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Chebyshev’s bias in function fields

Byungchul Cha

Abstract

We study a function field analog of Chebyshev’s bias. Our results, as well as their proofs,
are similar to those of Rubinstein and Sarnak in the case of the rational number field.
Following Rubinstein and Sarnak, we introduce the grand simplicity hypothesis (GSH),
a certain hypothesis on the inverse zeros of Dirichlet L-series of a polynomial ring over a
finite field. Under this hypothesis, we investigate how primes, that is, irreducible monic
polynomials in a polynomial ring over a finite field, are distributed in a given set of residue
classes modulo a fixed monic polynomial. In particular, we prove under the GSH that,
like the number field case, primes are biased toward quadratic nonresidues. Unlike the
number field case, the GSH can be proved to hold in some cases and can be violated in
some other cases. Also, under the GSH, we give the necessary and sufficient conditions
for which primes are unbiased and describe certain central limit behaviors as the degree
of modulus under consideration tends to infinity, all of which have been established in the
number field case by Rubinstein and Sarnak.

1. Introduction

Chebyshev’s bias is a term referring to the phenomenon, first observed by Chebyshev [Che53] in
1853, that the prime quadratic nonresidues of a given modulus predominate over the prime quadratic
residues, in other words, primes are biased toward quadratic nonresidues. This and its various
generalizations have been extensively studied by many authors. In 1994, Rubinstein and Sarnak
in [RS94] made many important contributions to this area. Among other results, they were able
to justify, under certain very plausible hypotheses, the existence of the bias, and assign numerical
values to it. For more details and other related results, the readers are referred to the original paper
of Rubinstein and Sarnak and to an excellent survey paper [GM06] of Granville and Martin.

In this article, we study the analog of Chebyshev’s bias in a rational function field setting. Our
results exhibit a strong resemblance to those in [RS94], and our proofs are obtained by closely
following the strategies in [RS94]. To describe our results in more details, we fix a prime p > 2
and a finite field F with q elements, where q is a power of p. Let m be a monic polynomial in the
polynomial ring F[T ] over F. For any positive integer N and an element a in F[T ] prime to m, we
let π(N) and π(a,m,N) be the prime counting functions defined by

π(N) := #{P | deg(P ) = N},
and

π(a,m,N) := #{P | P ≡ a mod m,deg(P ) = N},
where the letter P denotes an irreducible and monic polynomial in F[T ]. Define Em;a(X), for a
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positive integer X, by

Em;a(X) :=
X

qX/2

X∑
N=1

(Φ(m)π(a,m,N) − π(N)),

where Φ(m) := #(F[T ]/m)∗ is the Euler phi function. The function Em;a(X) can be thought as
describing how much more (or less) primes there are in the residue class of a than its fair share.
The explicit formula of Em;a(X) is obtained by analyzing the coefficients of the power series of
the logarithmic derivative of a Dirichlet L-function L(s, χ) for all Dirichlet characters modulo m.
In the function field case, if χ �= χ0, the principal Dirichlet character, then L(s, χ) is a polynomial
in q−s and we denote its degree by d(χ). So, we can write

L(s, χ) =
d(χ)∏
ν=1

(1 − α(χ, ν)q−s),

for some complex numbers α(χ, ν), which we call inverse zeros associated to χ. The absolute values
of inverse zeros are either 1 or

√
q by a result of Weil, the function field version of the Riemann

hypothesis for curves. If we denote by γχ =
√

qeiθ(χ) any inverse zero whose absolute value is
√

q,
then the explicit formula of Em;a(X) is given by

Em;a(X) = −c(m,a)Bq(X) −
∑

χ �=χ0

χ̄(a)
∑
γχ

eiθ(γχ)X γχ

γχ − 1
+ o(1), (1)

as X → ∞. (See Theorem 2.5.) Here, the number c(m,a) is defined, as in [RS94], by

c(m,a) := −1 +
∑

b2≡a mod m
b∈(F[T ]/m)∗

1,

and the function Bq(X) is defined by

Bq(X) :=

{√
q/(q − 1) if X is odd,

q/(q − 1) if X is even.

The term −c(m,a)Bq(X) in the formula (1) is the source of the bias. The similarity between the
formula (1) and its number field counterpart (2.5) in [RS94] is the reason why we can prove the func-
tion field versions of many results in [RS94] by adapting the arguments of Rubinstein and Sarnak
appropriately. From (1), we prove in Theorem 3.2 the existence of a certain limiting distribution µ
that is constructed from Em;a1(X), . . . , Em;ar (X), for a1, . . . , ar in F[T ] representing distinct classes
in (F[T ]/m)∗. Understanding the measure µ, as in [RS94], holds the key to analyzing the bias.

We define a function field version of grand simplicity hypothesis (GSH). To do so, we first fix a
set I of non-principal Dirichlet characters modulo m which is closed under complex conjugation. In
this paper, I will be always either the set of all non-principal characters or, when m is irreducible,
the singleton consisting of the non-principal real quadratic character modulo m. We say that the
GSH is satisfied for I if the set

{θ(χ) | γχ =
√

qeiθ(χ) is an inverse zero for some χ ∈ I, 0 � θ(χ) � π} ∪ {2π}
is linearly independent over Q. As in the work of Rubinstein and Sarnak, under the GSH for all
non-principal characters, we find a product formula (Theorem 3.4) of the Fourier transformation
of µ. From this, we can deduce that, if we define Pm;a1,...,ar to be the set of all positive integers X
with

X∑
N=1

π(a1,m,N) >

X∑
N=1

π(a2,m,N) > · · · >

X∑
N=1

π(ar,m,N),
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then the limit

δ(Pm;a1 ,...,ar) := lim
X→∞

#(Pm;a1,...,ar ∩ {1, 2, . . . ,X})
X

is equal to µ({x1 > · · · > xr} ⊂ Rr), hence always exists. Note that the use of logarithmic density
in [RS94] is now replaced by the use of the natural density in the function field setting.

In § 4, we focus on the non-principal real quadratic character χquad modulo an irreducible m.
From this, we obtain an asymptotic formula (Theorem 4.3) for a function counting the number of
prime quadratic residues minus that of prime quadratic nonresidues, similar to (1). This formula is
proved using a slightly different method to that of (1). Define a(N) and b(N) to be the number of
prime quadratic residues of degree N , and the number of prime quadratic nonresidues of degree N ,
respectively. Let Pm;R,N be the set of all positive integers X with

X∑
N=1

a(N) >

X∑
N=1

b(N).

Under the GSH for the set {χquad}, we establish the fact that

δ(Pm;R,N) := lim
X→∞

#(Pm;R,N ∩ {1, 2, . . . ,X})
X

exists and δ(Pm;R,N) < 1/2. As an easy application of this, we also prove that more primes of an
affine line split on a double covering of an irreducible plane curve than remain inert.

Unlike the number field case, there are some examples where the GSH does not hold. We give
three examples in § 5 where the GSH is violated and the bias is toward quadratic residues, toward
nonresidues, and nonexistent. Also, it is possible to confirm the GSH in certain cases, thanks to
a recent result [Cal06] of Calcut. The verification of GSH is considered to be difficult for number
fields. When deg(m) � 4 and when GSH is confirmed to hold, our example indicates how we can
calculate δ(Pm;R,N) from the inverse zeros associated to χquad.

The last section § 6 is devoted to proving, under the GSH, the analogs of Theorems 1.4, 1.6 and
1.5 of [RS94]. The first analog is Theorem 6.1 in the present paper, which gives the necessary
and sufficient conditions for the density function of µ to remain unchanged under permutations of
(x1, . . . , xr). The second and third describe certain central limit behaviors. When m is irreducible,
we show in Theorem 6.2 that

δ(Pm;R,N) → 1
2

as the degree of m goes to infinity, that is, the bias toward nonsquares disappears. Finally, we prove
Theorem 6.5, which asserts that, now allowing m to be an arbitrary monic element in F[T ],

max
a1,...,ar∈(F[T ]/m)∗

∣∣∣∣δ(Pm;a1 ,...,ar) −
1
r!

