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Abstract

The evolution of the critical layer in a viscous, stratified fluid is examined in the
limit of large Richardson and Reynolds numbers. A source far above the critical
layer and of amplitude e is turned on at t = 0 and the behaviour of both the
steady state and transients is found. Viscosity dominates over nonlinearity in the
critical layer for £\/Ri < 1, Re being an appropriately defined Reynolds number.
Wave amplitudes are found to grow as the critical layer is approached, then decay
rapidly due to the action of viscosity in a critical layer of ©((Re)"1/3) around the
critical level. The critical layer acts as a source of vorticity, which diffuses into
the outer flow, resulting in an induced mean flow of O(e2y/Re\/i). This induced
mean flow causes the critical level to move towards the incoming wave.

1. Introduction

The interaction of an internal gravity wave with a shear flow has received con-
siderable attention in recent years. The major feature of the interaction is the
so-called critical level, where the shear velocity and the wave velocity in the di-
rection of the shear are equal. Linear theory predicts a singularity at this critical
level as wave action piles up at this level due to the vanishing of the group ve-
locity there. Interest has centred on how invoking nonlinearity and/or viscosity
smooths out this singularity.
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[2] Critical layer in stratified fluid 353

The critical level is of great geophysical significance as it acts as a barrier to
wave propagation and causes vertically propagating energy to propagate hori-
zontally. Furthermore, convective instabilities at the critical level, due to the
reduction of the local Richardson number below zero, result in turbulent mixing.

Booker and Bretherton [2], by considering the linear problem and matching
around the critical level, showed that as a critical level is approached, the vertical
group velocity goes to zero and the wave is effectively absorbed. At the critical
level, the amplitude of the wave is attenuated by a factor

/ = exp[-7r(J 0 - | ) 1 / 2 ] , (1.1)

where Jo is the Richardson number at the critical level.
As the critical level is approached however, the amplitude of the horizontal

velocity becomes large and the validity of linear theory is questionable. To
overcome this deficiency, viscosity and/or nonlinearity must be invoked near the
critical level. Either of these two effects will limit the magnitude of the horizontal
velocity. Which of these effects dominates will depend on the particular physical
situation.

Grimshaw [11], [12] considered the flow in the large Richardson number limit,
in which case the appropriate theory is that for slowly varying waves. The
governing equations in this limit were derived, for arbitrary initial amplitude, by
the method of multiple scales. These equations are essentially the wave action
equation and an equation for the wave-induced mean flow. The behaviour of a
wave packet as it propagated toward a critical level was examined. It was found
that the amplitude of the wave grew to a maximum as it approached the critical
level, then rapidly decreased to zero due to viscosity. The passage of the wave
was found to result in a permanent acceleration of the mean flow.

Dunkerton [7], [8] also used the same slowly varying approximation, with the
further assumption that the wave frequency was constant. Similar results were
found to those of Grimshaw [12]. Dunkerton and Fritts [9] and Fritts and Dunker-
ton [10] subsequently extended the scope of the slowly varying approximation
by numerically solving the governing equations.

Brown and Stewartson [4], [5], [6] invoked nonlinearity rather than viscosity
in the critical layer. The evolution of the waves produced by a steady har-
monic forcing (switched on at t = 0) far above the critical level was examined.
To reduce the algebraic complexity, the latter two papers considered the large
Richardson number limit. It was found that both the steady state wave and one
of the transients must be considered in the critical layer, as both these waves are
singular near the critical layer. The interaction between these waves and their
harmonics led to very weak reflected and transmitted waves being generated.
The mean flow played a passive role in the interaction process.
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354 Noel Smyth [3]

In the present work, we shall consider the same physical situation as that of
Brown and Stewartson, except that viscosity rather than nonlinearity will be
assumed to dominate in the critical layer. We consider a shear layer separating
two parallel streams in a stratified fluid for which the Richardson and Reynolds
numbers are large. A source at yo, j/o ̂  1) whose z-dependence is proportional
to etax, and amplitude is e, e ^ 1, is switched on at t — 0. The solution is
constructed using singular perturbation analysis based on the large Reynolds
number. The behaviour of both the transients and the steady state in both the
outer flow and the critical layer will be found. The assumption of a viscosity-
dominated critical layer will be shown to be valid for e\/Re <C 1, where Re is an
appropriately defined Reynolds number.

