-based approaches: apart
from the additional assumption of faithfulness and conditional independence tests generally lacking
statistical power, most prominently, they generally can only identify an equivalence class of DAGs, all of
which encode exactly the same conditional independence relationships; such DAGs and corresponding
BNs are said to be Markov equivalent and the equivalence classes are called Markov equivalence classes.
In the three-node example, DAGs (h)-(j) have the same set of conditional independencies, i.e., X1 ⊥
X3∣X2 and none other. Therefore, one cannot further narrow it down to the true data-generating DAG (h)
even with an infinite sample. This is clearly an unsatisfactory property of constraint-based approaches
as DAGs (h)-(j) have very different causal interpretations from each other.

Another major class of causal DAG learning approaches is score-based where one would assign a
score to each DAG and search for highly scored DAGs. Often, the score is based on some probability
model and depends on the likelihood. For example, the Bayesian information criterion (BIC) is widely
used,

BIC(G∣x) = −2
n
∑
i=1

log P̂(xi∣G)+K log(n), (3)

where K is the number of model parameters and P̂(xi∣G) is the joint distribution (1) evaluated at xi
given the maximum likelihood estimate of model parameters. BIC balances between the goodness-
of-fit of the causal BN to the observed data and the complexity of the model. For categorical data,
P(xi∣G) is specified by conditional probability tables as mentioned earlier. Unfortunately, it can be
shown that DAGs (h)-(j) are score-equivalent and are, thus, still indistinguishable from each other just
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like constraint-based methods. We illustrate it with DAGs (h)&(i). Suppose again DAG (h) is the true
data-generating DAG and the corresponding conditional probability tables are given in Figure 2(a).
These conditional probability tables determine the joint probability distribution of (X1,X2,X3), for
example, P(X1 = 1,X2 = 2,X3 = 3) = P(X1 = 1)P(X2 = 2∣X1 = 1)P(X3 = 3∣X2 = 2) = 0.25×0.19×0.50 =
0.024. However, the joint distribution P(X1,X2,X3) can be factorized in a few other ways that are
also compatible with the conditional independence relationship X1 ⊥ X3∣X2 encoded in DAG (h). For
example, it can be factorized with respect to DAG (i) in Figure 1 of which the conditional probability
tables are shown in Figure 2(b). Consequently, DAGs (h)&(i) have the same BIC score because they have
the same maximized likelihood and the same model complexity, and hence cannot be distinguished
from each other. This also applies to DAG (j) in Figure 1. More generally, Markov equivalent categorical
BNs (cBNs) are (BIC) score-equivalent. Therefore, score-based cBNs cannot differentiate DAGs that
are indistinguishable by the constraint-based methods. More discussion of categorical causal BNs is
provided in Section 0.6.

We remark that many existing DAG learning algorithms would return a single DAG even though the
underlying causal model is not fully identifiable (i.e., there exist equivalent DAGs). Practitioners should
be aware that the returned DAG is generally an arbitrary choice from its equivalence class and there
may, in fact most likely, exist many other DAGs that fit the data equally well and have very different
causal implications. Therefore, we recommend the use of identifiable causal models (e.g., the ordinal
BN in the next section) whenever possible.

3. Ordinal Bayesian networks

3.1. Probability model
Since a lot of questionnaire data in social and behavior sciences are ordinal, we propose the use of
ordinal BNs (Ni & Mallick, 2022, oBN) to resolve the indeterminacy of Markov/score-equivalent BNs.
Ni and Mallick (2022) theoretically studied the causal identifiability of oBN and showcased its strength
in constructing biological networks from observational, discretized protein expression data. oBN can
potentially have great utility for discovering causality in questionnaire data. Let Xj ∈ {1, . . . ,Lj} have Lj
categories for j = 1, . . . ,q. Each conditional distribution P(Xj∣Xpa(j)) of (1) takes the form of an ordinal
regression model of which the cumulative distribution is given by, for � = 1, . . . ,Lj,

P(Xj ≤ �∣Xpa(j)) = F
⎛
⎝

γj�− ∑
k∈pa(j)