∣∣∣∣ → 0,

as the degree of m tends to infinity. The proofs of all three theorems in this section are either similar
to the corresponding proofs in [RS94], or different but easier. We give most of the details on how
one can adapt the arguments of Rubinstein and Sarnak to the function field setting.

2. The asymptotic formula

We fix the following data:

• p, a prime number > 2;
• F = Fq, the finite field with q elements where q is a p-power;
• m, a monic polynomial in F[T ] whose degree is at least two;
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• M , the degree of m;

• Φ(m), the number #(F[T ]/m)∗ of nonzero residue classes modulo m;

• a, an element of F[T ] prime to m.

Throughout this paper, the letter P will always denote an irreducible monic polynomial in F[T ].
For any positive integer N , we define π(N) and π(a,m,N) by

π(N) := #{P | deg(P ) = N}

and

π(a,m,N) := #{P | P ≡ a mod m,deg(P ) = N}.
It is known [Ros02] that

π(N) =
qN

N
+ O(qN/2/N), (2)

and

π(a,m,N) =
1

Φ(m)
· qN

N
+ O(qN/2/N). (3)

For a positive integer X, we define Em;a(X) by

Em;a(X) :=
X

qX/2

X∑
N=1

(Φ(m)π(a,m,N) − π(N)). (4)

The purpose of this section is to find an asymptotic formula of Em;a(X) as X → ∞.

For a Dirichlet character χ modulo m, the Dirichlet L-series is defined by

L(s, χ) =
∑

f∈F[T ]
f monic

χ(f)
|f |s . (5)

Recall, by definition, |f | := qdeg(f). It is convenient to introduce the change of variable u := q−s.
We write L(u, χ) := L(s, χ).

We will estimate Φ(m)π(a,m,N) − π(N) in Proposition 2.1 by calculating the coefficients of
the power series of

∑
χ χ̄(a)u(d/du) log L(u, χ) for all Dirichlet characters χ modulo m, as outlined

in [Ros02]. For each character χ, define the numbers cN (χ) by the equation

u
d

du
logL(u, χ) =

∞∑
N=1

cN (χ)uN .

From the Euler product L(s, χ) =
∏

P �m(1 − χ(P )|P |−s)−1, we have

L(u, χ) =
∞∏

d=1

∏
P �m

deg(P )=d

(1 − χ(P )ud)−1. (6)
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Hence,

u
d

du
logL(u, χ) = u

d

du

∞∑
d=1

∑
P �m

deg(P )=d

log(1 − χ(P )ud)−1

=
∞∑

d=1

∞∑
k=1

∑
P �m

deg(P )=d

dχ(P k)udk

=
∞∑

N=1

(∑
d|N

d
∑
P �m

deg(P )=d

χ(PN/d)
)

uN .

From this, we obtain

cN (χ) =
∑
d|N

d
∑
P �m

deg(P )=d

χ(PN/d). (7)

By summing over all Dirichlet characters χ modulo m,∑
χ

χ̄(a)cN (χ) =
∑
d|N

d
∑
P �m

deg(P )=d

∑
χ

χ̄(a)χ(PN/d). (8)

To simplify this summation, we introduce another notation π(a,m, d, k), which is defined as

π(a,m, d, k) := #{P | P k ≡ a mod m,deg(P ) = d},
for any positive integers k and d. From this definition it immediately follows that

π(a,m, d, 1) = π(a,m, d). (9)

To simplify π(a,m, d, 2), following [RS94], we define

c(m,a) := −1 +
∑

b2≡a mod m
b∈(F[T ]/m)∗

1. (10)

If m is irreducible, then c(m,a) is just the non-principal real quadratic character mod m. In general,
c(m,a) + 1 is the number of square roots of a in (F[T ]/m)∗. So, from (3),

π(a,m, d, 2) =
c(m,a) + 1

Φ(m)
· qd

d
+ O(qd/2/d). (11)

For an arbitrary k, we have the estimation

π(a,m, d, k) � π(d) = O(qd/d) (12)

from (2).
Now we continue to estimate the summation in (8) using (9), (11), and (12), as well as the

orthogonality of Dirichlet characters (see, for example, [Ros02, Proposition 4.2]). By the definition
of π(a,m, d, k) and the orthogonality, we have∑

χ

χ̄(a)cN (χ) =
∑
d|N

d
∑
P �m

deg(P )=d

∑
χ

χ̄(a)χ(PN/d)

=
∑
d|N

dΦ(m)π(a,m, d,N/d).
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We separate out the terms for d = N and d = N/2 (which exists only when N is even) from above.
By (9), the term for d = N is NΦ(m)π(a,m,N). In addition, (11) implies that the term for d = N/2
is equal to

N

2
Φ(m)

(
c(m,a) + 1

Φ(m)
· qN/2

N/2
+ O(qN/4/N)

)
= (c(m,a) + 1)qN/2 + O(qN/4),

provided that N is even. If N is odd, then the d = N/2 term is zero. The sum of the terms with
d < N/2 is O(qN/3) from (12). Therefore, we proved that, for even N ,∑

χ

χ̄(a)cN (χ) = NΦ(m)π(a,m,N) + (c(m,a) + 1)qN/2 + O(qN/3) (13)

and, if N is odd, ∑
χ

χ̄(a)cN (χ) = NΦ(m)π(a,m,N) + O(qN/3). (14)

Now, we give another estimate of
∑

χ χ̄(a)cN (χ). First, assume that χ is a non-principal Dirichlet
character mod m, and let d(χ) be the degree of L(u, χ) as a polynomial in u. Then we can write

L(u, χ) =
d(χ)∏
ν=1

(1 − α(χ, ν)u) (15)

for some complex numbers α(χ, ν) whose absolute values are either
√

q or 1 (see Proposition 6.4).
We call α(χ, ν) an inverse zero of L(u, χ). It is straightforward to apply u(d/du) log to (15) to
obtain

u
d

du
logL(u, χ) = −

∞∑
N=1

d(χ)∑
ν=1

α(χ, ν)NuN .

So, for a non-principal character χ, we obtain

cN (χ) = −
d(χ)∑
ν=1

α(χ, ν)N . (16)

Let χ0 be the principal Dirichlet character modulo m. It is not hard to show that (see [Ros02,
§ 4])

L(u, χ0) =

∏
P |m(1 − udeg(P ))

1 − qu
,

from which we can deduce

cN (χ0) = qN + O(1). (17)

It is possible to calculate the O(1)-term explicitly. For example, if m is irreducible, then this term
is −M or 0, if M divides N or not, respectively. For our purpose, though, it is sufficient to say that
it is bounded. Summing up, we have proved

∑
χ

χ̄(a)cN (χ) = −
∑

χ �=χ0

χ̄(a)
d(χ)∑
ν=1

α(χ, ν)N + qN + O(1). (18)

Proposition 2.1. Define B(a,m,N) by

B(a,m,N) :=

{
0 if N is odd,

c(m,a) if N is even.
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Then, we have

N(Φ(m)π(a,m,N) − π(N)) = −B(a,m,N)qN/2 −
∑

χ �=χ0

χ̄(a)
d(χ)∑
ν=1

α(χ, ν)N + O(qN/3).

Proof. From a formula [Ros02, p. 13],

π(N) =
1
N

∑
d|N

qN/dµ(d),

where µ(d) is the Möbius function. As we will need all terms to be of size qN/2 or larger, we write
this as

π(N) =

{
(qN − qN/2)/N + O(qN/3/N) if N is even,
qN/N + O(qN/3/N) if N is odd.

