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On the distribution of the digits of
quotients of integers and primes
Alessandro Gambini, Remis Tonon, and Alessandro Zaccagnini

Abstract. We investigate the distribution of the digits of quotients of randomly chosen positive
integers taken from the interval [1, T], improving the previously known error term for the counting
function as T → +∞. We also resolve some natural variants of the problem concerning points with
prime coordinates and points that are visible from the origin.

1 General introduction

The first attempts to study number-theoretic problems by means of probabilistic
methods date back to the 19th century and involve mainly two mathematicians: first
Gauss, who was interested in the number of products of exactly k distinct primes
below a certain threshold (and the solution of this problem for k = 1 is the famous
prime number theorem, proved by Hadamard and de la Vallée Poussin, building on
the ideas of Riemann, only in 1896; see [7, Chapter 8]) and then Cesàro, who showed in
1881 that the probability that two randomly chosen integers are coprime is 6

π2 . In 1885,
he then published a book [3] collecting some interesting problems from some articles
he published in Annali di matematica pura ed applicata: the article we are interested
in is Eventualités de la division arithmétique, which originally appeared as [2]. There
he states that, dividing two random integers, the probability that the ith digit after the
decimal point is r is given by

1
20

+ 10i

2 ∫
1

0

1 − φ
1 − φ10 φ10 i−1+r dφ.(1.1)

As a consequence, we have the somewhat surprising discovery that if one takes two
“random” positive integers n and m and considers the distribution of the first decimal
digit of their ratio n

m , it is slightly more likely that this turns out to be 0 rather than,
say, 1.

Taking as a starting point, this result and the Benford law [1], which has a similar
behavior with regard to the frequency distribution of the main digit in many real-life
numerical datasets, Gambini, Mingari Scarpello, and Ritelli [8] studied the problem
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in more detail, and recognized that the integral can be expressed in terms of the
digamma function

ψ(x) ∶= �′(x)
�(x) .

The representation

ψ(z) = −γ − 1
z
+∑

k≥1

z
k(z + k) = −γ + ∑

k≥0
( 1

k + 1
− 1

k + z
),

which is (5.7.6) of [10], led the authors to a different form for the integral in (1.1), which
made them suspect that an elementary proof of the result was possible. Indeed, they
were able to find it, and this is the starting point for our study.

In order to be more precise, we start giving some definitions. We consider a number
base b ≥ 2 and the corresponding set of digits Sb = {0, . . ., b − 1}. Given a positive real
number x and a positive integer i, we are concerned with the ith digit to the right of
the point in the representation in base b of x: we will call it ϕ(x; b; i). We remark that
ϕ(x; b; i) can be computed by means of

ϕ(x; b; i) = ⌊b{b i−1x}⌋ = ⌊b i x − b⌊b i−1x⌋⌋.

In fact, this formula is correct for any i ∈ Z, with the obvious interpretation if i < 0.
We recall that ⌊x⌋ ∈ Z and {x} ∈ [0, 1) denote the integer and the fractional part of
the real number x, respectively, so that x = ⌊x⌋ + {x}.

With b and i as above and a digit r ∈ Sb , we also define Φ(T ; b, r; i) ∶=
∣A(T ; b, r; i)∣, where

A(T ; b, r; i) ∶= {(n, m) ∈ N2 ∩ [1, T]2 ∶ ϕ(n/m; b; i) = r}.

Throughout the paper, for brevity, we often drop the dependency on b, r, and i of
our functions, whenever there is no possibility of misunderstanding. We recall that
Gambini et al. [8] implicitly obtained the asymptotic formula

Φ(T ; b, r; i) = c(b, r; i)T2 + O (T3/2) ,

as T → +∞, where b, r, and i are fixed. The authors considered couples of real
numbers, both taken from [1, T], whereas we are only interested in points with
integral coordinates. The constant c(b, r; i) is defined as an infinite series and can
be expressed by means of the digamma function, as follows:

c(b, r; i) = 1
2b

+ 1
2

b i ∫
1

0

1 − φ
1 − φb φb i+r−1 dφ

= 1
2b

+ 1
2

b i−1(ψ(b i + r + 1
b

) − ψ(b i + r
b

)).(1.2)

