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Abstract

The decay at large wavenumbers of the energy density in an inertial wave generated in a
sphere by an arbitrary initial disturbance is determined as a first step to a comparison
with the general theory of Phillips [17] for a statistically steady field of random inertial
waves in an arbitrary cavity.

1. Introduction

Just over a century ago, Lord Kelvin [11] established that enclosed rotating fluids
with uniform density and angular velocity (12) can sustain oscillations that arise
from the restoring action of the Coriolis force.

The first studies of such oscillations were in geodynamics. The stability of the
shape of the earth, and of other self-gravitating rotating bodies, was extensively
studied by Poincare [18] and Liapounoff [13] by treating the body as a uniform
fluid oscillating about a uniform angular velocity. The oscillations of astronomi-
cally observed latitudes, of about 427 day period (Chandler [3]), and the slow
precession of about 26,000 year period due to the sun and moon were investigated
on the same basis, but with allowance for a solid outer shell (Hough [9], Poincare
[19]). A synopsis of the early work, in particular on the stability of the Jacobi
ellipsoids (and of the conjecture that the pear-shaped modes might precede
ultimate fission into two separate bodies, and thence explain binary stars), is
given by Lyttleton [14].
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Subsequently, the possibility of inertial oscillations in the atmosphere was
explored by Bjerknes and Solberg [1]. A spate of studies of the inertial effects
pertaining to the atmosphere and oceans followed that is largely summarized in
Greenspan's book [6] on rotating fluids. In this context, the radial thinness
generally leads, in the first approximation, to somewhat specialized effectively
two-dimensional modes. Other applications are the dynamics of fluid-filled rotat-
ing projectiles (reviewed by Rumyantsev [20]) and Malkus's proposal that the
westward drift of the geomagnetic field stems from Alfven waves in the liquid
core that are governed by equations equivalent to those for inertial waves (Malkus
[15], Hide [8], Wood [26]). The geodynamic context is pertinent also in that a
satisfactory marriage remains to be made (Smith [21]) of elastic oscillations of the
mantle (which are amenable to spherical harmonic analysis) and the inertial
oscillations of the liquid core (which are not).

Unfortunately, the analysis of inertial oscillations in an enclosure has awkward
complexities occasioned by the equation for the spatial variation of modes
(varying say as e'°") being hyperbolic when |w|< 2fi. For example, the eigenfre-
quencies for a sphere or for a cylindrical can rotating about its central axis form a
dense set in the range |w|<2B and periodic forcing at any non-resonant
frequency in this range leads to eigenexpansions whose convergence involves
small divisors. Furthermore, forced oscillations in the cylindrical can that vary as
eik* with the azimuthal angle 4> can have discontinuities on the characteristics
through the corners. The characteristics are circular cones symmetric about the
can's axis with a semi-angle a = arsin(w/2J2). When the forcing frequency is
non-resonant and is such that (tana) X (the can's height/width ratio) is a
rational number, the characteristics cones from the corners close after repeated
reflexions at the boundaries of the can. The relevant eigenexpansions then
converge, but they generally yield discontinuities in the velocity or velocity
gradient (Wood [25], McEwan [16]). The patterns of these discontinuity surfaces
vary erratically as the forcing frequency changes. Allied discontinuities, this time
in the free modes, are believed to arise also when the effectively two-dimensional
modes of Laplace's tidal equations for a spherical annulus (Haurwitz [7]) are
perturbed to allow for the annular thickness (Stewartson and Rickard [23]). A
velocity discontinuity appears to develop at the two (critical) circles where the
characteristic cones touch the inner spherical boundary and this discontinuity
then propagates around the annulus by repeated reflexion of these characteristics
at the spherical boundaries. Ray methods have indicated other discontinuous
modes (coupled with continuous eigenfrequency bands) in a spherical annulus
(Bretherton [2], Israeli [10], Stewartson [22]) and also in non-spherical axisymmet-
ric containers (Wood [28]).

