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Tokamak elongation – how much is too much?
Part 2. Numerical results
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The analytic theory presented in Paper I is converted into a form convenient for
numerical analysis. A fast and accurate code has been written using this numerical
formulation. The results are presented by first defining a reference set of physical
parameters based on experimental data from high performance discharges. Scaling
relations of maximum achievable elongation (κmax) versus inverse aspect ratio (ε)
are obtained numerically for various values of poloidal beta (βp), wall radius (b/a)
and feedback capability parameter (γ τw) in ranges near the reference values. It is
also shown that each value of κmax occurs at a corresponding value of optimized
triangularity (δ), whose scaling is also determined as a function of ε. The results
show that the theoretical predictions of κmax are slightly higher than experimental
observations for high performance discharges, as measured by high average pressure.
The theoretical δ values are noticeably lower. We suggest that the explanation is
associated with the observation that high performance involves not only n= 0 MHD
stability, but also n > 1 MHD modes described by βN in the Troyon limit and
transport as characterized by τE. Operation away from the n= 0 MHD optimum may
still lead to higher performance if there are more than compensatory gains in βN
and τE. Unfortunately, while the empirical scaling of βN and τE with the elongation
(κ) has been determined, the dependence on δ has still not been quantified. This
information is needed in order to perform more accurate overall optimizations in
future experimental designs.

1. Introduction
In Paper II we convert the analytic formulation of the variational principle derived

in Paper I (Freidberg, Cerfon & Lee 2015) into a form suitable for numerical analysis.
A code has been written based on this analysis that allows us to quickly and accurately
calculate the dependence of elongation κ and triangularity δ on inverse aspect ratio ε
for various values of poloidal beta βp, wall radius b/a and feedback parameter γ τw.
These scaling dependences provide useful information for the optimization of plasma
shape against axisymmetric n= 0 MHD instabilities, which are the cause of vertical
disruptions.

For perspective, it is worth noting that there have been many numerical investiga-
tions of n= 0 MHD stability for a plasma surrounded by a perfectly conducting wall
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(Laval & Pellat 1973; Wesson & Sykes 1975; Becker & Lackner 1977) or with a
resistive wall (Wesson 1975, 1978; Lazarus et al. 1991). In these studies, the growth
rate of the mode is obtained either by directly solving the equations of motion or by
minimizing δW. These studies have provided valuable insight into the vertical stability
of a tokamak, including design guidelines for optimizing performance. However, they
have not focused on including the effect of feedback on the scaling of maximum
elongation with aspect ratio, which is the main goal of the present paper.

In comparison to previous studies, our results are obtained using a somewhat
more realistic model of the wall geometry. On the other hand, our results are
somewhat more restrictive in that we use only the well-known Solov’ev profile for
the equilibrium (Solov’ev 1968). The Solov’ev profile provides accurate scaling with
respect to plasma pressure and shape, but is limited in its ability to take into account
the effect of current profile on stability; that is the internal inductance per unit length
is always of the order of li ∼ 0.4 for all of our results. Still, the general scaling
relations are accurate (see for instance Bernard et al. 1978) and, importantly, the
profile leads to significant savings in computer time. The savings result from the fact
that the Green’s theorem for the solution of the vacuum region can also be utilized
in the plasma region, thereby reducing the 2-D stability problem into a 1-D problem.

An outline of the analysis is as follows. The numerical formulation of the variational
principle is based on a combination of Fourier analysis and the application of Green’s
theorem. The analysis is carried out in terms of the perturbed magnetic flux. A
substantial simplification occurs for the Solov’ev profiles because the perturbed
poloidal magnetic field in the plasma turns out to be a vacuum field; that is, the
perturbed toroidal current is zero. In this case, the standard volume integral for the
plasma energy δWF can be converted to a simple surface integral, thus transforming
the 2-D problem into a 1-D problem. This is not true for more general profiles.

The basic strategy is to introduce Fourier expansions for the flux and its normal
derivative on two surfaces, the plasma and wall. The corresponding Fourier amplitudes
are the unknowns in the problem. Furthermore, the normal derivative amplitudes are
related to the flux amplitudes through the solution of the vacuum flux equation, (i.e.
1∗ψ = 0), a step that is conveniently carried out using Green’s theorem.

The end result is a classic minimizing principle that consists of the ratio of
quadratic terms in the Fourier amplitudes subject to a series of linear constraints
arising from the application of Green’s theorem. Also, the matrix elements contain
the resistive wall feedback parameter γ τw, which appears in a simple linear form.
The calculation thus reduces to a standard linear algebra problem in which, after
some analysis, all the matrices are shown to be real and symmetric.

A summary of our results with respect to the effect of feedback on vertical stability
is as follows. For values of γ τw similar to present day high performance tokamaks,
we find that the addition of feedback substantially increases the achievable elongation,
typically from about 1.17 to 2.06 at ε ≈ 0.3. Equally important, we show that the
achievable value of κ decreases as ε gets smaller for any value of γ τw. In addition,
we find that at each value of maximum elongation (κmax), there is a corresponding
value of optimized triangularity (δ) whose scaling is also determined as a function
of ε. Theoretical predictions of κmax are slightly higher than experimental observations
for high performance discharges, as measured by high average pressure. Theoretical
δ values are noticeably lower. The explanation is likely associated with the fact that
high performance involves not only n= 0 MHD stability, but also n> 1 MHD modes
described by βN in the Troyon limit, and transport as characterized by τE. Operation
away from the n = 0 MHD optimum may still lead to higher performance if there
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are more than compensatory gains in βN and τE. Unfortunately, while the empirical
scaling of βN and τE with the elongation (κ) has been determined, the dependence on
δ has still not been quantified. This information is needed in order to perform more
accurate overall optimizations in future experimental designs.

The presentation of the analysis and results begins with § 2, where we convert
the Lagrangian integral derived in Paper I into a set of surface integrals by making
use of the Solov’ev profile. In § 3, the surface integrals are simplified by expressing
them in the form of a symmetric matrix W and a vector variable of poloidal Fourier
mode amplitudes of the perturbed fluxes and their normal derivatives. In § 4, the
constraints between the perturbed fluxes and their normal derivatives are obtained by
utilizing the well-known Green’s function for a vacuum region. In § 5, we describe
how numerical solutions are obtained by iterating the plasma parameters in order
to make the minimum eigenvalue of W in the subspace of the constraints equal to
zero. The eigenvalues are efficiently calculated using a QR decomposition. In § 6,
the parameter space of the numerical calculations is chosen by introducing (i) a
reasonably realistic wall geometry model, and (ii) a reference case of numerical
input parameters determined by examining high performance experimental discharges
from several tokamaks. Finally, the numerical results and discussion are given in §§ 7
and 8, respectively.