This agrees with (1.1) by (5.9.16) of [10]. We remark here that this problem is appropri-
ately situated among the classical problems of counting lattice points that belong to
some region of the plane. One of the most famous of these results is Minkowski’s
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theorem, which states that every closed convex set in R
n that is symmetric with

respect to the origin and with volume greater than 2n contains at least one point
with integer coordinates distinct from the origin. This theorem, proved in 1889, gave
birth to a new branch of number theory: the Geometry of Numbers. Another famous
result in this direction is Pick’s theorem; proved in 1899 (see [11]), it relates the area
of a simple polygon with integer coordinates with the number of lattice points in its
interior and the number of lattice points on its boundary. Finally, it is mandatory to
refer to two of the most famous problems in analytic number theory, which are related
to ours: Gauss’ circle problem and Dirichlet’s divisor problem (see [9, Chapter 18]).
Both of them deal with counting points with integer coordinates belonging to some
region delimited by conics: a circle and a hyperbola. The two mathematicians were
able to provide a formula with the area of the region as a main term plus some error
due to the integer points near the boundary. For example, Gauss proved that in the
circle of radius r, there are

πr2 + E(r)

points with integer coordinates, where ∣E(r)∣ ≤ 2
√

2πr. By this simple formulation,
one could think that guessing the right order of magnitude of the error term should
not be a hard problem; actually, although many (slow) improvements have been done,
both problems remain open.

The interest in the random integer quotients also embraces other fields in analytic
number theory. Recently, there have been several papers dealing with the cardinalities
of A/A for subsets A of the set of the first n positive integers getting general lower and
upper bounds (see Cilleruelo and Guijarro-Ordóñez [4] and Cilleruelo, Ramana, and
Ramaré [5, 6]). Another line of research has to do with the search for prime numbers
with a positive proportion of preassigned digits in base b and the estimation of the
number of these prime numbers (see Swaenepoel [12]).

2 Results

After this excursus, which gives some motivation to our research for a better error
term, we turn to our results. In this paper, we introduce some number-theoretic
devices which allow us to improve upon the result by Gambini et al., and specifically
to obtain a better error term. In all statements, we consider b, r, and i fixed, so that,
here and throughout the paper, implicit constants may depend on them. We also recall
that c(b, r; i) is the constant defined in (1.2).

Theorem 2.1 As T → +∞, we have

Φ(T ; b, r; i) = c(b, r; i)T2 + O (T log(T)) .

Our improvement stems largely from the fact that we evaluate more carefully the
error terms arising from computing ratios of integers with the desired digit and that
we introduce a variable threshold, to be chosen at the end of the proof, which allows
us to ignore some points in A(T ; b, r; i).
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In the second part of the paper, we deal with a variation of the same problem: we
consider the case of primes. We let P denote the set of positive prime integers. For
the sake of clarity, for X ≥ 2, we let

E(X) ∶= sup
2≤x≤X

∣π(x) − li(x)∣,(2.1)

so that E is nonnegative and increasing, and can be bounded by means of the Prime
Number Theorem, which is Lemma 5.1 below.

Theorem 2.2 In the case of primes, as T → +∞, we have

∑
(p,q)∈A(T ;b ,r ;i)∩P2

log(p) log(q) = c(b, r; i)T2 + O (TE(T) log(T)) .

It is also possible to study the corresponding problem where only the numerator
or the denominator is restricted to being a prime, and the result is similar. See Section
5 for some comments and details on the error term in Theorem 2.2.

We also tackle another variant of this problem where we consider only points that
are visible from the origin, casting out multiplicities. We obtain our last result as a
corollary of Theorem 2.1, via Möbius inversion.

Theorem 2.3 As T → +∞, we have

∑
(n ,m)∈A(T ;b ,r ;i)

(n ,m)=1

1 = c(b, r; i)
ζ(2) T2 + O (T log2(T)) ,

where ζ denotes the Riemann ζ-function.

3 Basic strategy of the proofs

We follow [8] quite closely. The proofs share some common features, and it is probably
clearer if we deal with them at the outset. We remark that we may assume that T is an
integer, because the total error involved in changing T by a bounded amount is small:
see the end of this section. We first decompose the set A(T ; b, r; i) as an appropriate
union of sets. For r ∈ Sb , we define

yk = yk(b, r; i) ∶= b i

bk + r
= b i−1

k + r
b

,

xk = yk(b, r + 1; i) ∶= b i

bk + r + 1
= b i−1

k + r+1
b

.