Real inertial waves are of course variously modified by stratification, non-lin-
earity and viscosity. But the inherent fine structure presumably persists whenever
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[ 31 Inertial waves in a sphere 147

these effects are all small, and it is of some interest therefore to explore a
statistical approach. One such approach is to expand the flow variables in
orthogonal series appropriate to the fluid boundaries and to treat the coefficients
of the (truncated) series as the coordinates of a point in a dynamical system
(Kraichnan [12], Frederiksen and Sawford [5]). Probability distributions for the
coefficients can then be adduced from statistical mechanics and can be used, for
example, to evaluate the expectation of integrated flow quantities that depend
only on these coefficients. This approach requires the governing (fluid dynamic)
equations to be non-linear otherwise the motion of the effective phase points with
time is insufficiently ergodic. A second approach which applies within the linear
approximation but requires the motion to have a length scale small relative to that
of the enclosure is to treat the motion as an assembly of locally plane waves
(Phillips [17]). At the boundaries, the waves reflect about the angular velocity
(rather than the normal to the boundary) and change wavenumber. After many
reflexions in an enclosure whose boundaries are not everywhere either perpendic-
ular or normal to R, a particular wave acquires a randomness of location and
wavenumber. Phillips envisaged a statistically steady field of random inertial
waves energized at low wavenumbers in a viscous fluid with a view to deriving a
decay law for the energy spectrum. To achieve this he proposed that the net
energy transferred from the scalar wavenumbers K < Ko to the higher scalar
wavenumbers K > Ko was equal, for any large enough Ko, to the energy dis-
sipated throughout the enclosure at the higher wavenumbers K > Ko. This energy
transfer is effected (linearly) by reflexion, rather than by non-linear interaction.
Otherwise, the balance proposed is like that advanced to derive Kolmogorov's
decay law for turbulence.

The linearity allows this latter theory to be compared with particular solutions.
In this note, the evolution of an arbitrary initial disturbance in a sphere is
considered for an inviscid fluid as a preliminary step to such a comparison. The
energy transfer hypothesis holds in this case (in the degenerate form that the
energy transfer from scalar wavenumbers K < Ko is zero for large Ko) but it does
not determine the energy distribution for large K. Phillips' derivation appears to
imply that the energy density Ik defined in Section 3 is constant for large scalar
wavenumbers K. In fact, this energy density decays as K~u for large K and
azimuthal wavenumbers k > 3 of 0(1) and varies as K~* for large K and
k = O( K ). A further feature is that the (local) energy density Ik exhibits a degree
of spatial non-uniformity that is likely to survive small viscous forces and is at
variance with the spatial homogeneity assumed by Phillips. In particular, the
energy density is singular at the critical circles on the sphere and when k = 0(K)
the energy density is exponentially smaller within a radius O(k/K) from the axis
than it is elsewhere.
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2. Formulation

We consider small disturbances to an inviscid fluid with angular velocity
0 = fli generated in a sphere r2 + z2 — 1 by an arbitrary initial velocity u0 with
a length scale 0(1). Relative to a frame with angular velocity fi, the disturbance
velocity u and a suitably scaled associated pressure Q satisfy the equations

3u/3f + 2Q X ii = - v£>, (2.!)

divu = 0. (2.2)

For general axisymmetric containers, there is evidence that the eigenfrequencies
may include continuous frequency bands (Stewartson [22], Israeli [10], Wood
[28]), but for the sphere, the eigenfrequencies u>N are discrete and the disturbance
velocity can be represented by

u(x, t) = U0(x) + I cNUN(x)e^' (2.3)
AT=-oo

(Greenspan [6]), where the cN are constants. The specification of the steady
axisymmetric velocity Uo is not needed here as our prime concern is with the high
order modes. The amplitude cN of the other modes, for which aN =£ 0, is given by

cN = jVN-uodv/(vN-VNdv. (2.4)
Js Js

The relevant modes have been described by Greenspan [6]. We recall here that the
modal velocity U^ is related to the concomitant pressure QN by

UN = (~iuNCN + 2QX CN)/ (4fl2 - <4), (2.5)

where

QNi, (2.6)

whilst QN satisfies the differential equation

QNrr + r~lQNr ~ k2r~2QN = (4fl2^2 - \)QNa (2.7)

and is defined explicitly for N ¥= 0 by

QN = lf(cos@)lf (cos<D)e'**, 0<|A:|<n, (2.8)

where

rcostf = sinQsinO, zsin 0 = cos©cos$,
O = s 0 < i w - t f < * < ^ 7 r + e, (2.9)

\0\<ir/2. (2.10)
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I s 1 Inertial waves in a sphere 149