(19)

If N is odd, we use (14), (18) and (19) to obtain

N(Φ(m)π(a,m,N) − π(N)) =
∑
χ

χ̄(a)cN (χ) − qN + O(qN/3)

= −
∑

χ �=χ0

χ̄(a)
d(χ)∑
ν=1

α(χ, ν)N + O(qN/3).

The case for even N is similar, except that there will be a qN/2-term. An easy calculation, using (13),
(18) and (19), verifies that the qN/2-term in N(Φ(m)π(a,m,N)−π(N)) is −c(m,a)qN/2. This finishes
the proof.

Lemma 2.2. For any complex number β with |β| > 1,

lim
n→∞

n

βn

( n∑
i=1

βi

i

)
=

β

β − 1
.

Proof. Let h(n) := βn and f(x) := 1/x. Also, let H(x) :=
∑

n�x h(n). Then, clearly,

H(x) = β · β[x] − 1
β − 1

.

To calculate
∑n

i=1 βi/i we apply Abel’s identity (see [Apo76, Theorem 4.2]), which gives∑
n�x

h(n)f(n) = H(x)f(x) −
∫ x

1
H(t)f ′(t) dt.

Therefore,

N

βN

N∑
n=1

βn

n
=

β − β1−N

β − 1
+

N

βN
· β ·

∫ N

1

β[t] − 1
β − 1

1
t2

dt,

and it remains to show that the second term on the right-hand side above tends to zero as N → ∞.
Since

∫ ∞
1 (1/t2) dt < ∞ and |β[t]| � |β|t, it is sufficient to prove that

N

βN

∫ N

1

|β|t
t2

dt → 0

as N → ∞. Using integration by parts,

N

βN

∫ N

1

|β|t
t2

dt =
N

βN

1
log |β|

( |β|N
N2

− |β|
12

)
− N

βN

1
log |β|

∫ N

1
(−2)

|β|t
t3

dt.
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The first term is easily seen to tend to zero as N → ∞, and, again, we only need to show

N

βN

∫ N

1

|β|t
t3

dt → 0.

To do so, ∫ N

1

|β|t
t3

dt =
∫ N/2

1

|β|t
t3

dt +
∫ N

N/2

|β|t
t3

dt

�
∫ N/2

1

|β|N/2

t3
dt +

∫ N

N/2

|β|N
t3

dt

� k · |β|N/2 + |β|N ·
(−2

N2
− (−2)

(N/2)2

)

for a constant k. We multiply N/βN on both sides of this inequality, and this completes the proof.

Corollary 2.3. Define B(N) by

B(N) =

{
0 if N is odd,

1 if N is even.

Then

X

qX/2

X∑
N=1

B(N)
qN/2

N
=

{√
q/(q − 1) + o(1) if X is odd,

q/(q − 1) + o(1) if X is even.

Proof. Suppose that X is even, X = 2X ′. Since B(N) is zero for all odd N we have that

X

qX/2

X∑
N=1

B(N)
qN/2

N
=

2X ′

qX′

X′∑
n=1

qn

2n

=
q

q − 1
+ o(1),

where the last equality is from Lemma 2.2. This proves the even X case.
For an odd X = 2X ′ + 1, we proceed similarly:

X

qX/2

X∑
N=1

B(N)
qN/2

N
=

1√
q

2X ′ + 1
qX′

X′∑
n=1

qn

2n

=
√

q

q − 1
+ o(1),

again, by Lemma 2.2.

Corollary 2.4. Let γ be a complex number with absolute value
√

q and argument θ, that is,
γ =

√
qeiθ. Then

X

qX/2

X∑
N=1

γN

N
= eiθX γ

γ − 1
+ o(1).

Proof. The is straightforward from Lemma 2.2, because

X

qX/2

X∑
N=1

γN

N
= eiθX X

γX

X∑
N=1

γN

N
= eiθX γ

γ − 1
+ o(1).

We need to make a few notational conventions which will be used throughout this paper. When
χ is a non-principal Dirichlet character, the letter γχ will denote an inverse zero of L(u, χ) whose
absolute value is

√
q. Also, θ(γχ) is defined to be the argument of γχ, so that γχ =

√
q eiθ(γχ).
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Theorem 2.5. Define

Bq(X) :=

{√
q/(q − 1) if X is odd,

q/(q − 1) if X is even.

Then

Em;a(X) = −c(m,a)Bq(X) −
∑
χ �=χ0

χ̄(a)
∑
γχ

eiθ(γχ)X γχ

γχ − 1
+ o(1).

Proof. In view of Proposition 2.1, it will be sufficient to estimate the following three sums:

X

qX/2

X∑
N=1

B(a,m,N)
qN/2

N
,

X

qX/2

X∑
N=1

χ̄(a)α(χ, ν)N

N
,

X

qX/2

X∑
N=1

O(qN/3)
N

. (20)

The third is o(1) because

X

qX/2

X∑
N=1

O(qN/3)
N

=
X

qX/2
O(XqX/3) = o(1).

Corollary 2.3 says that the first sum above is equal to −c(m,a)Bq(X) + o(1). Finally, it remains
to estimate the second sum in (20). When |α(χ, ν)| = 1, the second sum in (20) is clearly o(1). If
|α(χ, ν)| =

√
q, then we write α(χ, ν) = γχ =

√
q eiθ(γχ). From Corollary 2.4, we obtain

X

qX/2

X∑
N=1

χ̄(a)α(χ, ν)N

N
=

X

qX/2

X∑
N=1

χ̄(a)γN
χ

N
= χ̄(a)eiθ(γχ)X γχ

γχ − 1
+ o(1).

Combining all of the above, the theorem is proved.

3. Limiting distribution and the GSH

Let a1, . . . , ar be elements of F[T ] prime to m, representing distinct residue classes modulo m. Define
the vector-valued function

Em;a1,...,ar(X) := (Em; a1(X), . . . , Em;ar (X)).

Owing to the similarity between our function Em;a(X) (Theorem 2.5) and that of Rubinstein and
Sarnak in (2.5) of [RS94], we can closely follow the argument in [RS94] to prove the existence of a
limiting distribution defined by Em;a1,...,ar(X), which is the main goal of this section. The fact that
there are only finitely many inverse zeros of the L-series makes our proof simpler than Rubinstein
and Sarnak’s.

Define
E(T )(X) := (E(T )

1 (X), . . . , E(T )
r (X))

where
E

(T )
l (X) := −c(m,al)Bq(X) −

∑
χ �=χ0

χ̄(al)
∑
γχ

eiθ(γχ)X γχ

γχ − 1
(21)

for l = 1, . . . , r, and ε∗(X) := (Em;a1(X) − E
(T )
1 (X), . . . , Em;ar(X) − E

(T )
r (X)). By Theorem 2.5,

|ε∗(X)| = o(1).

Lemma 3.1. For any continuous bounded function f on Rr, the limit

lim
N→∞

1
N

N∑
X=1

f(E(T )(X))

exists.
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Proof. During the proof of this lemma, we let k be the number of all of the inverse zeros {γχ}χ �=χ0

with 
(γχ) � 0. We enumerate all such inverse zeros as γ1, . . . , γk, and the corresponding arguments
as θ1, . . . , θk. After this enumeration, we let χj denote the character to which γj belongs for each
j = 1, . . . , k.

Define b0, b1, . . . , bk ∈ Cr by

b0 := −(c(m,a1), . . . , c(m,ar)),

and

bj := −
(

χ̄j(a1)
γj

γj − 1
, . . . , χ̄j(ar)

γj

γj − 1

)
,

for j = 1, . . . , k. Also, define a function g on Rk+1 by

g(x) = g(x0, x1, . . . , xk) := f

(
b0

q(3+cos(2πx0))/4

q − 1
+ 2

k∑
j=1

�(bje
2πixj)

)
.