With these definitions and Figure 1 in mind, we write

Ak(T) = Ak(T ; b, r; i) = {(n, m) ∈ N2 ∩ [1, T]2∶ n
m
∈ [ kb + r

b i , kb + r + 1
b i )}

= {(n, m) ∈ N2 ∩ [1, T]2 ∶m ∈ (nxk , nyk]}(3.1)

= {(n, m) ∈ N2 ∩ [1, T]2 ∶ n ∈ [m/yk , m/xk)},(3.2)
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( / 0 ) ( / 0 )U

( )
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L

Figure 1: How to split the sets: here, we illustrate the case i = 1. The set U is a triangle. The set
L is an infinite union of triangles; we estimate trivially the contribution from triangles in the
shaded region at the bottom. In the paper, we consistently use n for the abscissa and m for the
ordinate of the points.

so thatA(T ; b, r; i) = ⋃k≥0 Ak(T ; b, r; i). This is easily checked using the definition of
ϕ. The sets Ak(T) are pairwise disjoint and correspond to the lattice points contained
in triangles with a vertex at the origin and the other vertices either on the segment
[1, T] × {T}, when 0 ≤ k < b i−1 (i.e., n < m), or on {T} × [1, T], when k ≥ b i−1 (i.e.,
n ≥ m), provided that k satisfies (3.3) below. Therefore, we split the infinite union
above accordingly as

U(T ; b, r; i) ∶=
b i−1−1
⋃
k=0

Ak(T ; b, r; i) and L(T ; b, r; i) ∶= ⋃
k≥b i−1

Ak(T ; b, r; i).

At this point, it is worth looking back at the definition of Ak(T). When k is such that

1
yk

= kb + r
b i > T ,

the set Ak(T) is empty. This means that we can bound the range for k, taking

k ≤ b i−1T − r
b
≤ b i−1T .(3.3)
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Hence, we have that

L(T ; b, r; i) = ⋃
b i−1≤k≤b i−1 T

Ak(T ; b, r; i).

For k, above a certain threshold depending on T, it is difficult to evaluate the
cardinality of Ak(T) exactly: this will be the source of our first error term.

We notice here, even though we will need this later, that for k ≥ 1 and r ∈ Sb ∪ {b},
we have

1
3k

≤ 1
k
⋅ 1

2 + 1/b = 1
k
⋅ 1

1 + b+1
b

< 1
k
⋅ 1

1 + r+1
bk

= 1
k + r+1

b
< 1

k + r
b
≤ 1

k
,

so that
⎧⎪⎪⎨⎪⎪⎩

xk ≍ b i−1/k,
yk ≍ b i−1/k.

3.1 Weights

In order to treat our problems in a unified fashion, we introduce weights associated
to points with integral coordinates in [1, T]2. We will eventually choose the following
weights: ω(n, m) ∶= 1 for all n and m in the problem with all integers;

ω(n, m) ∶=
⎧⎪⎪⎨⎪⎪⎩

log(n) log(m) if n and m are both prime numbers,
0 otherwise,

in the problem with primes; and

ω(n, m) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if (n, m) = 1,
0 otherwise,

in the problems with “reduced” couples. We have to evaluate

∑
(n ,m)∈U(T ;b ,r ;i)

ω(n, m) and ∑
(n ,m)∈L(T ;b ,r ;i)

ω(n, m).

With this choice of weights, we see that the error involved in changing T to the
nearest integer is O (T) in the case of integers and O (T log(T)) in the case of primes.

3.2 The contribution from the set U(T ; b, r; i)

We refer to Figure 1, and remark that

∑
(n ,m)∈U(T ;b ,r , i)

ω(n, m) =
b i−1−1
∑
k=0

∑
(n ,m)∈Ak(T ;b ,r ;i)

ω(n, m)

=
b i−1−1
∑
k=0

∑
m∈[1,T]

∑
n∈[m/yk ,m/xk)

ω(n, m).(3.4)
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3.3 The contribution from the set L(T ; b, r; i)

To a first approximation, ∣Ak(T)∣ is the area of the corresponding triangle, with an
error proportional to the perimeter, that is O (T). However, as T → +∞, the number
of such triangles tends to infinity as well, and their area may be small, and we have
to be much more careful than this. We choose an appropriate function β = β(T) and
estimate trivially the contribution from k satisfying (3.3) with k > T/β(T). It is