2. The starting point
The starting point for the analysis is the Lagrangian integral for the variational

principle repeated here for convenience,

L= δWF + δWVI + δWV0 + αWD = 0 (2.1a)

δWF = 1
2µ0

∫
VP

[
(∇ψ)2

R2
−
(
µ0p′′ + 1

2R2
F2′′
)
ψ2

]
dr + 1

2µ0

∫
SP

(
µ0Jφ
R2Bp

ψ2

)
dS (2.1b)

δWVI =
1

2µ0

∫
VI

(∇ψ̂)2

R2
dr (2.1c)

δWVO =
1

2µ0

∫
VO

(∇
ˆ̂
ψ)2

R2
dr (2.1d)

WD = 1
2µ0

∫
SW

ψ̂2

R2
dS, (2.1e)

where α = γµ0σd, with γ the growth rate of the vertical instability, σ the wall
conductivity and d the thickness of the (thin) wall (see paper I). Note that in order to
avoid the presence of multiple indices on ψ later on in the article, we have slightly
modified the notation used in Paper I by deleting subscripts on the perturbed flux.
Instead, hereafter ψ is the flux in the plasma, ψ̂ is the flux in the inner vacuum

region and ˆ̂ψ is the flux in the outer vacuum region. At this point, it is interesting
to observe that, for the special case of Solov’ev profiles, p′′ = F2′′ = 0, showing that
the contribution from for the plasma volume integral is positive. This implies that the
drive for vertical instabilities arises from the finite edge Jφ appearing in the surface
integral in δWF.

The first goal in our analysis is to convert all volume integrals into surface integrals.
This task is accomplished by noting that, for n=0 modes, the perturbed poloidal fields
can be expressed in terms of the perturbed flux in the standard manner. Thus, for each
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region of interest (i.e. plasma, inner vacuum and outer vacuum regions) it follows that

Bp1 = 1
R
∇ψ × eφ

B2
p1 =

(∇ψ)2

R2
,

 (2.2)

with ψ satisfying

1∗ψ =−(µ0R2p′′ + 1
2 F2′′)ψ. (2.3)

Clearly, p′′ = F2′′ = 0 for the vacuum regions.
Next use the identity

∇ ·

(
ψ

R2
∇ψ

)
= (∇ψ)

2

R2
+ ψ

R2
∆∗ψ = (∇ψ)

2

R2
−
(
µ0p′′ + 1

2R2
F2′′
)
ψ2. (2.4)

The divergence theorem now allows us to convert all volume integrals into surface
integrals making use of the differential surface element relation∫∫

(· · ·) dS=
∫∫

(· · ·)R dφ dl= 2π

∫
(· · ·)R dl, (2.5)

where dl is the differential poloidal arc length,

δW = π

µ0

∫
SP

[
ψ

R
n · ∇(ψ − ψ̂)+ µ0Jφ

RBp
ψ2

]
SP

dl

+ π

µ0

∫
SW

[
ψ̂

R
n · ∇(ψ̂ − ˆ̂ψ)+ γ τw

ψ̂2

LWR

]
SW

dl̂. (2.6)

Here dl and dl̂ are the differential arc lengths along the plasma and wall surfaces,
respectively. Note that the required continuity of the perturbed fluxes across both the
plasma and wall interfaces

ψ̂(SP)=ψ(SP)

ˆ̂
ψ(SW)= ψ̂(SW)

}
(2.7)

has been used to simplify (2.6). We point out that (2.6) is valid for arbitrary profiles.
The simplification associated with Solov’ev profiles occurs later in the analysis.

3. Fourier analysis
The task now is to evaluate L by substituting Fourier series with unknown

coefficients for each of the dependent variables. Ultimately, the desired relation
between elongation and aspect ratio is obtained by standard variational techniques;
that is, we set δL = 0 by varying the Fourier coefficients while simultaneously
satisfying the constraint L = 0 by iterating κ and δ. Remember that L = 0 because
the modes of interest are slow enough that we can neglect the inertial effects.

The task of setting δL= 0 separates into two parts. In the first part, Fourier series
are introduced for both the fluxes and their normal derivatives. In the second part,
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constraint relations between the coefficients in the fluxes and their normal derivatives
are obtained by means of Green’s theorem. In this section we focus on the first part
of the calculation.

The analysis begins by introducing a simple scaling transformation of actual
poloidal arc length into an arc length angle. Specifically we write

l= LP

2π
χ

l̂= LW

2π
χ̂ .

 (3.1)

Here LP,LW are the circumferences of the plasma and wall surfaces, respectively. This
transformation is convenient because 0 6 χ 6 2π and 0 6 χ̂ 6 2π, making it easy to
impose poloidal periodicity. The angles χ, χ̂ are easily determined numerically once
the surface coordinates have been specified.

Next, we introduce Fourier series for each of the basic unknowns. For vertical
instabilities where n · ξ has even Z symmetry, it follows that the fluxes should be
expanded in sine series,

ψ(SP)=
(

R
R0

)1/2 ∞∑
1

ψm sin mχ

ψ̂(SW)=
(

R
R0

)1/2 ∞∑
1

ψ̂m sin mχ̂ ,

 (3.2)

where R0 is the geometric centre of the device, as already introduced in Paper I
and illustrated in figure 1. As shown shortly, the factors in front of the summations
simplify the algebra. Each of the unknown normal derivatives is also expanded in a
Fourier sine series,

LP

2π
n · ∇ψ(SP)= 2

(
R
R0

)1/2 ∞∑
1

un sin mχ

LP

2π
n · ∇ψ̂(SP)= 2

(
R
R0

)1/2 ∞∑
1

ûn sin mχ

LW

2π
n · ∇ψ̂(SW)= 2

(
R
R0

)1/2 ∞∑
1

v̂n sin mχ̂

LW

2π
n · ∇ ˆ̂ψ(SW)= 2

(
R
R0

)1/2 ∞∑
1

ˆ̂vn sin mχ̂ .



(3.3)

With the required expansions now in hand, we can combine (2.6), (3.2), and (3.3) to
obtain an expression for the normalized Lagrangian integral L̄= (µ0R0/π

2)L in terms
of the Fourier amplitudes. A short calculation yields

L̄= 2ψT
· (u− û)+ 2ψ̂T

· (v̂ − ˆ̂v)+ψT
· J ·ψ + γ τwψ̂

T
· ψ̂, (3.4)

where ψ etc. are the vectors of the Fourier amplitudes and the elements of the matrix
J can be written as

Jmn = Jnm = 1
π

∫ 2π

0
dχ sin mχ sin nχ

(
µ0LPJφ
2πBp

)
SP

. (3.5)
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FIGURE 1. Geometry of the combined plasma – resistive wall system.