Then g gives rise to a continuous function on Rk+1/Zk+1 and clearly

f(E(T )(X)) = g

(
X

2
,
θ1X

2π
, . . . ,

θkX

2π

)
.

Let

Γ :=
{(

X

2
,
θ1X

2π
, . . . ,

θkX

2π

)
∈ Rk+1/Zk+1

∣∣∣∣ X = 1, 2, 3, . . .
}

. (22)

Then, by Kronecker–Weyl theorem, Γ is equidistributed in its topological closure Γ̄, and we have

lim
N→∞

1
N

N∑
X=1

f(E(T )(X)) =
∫

Γ̄
g(x) dx, (23)

where dx is the normalized Haar measure on Γ̄.

Theorem 3.2. There exists a probability measure µ = µm;a1,...,ar on Borel sets in Rr such that

µ(f) = lim
N→∞

1
N

N∑
X=1

f(Em;a1,...,ar(X)),

for all bounded continuous function f on Rr.

Proof. During the proof of this theorem, we abbreviate Em;a1,...,ar(X) to E(X). Let mN be
the probability measure on the set {1, . . . , N} with mN ({1}) = · · · = mN ({N}) = 1/N , and
νN be the probability measure on Rr given by

νN := mNE(T )−1
.

Then we have

νN (f) =
∫
Rr

f dνN =
1
N

N∑
X=1

f(E(T )(X))

for any function f on Rr. Note that E(T )(X) is bounded. Therefore, the probability measures {νN}
are tight. From [Bil86, Theorem 25.10], there exists a sequence {Nj} and a probability measure
µ∗ such that νNj =⇒ µ∗ (that is, νNj converges weakly to µ∗) as j → ∞. Let f be a continuous
bounded function. Then, from [Bil86, Theorem 25.8] and Lemma 3.1, we obtain∫

Rr

f dµ∗ = lim
j→∞

∫
Rr

f dνNj = lim
N→∞

∫
Rr

f dνN .
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From [Bil86, Theorem 25.8] again, we conclude that νN =⇒ µ∗ as N → ∞.

Suppose, further, that f : Rr −→ R is a continuous function satisfying a Lipschitz estimate

|f(x) − f(y)| � cf |x− y|.
Then, by the definition of ε∗(X),

f(E(X)) � f(E(T )(X)) + cf |ε∗(X)| and f(E(T )(X)) � f(E(X)) + cf |ε∗(X)| (24)

for any X. Let ε > 0 be given. Since ε∗(X) = o(1), we have

1
N

N∑
X=1

|ε∗(X)| < ε (25)

for all sufficiently large N . From Lemma 3.1, (24) and (25),

µ∗(f) − ε · cf = lim
N→∞

1
N

N∑
X=1

f(E(T )(X)) − ε · cf

� lim sup
N→∞

1
N

N∑
X=1

f(E(X))

� lim
N→∞

1
N

N∑
X=1

f(E(T )(X)) + ε · cf

= µ∗(f) + ε · cf .

Therefore, we conclude that

µ∗(f) = lim
N→∞

1
N

N∑
X=1

f(E(X)) (26)

for any Lipschitz f .

Let µN := mNE−1. We have

µN (f) =
∫
Rr

f dµN =
1
N

N∑
X=1

f(E(X))

for any function f . Let µ be a (weak) limit of any subsequence of {µN}, and let f be a Lipschitz
function. Then

µ∗(f) = lim
N→∞

1
N

N∑
X=1

f(E(X)) = lim
j→∞

∫
Rr

f dµNj = µ(f).

This implies that µ∗ = µ. From the corollary to Theorem 25.10 in [Bil86], we conclude that νN =⇒ µ
as N → ∞. Theorem 25.8 in [Bil86] now finishes the proof.

Definition 3.3 (Grand Simplicity Hypothesis). Consider a set I = {χ �= χ0} of non-principal
Dirichlet characters modulo m, which is closed under complex conjugation. Then we say that I
satisfies the GSH if the set

{θ | γ =
√

qeiθ is an inverse zero of L(u, χ) for some χ ∈ I with 0 � θ � π} ∪ {2π}
is linearly independent over Q.
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Theorem 3.4. Assume that the set of all non-principal Dirichlet characters mod m satisfies the
GSH. Then, the Fourier transform µ̂ of the measure µ in Theorem 3.2 is given by

µ̂(ξ) = Bm;a1,...,ar(ξ)
∏

χ �=χ0

∏
�(γχ)>0

J0

(∣∣∣∣ 2γχ

γχ − 1

∣∣∣∣
∣∣∣∣

r∑
l=1

χ(al)ξl

∣∣∣∣
)

,

where

J0(z) =
∞∑

n=0

(−1)n(z/2)2n

(n!)2

is the Bessel function of the first kind, and

Bm;a1,...,ar(ξ) :=
1
2

(
exp

(
i

√
q

q − 1

r∑
l=1

c(m,al)ξl

)
+ exp

(
i

q

q − 1

r∑
l=1

c(m,al)ξl

))
.

Proof. We use the enumerations of inverse zeros and characters used in the proof of Lemma 3.1.
The main consequence of the GSH for us is that the Γ̄ in (22) is the union of two copies of a k-torus,
more precisely,

Γ̄ = {(0, x1, . . . , xk) ∈ Rk+1/Zk+1 | (x1, . . . , xk) ∈ Rk/Zk}
∪ {(1/2, x1, . . . , xk) ∈ Rk+1/Zk+1 | (x1, . . . , xk) ∈ Rk/Zk}.

Also, the normalized Haar measure dx on Γ̄ is simply half of the usual Lebesgue measure on each
k-torus.

Now, as in (3.1) in [RS94], using Theorem 3.2, (26) and (23)

µ̂(ξ) =
∫
Rr

eiξx dµ(x) = Bm;a1,...,ar(ξ)
k∏

j=1

µ̂j(ξ) (27)

where µj is the distribution of a typical term

−
(

χ̄j(a1)eiθjX γj

γj − 1
+ χj(a1)e−iθjX γ̄j

γ̄j − 1
, . . . , χ̄j(ar)eiθjX γj

γj − 1
+ χj(ar)e−iθjX γ̄j

γ̄j − 1

)

in (21). Writing χj(al) = uj,l + iv j,l, we obtain

−2
∣∣∣∣ γj

γj − 1

∣∣∣∣(uj,1 cos(θjX + ωj) + vj,1 sin(θjX + ωj), . . . , uj,r cos(θjX + ωj) + vj,r sin(θjX + ωj)),

where ωj is the argument of γj/(γj − 1). Further, let

Rj :=
∣∣∣∣ 2γj

γj − 1

∣∣∣∣, Uj :=
r∑

l=1

ξluj,l, Vj :=
r∑

l=1

ξlvj,l.

Then, as in [RS94, § 3.1],

µ̂j(ξ) =
1
2

∫ 1

−1
exp

(
iRj

r∑
l=1

ξl(uj,l

√
1 − t2 + vj,lt)

)
dt

π
√

1 − t2

+
1
2

∫ 1

−1
exp

(
iRj

r∑
l=1

ξl(−uj,l

√
1 − t2 + vj,lt)

)
dt

π
√

1 − t2

=
1
π

∫ 1

−1
exp(iRjVjt) cos(RjUj

√
1 − t2)

dt√
1 − t2

= J0(Rj

√
Uj

2 + Vj
2).
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Remark 3.5. The term Bm;a1,...,ar(ξ) comes from c(m,a)Bq(X) in Theorem 2.5, and causes the bias.
This is the analog of the factor exp(i

∑r
j=1 c(q, aj)ξj) in (3.3) of [RS94].