The elucidation of the mean flow induced by a viscosity-dominated critical
layer is a major aim of the present work. By averaging the governing equations,
the equations for the induced mean flow are obtained. The critical layer acts as
a source of vorticity, which diffuses into the outer flow, resulting in an induced
mean flow there. The induced mean flow is of O(e2y/Re\/i). This induced flow
results in the critical level being moved towards the incoming wave. Grimshaw
[13] showed that inviscid theory also predicts that the induced mean flow results
in the critical level being moved towards the incoming wave. This was also shown
by the numerical work of Dunkerton and Fritts [9] and Fritts and Dunkerton [10].
Both nonlinearity and viscosity dominated critical layers result in the critical
level being moved towards the incoming wave.

Brown, Rosen and Maslowe [3] considered a similar situation to that consid-
ered here for Richardson number \ (so that the flow is marginally stable) and
Prandtl number 1, as in this case the governing equations have an exact solution
for a hyperbolic tangent shear profile. It will be found that the effect of the crit-
ical layer on the mean flow in this case is similar to that in the large Richardson
number, infinite Prandtl number case considered here.

2. Equations of motion

The governing equations to be used in this study are the same as those of
Brown and Stewartson [5], except that the viscosity and thermal diffusivity will
be assumed to be non-zero. The physical situation is as follows. A shear layer
is assumed to separate two parallel streams of fluid. Orthogonal cartesian coor-
dinates moving with the mean fluid velocity are chosen with the x* axis parallel
to the two main streams. The equation of state for the fluid is taken to be

p* = p-0[l-n((T*/TS)-l)}, (2.1)
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(4) Critical layer in stratified fluid 355

Figure 1. Typical velocity profile U(y).

where asterisks denote dimensional quantities. The density is denoted by p*,
and the temperature by T*. T£ is a reference temperature and p$ is a reference
density.

The Navier-Stokes equations become

V • u ' = 0,

u*. + u* • Vu* = -—Vp* +
Po

* - T0*)V</' +

T*. + u * V T * = /cV2T*,

(2.2)

when the Boussinesq approximation is used. Here u* is the fluid velocity, v is
the kinematic viscosity and K is the thermal diffusivity.

To put these equations into non-dimensional form, the reference speed V*
is chosen to be half of the velocity difference between the two streams, and the
reference length L* is chosen to be an appropriate length scale of the undisturbed
flow. Non-dimensional variables are then defined by

p*/p*0 = 1 - 0T5R{y) + ep(x, y, t).

The parameter e is a measure of the amplitude of the forcing at yo, 2/o ^* 1-
The non-dimensional undisturbed velocity and density of the fluid are U(y) and
1 — /3ToR(y) (R is chosen in this way so that R'{y) > 0 for stable stratification).
By the above non-dimensionalisation, U(y) - » ± l a s j / - » ±oo. We shall assume
that U'(y) - » 0 a s j / - > ±oo, U'{y) > 0 for y finite and near zero and R'{y) -*
constant as y —» ±oo. A typical velocity profile is sketched in Figure 1.
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356 Noel Smyth [5]

Defining a perturbation streamfunction ip(x, y, t) by

and eliminating the pressure leads to the non-dimensional equations of motion

= _ J T x + ^ - 1 v V (2.5)

- 4 & g = Pe-V'r. (2.6)
The Richardson number J is

J = 0TZgL*/V*2 (2.7)

and the Reynolds and Peclet numbers are

Re = VL'/i/, Pe = V*L*/K (2.8)

respectively. It will be assumed in this paper that J » 1, e <; 1, ReS>l and
Pe > 1. Furthermore, it will be assumed that in the critical layer, viscosity
dominates over nonlinearity. The precise conditions on e and Re for this to hold
will be found later.

