
The Knowledge Engineering Review, Vol. 12:3, 1997, 229±230

Guest Editorial

DAVE S TUART ROBERT SON

Knowledge based systems are used in applications where an incorrect decision could put human life

in jeopardy. A quick trawl through the World Wide Web is su�cient, these days, to locate such

applications in design, analysis and testing; protection advice; operator decision support; signal

monitoring; embedded systems and others. Depending on the type of system, these either give

information which is not guaranteed to be correct (in many operator support applications) or which

is imprecise (for example in fuzzy logic controllers).

This is not always a bad thing. An imprecise answer may be su�cient for making appropriate

decisions. Occasional inaccuracies may be acceptable in systems which support rather than supplant

operators. Whether or not our systems create a safety problem depends on the context in which the

expert system is deployed, which should constrain the architecture used to build the system and the

ways that we argue for its safety. This issue of The Knowledge Engineering Review views this issue

from four perspectives:

. Proof versus empirical argument: although traditional safety engineering aspires to precise

understanding of the potential behaviours of deployed systems, there are sometimes unpredict-

able hazardous situations where this is impractical. Neural computing methods o�er new choices

of architectures for such problems, but bring with them the need for di�erent ways of arguing for

the safety of systems, based on statistical arguments. In particular, we would be concerned to

estimate the robustness of the system to new inputs on which it wasn't trained. Sharkey &

Sharkey discuss what these empirical arguments might be like.

. Communication: when producing speci®cations of systems or articulating formal arguments for

their safety, a formal presentation (even if correct) may be unconvincing unless it is presented in a

form which is accessible to human inspection. Many di�erent people, from di�ering engineering

cultures, may have a legitimate interest in the design of a system so a single way of discussing the

design is unlikely to suit everyone. Gurr's paper looks at the ways in which di�erent forms of

communication have been used to communicate designs and the extent to which it is possible to

relate successful forms of communication to formal theories.

. Integrating with established methods: it is tempting sometimes to think of knowledge based

systems as ways of revolutionising work practices. In yielding to this temptation we may become

blind to the bene®cial features of existing methods, and the engineering cultures which have

grown around them. Price et al. give an example of how this problem may be avoided. They

describe how qualitative modelling techniques can be integrated with an established failure

modes and e�ects analysis, enhancing safety analysis without displacing existing good practice.

. Reasoning about system safety: arguments which help us to understand whether a system has been

safely designed are as important as the system itself. Given that these arguments require the

deployment of knowledge and expertise it is natural to consider whether some aspects of the

articulation of safety arguments might be supported by automated methods. Krause et al. survey

some of the approaches which have been used: linking formal expressions to requirements

descriptions in controlled natural language; using formal requirements to constrain and endorse

design; and reasoning formally about the uncertainty in safety arguments.

A common theme running through all the papers in this issue is the need to understand more fully

how technical methods used in constructing knowledge based systems can be embedded within

https://doi.org/10.1017/S0269888997003019 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888997003019


acceptable safety engineering cultures. This is a problem for the knowledge engineering community,

not because our methods lack rigour or precision (many are at least as precise and rigorous as more

conventional software engineering methods) but because they are often targeted at parts of problem

domains which are, themselves, imperfectly understood.

d . s . r o b e r t s on 230

https://doi.org/10.1017/S0269888997003019 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888997003019