Note the different fonts used for matrices. Also, the precise definition of the wall
diffusion time is given by

τw = µ0σdLW

2π
. (3.6)

Equation (3.4) can be rewritten in the following compact form

L̄= xT
·W · x. (3.7)

Here, xT = [ψ, ψ̂, u, û, v̂, ˆ̂v] and W is the symmetric matrix

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣

J 0 I −I 0 0
0 γ τwI 0 0 I −I

I 0 0 0 0 0
−I 0 0 0 0 0
0 I 0 0 0 0
0 −I 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.8)

Each of the elements in W is an M × M matrix with M the number of Fourier
amplitudes maintained in the expansions. The total dimensions of W are thus
6M× 6M.
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4. Application of Green’s theorem
The normal derivatives of the fluxes are related to the fluxes themselves through

the solution to the vacuum equation 1∗ψ = 0. (The condition 1∗ψ = 0 is also
true in the plasma region for Solov’ev profiles, and this leads to a much simpler
numerical formulation plus savings in computer time.) Since the relationships are
needed only on the plasma and wall surfaces, a convenient approach is to utilize
Green’s theorem with the observation point located on either of the surfaces. The
procedure is demonstrated below, starting with the plasma region. The end results are
four linear constraint relations between the various Fourier amplitudes.

The plasma region
In the plasma region, the 2-D Green’s theorem with the observation point on the
plasma surface (i.e. the integration surface) can be obtained from the basic identity

∇×
[

G∇×
(
ψ

R
eφ
)
−ψ∇×

(
G
R

eφ
)]

=G∇×∇×
(
ψ

R
eφ
)
−ψ∇×∇×

(
G
R

eφ
)
. (4.1)

For vacuum fields the flux and 2-D Green’s function satisfy

∇×∇×
(
ψ

R
eφ
)
= 0

∇×∇×
(

G
R

eφ
)
= δ(R− R′)δ(Z − Z′)eφ.

 (4.2)

In these expressions, unprimed and primed coordinates refer to the observation and
integration points, respectively

The 2-D Green’s function is closely related to the flux function for a circular loop
of wire. Specifically, the vector potential due to a wire loop, satisfies

∇×∇× (Aφeφ)=µ0Jφeφ =µ0Iδ(R− R′)δ(Z − Z′)eφ. (4.3)

The solution is

RAφ = µ0I
2π

(
R′R
k2

)1/2

[(2− k2)K − 2E]

k2 = 4R′R
(R′ + R)2 + (Z′ − Z)2

.

 (4.4)

Here K(k) = ∫ π/2
0 (dθ/

√
1− k2 sin2 θ), E(k) = ∫ π/2

0

√
1− k2 sin2 θ dθ are complete

elliptic integrals. Thus, if we set µ0I = 1, we see that RAφ =G,

G= 1
2π

(
R′R
k2

)1/2

[(2− k2)K − 2E]

k2 = 4R′R
(R′ + R)2 + (Z′ − Z)2

.

 (4.5)
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Also needed in the analysis is the normal derivative (in integration coordinates) of the
Green’s function evaluated on the plasma surface. A short calculation yields

LP

2π
(n′ · ∇′G)= 1

2
Ż′

R′
(G−G†)+ Ż′(R′ − R)− Ṙ′(Z′ − Z)

(R′ − R)2 + (Z′ − Z)2
G†

G† = 1
2π

(
R′R
k2

)1/2

[2(1− k2)K − (2− k2)E].

 (4.6)

Note that Ż′, Ṙ′ denote dZ(χ ′)/dχ ′ and dR(χ ′)/dχ ′ indicating that we have switched
integration variables from l′ to χ ′.

The next step is to apply Stokes theorem to (4.1) with the observation point on the
plasma surface

1
2
ψ =

∫
LP

[
ψ ′

R′
∇
′G× eφ − G

R′
∇
′ψ ′ × eφ

]
· dl ′. (4.7)

In this expression we need to be careful about the signs. The main point is that
Stoke’s theorem requires dl ′ to rotate in a right handed sense. Now, in the usual
R, φ, Z coordinate system as shown in figure 1, this implies that dl ′ rotates in the
clockwise direction. However, it is convenient and familiar to have χ ′ rotate in the
counter-clockwise direction. Thus, if we define a unit tangential vector t ′ pointing in
the counter-clockwise direction it then follows that

dl ′ =−t ′ dl′ =− LP

2π
t ′ dχ ′

t ′ = Ṙ′eR + Ż′ez

(Ṙ′2 + Ż′2)1/2

n′ = eφ × t ′ = Ż′eR − Ṙ′ez

(Ṙ′2 + Ż′2)1/2
.


(4.8)

Here, n′ is the outward pointing unit normal vector. With this sign convention (4.7)
reduces to

1
2
ψ =

∫
LP

[
G
R′

n′ · ∇′ψ ′ − ψ
′

R′
n′ · ∇′G

]
l,l′

dl′. (4.9)

A similar expression holds for the wall surface.
The calculation continues by substituting the Fourier expansions into (4.9) and then

carrying out a Fourier analysis. A straightforward calculation leads to

ψm +
∑

n

A11
mnψn −

∑
n

B11
mnun = 0→ (I + A11) ·ψ − B11

· u= 0, (4.10)

where the matrix elements A11
mn and B11

mn of A11 and B11 are given by

A11
mn =

2
π

∫
dχ ′ dχ sin nχ ′ sin mχ

[
LP

2π

n′ · ∇′G
(R′R)1/2

]
χ,χ ′

B11
mn = B11

nm =
4
π

∫
dχ ′ dχ sin nχ ′ sin mχ

[
G

(R′R)1/2

]
χ,χ ′
.

 (4.11)

For the matrix format the first superscript on A11 denotes the observation point while
the second denotes integration point. The index 1 refers to the plasma surface, and
the index 2 refers to the wall. This holds for all matrices that follow.
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The outer vacuum region
The analysis of the outer vacuum region is very similar to that of the plasma. One
simply has to switch surfaces and take into account the opposite sign of the outward
surface normal. The basic equation for the outer vacuum region, assuming regularity
at infinity, is given by

1
2
ψ̂ =−

∫
LW

[
G
R′

n′ · ∇′ ˆ̂ψ ′ − ψ̂
′

R′
n′ · ∇′G

]
l̂,l̂′

dl̂′. (4.12)

On this surface, the Green’s function and its normal derivative are given by

G= 1
2π

(
R′R
k2

)1/2

[(2− k2)K − 2E]
LW

2π
(n′ · ∇′G)= 1

2
Ż′

R′
(G−G†)+ Ż′(R′ − R)− Ṙ′(Z′ − Z)

(R′ − R)2 + (Z′ − Z)2
G†

G† = 1
2π

(
R′R
k2

)1/2

[2(1− k2)K − (2− k2)E].


(4.13)

The expressions are the same as for the plasma region except that LP→ LW in the
second equation. Fourier analysis then leads to the following relation between Fourier
coefficients

ψ̂m −
∑

n

A22
mnψ̂n +

∑
n

B22
mn
ˆ̂vn = 0→ (I − A22) · ψ̂ + B22

· ˆ̂v = 0

A22
mn =

2
π

∫
dχ̂ ′ dχ̂ sin nχ̂ ′ sin mχ̂

[
LW

2π

n′ · ∇′G
(R′R)1/2

]
χ̂ ,χ̂ ′

B22
mn = B22

mn =
4
π

∫
dχ̂ ′ dχ̂ sin nχ̂ ′ sin mχ̂

[
G

(R′R)1/2

]
χ̂ ,χ̂ ′
.