4. The quadratic character and its applications

In this section, we assume that m is irreducible. We obtain an asymptotic formula (Theorem 4.3)
for a counting function measuring the number of prime quadratic residues minus prime quadratic
nonresidues. Although it may be possible to obtain Theorem 4.3 from Theorem 2.5, we give a
separate proof, noting its similarity with the proof of the non-vanishing of the L-series associated
to the non-principal real quadratic character (see [Ros02, § 2]).

Let χquad be the non-principal real quadratic character modulo m, that is,

χquad(f) =




1 if f is square modulo m,
−1 if f is a nonsquare modulo m,

0 if m divides f.

We abbreviate L(s, χquad) as L(s) and L(u, χquad) as L(u). Then, L(u) is a polynomial in u of degree
M − 1 (see Proposition 6.4). We let {α(χquad, ν)}M−1

ν=1 denote its inverse zeros.
Define a(N) and b(N) by

a(N) := #{P ∈ F[T ] | χquad(P ) = 1,deg(P ) = N}, (28)

and

b(N) := #{P ∈ F[T ] | χquad(P ) = −1,deg(P ) = N}. (29)

Also, define

Em;R,N(X) :=
X

qX/2

X∑
N=1

(a(N) − b(N)). (30)

To find an asymptotic formula for Em;R,N(X), we define a function G(s) (cf. [Ros02, § 4])

G(s) :=
L(s, χ0)L(s)

L(2s, χ0)
,

where χ0 is the principal character modulo m. Equivalently,

G(u) :=
L(u, χ0)L(u)
L(u2, χ0)

.

Let cG(N) be the Nth coefficient of the power series of u(d/du) log G(u), that is,

u
d

du
log G(u) =

∞∑
N=1

cG(N)uN .

Using (17) and (16) (with χ = χquad), it is straightforward to derive the equation

cG(N) = −
M−1∑
ν=1

α(χquad, ν)N + qN − 2B(N)qN/2 + O(1). (31)

Here, B(N) is, as before, defined to be one if N is even and zero if N is odd.
The Euler product of G(s) gives another expression of cG(N). As in [Ros02, § 4], we have

G(s) =
∏ 1 + |P |−s

1 − |P |−s
,
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where the product runs over all primes P that are quadratic residues modulo m. Hence,

G(u) =
∞∏

d=1

(
1 + ud

1 − ud

)a(d)

.

We take logarithmic derivative and collect the Nth terms to obtain

cG(N) =
∑
d|N

d a(d)(1 − (−1)N/d). (32)

Now, the next step is to solve for a(N) from (31) and (32). To do so, we need to recall some
properties of Dirichlet multiplication (see, for example, [Apo76, § 2]). Suppose that f(n) and g(n)
are functions on the set of positive integers. Dirichlet multiplication f ∗ g is the function h defined
by

h(n) =
∑
d|n

f(d)g(n/d).

Dirichlet multiplication is commutative and associative. Define I(n) by I(n) = 0 for all n > 1 and
I(1) = 1. If f(1) �= 0, then there is a unique function f−1, called the Dirichlet inverse of f , such
that f ∗ f−1 = I (see [Apo76, Theorem 2.8]), and f−1 is given recursively by

f−1(1) = 1/f(1), f−1(n) =
−1
f(1)

∑
d|n
d<n

f(n/d)f−1

for all n > 1.
Let µ(n) be the Möbius function. From [Apo76, Theorem 2.1],

∑
d|n

µ(d) = I(n) =

{
1 if n = 1,
0 if n > 1.

(33)

Define ν(n) := 1 for all n � 1. Then (33) can be rewritten as µ = ν−1, or, equivalently, ν = µ−1.
We also define the functions µ◦(n) and ν◦(n) by

µ◦(n) =

{
µ(n) n odd,

0 n even,
and ν◦(n) =

{
ν(n) = 1 n odd,

0 n even.

Lemma 4.1. We have (ν◦)−1 = µ◦ and (µ◦)−1 = ν◦.

Proof. We need to show that
∑

d|n µ◦(n/d)ν◦(d) = I(n) for n � 1. This is clear for n = 1, so assume
n > 1. First, note that ∑

d|n
µ◦(n/d)ν◦(d) =

∑
d|n

d odd

µ◦(n/d).

If n is even, then n/d is even for any odd d, so µ◦(n/d) = 0 by the definition of µ◦. Hence, the
above sum is zero. If n is odd, then n/d is always odd, hence the above sum is equal to

∑
d|n µ(n/d).

This sum is zero by (33).

Proposition 4.2. As N → ∞,

N(a(N) − b(N)) = −
M−1∑
ν=1

α(χquad, ν)N − B(N)qN/2 + O(qN/3),

where B(N) is defined to be one if N is even and zero if N is odd.
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Proof. In this proof, let A(N) := N a(N) and B(N) := N b(N). Note that (−1)n = 1 − 2ν◦(n) for
n � 1. From (31), (32) and Lemma 4.1, we have that

2A(N) =
∑
d|N

(
−

M−1∑
ν=1

α(χquad, ν)d + qd − 2B(d)qd/2 + O(1)
)

µ◦(N/d).

If N is odd, we can simplify the equation as

2A(N) = −
M−1∑
ν=1

α(χquad, ν)N + qN + O(qN/3),

because all of the terms with d < N can be grouped into the O(qN/3). When N is even, we obtain

2A(N) = −
M−1∑
ν=1

α(χquad, ν)N + qN − 2qN/2 + O(qN/3).

Note that the term d = N/2 here vanishes because µ◦(2) = 0. Also, clearly,

A(N) + B(N) = Nπ(N),

if N �= M . Therefore, A(N)−B(N) = 2A(N)−Nπ(N) and the proof follows from this and (19).

We enumerate, among all of the inverse zeros {α(χquad, ν)}M−1
ν=1 of L(u), those whose absolute

values are
√

q as γ1, γ̄1, . . . , γk, γ̄k. From Proposition 6.4, we see that k = [(M − 1)/2], the greatest
integer not exceeding (M − 1)/2.

With this enumeration, we can now give an asymptotic formula for Em;R,N(X).

Theorem 4.3. Let Bq(X) be defined by

Bq(X) =

{√
q/(q − 1) if X is odd,

q/(q − 1) if X is even.

Then we have

Em;R,N(X) = −Bq(X) − 2
k∑

j=1

�
(

eiθjX γj

γj − 1

)
+ o(1).

The proof is immediate from Proposition 4.2, and is similar to that of Theorem 2.5, so we omit it.
An easy corollary from this theorem is that, if M = deg(m) = 2, then the prime nonresidues

always (without assuming the GSH) predominate over prime residues, because the L-series has no
inverse zeros with absolute values equal to

√
q.

Corollary 4.4. Suppose that M = deg(m) = 2. Then Em;R,N(X) < 0 for almost all X.

As in Theorem 3.2, the function Em,R,N(X) gives rise to a probability measure µm;R,N on all
Borel sets in R, satisfying

µm;R,N(f) = lim
N→∞

1
N

N∑
X=1

f(Em;R,N(X)), (34)

for all bounded continuous function f on R. The proof is, again, similar to that of Theorem 3.2.
Further, under the GSH on {χquad}, the Fourier transform µ̂m;R,N of µm;R,N can be given explicitly,
so that we can compute the bias numerically, which we state as a theorem without proof.
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Theorem 4.5. Assume that the set {χquad} satisfies the GSH. Then the Fourier transform µ̂m;R,N

of µm;R,N is given by

µ̂m;R,N(ξ) = Bm;R,N(ξ)
k∏

j=1

J0

(∣∣∣∣ 2γj

γj − 1

∣∣∣∣ξ
)

,

where

J0(z) =
∞∑

n=0

(−1)n(z/2)2n

(n!)2

is the Bessel function of the first kind, and

Bm;R,N(ξ) :=
1
2

(
exp

(
i

√
q

q − 1
ξ

)
+ exp

(
i

q

q − 1
ξ

))
.