T h e k a n d n here a re integers a n d <J> is the az imutha l angle . T h e eigenfrequencies
uN(= ukmn say) a re given b y the roots (for m = 1,2,..., n — | A: |) of

kPa
k(sm0) = cos8dPn

k(sin6)/d8. (2.11)

Modes with u>N > 0 will be assigned index numbers N > 0 and conjugate modes
will be assigned index numbers N and — N, so that

U-A= <*-kmn) = ~UN> U _ A r = UA r , C_N=CN. (2.12)

We shall be concerned with the higher order modes with n » 1. When A:"1 =
O ( H ~ ' ) , the behaviour of these modes follows from the asymptotic approximation

s*) ~ «o 1/3A1/2(4f/ (X2 - sin2

0 < * < w / 2 , (2.13)
where nQ = n + {, \ —\k\/n0,

A = r(« + |fc| + i ) / r ( « - | * | + i), (2.14)

2/3f3/2 = Aarcosh[\(l - X2)~1/2cot if]

-arcosh[(l-X2)~1/2cos^] (2.15)

(Thorne [24]). Hence a transition region of width O(n~2/3) is located near the
spheroid

/•2\-2cos20 + z2(l - X 2 ) - ' s i n 2 0 = I (2.16)

defined by sin 0 = X. Between this transition region and the sphere, the modes
comprise modulated waves with velocity O(A) represented by

eA,~v4Ar(cos«0»'1 + s i nno^y** , (2.17)

where

vl — x(cos0) — x(cosO), c2 = x(cos0) + x(cos$), (2.18)

AN = A(7r«)"1(sin20 - X2)"1/4(sin2<I» - X2)"1/4, (2.19)

x(cost//) = arcos[(l — X2)~1/2cos^J

-Xarcos[x(l-X2)"1/2cot^]. (2.20)

Between the transition region and the axis, the velocity is 0(Ae~|O(n)l) and the
fluid is relatively still. The velocity in the transition zone itself is 0(Anl / 6). The
eigenfrequencies uN (> 0) are determined by

)ff ± arcot{X-2(l -

+ O(n-2), k>0, |arcot|<w/2, (2.21)
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provided that uN ¥= 2fl\/l — A2, where m is any integer such that 1 « m <
j[n — \k\] + *[1 — (~1)"~*]- The relatively few remaining frequencies w^, for
which uN ^ 2il]/\ — X2, are given to leading order by

= (1 - A2)1/2 - « ( 2 2 2 )

where the y, are the zeros y = y, of Ai(y). Hence the positive eigenfrequencies for
9. given k and n are distributed with a spacing at most O ( ; J ~ 2 / 3 ) over the range
(0,2fl/l ~ ^2)- When wN ^ 0, the spheroid (2.16) that locates the transition zone
is close to the cylinder r = X. The spheroids for given k and n and various m all
intersect the sphere where r = X, but, as uN(m) increases, they bulge progres-
sively until, for uN — 2S2\/l — X2, they he close to the sphere. So the modulated
waves for a given k and n occupy the region n2/3r » n2/3X outside the cylinder
r = X when fa?^ =* 0 and recede progressively to the sphere as uN increases. When
uN/2Qi = yj\ — X2 + O(n~2/3), the modulated waves are eliminated, and the
erstwhile transition zone becomes a thin layer over the whole sphere r2 + z2 = 1,
outside which the velocity is small of O(Ae~|O(n)l). Any particular point r, <J>, z is
in a modulated wave for those modes for which

\k\/n<r-\O(n-2/3)\,

where

(2.23)

(2.24)

. (2.25)

When \k\<&n, the behaviour of the high order modes follows from the
approximation

R = (r2- X2)l/2[r2 - X2(l -

and the point is in a transition zone if

(2.26)

(Erdelyi [4]). Where /•"' = 0(1), the modes again comprise modulated waves with
velocity 0(A) represented by (2.17) but with the phases and amplitudes now
given by

t = 0 - <J>, K2 = 0 + $ + XTT,

/ *„= A/™(/-cos0)1 / 2 .