βjkXk −αj
⎞
⎠
,

where F is a link function such as probit and logistic, αj is an intercept, βjkXk is a generic notation
of βjk1, . . . ,βjkLk for Xk = 1, . . . ,Lk, and γj1 < ⋯ < γjLj = ∞ are a set of thresholds. We set γj1 = βjk1 = 0
for ordinal regression parameter identifiability (Agresti, 2003). The implied conditional probability
distribution is given by,

P(Xj = �∣Xpa(j) = xpa(j)) = F
⎛
⎝

γj�− ∑
k∈pa(j)

βjkxk −αj
⎞
⎠

−F
⎛
⎝

γj,�−1− ∑
k∈pa(j)

βjkxk −αj
⎞
⎠
,

for � = 1, . . . ,Lj and xk ∈ {1, . . . ,Lk} for k ∈ pa(j).
To illustrate the identifiability of oBN, consider again the example in Figure 2. Let G1 and G2 be the

DAGs in 2(a) and 2(b), respectively. While a cBN can be factorized in either direction, by exploiting
the ordinal nature of categorical data, an oBN does not admit such equivalent factorization. In fact, the
conditional probability tables in Figure 2(a) are those under the oBN with DAG G1 and the following
parameter values,
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γ12 = α1 = 0.67,
γ22 = 0.5, α2 = 0.5, β212 = −0.5, β213 = 0.75,
γ32 = 0.5, α3 = −1, β322 = 0.5, β323 = −0.75,

whereas there are no parameter values of the oBN with DAG G2 such that the implied observational
distribution P(X1,X2,X3∣G2) is compatible with the conditional probability tables in Figure 2(b). In
other words, G1 and G2 are not score-equivalent as they have different likelihood functions.

3.2. Statistical inference
We now develop a score-based DAG learning algorithm, which aims to identify the best-scored DAG
with uncertainty quantification. We score each DAG G with the BIC (3) where the maximum likelihood
estimate is obtained by gradient ascent, and the number of model parameters is K = ∑j∈V(Lj − 1+
∑k∈pa(j)(Lk −1)). To search for the best-scored DAG, we use an iterative hill-climbing algorithm. We
start from some initial DAG. At each iteration, we score all the DAGs that are reachable from the current
graph by a single edge addition, removal, or reversal. We replace the current DAG by the DAG with the
largest improvement (i.e., the largest decrease in BIC). We claim the convergence of the algorithm when
the BIC can no longer be improved. The hill-climbing algorithm is summarized in Algorithm 1. Since
BIC always improves at each iteration by design, the algorithm is guaranteed to find a local optimum.

However, there are two drawbacks of Algorithm 1. First, the local optimum may not be the global
optimum due to the greedy nature of the hill-climbing algorithm. Therefore, we suggest repeat the hill-
climbing algorithm several times with random initial DAGs and pick the DAG with the smallest BIC as
shown in Algorithm 2.

Second, Algorithm 1 or 2 only provides a point estimate of DAG G without uncertainty quan-
tification. To assess the uncertainty, we propose to use the bootstrapping technique (Efron, 1992;
Friedman et al., 1999). Specifically, we first create a number B of bootstrap samples by sampling without
replacement from the original data x. Then, we apply Algorithm 2 to each bootstrap sample. Finally, we
compute the average adjacency matrix of the estimated DAG from each bootstrap sample. An adjacency
matrix A = [Ajk] of DAG G is a binary matrix such that Ajk = 1 if k → j ∈ E and Ajk = 0 otherwise.
Therefore, the average adjacency matrix, denoted by P = [Pjk], can be interpreted as an approximate edge
inclusion probability of k→ j. A value of Pjk ∶= 1

B ∑
B
b=1 A(b)jk close to 0 or 1 indicates greater confidence of

the absence or presence of k→ j than a value close to 0.5 where the superscript (b) indexes the bootstrap
samples. The hill-climbing with multiple initial DAGs and bootstrapping is described in Algorithm 3
and implemented in the R package [name hidden] freely available on CRAN.