A direct consequence of the above theorem is that, under the GSH on {χquad}, we have

µm;R,N(−∞, 0] > 1
2 .

In other words, the primes are biased toward quadratic nonresidues, if we assume that the GSH
holds on {χquad}.

As an application of Theorem 4.3, we consider the double covering C −→ A1
F where C is an

affine plane curve defined by the equation y2 = m for a fixed irreducible monic m ∈ F[T ] and A1
F is

the affine line over F. Define

a′(N) := #{P ∈ F[T ] | (m/P ) = 1, deg(P ) = N},
b′(N) := #{P ∈ F[T ] | (m/P ) = −1, deg(P ) = N},

and

Em;S,I(X) :=
X

qX/2

X∑
N=1

(a′(N) − b′(N))

(cf. (28), (29), and (30)). The function Em;S,I(X) counts the number of primes of A1
F splitting in

C minus that of primes remaining inert in C, whose degrees are up to N . Now, the quadratic
reciprocity law in function fields [Ros02, Theorem 3.3] says(

m

P

)
= (−1)M deg(P )·(q−1)/2

(
P

m

)
. (35)

Therefore, if either M is even or q ≡ 1 mod 4, then (m/P ) = (P/m) for all P , and Em;S,I(X) =
Em;R,N(X). So, the prime number race between splitting primes versus inert primes is the same as
prime residues versus nonresidues. Assume now that M is odd and q ≡ 3 mod 4. Then,(

m

P

)
= (−1)deg(P )

(
P

m

)
,

which implies

a′(N) − b′(N) = (−1)N (a(N) − b(N)).

Then, from Proposition 4.2, Theorem 4.3, and the definition of B(N), we obtain

Em;S,I(X) = −Bq(X) − 2
k∑

j=1

�
(

ei(π−θj)X
γj

γj − 1

)
+ o(1). (36)

Here, as before, {γj , γ̄j}k
j=1 enumerates the inverse zeros of the L-series L(u) associated with {χquad}.

Hence, under the GSH on {χquad}, we see that the splitting primes outnumber the inert primes.

1366

https://doi.org/10.1112/S0010437X08003631 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003631


Chebyshev’s bias in function fields

5. Violation of the GSH and examples

In this section, we continue to assume that m is irreducible. When the degree of m is small, it
is possible to calculate L(s, χquad) explicitly. In particular, in the first three examples below, we
illustrate that the GSH can be violated, and the bias can be any of the following: toward squares,
nonsquares, or nonexistent. This contrasts with the number field case.

Example 5.1. Let p = 3 and m = T 3 + 2T + 1. Then, we have

L(u) = 3u2 − 3u + 1 =
(

1 − 3 +
√

3i

2
u

)(
1 − 3 −√

3i
2

u

)
.

Therefore, the only inverse zero (with argument between 0 and π) is

γ1 =
3 +

√
3i

2
=

√
3eiπ/6.

In particular, the GSH is violated. We now compute Em;R,N(X) using Theorem 4.3. It is easy to
verify the following.

X mod 12 Em;R,N(X) (mod o(1))

0 or 2 −9/2

1 −5
√

3/2

3 or 11 −3
√

3/2
4 or 10 −3/2

5 or 9
√

3/2
6 or 8 3/2

7 3
√

3/2

This shows that Em;R,N(X) is negative for 7/12 ≈ 58.3% of all (large enough) positive integers X.
The bias is therefore toward nonsquares. Also, the measure µm;R,N defined in (34) is concentrated
at the seven points, more precisely,

µm;R,N({P}) =

{
1/12 if P = −5

√
3/2 or 3

√
3/2

2/12 if P = −9/2,−3
√

3/2,−3/2,
√

3/2, or 3/2,

and µm;R,N(A) = 0 for all A not containing the above points.

Example 5.2. Take p = 5 and m = T 4 + 4T 3 + 4T 2 + 4T + 1. Then

L(u) = −5u3 + 5u2 − u + 1 = (1 − u)(1 + 5u2),

and

γ1 =
√

5i =
√

5eiπ/2.

The results are as follows.

X mod 4 Em;R,N(X) (mod o(1))

0 −35/12

1 −7
√

5/12
2 5/12

3
√

5/12

1367

https://doi.org/10.1112/S0010437X08003631 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003631


B. Cha

In this case, the measure µ is concentrated evenly at −35/12,−7
√

5/12, 5/12 and
√

5/12. There is
no bias in this example.

Example 5.3. This is an example where the bias is toward squares. Take p = 5 and m = T 5 +3T 4 +
4T 3 + 2T + 2. Then

L(u) = 25u4 − 25u3 + 15u2 − 5u + 1

=
(

1 +
5 +

√
5

2
u + 5u2

)(
1 − 5 −√

5
2

u + 5u2

)
= (1 − 2

√
5 cos(4π/5)u + 5u2)(1 − 2

√
5 cos(2π/5)u + 5u2).

We have

γ1 =
√

5ei2π/5 and γ2 =
√

5ei4π/5.

Using these, we can verify the following.

(Approximate value of)
X mod 10 Em;R,N(X) (mod o(1))

0 −5.795 454 5455
1 −4.827 874 0423
2 −2.159 090 9091
3 1.270 493 1690
4 0.568 181 8182
5 0.254 098 6338
6 0.113 636 3636
7 2.286 887 7043
8 1.022 727 2727
9 −1.778 690 4366

In other words, for the 60% of X values, Em;R,N(X) is positive, and the bias is toward squares.

We now give an example where we can confirm the GSH. Note that the GSH in the number
field case is much more difficult to verify (see [RS94, §§ 1 and 5]). If an inverse zero γj is explicitly
expressed using radicals, its argument is given as a value of arc tangent function at such radicals. To
confirm the GSH, one must investigate a possible Q-linear relation modulo π among them. In [Cal06],
Calcut discusses the irrational nature of the values of the tangent function. In particular, Calcut
gives a complete list of quadratic irrational numbers that can arise as values of the tangent function
at rational multiples of π. Therefore, if L(u) is of degree three or less, we can always verify whether
or not the GSH holds for this L(u), using Calcut’s list. Also, in this example, we explain how to
estimate the bias when the degree of L(u) is three or less.

Example 5.4. Take q = 3 and m = T 4 + 2T 3 + 2T 2 + T + 2. Then

L(u) = −3u3 + 5u2 − 3u + 1,

and

γ1 = 1 + i
√

2 =
√

3eiθ

where θ = tan−1
√

2. Since
√

2 does not appear in Calcut’s list, we conclude that (tan−1
√

2)/π is
irrational. Therefore, the GSH is satisfied for this example.

We illustrate how to compute µm;R,N(−∞, 0] for the case k = 1. See [RS94, § 3] for a similar
computation in the number field case. Let µ̃ be a measure whose Fourier transform is J0(2rξ), with
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r := |γ1/(γ1 − 1)|. Then the density of µ̃ is given by


1
2r

1√
1 − (t/2r)2

/
π if − 2r < t < 2r,

0 otherwise.

Let µ1 and µ2 be the shifts of µ̃ by −q/(q − 1) and −√
q/(q − 1), respectively. Then,

µ1(−∞, 0] =
(

sin−1

(
q

q − 1
1
2r

)
+

π

2

)/
π ≈ 0.709 785,

µ2(−∞, 0] =
(

sin−1

( √
q

q − 1
1
2r

)
+

π

2

)/
π ≈ 0.615 027.