(2.27)

(2.28)
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Near the z-axis, where r = 0(n~l), the velocities are O(AAI1 / 2). The eigenfre-
quencies oN > 0 for k « n are given by

w/, = 2 K s i n ( ^ - y « o 1 ) , (2.29)

where the y are given by

Y = ( i n - * + * * ) * , l « m < i ( / i - | * | ) + ± ( l - ( - l ) " ~ * ) , (2.30)

for w^ s* 2fi and the y are the roots 7 = y, of

y^(Y) = -kJ^(y) (2.31)

for w^ =: 2fl.
In either of the cases A:"1 = O(n~l) or k « «, each modulated wave (given by

(2.17)) with JV > 0, comprises four travelling waves with phases uNt + k$ ± n0Vi,
i = 1,2, and wavenumbers

K,± = - (±/io»V fe-1, ±«0",J- (2-32)

These waves have the familiar dispersion relations

aNKl± = 2\a-Kl±\ (2.33)

and have group velocities

cgl± = a
3

N(±v,r,\r-1, -cot2^,J /4«S22^. (2.34)

A further common property is that the velocity of the modulated wave is
amplified by a factor O(n) within distances O(n~2) in a direction normal to the
boundary from the critical circles at the boundary (at which the group velocity is
tangential).

3. Energy density and energy flux

The mean kinetic energy pE and the mean energy flux F can be defined by

pE= lim T~l f'+T{pu2dt, F = Urn T~] f'+TQu dt, (3.1)
T— 00 ' f T— 00 ' /

where p is the density. Hence

£ = HJ0
2+ 2 \cN?vN-vN, (3.2)

/v>o

2 \cJMQ*VN) ' (3.3)

and both quantities are independent of <f> and /.
We now consider the parts of E and F due to the high order modes, with n > n

say. All these modes are quasi-harmonic functions of the 0 coordinate. So, an
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energy density and flux density can be defined for them by

E(x) = 2 EN, f{x) = 2 fN, (3.4)
N>0

where

£* = (SV)~l[ \cK?VN • V»dv, FN = (8C)~7 |^ | 2 Re(e^) r f5
•'fiK JSC

(3.5)

and 8K and SC denote respectively a suitable small sphere and small disc with
normal x (and their measures). From (2.5) and (2.6), we have that

UN-VN = c^4 tan4 «{(«*, + 4n2)(G*r + k2r~2Q2
N) + ^N^kr~'QNQN)

Qlt. (3.6)

If the 7Vth mode gives rise to a modulated wave represented by (2.17) at the point
x, this expression reduces to leading order to

VN-\]N = U-2sec20n2A2
N(yl + ̂  + ON), (3.7)

where ON is 0(1) and is linear in all of the terms exp/no(±»>, ± Vj), i,j = 1, 2,
save the constant term. Hence, since the amplitude A N does not vary rapidly with
x, the energy density is given approximately by

&N = &N] + EN2< (3-8)

where

ENI = a?sec2 en^cMp2. (3.9)

A similar calculation shows that the flux density is given by

FN = ±{Em(cgl++cgl-) + Em(cg2++cg2.)}, (3.10)

as is to be expected.
In passing, it might be added that if the mean helicity is defined by

H= lim r ' f ' + r u - c u r i u m , (3.11)

it reduces, without approximation, to

/ / = U0-curlU0, (3.12)

and is thus unaffected by the unsteady modes.

The spatial variation of the energy density EN depends merely on the velocity
amplitude of the iVth mode which has been outlined above (for n » 1). The
salient relative magnitudes are summarized in Table 1. Further details are given in
previous papers (Wood [27], [28]).
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191 Inertial waves in a sphere

TABLE 1. Relative magnitudes of EN

153

k~l = O(n-')

k<*n

Still zone

e-|O(")l

Transition zone

O(/.l /3)

Axial zone ( r = O(n~]))

O(n)

Modulated wave

0(1)

0(1)

Critical circle

O(n2)

O(n2)

The distribution of £(x) among the various modes at a given point depends on
cN, which proves to have the form

(3.13)

where

C =

in2^-2*-3cot4 0cos2 0(1 - AT1/2(cos20 - \2)~l/\
Ac"1 = O ( i t - ' ) ,

4 k = 1,2,

= Q, 3<k<zn,
- v « - " - 5 cot4 0 cos e,

(3.14)

and the G, are each of the form A(d)k2 + B(0). The 4(0) and 5(0) here are
linear combinations of various Fourier coefficients with respect to <f> of the initial
velocity and its gradient. These formulae are derived, and the various G, and G2

defined, in the appendix. For m, n > 1 and &"' = O(«"'), the terms of ENi vary
with N to leading order as follows:

, 0, r,

, *,. = i>,(x,0,r,z), (3.15)

, 0) + (-l)n+kG2(k, 0)}\ (3.16)

where \i — m/n0 (and \=\k\/n0). Since these terms vary relatively slowly with m
and n, the corresponding contribution (EM say) to the mean energy density £(x)
can be approximated to leading order in the form

%x + E%2)n dn dp, (317)

where the superposition incorporates the appropriate modes and the Efi, are equal
to the previous ENi with the | cN p now replaced by

(3.18)

(3.19)

In terms of local wavenumbers this becomes

EM = ffl(K, 0')K2sinO'dKdO',
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where

(3.20)•_ v y nEN,

and K, 8' are spherical coordinates in wavenumber space given by

K=\K,\, O' = ir/2-6, (3.21)

ihe third anguiar coordinate being <f>' = arta^A/rf, ). To ieading order,

( 3 2 2 )
d(K,0') COS

= 77-'tantf(cos2e - A 2 ) ' 7 2 / ^ - Mv,/d\). (3.23)

Hence we arrive at an energy density in wavenumber space of

(3.24)

where

= y * t a n g £ , ( c o s g A ) ( 3 .

* ,^T,2^^2cos<?(r, -Xa^/BA) '

Substitution from (3.9), (3.13), (3.14) and (2.18) then yields

ca,»>[g? + cg]M(8,»)^(*,e)} ( )

2TT2A:2A:4(1 - X2)l/2sin4«(cos20 - cos2^)3

(3.26)

where

cos <Wsin2 0 - A2 + cos 0\/sin2 4> - A2

* ) = = = = = = • (3.27)
sin2 0 cos $/sin2 $ — A2 + sin2 $ cos ©ysin2 0 — A2

For k — 0(1), the energy density Ik can be defined in the same way, and we
find that

_ fisin2o+lfl[(72 + (?2][sing+l(0 + <E) + sin°+l(© - <£>)]
*k > (3.28)

e ^ A T ' ^ ' ^ ^ 2 © 2 $ ) " + l

where 0 = 1, a = 9 for k = 0 and k ^ 3 and $ = ^wcos 6, a = 2k + 4 for k = 1,
2.

The energy density so defined thus decays as K~A for k — O(n) and as K~u

for 3 *£ Ac = 0(1). By contrast, the energy density of Phillips theory for a viscous
fluid is independent of K in the appropriate inertial subrange (Phillips [17]).
Phillips bases his decay law on the hypothesis that the energy flux at the
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boundary from wavenumbers K less than any arbitrary KQ ~» 1 equals the viscous
dissipation throughout the flow at wavenumbers K greater than Ko. The corre-
sponding hypothesis in the present context is that the net flux

(cgX+ +c g l _ ) + 2EN2(cg2+ +Cg2_)}-udS = 0, (3.29)

where 8S is the surface of the sphere and the summations are over the terms ENi

for which Kt (= w»», sec 6) exceeds Ko ( » 1). This condition follows because the
modal pressure QNe~""1' is real so that the modulated waves representing it occur
in conjugate pairs. Consequently, the group velocities cg,_ and cgl+ have equal
and opposite components in each axial plane and (cgi+ +cg l_ ) • v = 0. Thus the
hypothesis holds but yields no information about the decay of the energy density
with K.

Two other features deserve comment. Firstly, the energy density Ik is de-
termined by the initial velocity near the critical circles when k ^ 1 or 2 and by the
initial velocity near the poles when k = 1 or 2. (This follows from the correspond-
ing property of the modal coefficients cN shown in the appendix.) Secondly, Ik is
infinite to a high order (as ( $ — ©)~10 for k > 3) at the critical circles (where
0 = $ ) on the sphere.