(4.14)

The inner vacuum region
The inner vacuum region is slightly more complicated to analyse because of the
coupling of surface vectors between the plasma and wall surfaces. In this region,
Green’s theorem must be used twice, once with the observation point on the plasma
surface and once on the wall surface. The two basic equations are given by

Observation point on the plasma:

1
2
ψ(l)=−

∫
LP

[
G
R′

n′ · ∇′ψ̂ ′ − ψ
′

R′
n′ · ∇′G

]
l,l′

dl′+
∫

LW

[
G
R′

n′ · ∇′ψ̂ ′ − ψ̂
′

R′
n′ · ∇′G

]
l,l̂′

dl̂′.

(4.15)
Observation point on the wall:

1
2
ψ̂(l̂)=−

∫
LP

[
G
R′

n′ · ∇′ψ̂ ′ − ψ̂
′

R′
n′ · ∇′G

]
l̂,l′

dl′+
∫

LW

[
G
R′

n′ · ∇′ψ̂ ′ − ψ̂
′

R′
n′ · ∇′G

]
l̂,l̂′

dl̂′.

(4.16)
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After carrying out the Fourier analysis, we arrive at two coupled equations for the
Fourier amplitudes

ψm −
∑

n

A11
mnψn +

∑
n

B11
mnûn +

∑
n

A12
mnψ̂n −

∑
n

B12
mnv̂n = 0

ψ̂m +
∑

n

A22
mnψn −

∑
n

B22
mnûn −

∑
n

A21
mnψn +

∑
n

B21
mnv̂n = 0

 (4.17)

or in matrix form

(I − A11) ·ψ + B11
· û+ A12

· ψ̂ − B12
· v̂ = 0

(I + A22) · ψ̂ − B22 · v̂ − A21 ·ψ + B21 · û= 0.

}
(4.18)

The newly introduced matrix elements are defined by

A12
mn =

2
π

∫
dχ̂ ′ dχ sin nχ̂ ′ sin mχ

[
LW

2π

n′ · ∇′G
(R′R)1/2

]
χ,χ̂ ′

A21
mn =

2
π

∫
dχ ′ dχ̂ sin nχ ′ sin mχ̂

[
LP

2π

n′ · ∇′G
(R′R)1/2

]
χ̂ ,χ ′

B12
mn = B12

nm =
4
π

∫
dχ̂ ′ dχ sin nχ̂ ′ sin mχ

[
G

(R′R)1/2

]
χ,χ̂ ′

B21
mn = B21

nm =
4
π

∫
dχ ′ dχ̂ sin nχ ′ sin mχ̂

[
G

(R′R)1/2

]
χ̂ ,χ ′
.


(4.19)

Note that because of the symmetry G(R, Z, R′, Z′) = G(R′, Z′, R, Z) it follows that
B12

mn = B21
nm implying that B21 = (B12)T.

The four constraint relations given by (4.10), (4.14), and (4.18) can now be written
in a compact form as

CT
· x= 0, (4.20)

where CT is a 4M× 6M matrix given by

CT =

∣∣∣∣∣∣∣∣∣
I + A11 0 −B11 0 0 0

0 I − A22 0 0 0 B22

I − A11 A12 0 B11 −B12 0
−A21 I + A22 0 B21 −B22 0

∣∣∣∣∣∣∣∣∣ . (4.21)

5. The numerical solution
The numerical solution to the problem under consideration requires finding

stationary solutions to xT ·W · x= 0 subject to the constraints CT
· x= 0. A convenient

way to proceed mathematically is to recast the Lagrangian formulation in terms of a
minimizing principle by introducing a normalization constraint xT · x = 1. Standard
linear algebra analysis shows that the Lagrangian formulation is equivalent to (see
for instance Trefethen & Bau (1997))

λ= xT ·W · x
xT · x

CT
· x= 0. (5.1a,b)
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The solution procedure requires a determination of the eigenvalues λj of W subject to
the constraints CT

· x= 0. The self-consistency requirement xT ·W · x= 0 corresponds
to finding (by iteration) a set of plasma parameters ε, κ, δ, βp, b/a, γ τw such that the
minimum (i.e. most negative) eigenvalue just happens to satisfy λmin = 0.

Practically speaking, once we are able to solve the eigenvalue problem subject to
the constraints, we can then fix βp, b/a, γ τw, choose a value for ε and then iterate to
find the largest value of κ and corresponding δ for which λmin = 0. In this way the
desired curve of κ = κ(ε) can be generated.

Finding the eigenvalues of a symmetric matrix W subject to a set of linear
constraints CT

· x = 0 is a well-known problem in linear algebra. A good way to
accomplish this task is by means of a QR orthogonal decomposition (Trefethen & Bau
1997) of the constraint matrix C and the introduction of a new set of orthonormal
basis vectors z in place of x (Golub & Underwood 1970). The details of the procedure
are given in appendix A. A summary of the required steps, in the proper sequence,
is as follows:

(i) Compute (for example using MATLAB (2014)) the QR decomposition of C,

C =QT
·

∣∣∣∣∣∣
R
· · ·
0

∣∣∣∣∣∣ . (5.2)

Here, the properties and dimensions of the matrices are as follows: R is a 4M×
4M invertible upper triangular matrix, 0 is a 2M× 4M null space matrix and Q is
a 6M × 6M orthonormal matrix satisfying QT

· Q = I . The symbol · · · appearing
here and in appendix A is used to indicate the separation between block matrices.
Hereafter, we assume that Q and R are known matrices.

(ii) Introduce a new set of orthonormal basis vectors z in place of x,

x=QT
· z=QT

·

∣∣∣∣z4
z2

∣∣∣∣ , (5.3)

where z4 contains the first 4M elements of z while z2 contains the remaining
2M elements. Both x and z contain a total of 6M elements. The analysis in
appendix A shows that the constraint relation forces z4 = 0.

(iii) Compute the matrix

Q ·W ·QT =
∣∣∣∣∣W 11 W 12

W T
12 W 22

∣∣∣∣∣ . (5.4)

Here, W 11 is 4M × 4M, W 22 is 2M × 2M and W 12 is 4M × 2M. Actually only
W 22 is needed.

(iv) The desired eigenvalues are obtained from the simplified matrix problem

λ= zT
2 ·W 22 · z2

zT
2 · z2

. (5.5)

The resulting eigenvalue problem automatically takes into account the constraints.
Also W 22 is symmetric. Its dimensions, 2M × 2M, are much smaller than the
original W whose size is 6M× 6M. Finding the eigenvalues of W 22 is a standard
numerical problem. In this work, we simply accomplish this task by calling the
function ‘eig’ in MATLAB.