3.3. Large sample property
Now, we ask if we can correctly identify the data-generating DAG when the sample size is large enough.
Let G1 denote the true data-generating DAG with model parameters θ⋆1 (i.e., α,β,γ’s in oBN). Let G2
denote any other DAG in the same Markov equivalence class with G1. Let θ†

2 denote its pseudo-true
parameter, i.e.,
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Algorithm 1 Hill-Climbing: [G,BIC] =HC(x,G0)
Input: data x, initial DAG G0
Set G =G0, compute BIC(G∣x), and set BIC ⋆=BIC(G∣x)
repeat

Initialize Improvement = false
for all graphs G′ reachable from G do

Compute BIC(G′∣x)
if BIC(G′∣x) < BIC ⋆ then

Set G =G′ and BIC ⋆=BIC(G′∣x)
Set Improvement = true

end if
end for

until Improvement is false
Output: estimated DAG G and its BIC = BIC(G∣x)

Algorithm 2 Hill-Climbing with Multiple Initial DAGs: G =HC-x(x,R)
Input: data x, number of initial DAGs R
for r = 1, . . . ,R do

Randomly generate a DAG G0r
[Gr,BICr] =HC(x,G0r)

end for
Set G =Gr with r = argminr′ BICr′

Output: estimated G

Algorithm 3 Hill-Climbing with Multiple Initial DAGs and Bootstrapping: P =HC-x-Boot(x,R,B)
Input: data x, number of initial DAGs R, number of bootstrap samples B
for b = 1, . . . ,B do

Generate a bootstrap sample xb of x by sampling with replacement
Gb =HC-x(xb,R)

end for
Set P = 1

B ∑
B
b=1 Ab where Ab is the adjacency matrix of Gb

Output: estimated edge inclusion probability matrix P

θ†
2 = argmax

θ
∑

X
P(X∣G1,θ⋆1 ) logP(X∣G2,θ).

We show that the BIC of G1 is asymptotically lower than that of G2. Let �n(θ∣G) = ∑n
i=1 logP(Xi =

xi∣G,θ) denote the log-likelihood under DAG G and let θ̂(n)1 and θ̂(n)2 denote the maximum likelihood
estimators, which are consistent under some mild regularity conditions (Fahrmeir & Kaufmann, 1985),
i.e., θ̂(n)1

p→θ⋆1 and θ̂(n)2
p→θ†

2 as n→∞.
Take the Taylor expansion of �n(θ⋆1 ∣G1) at θ̂(n)1 ,

�n(θ⋆1 ∣G1) = �n(̂θ(n)1 ∣G1)+(θ⋆1 − θ̂(n)1 )⊺ ∂�n(θ∣G1)
∂θ

∣ θ̂(n)
1
+ 1

2
(θ⋆1 − θ̂(n)1 )⊺ ∂2�n(θ∣G1)

∂θ2 ∣ ξ(n)(θ⋆1 − θ̂(n)1 ),

= �n(̂θ(n)1 ∣G1)+
1
2
(θ⋆1 − θ̂(n)1 )⊺ ∂2�n(θ∣G1)

∂θ2 ∣ ξ(n)(θ⋆1 − θ̂(n)1 ),
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where ξ(n) = αθ⋆1 +(1−α)̂θ(n)1 with α ∈ [0,1]. Since θ̂(n)1
p→ θ⋆1 , we have 1

n�n(̂θ(n)1 ∣G1)− 1
n�n(θ⋆1 ∣G1)

p→ 0.
By the law of large numbers,

1
n
�n(θ⋆1 ∣G1)

p→ E[logP(X∣G1,θ⋆1 )],

where the expectation is taken over X with respect to its true data-generating distribution P(X∣G1,θ⋆1 ).
Therefore,

1
n
�n(̂θ(n)1 ∣G1)

p→E[logP(X∣G1,θ⋆1 )] .

By a similar argument, we have
1
n
�n(̂θ(n)2 ∣G2)

p→E[logP(X∣G2,θ†
2)] .

Hence,

1
n
�n(̂θ(n)1 ∣G1)−

1
n
�n(̂θ(n)2 ∣G2)

p→E[log P(X∣G1,θ⋆1 )
P(X∣G2,θ†

2)
]

=KL(P(X∣G1,θ⋆1 )∣∣P(X∣G2,θ†
2)) > 0,

where KL(⋅∣∣⋅) is the Kullback–Leibler divergence, which is nonnegative and is zero only when
P(X∣G1,θ⋆1 ) ≡ P(X∣G2,θ†

2), which is impossible due to the causal identifiability result (Ni &
Mallick, 2022). Consequently,

�n(̂θ(n)1 ∣G1)−�n(̂θ(n)2 ∣G2)
p→∞.