≪ ∑
n≤T

∑
m≤nβ(T)/T

ω(n, m) ≤ Tβ(T)max
n≤T

max
m≤nβ(T)/T

ω(n, m).(3.5)

Recalling (3.1), we see that the contribution from Ak(T ; b, r; i) is

∑
m≤xk T

∑
n∈[m/yk ,m/xk)

ω(n, m) + ∑
xk T<m≤yk T

∑
n∈[m/yk ,T]

ω(n, m)

= ∑
m≤xk T

∑
n∈[m/yk ,m/xk)

ω(n, m) + ∑
xk T/yk≤n≤T

∑
m∈[xk T ,nyk]

ω(n, m).(3.6)

We find it convenient to write these quantities as above in order to keep error terms
under control.

3.4 The value of the constants c(b, r; i)

The following lemma will take care of the constant appearing in the main terms.

Lemma 3.1 For X → +∞, we have

∑
b i−1≤k≤X

(yk − xk) = ∑
k≥b i−1

b i

(bk + r)(bk + r + 1) + O (X−1) .

Furthermore,

∑
k≥b i−1

b
(bk + r)(bk + r + 1) = ψ(b i + r + 1

b
) − ψ(b i + r

b
).(3.7)

Proof Because yk − xk ≤ k−2, the error term arising from extending the sum over
k to all positive integers is ≪ X−1. The results follow from the same property of the
digamma function quoted above: see [10, equation (5.7.6)]. ∎

4 The proof of Theorem 2.1 for integers

Our improvement over the previous results depends on the fact that we manage to
choose a specific threshold for k: above it, but below (3.3), we will estimate ∣ ⋃k Ak(T)∣
trivially, while for k less than it, we will evaluate ∣Ak(T)∣ more precisely.
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4.1 Estimate of U(T)

Now, let us consider U(T). By (3.4), we have

∣U(T ; b, r; i)∣ =
b i−1−1
∑
k=0

∣Ak(T ; b, r; i)∣ =
b i−1−1
∑
k=0

∑
m∈[1,T]

(m
xk

− m
yk

+ O (1))

= b i−1 ∑
m∈[1,T]

m
b i + O (T) .

If T ∈ N, we have

∣U(T ; b, r; i)∣ = T(T + 1)
2b

+ O (T) = T2

2b
+ O (T) .(4.1)

4.2 Estimate of L(T)

Using (3.6), we see that the number of lattice points in Ak(T ; b, r; i) is

= ∑
n≤xk T

([ n
xk
] − [ n

yk
]) + ∑

xk T/yk≤n≤T
([nyk] − [xk T]).(4.2)

The first term in (4.2) is

= ∑
n≤xk T

( n
xk

− n
yk
) + O (xk T) = ( 1

xk
− 1

yk
) ∑

n≤xk T
n + O (T

k
)

= yk − xk

xk yk
∑

n≤xk T
n + O (T

k
)(4.3)

= yk − xk

2xk yk
((xk T)2 + O (xk T)) + O (T

k
)

= yk − xk

2yk
xk T2 + O (T

k
) .(4.4)

We further rewrite the last summand in (4.2) as

∑
xk T/yk≤n≤T

([nyk] − [xk T]) = ∑
xk T/yk≤n≤T

(nyk − {nyk}) − [xk T](T − [xk T
yk

])

= I1 − I2 ,

say. We have

I1 = ∑
xk T/yk≤n≤T

nyk + O (1 + (1 − xk

yk
)T) = yk ∑

xk T/yk≤n≤T
n + O (1 + T

k
)

= 1
2

yk(T2 − x2
k

y2
k

T2 + O (T)) + O (1 + T
k
) = 1

2
yk(1 − x2

k
y2

k
)T2 + O (1 + T

k
) .(4.5)
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We also have

I2 = [xk T](T − [xk T
yk

]) = (xk T + O (1))(T − xk T
yk

+ {xk T
yk

})

= (yk − xk)xk

yk
T2 + O ( yk − xk

yk
T) + O (xk T)

= (yk − xk)xk

yk
T2 + O (T

k
).(4.6)