The numerical problem has now been fully formulated.
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6. The numerical inputs

The procedure just described has been implemented in a numerical code that is
quick, efficient and accurate. The parameter space of interest is large, consisting
of six physically relevant dimensionless quantities: ε, κ , δ, βp, b/a and γ τw. The
strategy for presenting the results in a compact and understandable form is as follows.
First, as a preparatory step we discuss the precise definition of the normalized wall
radius parameter b/a. Our definition is somewhat different from the usual conformal
wall parameter b/a. It is more physically realistic in that it holds the normalized
gap between the inner midplane wall and the plasma, denoted by ∆i/a, fixed as the
wall area gets larger. Second, after reviewing some experimental data from different
tokamaks we define reference values for βp, b/a and γ τw. Once the reference case
is established, we compute curves of maximum κ and corresponding optimized δ as
a function of ε, separately varying βp, b/a, and γ τw.

Definition of the normalized wall radius b/a
As explained in Paper I, the plasma surface is determined by inverting the implicit
equation Ψ =0 given by the Solov’ev equilibrium. On this surface, the outer equatorial
point has coordinates (R,Z)= (R0+ a, 0), the top point has coordinates (R,Z)= (R0−
δa, κa) and the inner equatorial point has coordinates (R, Z)= (R0 − a, 0). Now, our
wall model has a shape similar to the plasma. It is characterized by three free input
parameters: the normalized inner midplane gap ∆i/a, the normalized outer midplane
gap ∆o/a and the normalized vertical gap ∆v/a. These in turn are easily related to
the more familiar normalized wall radius b/a and wall elongation κw. The geometry
is illustrated in figure 1. In the numerical studies, two of the three gap parameters,
∆i/a and ∆v/a, are held fixed. Changing the wall radius corresponds to varying only
the outer gap; that is, the single parameter ∆o/a or equivalently b/a. This choice of
variation is motivated by experimental observations (McCracken et al. 1997), which
show that the impurity influx in divertor tokamaks from the outboard midplane area
is substantially greater than from the inboard side. Consequently, in order to achieve
better impurity isolation in future experiments, it may be necessary to increase the
outboard midplane gap ∆o/a.

The specific shape of our wall is denoted by the coordinates R̂, Ẑ and is given by

R̂= R̂0 + b cos(τ + δ̂0 sin τ)

Ẑ = κwb sin τ .

}
(6.1)

Note that the average horizontal wall radius b/a and wall elongation κw are related to
the gap widths and plasma elongation by

b
a
= 1+ 1

2

(
∆i

a
+ ∆o

a

)
κw = a

b

(
κ + ∆v

a

)
.

 (6.2)

The parameters R̂0 and δ̂0 can also be expressed in terms of the gap widths by utilizing
the assumption that the maximum heights of both the wall and plasma occur at the
same R.
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Quantity Device
AUG C-Mod DIII-D JET NSTX ITER

Shot 12 145 960 214 039 73 334 49 080 132 913 —
p̄ (atm) 0.38 1.02 0.53 0.42 0.23 1.73
α/R0 0.51/1.60 0.23/0.67 0.61/1.67 0.91/2.91 0.58/0.86 2.00/6.20
ε 0.32 0.34 0.37 0.31 0.67 0.32
κ 1.84 1.77 2.05 1.93 2.42 1.72
δ 0.28 0.70 0.85 0.36 0.66 0.49
bp 1.37 0.70 0.86 0.84 1.11 0.38
∆i/a 0.17 0.08 0.11 0.17 0.16 0.08
b/a 1.17 1.08 1.11 1.17 1.16 1.08
κw 2.01 1.86 2.14 2.09 2.50 1.81
κw/κ 1.09 1.05 1.05 1.08 1.03 1.06
γ τw 1.38 2.04 8.47 1.86 1.56 1.22
li 0.43 0.38 0.35 0.39 0.35 0.39

TABLE 1. Parameters for high performance elongated tokamaks. Here p̄ is the volume
averaged pressure and li is the internal inductance per unit length of the Solov’ev profile
calculated by li = 2

∫
Vp

B2
p dr/(µ2

0I2
φR0) where Iφ is the total toroidal current.

R̂0

R0
= 1+ 1

2

(
∆o

a
− ∆i

a

)
ε

δ̂0 = a
b

[
δ + 1

2

(
∆o

a
− ∆i

a

)]
.

 (6.3)

Also, for the numerics, it is convenient to normalize and parameterize the wall
coordinates as follows: R̂= R0X̂, Ẑ = R0Ŷ with

X̂ = 1+
(

b
a
− 1− ∆i

a

)
ε+

(
b
a

)
ε cos(τ + δ̂0 sin τ)

Ŷ =
(

b
a

)
κwε sin τ .

 (6.4)

Once the gap widths and plasma geometry are specified, the wall coordinates given
by (6.4) are completely determined. From this, it is then a straightforward task to
calculate the angular arc length coordinate χ̂ on the wall surface.

The reference case
The next step is to define a reference case. The goal is to determine a typical set of
values for the parameters of interest: βp, b/a and γ τw. To accomplish this task, we
examine the data for several major large tokamak experiments as shown in table 1:
ASDEX Upgrade (AUG) (Ryter et al. 1996), Alcator C-Mod (C-Mod) (Greenwald
et al. 1997), DIII-D (Petty et al. 1995), JET (Balet, Campbell & Christiansen 1995),
NSTX (Sabbagh et al. 2001), and ITER (Aymar et al. 2002).

Each set of data corresponds to a high performance (i.e. high pressure) discharge.
Observe first that a reasonable value of poloidal beta for the reference case can be
chosen as

βp = 1. (6.5)
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Next, by combining the experimental data with machine drawings, we conclude that
the measured inner and outer gap widths are approximately equal (i.e. ∆o =∆i) and
are set to the values listed in the tables. Also listed is the corresponding value of b/a
as calculated from (6.2). From the table we then assume that the reference values for
the gaps and wall radius are given by

∆i

a
= ∆o

a
= 0.1→ b

a
= 1.1. (6.6)

The reference wall elongation is an additional, but not independent, geometric
parameter which enters the analysis but is more difficult to estimate. The walls have
different shapes and the spacing between plasma and wall is different on the top
and bottom because of the divertor. Even for a single experiment, it is not clear how
to relate the wall shapes in the drawings to the simplified up–down symmetric wall
parameter κw.

To circumvent this difficulty, we assume that for each experiment the vertical gap
is three times the measured inner horizontal gap to allow for a larger vertical space
to accommodate the divertor: ∆v/a = 3∆i/a. Thus, for the table, the reference case
and all future numerical studies, the wall elongation is given by

κw = a
b

(
κ + 3

∆i

a

)
. (6.7)

Here κ is arbitrary, ∆i/a is specified either experimentally or at its reference value
and b/a is obtained from (6.2).