Because two Markov equivalent DAGs must have the same skeleton (Verma & Pearl, 2022) and hence
the same model complexity, we have

BIC(G1∣x)−BIC(G2∣x)
p→−∞.

4. Simulation studies

We assessed the empirical performance of oBN in recovering unknown DAG structure using simula-
tions where the ground truth is known. We simulated data with q = 10 categorical variables each with 5
ordinal categories resembling the 5-point Likert scale questions. The true DAG was generated randomly
using the function “randomDAG” in R package pcalg with connecting probability 0.2 (Figure 3a). Its
Markov equivalence class, represented by the completed partially directed acyclic graph (CPDAG), is
shown in Figure 3b where the bidirected edges are edges that can be oriented in either direction without
changing its conditional independence relationships. Given the true DAG, the model parameters βjk�’s
and αj’s were independently generated from a centered normal distribution with variance σ2. We
considered 14 scenarios. The first 7 scenarios fixed sample size at n = 500 and varied the signal strength
σ = 0.25,0.5,0.75,1,1.25,1.5,2, which covered low to strong levels of signals. The other 7 scenarios fixed
the signal strength at σ = 2 and varied the sample size n = 500,1000,2000,4000,8000,16,000,32,000.

Algorithm 1, implemented in R package [name hidden], was applied to each simulated dataset.
For comparison, we also ran the PC algorithm and the (nominal) cBN. For the PC algorithm, we used
a more recent version (Colombo et al., 2014) implemented as “pc.stable()” in the R package bnlearn
with the Jonckheere-Terpstra test designed for ordinal data and the type I error controlled at 1%. For the
cBN, we used the BIC scoring criterion and the hill-climbing search algorithm with 10 random starts.
cBN is also available in the package bnlearn implemented as “hc()”.

As an error measure, we computed the structural hamming distance (SHD) between the estimated
graph and the simulation true DAG, which is the number of edge additions, deletions, or reversals
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Figure 3. Simulation true (a) DAG and (b) CPDAG. The (blue) bidirected edges in (b) are edges that can be oriented in either direction

in the Markov equivalence class represented by the CPDAG.

Figure 4. Simulated survey data with ten 5-point Likert scale questions. Panel (a): Sample size n = 500 and signal strength varies from

0.25 to 2. Panel (b): Signal strength σ = 2 and sample size varies from 500 to 32,000. In both panels, dotted lines indicate the irreducible

error (SHD = 4) for an oracle cBN.

Figure 5. Simulated survey data with varying number of 5-point Likert scale questions q = 10,20,30,40,50. The sample size is fixed

at n = 500 and the signal strength is fixed at σ = 2. Left panel: The SHD is normalized by dividing the raw SHD by the total number of

edges in a complete DAG (i.e.,
q(q−1)

2
). Right panel: CPU time of oBN in seconds tested on a 2.9 GHz 6-Core Intel Core i9 CPU.
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Table 1. Sensitivity to the choice of link functions. The average (standard error)

SHD is reported

Probit Logistic Negative log-log Complementary log-log

0.26 (0.06) 0.30 (0.07) 0.32 (0.07) 0.28 (0.06)

required to transform one graph to the other. Note that since cBN and PC can only identify CPDAG
(i.e., equivalence classes), the smallest SHD that they can achieve is 4 (the number of bidirected edges in
Figure 3b). This error cannot be further reduced for cBN and PC even with an infinite amount of data.

The SHD averaged over 50 repeat simulations are reported as functions of signal strength σ
(Figure 4a) and sample size n (Figure 4b). Several conclusions can be made. First, because oBN is a
fully identifiable model, its SHD quickly approached 0 as signal became stronger; such trend was not
observed for cBN and PC. Second, oBN consistently outperformed cBN and PC across all signal levels
and sample sizes, which stresses the importance of accounting for the ordinal nature of questionnaire
data for causal discovery, which had been overlooked in the literature. Third, when the sample size was
moderate (n = 500), the performance of cBN and PC did not improve as the signal strength increased
whereas when the signal was strong σ = 2, their performance improved as sample size grew. Eventually,
they might reach the irreducible error (SHD = 4 in this example) but that would require a huge amount
of data and they cannot do better even with an infinite amount of data. The size of the irreducible error
depends on the true data-generating DAG, which could be as large as the total number of edges, which
is super-exponential in the number q of variables. Fourth, for a large enough sample, oBN perfectly
recovered the true DAG, empirically verifying our asymptotic theory.