Hence,

µm;R,N(−∞, 0] =
µ1(−∞, 0] + µ2(−∞, 0]

2
≈ 0.662 406.

In other words, for approximately 66% of positive integers Em;R,N(X) is negative.

6. Symmetry and central limit behaviors

The purpose of this section is to give three theorems (Theorems 6.1, 6.2 and 6.5) describing the
symmetry of the measure µm;a1,...,ar and central limit behaviors as the degree of the modulus m
tends to infinity. These theorems are analogs of Theorems 1.4, 1.5 and 1.6 in [RS94], and the proofs
are also modeled after those of Rubinstein and Sarnak.

Theorem 6.1. Assume that the set of all non-principal Dirichlet characters mod m satisfies the
GSH. The density function of µm;a1,...,ar is symmetric in (x1, . . . , xr) if and only if either:

(i) r = 2 and c(m,a1) = c(m,a2); or

(ii) r = 3 and there exists ρ �= 1 satisfying these congruences modulo m:

ρ3 ≡ 1, a2 ≡ a1ρ, and a3 ≡ a1ρ
2.

The proof of this theorem is almost identical to that of Proposition 3.1 and Lemma 3.2 in [RS94],

the only change being the expression
√

1
4 + γ2 in [RS94] to be replaced by |γ/(γ−1)| at appropriate

places. We omit the details.

Theorem 6.2. Suppose that m is irreducible of degree M . Assume that the GSH holds for {χquad}.
Let µ̃m;R,N be the limiting distribution of√

q − 1
q

Em;R,N(X)√
M

.

Then µ̃m;R,N converges in measure to the Gaussian (2π)−1/2e−X2/2dX as M → ∞.

To prove Theorem 6.2, we fix an irreducible m whose degree is M . Recall that, if we enu-
merate the inverse zeros (whose absolute values are

√
q) of L(u, χquad) as {γ1, γ̄1, . . . , γk, γ̄k},

then k = [(M −1)/2], the greatest integer not exceeding (M −1)/2. We will abbreviate µ̂ := µ̂m;R,N

during the proof of Theorem 6.2. We have

log µ̂m;R,N

(√
q − 1

q

ξ√
M

)
= logBm;R,N

(√
q − 1

q

ξ√
M

)
+

k∑
j=1

log J0

(∣∣∣∣ 2γj

γj − 1

∣∣∣∣
√

q − 1
q

ξ√
M

)
(37)
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from Theorem 4.5. Fix a large constant A. Then, for |ξ| � A, it is not difficult to show that

logBm;R,N

(√
q − 1

q

ξ√
M

)
= O(A/

√
M), (38)

as M → ∞, directly from the definition of Bm;R,N(ξ) in Theorem 4.5. Also, from the power series
expansion of J0(z) = 1 − 1

4z2 + · · · , we see that

k∑
j=1

log J0

(∣∣∣∣ 2γj

γj − 1

∣∣∣∣
√

q − 1
q

ξ√
M

)
= −

k∑
j=1

∣∣∣∣ γj

γj − 1

∣∣∣∣
2 q − 1

q

ξ2

M
+ · · · . (39)

For all |ξ| � A, it can be shown that the higher term is O(A4/M). To estimate the first term, let

I :=
k∑

j=1

∣∣∣∣ γj

γj − 1

∣∣∣∣
2

. (40)

We define

L̃(u) = L̃(u, χquad) :=
k∏

j=1

(1 − γju)(1 − γ̄ju). (41)

Then L̃(u) = L(u, χquad) if M is odd, and L̃(u)(1 − u) = L(u, χquad) if M is even (see Proposi-
tion 6.4). By taking logarithmic derivative of L̃(u) and then evaluating at u = 1, we obtain

−L̃′

L̃ (1) =
k∑

j=1

γj + γ̄j

|γj − 1|2 − 2I.

Also, we can easily prove

k +
k∑

j=1

γj + γ̄j

|γj − 1|2 =
1 + q

q
I.

Therefore, from these two equalities, we deduce

I =
q

q − 1

( L̃′

L̃ (1) − k

)
. (42)

We can estimate (L̃′/L̃)(1) using the functional equation

L̃(u, χquad) = ε(χquad)qku2kL̃(1/qu, χquad) (43)

for some constant ε(χquad) of absolute value 1. This functional equation is readily deduced from (41).
We take the logarithmic derivative of (43). Taking into account the fact that L̃(u) = L(u, χquad) if
M is odd, and L̃(u)(1 − u) = L(u, χquad) if M is even, it follows that

L̃′

L̃ (1) = 2k − 1
q

L′

L (1/q) − C

where

C :=




0 for an odd M,

1/(q − 1) for an even M.

Now we switch back to the variable s using u = q−s. Then, from (42),

I =
q

q − 1

(
k +

1
log q

L′

L
(1, χquad) + C

)
=

q

q − 1
M

2
+ O(log M), (44)
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where we use Lemma 6.3 for the last equality. Combining (37), (38), (39), (40), and (44), we obtain

log µ̂

(√
q − 1

q

ξ√
M

)
= −ξ2

2
+ O

(
A√
M

+
A2 log M

M
+

A4

M

)
, (45)

for all |ξ| � A. (cf. [RS94, p. 135].) By Levy’s theorem, as in [RS94], this proves that the measures
µ̃m;R,N in Theorem 6.2 converge in measure to the standard Gaussian. This concludes the proof of
Theorem 6.2, once we prove the following lemma.

Lemma 6.3. Let χ be a non-principal Dirichlet character modulo m with M = deg(m). Then

L′

L
(1, χ) = O(log M)

as M → ∞.

The number-theoretic counterpart of this lemma is (L′/L)(1, χ) = O(log log q), where χ here is
a non-principal Dirichlet character modulo q. Rubinstein and Sarnak in [RS94] refer to a paper of
Littlewood [Lit28] for its proof. Our proof of Lemma 6.3 will closely follow Littlewood’s argument as
well, highlighting the necessary modification. The author is grateful to Dr. Rubinstein for explaining
the details of Littlewood’s proof.

Proof. The core of the proof for this lemma is to establish the following estimation: for any y with
0 < y � 1, we have ∣∣∣∣−L′

L
(1, χ) −

∑
f∈F[T ]
f monic

Λ(f)χ(f)
|f | exp(−qdeg(f)y)

∣∣∣∣ < A1y
1/4M, (46)

for some constant A1. Here, Λ(f) is the function-field version of von Mangoldt’s function and is
defined to be |P | if f = P j for some positive integer j and zero otherwise. The estimation (46) is a
function-field counterpart of [Lit28, Lemma 6], and its proof is obtained by mimicking Littlewood’s
proof (and by setting the constants ε = 1/4 and σ = 1 in his lemma). To be more specific, we
start with

exp(−qdeg(f)y) =
1

2πi

∫ 2+i∞

2−i∞
(qdeg(f)y)−zΓ(z) dz (�y > 0).

This yields ∑
f∈F[T ]
f monic

Λ(f)χ(f)
|f | exp(−qdeg(f)y) = − 1

2πi

∫ 2+i∞

2−i∞

L′(1 + z, χ)
L(1 + z, χ)

y−zΓ(z) dz.

Now, we can directly apply the remaining part of Littlewood’s argument to the above equation in
order to finish the proof of (46), with the only change being the estimation of (L′/L)(s, χ) given by,
for any s with 3/4 < σ � 2, ∣∣∣∣L′

L
(s, χ)

∣∣∣∣ < A2M

for a constant A2. This is the counterpart of [Lit28, Lemma 5], and is easily proved using the fact
that L(s, χ) is a polynomial in q−s of degree � M −1, together with [Lit28, Lemma 4]. This finishes
the proof of (46).