It is supposed that the incident wave is generated by a forcing proportional
to etax at y — yo, yo ^ I, which is switched on at t = 0 and rises to a constant
amplitude as t —• oo.

3. Linear solution outside critical layer

It will be assumed that the incoming wave from infinity is of small amplitude
e and that viscosity dominates over nonlinearity in the resulting critical layer.
The governing equations are then the linear limit of (2.5) and (2.6). Also, as the
forcing function at y = j/o has x-dependence of the form etax, we set

-fee.

T = 9{y,t)eiax + c.c.
where c.c. denotes complex conjugate. Prom (2.5) and (2.6), the equations sat-
isfied by * and 0 are

\ iaJO^-t + iaU\ (-a2* + 9yy) - iaU"V + i

0t + iaUO - iaR'V = Pe"1 (0OT - a20). (3.3)
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[6] Critical layer in stratified fluid 357

This system of equations will be solved using Laplace transforms. The Laplace
transforms of * and 0 are defined by

*(»,») = re-3t*{y,t)dt,
?oo (3-4)

8{y,a)= e-at6(y,t)dt.
Jo

Taking Laplace transforms of the governing equations (3.2) and (3.3) gives, upon
noting that ij> = ipt = 0 at t = 0,

(ictU+a) *5,y - (a2 s+ia3U+iaU") *+ia JO = (Re)"x (a4 * -2a 2 *yy+dAH/dyA),
(3.5a)

(s + iaU)0 - iaR'V = P e " 1 ^ - a2^). (3.5b)

Eliminating 6 between these equations results in

-ld6^//dy& - [3a2Re"J + (1 + Re"1 Pe)(s + iaU)]d4V/dyA

- 2iaU'dzH/dyz + [3a4 Re"1 +2a2(l + Re"1 Pe)(s + iaU)

+ Pe(s + iaU)2]d2Vldy2 + 2ia{U'" + a2U')dV/dy (3.6)

- [a6 Re"1 +a4(l + Re"1 Pe)(s -I- iaU) + a2 Pe(s + iaU)2

+ iaU" Pe(s + iaU) - iaU" + a2 Pe JR']V = 0.

This equation can be solved by the standard techniques of singular perturba-
tion theory, as Re » 1 (and Pe > 1) by hypothesis.

Outside the critical layer, the derivatives of * are 0(1) and the outer solution
in this region may be expanded as

* = *o(y,s) + (Re)"1*i(j/,s) + ---

e = S0(y,s) + (Re)-1e1(y,s) + ---.

The leading order equation in the outer region is, from (3.6),

(a + iaU)HOyy - liaU" + ia3U + a2s + f^*^) ^o = 0. (3.8)

The flow in the outer region is inviscid and (3.8) is the Laplace transform of the
Taylor-Goldstein equation.

The assumption that J » 1 will now be invoked. For J » 1, equation (3.8)
has the W.K.B. solution

*o = C{s)s/s + iaU(y)e^7
X/(R'(y))1/4, (3.9)

where
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358 Noel Smyth [7]

The function C(s) is determined by matching with the forcing at yo- We find
that as y —> yo,

" ay/JR'(yo)(yo-y)] „ , „
[ s + iaU{yo)

For this solution to match with the forcing at yo, we see that

C(s) = {R'{yQ))l'4F{s)l^s + iaU{yQ). (3.12)

The function F(s) is due to the forcing at j/o and is such that F(s) —> 0 very
rapidly as |s| —•• oo, and sF(s) has a non-zero limit as s —> 0. Therefore the
outer solution to leading order is

j_
° 27ri

{
where 7 > 0.