In summary, our simulation studies suggest that it is advantageous to exploit the ordinal nature of
survey questionnaire data for causal discovery. Considering oBN is conceptually similar to cBN but
with better theoretical and empirical properties for causal discovery, we hope to see a wider adoption
of oBNs in social and behavior sciences. In the following, we conducted additional simulations to test
the scalability and sensitivity of our method.

Scalability. We varied the number of variables q = 10,20,30,40,50 while keeping the sample size
at n = 500 and the signal strength at σ = 2. The data generation process was the same as before.
The (normalized) SHD and the CPU time on a 2.9 GHz 6-Core Intel Core i9 CPU averaged over
50 repeat simulations are reported as functions of q (Figure 5). As expected, the performance for all
methods deteriorated as q increased but the proposed oBN still outperformed both cBN and PC, and
the computation of oBN scaled reasonably well with q.

Sensitivity to link functions. We fitted the proposed model to the data that we simulated earlier (with
sample size n = 500, number of variables q = 10, signal strength σ = 1, and the probit link function) using
probit, logistic, negative log-log, and complementary log-log link functions. The average SHD between
the estimated and true graphs based on 50 repeat simulations is reported in Table 1, which shows our
model is relatively robust – the SHDs are well within two standard errors from each other.

5. Demonstration: OCD-depression data analyses

To further demonstrate oBN, we analyzed the dataset from a psychological study of the functional
relationships between the symptoms of obsessive-compulsive disorder (OCD) and depression
(McNally et al., 2017). The dataset consists of n = 408 participants’ responses to 10 five-point questions
from the Yale-Brown Obsessive-Compulsive Scale via Self-Report (Steketee et al., 1996) measuring the
OCD symptoms and 16 four-point questions from the Quick Inventory of Depressive Symptomatology
via Self-Report (Rush et al., 2003, QIDS-SR) measuring the depression symptoms. Following Luo et al.
(2021), we merged the questions about “decreased appetite” and “increased appetite”, and the questions
about “weight loss” and “weight gain” in QIDS-SR since they measure the same depression symptoms.
The resulting number of ordinal variables is q = 24.
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Figure 6. BIC as a function of iteration on the OCD-Depression data.

Algorithm 3 was applied to the dataset with R = 10 random initial DAGs and B = 500 bootstrap
samples. For an illustration of the guaranteed convergence, we plot the BIC as a function of iteration in
one run of our algorithm in Figure 6, which converged at the 37th iteration.

We also explored a more scalable version of oBN, a two-step hybrid algorithm. Particularly, we first
ran the PC algorithm to obtain a CPDAG, and then, for any pair of nodes with an undetermined edge
(i.e., the edge can be oriented in either direction), we ran the bivariate version of oBN to determine its
direction; the pseudocode is presented in Algorithm 4.

Algorithm 4 PC+oBN: G = PC-oBN(x)
Input: data x
Run PC algorithm on x and obtain a CPDAG G̃
for each pair (j,k) with an undetermined edge in G̃ do

Run Algorithm 1 on the subset of data restricted to (Xj,Xk) and orient the edge according to the
output

end for
Output: estimated DAG G

In Figure 7, we plot the estimated DAG from oBN with edge width proportional to the inclusion
probability; also see the list of all the significant edges (i.e., Pij > 0.5) ranked by their inclusion
probabilities in Table 2. For brevity, we have adopted the same abbreviation of the symptoms as in
McNally et al. (2017). Comparing to the estimated network by PC+oBN (Figure 8), all the undetermined
edges from the PC algorithm (Figure 9) were oriented consistently between oBN and PC+oBN. For
comparison, we also applied the PC algorithm with the Jonckheere-Terpstra test, the cBN with BIC and
hill-climbing, and the ordinal structural equation model (Luo et al., 2021, OSEM) with the caveat that
we do not know the underlying true causal relationships. Their results are reported in Figures 9-11.
Some interesting observations can be made.