Using the data in table 1 we have carried out numerical calculations to determine
the value of γ τw that leads to a numerical eigenvalue λmin = 0 for each experiment.
By construction, this defines the elongation at high performance that the feedback
system, characterized by γ τw, can safely stabilize. By comparing the γ τw data from
the different experiments, but omitting DIII-D, we deduce that a typical value of the
feedback parameter is

γ τw = 1.5. (6.8)

Interestingly, the value of γ τw for DIII-D is substantially higher than for the other
experiments and the question is ‘Why?’ We suggest that a much stronger feedback
system (i.e. a much larger γ τw) is needed to achieve the high triangularity δ = 0.85
for the listed shot. Furthermore, this stronger feedback is possible in DIII-D since
the feedback coils are located inside the TF coils, much closer to the plasma. In
future fusion grade experiments, this will probably not be possible because of neutron
radiation. This is the reason why a low weight is given to DIII-D when estimating a
‘reference’ value for γ τw. The DIII-D data is discussed in more detail shortly.

Lastly, we note that we could also compute a reference internal inductance li from
the data, with a value of the order of 0.4, as can be seen in table 1. This value is
below the values usually obtained in experiments, and cannot be varied much in our
model because of the fixed Solov’ev profiles. For the modes under consideration, we
do not expect this limitation to have qualitative consequences on the scaling relations
we calculate (Bernard et al. 1978), but it has quantitative implications, as we discuss
shortly.

Having defined the reference case, we now proceed with a series of numerical
calculations to shed insight onto the scaling of maximum achievable κ versus ε as a
function of the experimental parameters, including the feedback system.
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FIGURE 2. Plot of κ versus δ for ε = 0.3 and the reference values βp = 1, γ τw = 1.5,
∆i/a=∆o/a=∆v/3a=0.1. Observe that there is an optimum δ at which κ is a maximum.

7. The numerical results
The reference case

To establish a baseline we calculate curves of maximum κ = κ(ε) and the correspond-
ing δ= δ(ε) for the reference case. To do this, we set βp= 1, ∆i/a= 0.1, ∆v/a= 0.3,
∆o/a = 0.1 (corresponding to b/a = 1.1) and γ τw = 1.5. The value of κw is set in
accordance with (6.7). The desired scaling curves are obtained by choosing a value
for ε and then iterating on κ and δ such that the eigenvalue λmin = 0 for each pair
of values. The result can then be plotted as a curve of κ versus δ for the given ε,
as shown in figure 2. We see that there is an optimized value of δ for which κ is a
maximum. Even so, the expanded scale indicates that the maximum is relatively flat
in the vicinity of the optimum.

The procedure is repeated for a range of ε, thereby generating a curve of maximum
κ = κ(ε) and corresponding δ = δ(ε) which is illustrated in figure 3. Observe
that, in agreement with previous work (Wesson 1978) and experimental data, the
maximum achievable elongation increases as the aspect ratio becomes tighter. As
a/R0 increases from 0.1 to 0.8, the maximum κ increases from 1.89 to 2.88. The
optimum triangularity also increases as the aspect ratio gets tighter, but in a stronger
way. Over the same range of a/R0, the triangularity increases from 0.05 to 0.65.
At a/R0 = 0.3, the maximum elongation and optimum triangularity have the values
κ = 2.06 and δ = 0.18.

The values of κ in figure 3 are in general slightly higher than those listed in table 1.
The experimental values of δ are substantially higher. This may be explained by the
fact that the values in table 1 correspond to high performance as measured by high
average pressure. However, high performance is not determined solely by n= 0 MHD
considerations. Kink stability and transport play a comparably important role, and
experimental data indicates that the highest experimental pressure may be achieved
by operating at a larger value of δ than the n = 0 MHD optimum because of more
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(a) (b)

FIGURE 3. Curves of maximum κ (a) and corresponding optimum δ (b) versus ε for the
reference case βp = 1, γ τw = 1.5, ∆i/a=∆o/a=∆v/3a= 0.1.

than compensatory gains in βN and τE (Lomas & JET Team 2000). We will return to
this point in § 8 of the article.

A second important effect is associated with the fact that any given experiment has
a fixed wall shape. Thus, the typical way to increase elongation is by shrinking the
minor radius of the plasma. The effective increase in wall radius leads to a higher
resistive wall growth rate requiring more feedback and the smaller plasma volume
leads to reduced performance because of smaller τE. Both lead to a reduced κ .

A final contributing factor is associated with the fact that the equilibrium Solov’ev
current profile used in our analysis is somewhat broader than typical experimental
profiles. Specifically, whereas the Solov’ev internal inductance is always approximately
li≈ 0.4, the more peaked experimental profiles have internal inductances that typically
lie in the range li∼ 0.5–1.0. This implies that the Solov’ev profile has a higher current
density close to the wall than the experimental profiles, and therefore is more strongly
affected by wall stabilization. The result is a slightly higher κ for the Solov’ev profile.

Based on this discussion, we see that the numerical results presented here and below
should be viewed in the context of future experimental designs where the wall to
plasma radius can remain fixed as the plasma geometry is varied. Even so, if the
designs are based primarily on empirical τE scaling, the impact of triangularity will
not be accurately taken into account.

Having established and discussed the reference case, we now focus on the scaling
of maximum elongation with various physical parameters.

Scaling with βp

In the first set of studies, as well as all that follow, we fix ∆i/a= 0.1, ∆v/a= 0.3.
The initial studies focus on scaling with βp. As such we fix ∆o/a = 0.1 (which is
equivalent to b/a = 1.1) and γ τw = 1.5. The value of κw is again set in accordance
with (6.7).

The desired scaling curves are calculated by repeating the procedure described
for the reference case but for various values for βp. In figure 4, a set of curves is
shown for four values of βp= 0, 0.5, 1, 1.5. An examination of these curves indicates
only a weak scaling of κ with βp. Noticeable differences occur only for tight aspect
ratios, a/R0 > 0.5. With regard to triangularity, observe that the optimum δ increases
with increasing βp although the values, even at βp = 1.5, are still below the peak
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(a) (b)

FIGURE 4. Curves of maximum κ (a) and corresponding optimum δ (b) versus ε for
various values of βp at fixed γ τw = 1.5, ∆i/a=∆o/a=∆v/3a= 0.1.

performance values given in table 1, presumably because of the reasons discussed
with the reference case.

A possible reason for the larger triangularity as βp increases is as follows. As βp
increases, the contribution to the toroidal current density at the outer-midplane R>R0
becomes larger than the current density at the inner-midplane R<R0. Since the outer
midplane toroidal curvature is unfavourable, its effect is minimized by reducing the
area on the outside of the plasma. This is accomplished by increasing the triangularity.
Hence δ increases with increasing βp. However, δ cannot become too large because
of the corresponding increase in unfavourable poloidal curvature at the vertical tips of
the plasma.