To enable the physical significance of this integral representation for *o to be
seen, the contour of integration will be rotated by TT/2. We then find

The integrand is of the form

I = A(y,o)exp[iO(y,<r)], (3.15)

which is a wave of amplitude A, phase 6, with the wavenumber and frequency
defined by

respectively. Since the Richardson number J » 1, the integrand (3.15) can be
interpreted as a slowly varying wave. The integral representation (3.14) is a
superposition of waves with frequency a and wavenumber m, each satisfying the
internal gravity wave dispersion relation,

(u-aUf = a2JR'(y)/m2. (3.17)

The group velocity cg of the waves is

y dm m
and is negative, as required.
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[8] Critical layer in stratified fluid 359

The amplitude A of the waves is given by

Grimshaw [11], [12] considered the behaviour of a wave packet in a shear flow
with a critical level for the case in which the fluid is slowly varying relative to
the wave. This slowly varying assumption is equivalent to J » 1. It was shown
that the wave action A satisfies

— H {cgA) = 0 (3.20)

where

ui — all (w — ally

On using the expressions (3.16) and (3.18), we find that

(w - aU(y0)). (3.22)

The wave action flux is thus a constant and (3.20) is satisfied.
The singularities of the integrand in the expression (3.14) for * 0 are
1. simple pole at a = 0: steady solution,
2. branch point at a = aU(yo): transient,
3. branch point at a = aU(y): transient.

Also, as y —> yo, the branch points at a = aU(yo) and a = aU(y) coalesce and
saddle points at

°± = aU{yo) ± y/yT^yi^JR'iyo))1^-1'2 (3.23)

then occur.
Let us first consider the simple pole at a = 0. The dominant contribution

from this pole lies behind the wavefront given by

fVo

t =

Jy
where the group velocity cg is found from (3.16) and (3.18) with a = 0. Therefore
for

the contribution of the pole is the steady solution

= Ae10, (3.24)
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where

A =

(3.25)

(for t < f™ s/JR'{O/a{U(£))2dt, *Os « 0).
The wave action flux can be found from (3.21) and it is

cgAoca2y/JR'(yo)/a
2U(yo). (3.26)

The wave action flux of the steady solution is thus a constant and so the wave
action equation (3.20) is satisfied.

As y -» y0,

aexp —i (3.27)

which is a wave propagating downwards. Near the critical layer around y — 0,
U{y) ~ U'(0)y. Therefore as y -»• 0+,

*os ~ ao exp(t^o), (3.28)

where
1/4 /£/'(0)

(3.29)

We see that near the critical layer, the derivatives of ^>os are large, and that the
viscous terms in the governing equations will be important there. In particular,
the horizontal velocity UQ is 0{y~1/2) and the vertical velocity VQ is O(j/1/2) near
the critical layer. As the critical layer is approached, the wave action density for
the steady solution is A a y~2. This result was found by Grimshaw [12] from
the averaged equations for a slowly varying wave packet approaching a critical
layer.

We shall now calculate the contribution from the branch point at a = aU{yo).
The dominant contribution from this branch point lies behind the wavefront

rvo
t= dt/\cg\,

Jy
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[10] Critical layer in stratified fluid 361

where cg is found from (3.16) and (3.18) with a = aU(yo)- So for t large and

t >
rvo

the contribution from the branch point at a = aU(yo) is

1 y/<*{U{yo) -

where
ix du,

= fyo aty/JR'{Z)
- Jy u + at(U(yo)-

Expanding x to second order in t gives

where

(3.30)

(3.31)

(3.32)

Xo = Mo log[a*£/'(j/o)(yo - J/)]

•r U'(yo)(yo - 0
(3.33)

fJR'iyo)

Since J » 1, the integral IQ may be evaluated by the method of steepest descent.
This yields

(3.34)1

The contribution due to the branch point at a = aU(yo) is therefore

(3.35)

where

= no log Mo - A*o - ;j - aU(yo)t

fVO I" yJjR/
- Mo log[at[/'(j/0)(j/o -y)]~ I U? \_

+^ r [-
U'{yo)(vo - e) *

(3.36)

https://doi.org/10.1017/S0334270000005865 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005865
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a n d

* 4 ^ ) . (3.37)

From the phase function (3.36), we can evaluate the frequency wi and the
wavenumber mi of the wave as

wi = aU(yo) + Mo/t + 0{l/t2) (3.38)

_

a,) - tf (v)
This wave thus satisfies the dispersion relation (3.17) for internal gravity waves,
as required. The wave action flux is

cgAi oc V#fa , ) |F(- ia t f (w,))!2*"1 + O ( r 2 ) . (3.40)

The wave action density A\ oc f"1 and the wave action equation (3.20) is satisfied
to O ( r 2 ) .