Common to all the methods, the symptoms of OCD and the symptoms of depression were found
to be largely separated meaning that most of the symptoms of OCD do not directly cause most of the
symptoms of depression, and vice versa. This is perhaps not surprising given that OCD and depression
are different psychological disorders. oBN, cBN, and OSEM did simultaneously find one bridge causal
link between OCD (obdistress) and depression (sad). The existence of a bridge causal link is plausible
because many studies have suggested that more than one third of OCD patients have concurrent
depression (Abramowitz, 2004; Hong et al., 2004; Nestadt et al., 2001). cBN and OSEM, due to their
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Figure 7. Estimated OCD-Depression networks using oBN with 500 bootstrap samples. The edge width is proportional to its probability.

Nodes within the box are the ten OCD-related variables.

non-identifiability, could not determine the direction of that causal link whereas oBN identified it to be
obdistress →sad. This again seems to agree with existing studies that OCD symptoms often precede
depression in individuals who suffer from both disorders (Anholt et al., 2011; Meyer et al., 2014;
Zandberg et al., 2015). Our finding suggests that controlling distress caused by obsession may help
alleviate or prevent depression symptoms.

Within the symptoms of OCD, on the one hand, the links among obsessive symptoms and the links
among compulsive symptoms are the links that tend to have the highest probabilities, e.g., obinterfer
→obdistress (0.846), obdistress →obtime (0.98), and compinterf →comptime (0.79). This matches the
hypothesized two dimensions of obsession and compulsion in theoretical models (de Wildt et al., 2005).
On the other hand, there also exist significant links from compulsion symptoms to their obsession
counterparts, including compinterf →obinterfer, comptime→obtime, and compresis→obresist, which are
qualitatively consistent with previous network analyses (Carbonella, 2018; Cervin et al., 2020), although
their network models are undirected/non-causal. According to our results, one can potentially suppress
obsession symptoms by suppressing the corresponding compulsion symptoms but not vice versa.

Within the symptoms of depression, the link between sad and suicide was found by all the methods
but only oBN and PC+oBN were able to determine its direction sad →suicide (inclusion probability
= 0.914 for oBN). It is well-known that persistent feeling of sadness is a major risk factor for suicide
(Angst et al., 1999; Brådvik, 2018). Another expected link was appetite →weight, of which the direction
was again only identified by oBN and PC+oBN.
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Table 2. OCD-Depression data. A list of significant

edges identified by oBN ranked by inclusion probabil-

ities

Significant edge Probability

Obdistress → Obtime 0.98

Middle → Onset 0.972

Compinterf → Obinterfer 0.946

Sad → Suicide 0.914

Concen → Retard 0.898

Middle → Late 0.862

Obinterfer → Obdistress 0.846

Compinterf → Comptime 0.79

Fatigue → Hypersom 0.758

Comptime → Obtime 0.756

Sad → Anhedonia 0.748

Sad → Guilt 0.722

Fatigue → Retard 0.716

Obcontrol → Obresist 0.67

Compresis → Obresist 0.636

Compinterf → Compcont 0.624

Appetite → Weight 0.596

Late → Hypersom 0.588

Anhedonia → Fatigue 0.58

Compinterf → Compdis 0.554

Obdistress → Obcontrol 0.53

Obcontrol → Compcont 0.53

Fatigue → Concen 0.528

Compdis → Comptime 0.524

Obdistress → Sad 0.514

Concen → Agitation 0.508

Compcont → Compresis 0.504

In summary, although the ground truth is not available, our data analyses, in our opinion, support
the usefulness of oBN for generating plausible psychological hypotheses in practice.

6. Discussion

We have demonstrated the functionality of oBNs as a useful alternative to the potential outcome
framework and SEMs for analyzing survey questionnaire data. oBNs can provide an unbiased causal
view of a complex system without any prior structural knowledge. Moreover, unlike other existing BNs
for categorical data, oBNs are fully identifiable with observational data alone.
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Figure 8. Estimated OCD-Depression networks using PC+oBN. Nodes within the box are the ten OCD-related variables.