Summing up (4.2) and (4.4)-(4.6), we have

∣Ak(T ; b, r; i)∣ = yk − xk

2yk
xk T2 + 1

2
yk(1 − x2

k
y2

k
)T2 − (yk − xk)xk

yk
T2 + O (T

k
)

= yk − xk

2yk
(xk + (yk + xk) − 2xk)T2 + O (T

k
)

= 1
2
(yk − xk)T2 + O (T

k
).(4.7)

We finally sum (4.7) over b i−1 ≤ k ≤ b i−1T , obtaining

∑
b i−1≤k≤b i−1 T

∣Ak(T ; b, r; i)∣ = 1
2

T2 ∑
b i−1≤k≤b i−1 T

(yk − xk) + O
⎛
⎝ ∑

b i−1≤k≤b i−1 T

T
k
⎞
⎠

.

Using Lemma 3.1 with X = b i−1T , we see that the error term arising from the
completion of the series is≪ T−1. The other error term contributes≪ T log T . Hence,

∑
b i−1≤k≤b i−1 T

∣Ak(T ; b, r; i)∣ = 1
2

T2 ∑
k≥b i−1

(yk − xk) + O (T log(T)) .

The proof is complete by (3.7) and (4.1).

5 Primes with weights: approach via θ

In this section, we prove Theorem 2.2. With notation as in Section 3 and splitting the
sets in the same way, we set

Nk(T) ∶= ∑
(p,q)∈Ak(T)

(log p)(log q).

We write (p, q) for prime numbers in place of (n, m) and use logarithmic weights in
order to exploit the linearity of the main term of the Chebyshev θ-function. This is
critical in order to avoid the introduction of special functions whose behavior is hard
to estimate carefully over the range of values of k that we need. We give more details
at the end of this section.

Lemma 5.1 (Prime Number Theorem) There exists a positive constant c such that

π(x) = li(x) + O (xe−c
√

log x) , as x → +∞.
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If the Riemann Hypothesis is true, then the error term on the right-hand side may be
replaced by O (x 1/2 log(x)).

We will need repeatedly the following simple lemma, whose proof by partial
summation is straightforward.

Lemma 5.2 Let f ∶R+ → R
+ be a smooth increasing function, and let E be defined by

(2.1). Then,

∑
p≤X

f (p) = ∫
X

2

f (t)
log(t) dt + O ( f (X)E(X)) , as X → +∞.

5.1 The contribution from the set U(T)

Using Lemma 5.2 with f (t) = t log(t) and recalling (3.2) and (3.4), for 0 ≤ k < b i−1,
we have to evaluate

∑
q≤T

(θ( q
xk
) − θ( q

yk
)) log(q) = 1

b i ∑
q≤T

q log(q) + ∑
p≤T

O (E(p) log(p))

= 1
b i ∫

T

2
t dt + O (TE(T) log(T)) + O (θ(T)E(T))

= 1
2b i T2 + O (TE(T) log(T)) .

Summing over the values of k mentioned above, we find that the total contribution
from the set U(T) is

1
2b

T2 + O (TE(T) log(T)) .(5.1)

5.2 The contribution from the set L(T)

Using (3.6), we see that we have to evaluate

∑
q≤xk T

(θ( q
xk
) log(q) − θ( q

yk
) log(q)) + ∑

xk T/yk≤p≤T
(θ(pyk) − θ(xk T)) log(p)

for b i−1 ≤ k ≤ T/β(T). Using Lemma 5.2 with f (t) = t log(t), we deduce that the first
summand is

∑
q≤xk T

(θ( q
xk
) log(q) − θ( q

yk
) log(q))

= ( 1
xk

− 1
yk
) ∑

q≤xk T
q log(q) + O

⎛
⎝ ∑

q≤xk T
E( q

xk
) log(q)

⎞
⎠
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= ( 1
xk

− 1
yk
)∫

xk T

2
t dt + O (θ(xk T)E(T))

= 1
2

x2
k T2( 1

xk
− 1

yk
) + O (T

k
E(T)) .

The second summand is

∑
xk T/yk≤p≤T

(θ(pyk) − θ(xk T)) log(p) = ∑
xk T/yk≤p≤T

(yk p − xk T) log(p)

+ O
⎛
⎝ ∑

xk T/yk≤p≤T
E(pyk) log(p)

⎞
⎠

.