Near the critical layer, the wavenumber mi of the wave (3.35) is constant, the
group velocity is constant and the wave has no singular behaviour there. This
wave decays uniformly as t —* oo and makes a negligible contribution to the
development of the critical layer.

We shall finally consider the contribution from the branch point at a = aU(y).
The dominant contribution from this branch point lies in the region

fVofV
/

where the group velocity is found from (3.16) and (3.18) on setting a = aU(y).
In a similar manner as used above for the branch point at a = aU(yo), it may

be shown that the contribution from the branch point at a = aU(y) is

*02 = A2 exp(i02) (3.41)

for t large and
Vo

where

62 = - n log fi - fj, + ir/4 - aU(y)t + n log[at(j/0 - y)U'{y)]

rvo f . /JWm yJJR'iy) 1 Je

' '
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[12] Critical layer in stratified fluid 363

and
/x = y/JW{y)/U'{y). (3.44)

Again, it may be shown that this wave satisfies the dispersion relation (3.17)
for internal gravity waves and the wave action equation (3.20). This transient
decays as t~3/2, except near y = 0, where it grows as y"1 due to the pole of
F(s) at s = 0. This transient is associated with the impulsive start of the wave
source. The group velocity for this transient is

and the wave action flux is

CnH ~ ~. r". (o.4t>)

The group velocity in the critical layer is small (oc t~2). The wave action flux in
the critical layer is large (oc y~2t~2) due to the pole of F{s) at s = 0. Wave action
is piling up in the critical layer since, in this linear inviscid theory, the critical
layer acts as a barrier to the propagation of wave action, which is continually
being added by the wave source at j/o- As y -» 0, the pole at a = 0 and the
branch point at a = aU(y) coalesce. The critical layer will be examined in detail
in the next section.

The solution outside the critical layer for large times thus consists of three
slowly varying waves, each of which satisfy the dispersion relation for internal
gravity waves. One of these waves is the steady state and the other two are
transients. The transient \tOi (due to the branch point at a = aU(yo)) decays
uniformly while the transient *02 (due to the branch point at a = aU{y))
becomes negligible everywhere except near the critical layer.

4. Linear, viscous critical layer

Near the critical layer, y « 0, the derivatives of * become large and the
viscous terms in equation (3.6) become important. The behaviour in the critical
layer is further complicated by the coalescence of the pole at a = 0 and the
branch point at a = aU(y) in the integrand of the integral representation of
the outer solution (3.14). To examine the critical layer, we define critical layer
variables by

Y = y(Re)1/3, s* = s(Re)1/3 (4.1)

and a critical layer expansion by

*inner = 4>o(Y,S*) + (Re)"1^!^ , S*) + ••• . (4.2)
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364 Noel Smyth [13]

Figure 2. (a) Contour of integration C3 for critical layer solution,

(b) Deformed contour of integration for critical layer solution.

From equation (3.6), we obtain the first order critical layer equation

P r - 1 d*4>o/dY6 - (1 + Pr- 1 ) (s* + i a U ^ Y ) 4

- 2iaPr~1 U^fo/dY3 + (a* + iaU'0 = 0,

where
05 =

and the Prandtl number Pr is

'(0), K = R'(0)

Pr = RePe.