Figure 9. Estimated OCD-Depression networks using PC. The (blue) bidirected edges are edges of which the directionality is undeter-

mined. Nodes within the box are the ten OCD-related variables.
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Figure 10. Estimated OCD-Depression networks using cBN with BIC and hill-climbing. The (blue) bidirected edges are edges of which

the directionality is undetermined. Nodes within the box are the ten OCD-related variables.

Note that both cBN and oBN utilize the BIC score. Therefore, the difference between cBN and
oBN lies in the likelihood function and the model complexity. For oBN, the likelihood function is
specified by ordinal regression whereas for the cBN, it is specified by multinomial distribution. The
model complexity is different between the two methods, KoBN =∑j∈V(Lj−1+∑k∈pa(j)(Lk−1)) for oBN
and KcBN =∑j∈V(Lj−1)∏k∈pa(j)Lk for cBN.

There also exist copula-based methods (Castelletti, 2024; Cui et al., 2016), which are quite flexible
in incorporating different types of data including ordinal data. While the estimation procedures are all
very different from each other, the main theoretical difference between the proposed oBN model and
the copula-based methods is three-fold:

1. The learned causality or conditional independence is on the observed variable level for the
proposed oBN model and is on the latent variable level for the copula-based methods. For discrete
variables, the latter is not equivalent to the former.

2. For mixed data, the proposed oBN model needs to discretize the count/continuous data whereas
copula-based methods do not need to because of the latent continuous variable representation.

3. The proposed oBN is uniquely identifiable whereas the copula-based methods are only identifi-
able up to the Markov equivalence class.

The proposed causal structure learning algorithms based on hill-climbing and bootstrapping worked
quite well in simulation studies and also generated some plausible causal hypotheses in the real data.
Although this paper focuses on causal structure learning, the discovered DAG structure can be used
to determine the causal effects. Following Castelletti et al. (2023), we define the causal effect of Xk on
Xj at level Xj = y and Xk = x using Xk = 1 as the reference level for j,k ∈ V , j ≠ k, y ∈ {1, . . . ,Lj}, and
x ∈ {2, . . . ,Lk}as,
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Figure 11. Estimated OCD-Depression networks using OSEM. The (blue) bidirected edges are edges of which the directionality is

undetermined. Nodes within the box are the ten OCD-related variables.

cj,k(y,x) = P(Xj = y∣do(Xk = x))−P(Xj = y∣do(Xk = 1))
= ∑

z∈Xk

P(Xj = y∣Xk = x,Xpa(k) = z)P(Xpa(k) = z)

− ∑
z∈Xk

P(Xj = y∣Xk = 1,Xpa(k) = z)P(Xpa(k) = z),

where Xk = ⨉h∈pa(k){1, . . . ,Lh}. Given the estimated DAG and model parameters, the condi-
tional/marginal probabilities needed to compute the causal effect can be calculated using the sum-
product message passing algorithm (Koller & Friedman, 2009, Chapter 10).

We hope we have convinced researchers to start using oBNs instead of cBNs or PC for ordinal
questionnaire data. There are, of course, limitations of oBNs. First, feedbacks are not allowed in BNs.
This may partially explain the inconsistency of some of the causal directions (e.g., the link between
fatigue and hypersom) across the methods in the OCD-Depression data analyses. To infer feedbacks,
directed cyclic graphical models may be used. However, we are not aware of the existence of such model
for categorical data. Second, the learning algorithm has no guarantee for global convergence. Although
Algorithm 2 with multiple random initializations can help mitigate this issue, a more principled
solution would be via Bayesian causal structure learning algorithms (Choi et al., 2020), which have
theoretical convergence guarantees. We leave it as future work since the proposed algorithms in this
paper already showed empirically favorable performance compared to alternative methods. Third, the
identifiability theory of Ni and Mallick (2022) requires the causal sufficiency assumption, i.e., there is
no unmeasured confounder, of which the validity is difficult to check in practice. Fortunately, their
sensitivity analyses provide some assurance that oBN is reasonably robust with respect to the presence
of unmeasured confounders. Fourth, oBNs are exploratory, not confirmatory. To confirm the causal

https://doi.org/10.1017/psy.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.11


20 Ni et al.

hypotheses generated from oBNs, one has to, ultimately, resort to clinical interventions, which is beyond
the scope of this paper.
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