By taking y = 1/M4 in (46), we see that, in order to finish proving Lemma 6.3, it is now sufficient
to establish ∑

f∈F[T ]
f monic

Λ(f)χ(f)
|f | exp(−qdeg(f)y) = O(log(1/y)), (47)

1371

https://doi.org/10.1112/S0010437X08003631 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003631


B. Cha

as y → 0. To do so, we first note the equality∑
deg(f)=d

Λ(f) = qd log q.

One can prove this by considering the coefficients of the power series in q−s of ζ ′(s)/ζ(s) (see [Ros02,
ch. 2]). Now, the sum in the left-hand side of (47) is essentially bounded by

∑∞
d=0 exp(−qdy). Take

d0 to be the largest integer with qd0y < 1. Then
∞∑

d=0

exp(−qdy) �
∑
d�d0

1 +
∑
d>d0

exp(−(d − d0)) = O(log(1/y)) + O(1) = O(log(1/y)).

This concludes the proof of Lemma 6.3.

We examine more closely the number of inverse zeros of L(u, χ) for a given Dirichlet character χ.
Consider the cyclotomic function field extension K of F(T ) obtained by adjoining the m-torsion
points of the Carlitz module, which gives rise to the identification Gal(K/F(T )) � (F[T ]/m)∗. Recall
that χ is called even if χ is trivial on the subgroup F∗ of Gal(K/F(T )) via the above identification.
The next proposition summarizes the structures of L(u, χ) we need later.

Proposition 6.4. Let χ∗ be the primitive Dirichlet character modulo a polynomial m(χ∗) which
induces a non-principal Dirichlet character χ modulo m. Also, let M(χ∗) be the degree of m(χ∗).
Then we have:

(a)

L(u, χ) = L(u, χ∗)
∏
P |m

P �m(χ∗)

(1 − udeg(P ));

(b) L(u, χ∗) is a polynomial in u of degree M(χ∗) − 1;
(c) if χ∗ is even,

L(u, χ∗) = (1 − u)
M(χ∗)−2∏

i=1

(1 − γiu),

and, otherwise,

L(u, χ∗) =
M(χ∗)−1∏

i=1

(1 − γiu)

for some complex numbers γi with |γi| =
√

q;

(d) if m is irreducible, then

L(u, χquad) = (1 − u)
(M−2)/2∏

i=1

(1 − γiu)(1 − γ̄iu)

for M even, and

L(u, χquad) =
(M−1)/2∏

i=1

(1 − γiu)(1 − γ̄iu)

for M odd.

Proof. These properties are essentially consequences of a theorem of Weil, the function field analog
of the Riemann hypothesis. Property (a) is immediate from our definition of Dirichlet L-series given
in (5). Note that, for a non-principal character χ, the Dirichlet L-series L(s, χ) can be modified to
give the Artin L-function by introducing a local factor at the infinite prime, which is (1 − q−s)−1
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if χ is even, and one otherwise. This, together with Weil’s theorem, proves (b) and (c) (see [Ros02,
Proposition 14.10]). Lastly, property (d) is immediate from property (b), property (c), and the fact
that the inverse zeros of L(u, χquad) are stable under complex conjugation.

Theorem 6.5. Suppose that m is an arbitrary (not necessarily irreducible) element in F[T ] of degree
M . Assume that the set of all non-principal Dirichlet character modulo m satisfies the GSH. For a
fixed r,

max
a1,...,ar∈(F[T ]/m)∗

∣∣∣∣δ(Pm;a1,...,ar) −
1
r!

∣∣∣∣ → 0

as M → ∞.

We begin the proof of Theorem 6.5. The modulus m is now taken to be arbitrary of degree M ,
and a1, . . . , ar, with r fixed, are distinct elements in (F[T ]/m)∗. Recall that µ̂ is the Fourier transform
of a measure whose existence is established in Theorem 3.4. Let µ̃m;a1,...,ar be the measure on Rr

whose Fourier transform is

µ̂

(√
q − 1

q

ξ√
Φ(m)M

)
.

Then, as in [RS94], it is sufficient to prove that µ̃m;a1,...,ar converges in measure to the Gaussian

e−(x2
1+···+x2

r)

(2π)r/2
dx1 . . . dxr

as M → ∞. Fix a large A. For ξ ∈ Rr with |ξ| � A, we obtain

log ˆ̃µm;a1,...,ar(ξ) = logBm;a1,...,ar

(√
q − 1

q

ξ√
Φ(m)M

)

+
∑

χ �=χ0

∑
�(γχ)>0

log J0

(∣∣∣∣ 2γχ

γχ − 1

∣∣∣∣
√

q − 1
q

|∑r
l=1 χ(al)ξl|√
Φ(m)M

)
(48)

from Theorem 3.4. The proof of Theorem 6.5 will be completed by showing that the expression
in (48) is asymptotic to −(1/2)

∑r
l=1 ξl

2 as M → ∞. Again, by Levy’s theorem, this implies the
necessary convergence of µ̃m;a1,...,ar . As before, the most significant term in (48) comes from the first
nonconstant term in the expansion of log of the Bessel function, and is given by

S := −1
4

∑
χ �=χ0

∑
�(γχ)>0

∣∣∣∣ 2γχ

γχ − 1

∣∣∣∣
2(q − 1

q

) |∑r
l=1 χ(al)ξl|2
Φ(m)M

. (49)

Define, for any non-principal Dirichlet character χ,

I(χ) :=
1
2

∑
γχ

∣∣∣∣ γχ

γχ − 1

∣∣∣∣
2

.

Here, the summation is taken for all inverse zeros γχ of absolute values
√

q, not only those with

(γχ) > 0. It is easily shown that

S = −q − 1
q

1
Φ(m)M

∑
χ �=χ0

I(χ)
∣∣∣∣

r∑
l=1

χ(al)ξl

∣∣∣∣
2

. (50)

Let χ∗ be the primitive Dirichlet character which induces χ, and let M(χ∗) be the degree of its mod-
ulus. Then, clearly I(χ) = I(χ∗). Also, the technique used to establish (44) applies to I(χ∗) to yield

I(χ∗) =
q

q − 1
M(χ∗)

2
+ O(log M(χ∗)).
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Then, from (50),

S = − 1
2Φ(m)M

∑
χ �=χ0

M(χ∗)
∣∣∣∣

r∑
l=1

χ(al)ξl

∣∣∣∣
2

+ O

(
A2 log M

M

)
. (51)

The above summation can be simplified by applying the argument of Rubinstein and Sarnak [RS94,
p. 186] with very minimal change. Essentially, this argument proves that the asymptotic behavior
of S remains unchanged if M(χ∗) is replaced by M and if all of the cross terms in |∑r

l=1 χ(al)ξl|2
are dropped. We conclude

S → −1
2

r∑
l=1

ξl
2, (52)

as M → ∞. It remains to estimate that all of the other terms in (48) than S.
First, we let d(m) :=

∑
f |m 1 be the number of monic divisors of m. Then, as with its number

field counterpart, it is easy to see that c(m,a) < d(m) for any a ∈ (F[T ]/m)∗ and d(m) = Oε((qM )ε)
for any ε > 0. Using this, one proves that

logBm;a1,...,ar

(√
q − 1

q

ξ√
Φ(m)M

)
= O

(
d(m)A√
Φ(m)M

)
. (53)

Also, the higher terms in log J0 than S is O(A4/(Φ(m)2M)). Combining all of the results so far,

ˆ̃µm;a1,...,ar(ξ) → exp
(
−1

2

r∑
l=1

ξl
2

)
.

The proof of Theorem 6.5 is now complete.
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