(4.3)

(4.4)

(4.5)
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[14] Critical layer in stratified fluid 365

Baldwin and Roberts [1] considered the steady solution in the viscous critical
layer. Their critical layer equation is similar to (4.3) with s* = 0 (as the steady
solution corresponds to a pole at a* = 0 for the Laplace transform solution). The
solution of (4.3) with the correct behaviour to match with the outer solution as
Y -* oo is

00 =

where

| (4.7)

The contour Cz starts at ooe*° and terminates at ooe27"/3. This contour is
sketched in Figure 2(a). 1F1 is the confluent hypergeometric function. We shall
now take the particular value Pr = oo for the Prandtl number (or to be more
precise, we shall take Pe ~S> Re). In the remainder of the present work, we shall
be concerned with the velocity in the critical layer and this choice of the Prandtl
number has no significant effect on the behaviour of the critical layer velocity.

The function A(s*) is obtained by matching with the outer solution. As
s* + ictU^Y —• ooexp(i7r/2), the method of steepest descent gives

l/2-i/i

(4.8)

From the outer solution given by (3.9) and (3.10), it can be seen that as y —• 0,

a f fvo (as/JR'{£) a^TRZ\ ]
-exp - / v . T T ) ' v . - . „ . ] d£\ . (4.9)

\_ Jy \ v»/ " s / j
Thus

(4.10)

We see that the viscous critical layer smooths out the discontinuities in the outer
solution.
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From the expression (4.6) for 0O, we find that as S'+IOIUQY —> ooexp(-27r/2),

This shows the exponential damping of the wave as it passes through the critical
layer. Below the critical layer, the inner solution is matched with an outer solu-
tion, which has the same form as the dominant terms in the outer solution above
the critical layer, except that it is multiplied by a factor exp(-np,). This result
was found by Booker and Bretherton [2] in their investigation of the (linear)
critical layer.

Hazel [14] considered the steady-state viscous critical layer for the case when
the Prandtl number is finite and the Richardson number is O(l). The critical-
layer equation found is the same as (4.3) with s* = 0, as this corresponds to
the steady-state solution. This equation was integrated numerically, and the
exponential damping of the wave across the critical layer was found.

In the critical layer, the nonlinear terms in the full evolution equations (2.5)
and (2.6) are O(e2(Re)2/3) and the viscous terms are O(e(Re)1/6). Therefore,
for the present analysis to be valid, we require

e ^ t R e ) - 1 / 2 . (4.12)

The contour of integration C3 for the expression (4.6) for <j>o can be deformed
to the real axis from 00 to 6, the line f = r exp[27re'/3], r € (8,00), and an arc of a
small circle of radius 6 around the origin joining these two lines. This deformed
contour is sketched in Figure 2(b). The integral along the line f = rexp[27rz/3]
is negligible as it is multiplied by a factor exp[—2;r/i/3]. Therefore, <j>o is given
approximately by

«Ao ~ -«*> / exp -iaWUfYt - U \ -TT dZ> (4-1 3)
Jo L 3 J C

where

T = t(Re)-1/3, (4.14)

an = lim s*A(s*)
a"—O V '
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and * denotes that the finite part of the integral is to be taken. If we take r » 1
and then let Y —• oo, we find

1 (K)

- i a o ( a ^ ) - 4 / 3 + 2 ' A / 3 y - V * - 3 / ^ - ^ ^ . (4.15)

The first term in this expression matches with the steady solution (3.28) in the
outer region and the second term matches with the transient (3.41) in the outer
region.

For large time, the solution in the critical layer is essentially the steady solu-
tion. This steady solution is

0Os = -a0 ^ e x p [ - i a 1 ^ / 3 y e _ l ^ j M ^ (4 16)

In the next section, we shall need the asymptotic form of this integral as Y —* oo
to second order. The method of steepest descent gives

The integral in the expression (4.16) for 0o« has been evaluated numerically.
Let us set uj,s = <j>%

OaY, uOs being the leading order steady wave horizontal velocity
in the critical layer. In Figures 3(a) and 3(b), |ttosl/l

ao| is plotted as a function
of Y for p, = 25 and ft, = 50 respectively. The outer steady horizontal velocity in
the limit y —» 0, given by (3.28) and (3.29), has also been plotted in these figures
as a dashed curve. The attenuation of the horizontal velocity due to the action
of viscosity as the critical level is approached can be seen.