The singularity in Ik at the critical circles can be viewed as a consequence of the
relevant ray paths (of the modulated wave components of each mode) being
locally tangential to the boundary. Where a ray is reflected tangentially, the
neighbouring rays are much closer after reflexion than before. The phases nvt of
the rays are interchanged, to leading order, on reflexion, apart at most from a
change of sign and a multiple of n. SO the crowding of the rays causes the lateral
gradient of phase on the reflected ray to be much larger than on the incident ray.
It happens that the lateral gradient on the incident rays is not small. Hence the
lateral {i.e. radial) gradient of the phase on the reflected rays is large. On the
tangential ray, the radial phase gradient at the boundary is infinite. One conse-
quence is that the mode varies locally much more rapidly with distance in the
axial plane than with <j>. Accordingly, the group velocity is locally tangential to the
characteristic cones for large k, just as it is when k — 0(1). This in turn means
that tangency of the ray paths always occurs at the critical circles (irrespective of
whether k is large). More importantly, the lateral compression causes the velocity
amplitude of the tangentially reflected wave to become infinite at the critical
circle. Thus the energy density ENX becomes infinite, because vx is infinite. The
velocity itself is finite, a zero in phase at the critical circle serving to eliminate the
singularity in the amplitude. (A fuller discussion of the singularity near the
critical circles of inertial oscillations represented by modulated waves is given, for
an arbitrary axisymmetric enclosure, in an earlier paper (Wood [28]).) When the
energy density ENi is converted to the wavenumber energy density Ik{K, 6'), the
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spatial singularity is exaggerated by the replacement of n~l by vx /KsmO' in the
relevant powers of n~'.

Finally, it should be noted that the singularity (locally) invalidates the formula
(3.9) for the energy density ENl. This is most easily seen by noting that the speed
of each mode varies near the critical circle as (0 — $ ) ~ ' sin «oa(0 — O), where a
( = (1 - \2 sec2 0)1/2) is spatially constant and 0 - $ (= arcos(r cos 6 + z sin 6))
represents locally the square root of radial distance from the boundary (Wood
[28]). Thus the separate averaging of the periodic component implicit in the
formula (3.9) for ENj is inappropriate near the critical circle, with the result that
the integral f jsENrdrdz, instead of representing the total energy of the Nth.
mode, is infinite.

Appendix—estimates for cN

Asymptotic approximations for the coefficients cN ( = ckmn) of the eigenexpan-
sion for the velocity are obtained here for n » 1 and k — 0(1) or 0(n). The initial
velocity is assumed, for this purpose, to be an analytic function (of cartesian
coordinates).

For n » 1, the inner product

/ O w - U w « f c ~ / « 2 ^ 2 s e c 2 ^ ( ^ + v2)dv, (Al)
Js Jo

where O is the zone in which the modulated waves occur (and the expression (3.7)
for Û r • VN has been used). When k — 0(1), the contribution to the inner product
from the axial zone (where the modulated wave approximation fails) is small
relative to the contribution from the modulated wave zone 0. Similarly, when
k~l — 0(n~') the contributions from both the inner zone (where U^ is exponen-
tially small) and the transition zone are relatively small. For A:"1 = O(n~l),
substitution from (2.9), (2.18) and (2.19) yields

sin 9 cos4 OJj Uy • I V dr dz

2 tn/2+8 rv/2-0 . .
~ A / / sin 0 sin <P

[(1 - X2)(cos2 0 + cos2 <S>) - 2cos2 0cos2 4>] d& d<P

(cos2 0 - cos2 $)(sin2 0 - A2)1/2(sin2 <D - X2)l/2

where 6C = arsin \ (0 < 6C < w/2), and after a routine integration we find that

N \}Nrdrdz ~(2w)~'sr2A2sec40(cos20 - X2)x/2. (A3)
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Similarly, for k = 0(1), we find with the aid of (2.27) and (2.28) that

f(vNVNrdrdzJJs
/i+6 rv/2-e 2 — sec2 0 — sec2

I
fn/i+6 r

s4 6 K/i-o Jo27r2Q2sin0cos4 6 K/i-o Jo sec2 $ - sec2 0

~(27r)~'$r2A2sec30, (A4)

which is consistent with (A3).
To estimate the inner product fs\JN-u0 dv, we first rewrite it as

2mo^'{ f L(sm\p, cos ^Qxisin \p, cos \f>)d\p

+ tan2 6cosec6((MQNdrdz\, (A5)JJs J

where

L{r, z) — r[rtan2 6(iuOk + v0kcosec6) — izwOk], (A6)

and

M{r, z) = --^[r(iu0kcosec6 + vOk)] +(iuOk + v0kcosec6)k. (A7)

The uOk, vOk, wOk here are the azimuthal Fourier coefficients of the initial velocity
u0 such that u0 = 2f=-J.u0k, vQk, wQk)e-ik*.