Using again Lemma 5.2, we see that the main term is

yk ∫
T

xk T/yk
t dt − xk T ∫

T

xk T/yk
dt + O (yk TE(T)) = 1

2
yk(1 − xk

yk
)

2
T2 + O (T

k
E(T)) .

The error term is

∑
xk T/yk≤p≤T

E(pyk) log(p) ≪ (π(T) − π( xk

yk
T))E(Tyk) log(T)

≪ (1 − xk/yk)T
log(T/k) E(Tyk) log(T) ≪ T

k
E(Tyk),

by the Brun–Titchmarsh inequality.
Summing up, the total contribution of the main terms is

1
2

T2 ∑
b i−1≤k≤T/β(T)

(x2
k(

1
xk

− 1
yk
) + yk(1 − xk

yk
)

2
)

= 1
2

T2 ∑
b i−1≤k≤T/β(T)

(yk − xk)

= b i−1

2
T2(ψ(b i + r + 1

b
) − ψ(b i + r

b
)) + O (Tβ(T)) ,(5.2)

by Lemma 3.1. The total error term is

≪ TE(T) ∑
b i−1≤k≤T/β(T)

1
k
≪ TE(T) log(T).(5.3)

In order to complete the proof, we just collect (5.1)-(5.3) and choose β(T) = T 1/2.

5.3 Comments on the choice of weights

We remark that using the characteristic function of the primes as the choice of weight
in this problem leads to a number of technical complications. If we insist on counting
couples of primes without weights, we would find a much weaker result, with the error
term smaller than the main term just by a factor log(T).
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6 On points which are visible from the origin

We now deal with a similar problem, where we only count points that are visible from
the origin, that is, couples (n, m)with (n, m) = 1. We could use the familiar device of
writing the characteristic function of such couples by means of the Möbius function
μ. As we said in Section 3, we could write,

ω(n, m) ∶= ∑
d ∣(n ,m)

μ(d) =
⎧⎪⎪⎨⎪⎪⎩

1 if (n, m) = 1,
0 otherwise,

and then proceed along the same lines as in Section 3. This approach does not lead to
any particular improvement, because the extra sum on d generates an additional log-
arithm in the error term. Nevertheless, numerical data suggest a slight regularization
in this case (see Section 7).

6.1 Deduction of Theorem 2.3 from Theorem 2.1

We notice that

∣{(n, m) ∈ [1, T]2∶ ϕ(n/m) = r}∣
= ∑

d≤T
∣{(n, m) ∈ [1, T]2∶ (n, m) = d ∧ ϕ(n/m) = r}∣

= ∑
d≤T

∣{(n, m) ∈ [1, T/d]2 ∶ (n, m) = 1 ∧ ϕ(n/m) = r}∣.

Hence, by the Möbius inversion formula, we have

∣{(n, m) ∈ [1, T]2∶ (n, m) = 1 ∧ ϕ(n/m) = r}∣
= ∑

d≤T
μ(d)∣{(n, m) ∈ [1, T/d]2 ∶ ϕ(n/m) = r}∣

= ∑
d≤T

μ(d)c(b, r; i)T2

d2 + ∑
d≤T

O (T
d
(1 + log(T/d)))

= c(b, r; i)T2 ∑
d≤T

μ(d)
d2 + ∑

d≤T
O (T

d
(1 + log(T/d))) .

The leading term is

c(b, r; i)
ζ(2) T2 + O (T) .

The first error term contributes O(T log(T)). The second error term is O(T log2(T)).
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7 Remarks and numerical data

7.1 The limit of the method

Given an integer b ≥ 2, pick a digit r ∈ Sb . We choose i = 1 for simplicity. We want to
count the number of lattice points lying on the boundary of the region Ak(T ; b, r; 1).
We start with estimating

∣{(n, m) ∈ [1, T]2 ∶ (n, m) = 1 ∧ b{ n
m
} = r}∣.(7.1)

We obviously have

b{ n
m
} = r ⇐⇒ { n

m
} = r

b
= r/(b, r)

b/(b, r) .

The fractions at far left and far right are reduced, and this forces

m = b
(b, r) and n ≡ r

(b, r) mod m.