Scaling with b/a
In the second set of studies we fix βp= 1, γ τw= 1.5 and vary the wall radius b/a. As
previously stated we do this by setting ∆i/a= 0.1, ∆v/a= 0.3 and varying the outer
gap parameter ∆o/a. The values of b/a and κw are then determined from (6.2).

Following the procedure described above, we compute curves of κ = κ(ε) and the
corresponding δ = δ(ε) for various ∆o/a. These curves are illustrated in figure 5 for
the values ∆o/a= 0.1, 0.3, 0.5 or equivalently b/a= 1.1, 1.2, 1.3. A comparative plot
of the geometries for each elongation is shown in figure 6.

The numerical results show that, as expected, moving the wall further out leads to a
lower maximum elongation. However, the decrease in maximum elongation is smaller
than the increase in wall radius. Specifically, for any ε, a change in b/a= 0.2 leads
to an approximate change in κ ≈ 0.1. Also, the change in triangularity is small, at
approximately 0.05 over the whole range of ε for the same change in b/a= 0.2.

The presumable explanation is that, even though the outer part of the wall is being
moved further away from the plasma, the strong resistive wall image currents stay
approximately the same on the inner, top and bottom of the first wall since these gaps
have been held fixed. In other words, the effectiveness of the feedback system is not
primarily driven by the proximity of the outer wall to the plasma. One might wonder
whether larger decreases in maximum κ would occur by instead increasing the inner
or upper/lower gaps. This turns out to not be the case based on separate numerical
studies that we have carried out (but which for brevity are not reported here). The
conclusion is that the maximum κ depends significantly on the size of the gap but
not its location.
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(a) (b)

FIGURE 5. Curves of maximum κ (a) and corresponding optimum δ (b) versus ε for
various values of ∆o/a at fixed βp = 1, γ τw = 1.5, ∆i/a=∆v/3a= 0.1.

(a) (b) (c)

FIGURE 6. Comparative wall geometries for ∆o/a= 0.1, 0.3, 0.5 corresponding to b/a=
1.1, 1.2, 1.3 at fixed ∆i/a=∆v/3a= 0.1.

Scaling with γ τw

The final set of numerical studies examines the scaling with the feedback parameter
γ τw. For these studies we fix the wall gaps to ∆i/a = 0.1, ∆v/a = 0.3, ∆o/a = 0.1
and beta poloidal to βp= 1. These are the reference values. The values of b/a and κw
are again determined from (6.7).

Curves are generated of κ = κ(ε) and the corresponding δ= δ(ε) for γ τw= 0, 1, 2,
3 as shown in figure 7. Observe that the curve for γ τw = 0 represents an experiment
without a vertical stability feedback system. It therefore approximates the results for
earlier natural elongation studies (see for example Hakkarainen et al. (1990)). The
achievable elongations are indeed quite modest, for example κ = 1.17, δ = 0.17 for
a/R0 = 0.3.
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(a) (b)

FIGURE 7. Curves of maximum κ (a) and corresponding optimum δ (b) versus ε for
various values of γ τw at fixed, βp = 1, ∆i/a=∆o/a=∆v/3a= 0.1.

FIGURE 8. Plot of the required γ τw versus δ at fixed ε = 0.35, βp = 1, ∆i/a=∆o/a=
∆v/3a= 0.1. The minimum in the curve corresponds to γ τw = 2, κ = 2.37, and δ= 0.20.

For higher values of γ τw, we see that increases in the feedback system capabilities
lead to substantial increases in the maximum achievable elongation. Again, for
a/R0 = 0.3, the maximum κ increases from 1.17 to 2.77 as γ τw increases from 0
to 3. The optimized triangularity is insensitive to γ τw for small to moderate ε, but
decreases appreciably for tight aspect ratios.

A final quite interesting point concerns a different aspect of triangularity as
evidenced in the data from DIII-D in table 1. To illustrate the point, we have
carried out a series of calculations assuming a starting point with values of κ = 2.37
and δ = 0.20 at ε = 0.35 from the γ τw = 2 curve. We then vary δ holding κ and ε

fixed. At each new δ, we recompute the value of γ τw required to make the eigenvalue
λmin= 0. This results in a curve of γ τw versus δ, as shown in figure 8. In other words,
how much must the feedback capability be increased to stabilize a triangularity that
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FIGURE 9. Plot of the total stored energy (Wtot) in joule, elongation (κ) and triangularity
(δ) for a large sample of discharges in the DIII-D experiment. The samples are taken from
the ITER H-mode database db3.v11. The discharge in the red square (shot number 73334)
has the maximum store energy at κ = 2.05 and δ = 0.85.

is away from its optimum value? We see that the minimum in γ τw is relatively flat
in the vicinity of γ τw = 2 but that a large increase is needed for high triangularities.
For example, to achieve a triangularity of 0.71 requires a doubling of the feedback
capacity to γ τw = 4 even though the elongation has remained unchanged. Some
insight into this strong behaviour can be obtained by noting that the ratio of the
pressure driven term to the line bending term in the ideal MHD δWF scales as

2µ0(ξ⊥ · ∇p)(ξ ∗⊥ · κ)
|Q⊥|2 ∼ βp

1− δ2
. (7.1)

The 1− δ2 factor arises from increasing unfavourable poloidal curvature at the top and
bottom of the plasma as δ becomes larger. This leads to increased instability requiring
a larger feedback capability, which is consistent with the DIII-D data.

Figure 9 shows the values of elongation and triangularity observed in a large sample
of discharges in the DIII-D experiment. We can see that the maximum elongation
(κ = 2.3) occurs for moderate triangularity, at approximately δ = 0.5 instead of the
highest achievable triangularity, which is around δ= 0.9. The existence of an optimal
triangularity for the maximum elongation obtained in experiments agrees with the
theoretical prediction in this paper.

8. Discussion
We have calculated the scaling of maximum elongation and corresponding optimized

triangularity as a function of inverse aspect ratio for various plasma parameters. The
scaling trends are as one might have expected:

(i) In general, the maximum achievable elongation and optimized triangularity
increase as the aspect ratio becomes tighter.

(ii) At fixed aspect ratio, the maximum elongation κmax, is relatively insensitive
to βp except for ε → 1. For tight aspect ratios, κmax decreases. The optimum
triangularity monotonically increases with both ε and βp.
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(iii) When the outer midplane wall is moved further away from the plasma, κmax

decreases, although not by that much. There are still strong image currents on
the inner, upper and lower walls to keep the stability largely intact. Also, there
is a small increase in triangularity.

(iv) There are large gains in κmax as the feedback capability γ τw is increased. This
is accompanied by a small-to-modest decrease in triangularity. One interesting
feature is that as the triangularity increases away from its optimum value
towards δ → 1, the required γ τw for stability increases rapidly because of the
corresponding increase in unfavourable poloidal curvature at the upper and lower
tips of the plasma.