For k = 0(1), use of (2.8) and repeated integration by parts shows that

fL(sin *, cos ^)e^(sin ^, cos *) d* = ^ ^ f^L^'icos +) d+,

(A8)

w h e r e n 2 p = (n + \k\ +p\n — \k\ —p + 1) and

] p>\, (A9)

Lo = L(sin t//, cos^) + ( - l)"+*L(sin^, - c o s ^ ) . (A10)

The dominant contribution to the last integral arises from the neighbourhood
^ = O(n~l) of the axis. Assuming that u0 is an analytic function of position
implies that, for i// « 1, Lo has the form

_ f r f s i n V + ^ s i n ^ + tf^), k > u

° ~ { ^ * i 3 ^ + rffi4^ + O(^5) , * = 0.
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Thence, after use of (2.26) we find from (A8) that

/•«• f O(nk~1/2) k> 1
/ L(sin ^ cos ^ ^ ( s i n ^ cos ^ ) </,/,= ;> ' (A12)
Jo [O(n l l / 2 ) , A: = 0.

0 ( « ~ " / 2 ) , A: = 0.

To deal with the second integral in (A5), we transform to 0, 0 coordinates and
integrate by parts. Whence

([MQNdrdz ~\n7lpW+\cos$)JZ + (n,n2)~'i^"1"2(cos <*>)/,*
JJS L

(A13)

where

and

. LW+ 1 A / • —|Aj 1 *f» A ^^ 1 / A 1 < \

m0 = M(cos2 $ — cos2 0)/sin#cos 0. (A16)

Thence, after use again of (2.26), a lengthy but straightforward calculation, based
on integration by parts of the integrals J*, shows that

f u n j * * = 0, > 3,
/ MQNdrdz~ \

Js [ ^ ^ - ^ ( s i n ^ l G , + (-l)n+kG2], k= 1,2,
(A17)

where

G, = MNe - MN9 - (k2 - \)MN, G2 = MSs + Ms$ - {k2 - ±)MS,

k = 0,>3,

(A 18)

G, = cot e[MNt - \MN], G2 = -cot $[MSt + |M 5 ] , * = 1, (A 19)

a, = — (i +if cot e)MN^ + cot «Mive4,

G2 = - (1 + ^ cot 0)MSe - cot 0M5eo, A: = 2, (A20)

and

A/5 = M(0, - 1 ) , M ^ ^ M ^ , 1), A: = 1 , 2 ,

Ms = M(cos», - s i n ^ ) , MN = M(cos6, sin6), k = 0, > 3. (A21)
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The integrals obtained after successive integration by parts eventually become
dominated by the values of their integrands near 0 = 0, and they can then be
readily approximated. The formulae of (A 17) are different for k = 1 and 2,
because the residual integrals contribute the leading approximations in these
cases. The integral (A 17) dominates the first integral of equation (A5) for all
k = 0(1) and hence determines to leading order the inner product }s\JN-uodv
(apart from the factor in (A5)).

When k = O(n), it is helpful to use the pressure equation to re-express the
inner product in the form

f[\JNuordrdz = ik~lUffl cosectf
J Js

X r/2L5(sin^,cos^)en(sin^,cos^)^ + O(k~2),
•'o

(A22)

where

L*(r, z) = r2(zu0k! - rw^), (A23)

L*0(r, z) = L*(r, z) + ( - \)k+nL*(r, -z). (A24)

The dominant contribution to the integral now emanates from the transition zone
on the sphere; and after a short calculation (which involves (2.26) and the fact
that /fM Ai(x) dx = 1) we find that (for AT1 = 0( /T '))

JN-uordrdz~ —
s _ | ^

(A25)

where (for A:"*1 - O(n~1))

Gi = L*(A,/l -X2), G2 = L*(X,-\I\ - A 2 ) . (A26)

The leading approximations to the modal coefficients cN for n » 1 now follow
from combining (A4) with (A 17) and (A3) with (A25). In passing, it might be
noted that, for k = 0(1), the cN axe, determined to leading order by the initial
velocity near the poles (r = 0, z = ±1) when k = 1, 2 and by the initial velocity
near the critical circles (/• = cos0, z = ±sin#) when k ¥= 1 or 2. On the other
hand for A:"1 = O(n~"), the coefficients are determined to leading order by the
initial velocity near the intersection (r = \, z = ± \/l — A2) with the sphere of
the caustic of the oscillatory zone.
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