Let m1 = b/(b, r). Hence, the cardinality of the set in (7.1) is ∼ T/m1. A similar
argument shows that

∣{(n, m) ∈ [1, T]2∶ (n, m) = d ∧ b{ n
m
} = r}∣ ∼ T

dm1
,

for d ≤ T/m1. Hence, the total number of lattice points on the boundary of the set
Ak is

∼ T
m1

∑
d≤T/m1

1
d
∼ (b, r)

b
T log(T).(7.2)

This seems to be the limit of our method for the proof of Theorem 2.1.
In the next paragraph, we will show that for “small” T , actually there seems to be

a bit of difference in the convergence rate and this is evident with peaks when (b ,r)
b is

large.

7.2 Numerical data

We collect here some histograms, created using Wolfram Mathematica, obtained
with the numerical computations that we performed for the problem of digits. Some
variants were considered trying to understand if a different counting function could
help to regularize the problem and reduce the error term. In every histogram, on the x-
axis, we have the digit r, and the height of the bar represents Φ(T ; b, r; 1) (in the cases
with i > 1, the difference is less noticeable, so we did not report examples) normalized
by dividing by ∑b−1

r=0 Φ(T ; b, r; 1). We recall that Φ(T ; b, r; 1) ∶= ∣A(T ; b, r; 1)∣. The
continuous line, instead, is the graph of c(b, r; i) as a function of r; we indicated with
a dot the values corresponding to integer values of r, which are the ones appearing in
the theorems.
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Figure 2: The histogram for ∣A(100; 30, r; 1)∣.

We do not report cases with a very large sample (T = 10, 000), because in these
circumstances, the histogram is really close to the expected value. But for smaller T,
we can see some phenomenon taking place: for T = 100, the irregularities seem all
but random. If you look at the case b = 30 (see Figure 2), which has many divisors,
some numerical values noticeably exceed the expected ones. We do not report the
plots where b is prime, because they actually show the behavior we expect and that
we have calculated in (7.2): an anomalous peak in 0 and a monotonically decreasing
trend.

Actually, the main problem for small T is a simple fact of multiplicities: fractions
with small numerator and denominator (like 1, 1

2 , 1
3 , 2

3 , etc.) will be counted many
times: in both of them, we can recognize high counting values for the fractions that
we have just mentioned.

To avoid this phenomenon, we can just count the fractions with multiplicity one,
which means taking just the reduced ones: in Figure 3, we represent Φ(T ; b, r; 1), with
(n, m) = 1.

There is a regularization, but some other phenomenon emerged: it seems that the
divisors and, in general, the numbers with prime factors in common with 30 tend to
be have higher values. The explanation for this lies in the discontinuity of the system of
digits: if we perturbed just a bit a number that has no digits to the right of the first one,
we could reduce its first digit by one. To be more formal, if a rational number admits a
finite representation (when, after reducing the fraction, the denominator divides the
base), it admits also a periodic infinite one. Just to make an example, if we think about
the base 10, we have 1 = 0.9̄.

So, in our case, any number that admits any ambiguity in its first digit in base b
should morally be divided into the two digits with an equal weight: assigning half
weight to two digits if b{n/m} ∈ Z, the rate of convergence is very good already for
small values of T. See Figure 4.
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Figure 3: The histogram for ∣A(100; 30, r; 1)∣ (with (n, m) = 1).
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Figure 4: The histogram for A(100; 30, r; 1) with (n, m) = 1 and assigning half weight to two
digits if b{n/m} ∈ Z.

7.3 Primes

We made similar computations also in the case of prime numbers. Two positive
primes are not coprime if and only if they are equal: to avoid such a possibility, we
just ignore the diagonal p = q in every histogram.

Figure 5 represents the counting function that we obtained assigning half weight
to two digits if b{p/q} ∈ Z.
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0.00

0.02

0.04
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Figure 5: The histogram forA(1000; 17, r; 1) for primes p ≠ q, assigning half weight to two digits
if b{p/q} ∈ Z.

The trend is, however, monotonic and decreasing also for primes; the assignment of
the half weight influences only the cases r = 0 and r = b − 1 with the effect of a further
regularization. This regularity is intrinsic in the fact that we automatically exclude
points with multiplicity, so we would expect something better than T log T even if we
cannot prove it. The leading constant is decreasing in r, and it is about 0 for r around
b
2 . This would explain why, in the above figures, for T sufficiently large, the first blocks
are always above the trend line, while the latest are below.
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