Overall, the theoretical predictions of κmax are slightly higher than those observed
experimentally for the high performance shots in table 1. The explanation is likely
associated with two effects, both of which effectively increase the experimental wall
radius, thereby reducing the achievable κmax: (i) shrinking the plasma minor radius to
increase plasma elongation and (ii) more peaked current profiles than in the Solov’ev
model.

A second important theoretical prediction concerns the optimized values of δ, which
are noticeably smaller than the observations. The suggestion is that high performance,
as measured by high pressure, is not solely dependent on n= 0 MHD stability. Kink
stability and transport play a comparably important role in maximizing performance.
As shown in figure 9, the total stored energy is maximized by maximizing the
triangularity, and is lower if the plasma is in a highly elongated configuration with
a correspondingly lower optimized triangularity. Gains in βN and τE may more than
compensate reductions in κmax by operation away from the optimum δ. This hypothesis
is also supported by experimental results obtained on the JET tokamak (Lomas &
JET Team 2000).

The dependence of plasma confinement on triangularity remains poorly understood
to this day. Confinement may improve at high triangularity due to reduced MHD
turbulence associated with the n = 1 ballooning-kink mode (Eriksson & Wahlberg
2001). On the other hand, it was found in experiments on the TCV tokamak that
increasing triangularity led to reduced plasma confinement (Weisen et al. 1997), which
was explained by the increase of drift-wave turbulent transport for high triangularity
(Camenen et al. 2007). Unfortunately, the present empirical scaling relations for τE do
not explicitly take triangularity into account. Characterizing the complicated effect of
triangularity on confinement may therefore be an important challenge for the transport
community in the future.
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Appendix A. Linear algebra for n= 0 stability
The stability problem can be written in a classic eigenvalue form as follows

λ= xT ·W · x
xT · x

. (A 1)

Here W is an 6M × 6M symmetric matrix and x is a vector of length 6M. Also
included is the γ τw term which enters as an M ×M diagonal matrix contribution to
W . The mathematical goal is to find the eigenvalues λj of W subject to the Green’s
function constraints:

CT
· x= 0. (A 2)

The matrix C has 6M rows and 4M columns (i.e. C is a 6M × 4M matrix) and has
a rank 4M. The physical goal requires finding the maximum, κ = κ(ε, βp, b/a, γ τw)
and corresponding δ = δ(ε, βp, b/a, γ τw), such that the smallest (i.e. most negative)
eigenvalue satisfies λmin = 0.

Golub and Underwood have proposed an efficient and elegant method to treat this
mathematical problem (Golub & Underwood 1970). The idea is to take into account
the constraint relation by carrying out a QR orthogonal decomposition of the constraint
matrix C. This allows us to exactly factor out the 4M zero eigenvalues arising from
the constraint relations, leaving us with a 2M × 2M eigenvalue problem. The QR
orthogonal decomposition (called with the function ‘qr’ in MATLAB) of C can be
written as

C =QT
·

∣∣∣∣∣∣
R
· · ·
0

∣∣∣∣∣∣ , (A 3)

where, as mentioned in the main text, the symbol · · · is used to represent the
separation between matrix blocks. The properties and dimensions of the matrices,
using the notation m = 6M, n = 4M, and p = m − n = 2M are as follows: R is an
n× n invertible upper triangular matrix, 0 is a p× n null space matrix and Q is an
m×m orthonormal matrix satisfying QT

·Q= I . Note that since Q is a square matrix,
it follows that QT =Q−1.

The next step in the procedure, assuming that Q is known, is to introduce a new
set of basis vectors z in place of x defined by

x=QT
· z=QT

·

∣∣∣∣zn
zp

∣∣∣∣ . (A 4)

Here, zn contains the first n elements of x while zp contains the remaining p elements.
Clearly, both x and z each contain m elements. The usefulness of the transformation
becomes apparent when rewriting the constraint relation in terms of z,

CT
· x= (|RT ... 0| ·Q) · (QT

· z)= |RT ... 0| · (Q ·QT) · z= 0. (A 5)

Now, using the orthonormal properties of Q it follows that

QT
·Q=Q−1

·Q=Q ·Q−1 =Q ·QT = I. (A 6)

Equation (A 5) thus reduces to

CT
· x= |RT ... 0| ·

∣∣∣∣zn
zp

∣∣∣∣= 0. (A 7)

https://doi.org/10.1017/S0022377815001300 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815001300


Tokamak elongation – how much is too much? Part 2. Numerical results 23

Carrying out the matrix multiplication leads to the simple result

RT
· zn = 0. (A 8)

Since R is invertible it has an inverse. Therefore, operating on the left of (A 8) with
(RT)−1 yields

zn = 0. (A 9)
The QR decomposition has led to a set of basis vectors in which the constraint relation
is satisfied by the simple step of setting the first n elements of z identically to zero.

We can take this result into account by rewriting the basis vector transformation
given by (A 4) as follows

x=QT
·

∣∣∣∣ 0zp

∣∣∣∣=QT
· Î · z

Î =
∣∣∣∣0 0
0 Ip

∣∣∣∣ .
 (A 10)

Observe that Ip is an identity matrix of dimension p × p which appears only in the
lower right-hand corner of the total m × m matrix Î . This is a convenient way to
suppress the appearance of zn.

The original eigenvalue problem defined by (A 1) and (A 2) can now be simplified
by eliminating x in terms of z

λ= xT ·W · x
xT · x

= zT · Î ·Q ·W ·QT
· Î · z

zT · Î ·Q ·QT
· Î · z

. (A 11)

The critical point to recognize is that the constraint CT
· x=0 is automatically satisfied

in this representation. That is, introduction of Î eliminates the contribution of zn and
is equivalent to setting zn = 0, which is the constraint condition expressed in terms
of z.

The numerator and denominator in (A 11) can be greatly simplified. Using the
properties of Q and Î we see that the denominator can be written as

zT
· Î ·Q ·QT

· Î · z= zT
· Î · Î · z= zT

p · zp. (A 12)

Next, in the numerator write

Q ·W ·QT =
∣∣∣∣∣W 11 W 12

W T
12 W 22

∣∣∣∣∣ , (A 13)

where W 11 is n× n, W 22 is p× p and W 12 is n× p. Since the starting m×m matrix
Q ·W · QT is symmetric, the matrices W 11 and W 22 must also be symmetric. Using
this information we see that the numerator of (A 11) reduces to

zT
· Î ·Q ·W ·QT

· Î · z= zT
· Î ·

∣∣∣∣∣W 11 W 12

W T
12 W 22

∣∣∣∣∣ · Î · z= zT
p ·W 22 · zp. (A 14)

Of the total matrix Q ·W ·QT only W 22 need be extracted.
The original eigenvalue problem including constraints has now been reduced to the

desired form

λ= zT
p ·W22 · zp

zT
p · zp

. (A 15)
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It has been reduced from an m×m to a p× p eigenvalue problem for the symmetric
matrix W 22. Once the eigenvectors have been determined, the original vector x is
determined by substituting into (A 10).
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