5. Wave-induced mean flow

The perturbation produced by the forcing will generate a mean flow due to
the nonlinear terms in the governing equations (2.5) and (2.6). To find this mean
flow acceleration, we expand ip and T in a small amplitude expansion as

ip = eipi+ e2i>2 H , T = eTx + e2r2 H (5.1)

where t/"i and 7\ are the linear solutions found in Sections 3 and 4. At the first
order, no mean flow is produced as tpi and T\ are periodic in x. Substituting
these series in the governing equations (2.5) and (2.6), we find at O(e2) the
equations

(5.2)
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(a) fi = 25: . modulus of linear, inviscid velocity in critical layer:
(b) ft = 50: . modulus of linear, inviscid velocity in critical layer:
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on taking Pr = oo. The first order solution (V>i,Ti) is periodic in x. To find the
behaviour of the mean flow at second order, the equations (5.2) and (5.3) are
averaged with respect to x. This yields

(5.4)

y)t (5.5)

where the overbar denotes averages. The forcing terms on the right hand side of
the equations are independent of x, so the mean quantities tfo and T% are also
independent of x. On integrating equation (5.4) twice, we find that the mean
second order stream function satisfies

dy

This equation is a forced heat equation for the wave-induced mean flow u? = foy,
with the forcing function being the y-derivative of the Reynolds stress

£ = tfiztfiy (5-7)

The solution of this equation is

. f
Jo J-

(5.8)

For large times, the major contribution to U2 comes from the steady part of
the Reynolds stress, which will be denoted by Es. This stress consists of two
components: the contribution from the outer region and the contribution from
the critical layer. The Reynolds stress in the outer region is, from (3.1) and
(3-24),

Here ip® refers to the steady solution in the outer region found in Section 3. From
(3.26), it can be seen that this Reynolds stress in the outer region is proportional
to the wave action flux, cgA, for the outer steady solution.

The Reynolds stress behind the wavefront of the outer steady solution is thus
constant and makes no contribution to the induced mean flow. However, there
is a contribution to the Reynolds stress due to the front of the outer steady
solution, as at the front, Ej, is proportional to a ^-function. Grimshaw [13]
showed that this contribution is proportional to the wave action density Aa of
the outer steady solution and is O(e2). It will be shown below that the critical
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layer makes a contribution O[e2y/R&y/i) to the induced mean flow. The mean
flow (for large time) is hence due mainly to the critical layer Reynolds stress and
is approximately

where

Y = (Re)1^, r = (Re)"1/3*, (5.11)

Here E* refers to the Reynolds stress in the critical layer due to the steady
solution and ip*sl is the leading order steady solution in the critical layer found
in Section 4.

The behaviour of u? can be found by asymptotic evaluation of the integral in
(5.10). For small r, it can be found from (5.10) that

"a ~ ( R e ) r ^ E ' . (5.12)

Initially, before the effects of viscosity become important, the induced horizontal
velocity grows linearly with time. As time increases, the vorticity produced by
the critical layer will diffuse outwards and the mean flow associated with this
vorticity will eventually dominate over the induced mean velocity (5.12).

As Y —> oo, the mean flow is always dominated by non-viscous effects and
(5.12) is the asymptotic form of (5.10) as y —• oo. The Reynolds stress for large
Y can be evaluated on using (4.14) and (4.15) and asymptotically evaluating the
gamma function as |A;| is large. We find that

lY~3. (5.13)
w

So for T fixed and Y —• oo,

' Y'4. (5.14)

As Y —* oo, the induced mean flow decays as Y~4 and grows linearly with r.
The behaviour as Y —» — oo for finite r is the same, except that the right hand
side of (5.14) is multiplied by the factor — e" 2 ^ . The induced mean velocity
(5.14) is O(Re-1) and so is due to the second order outer solution, which is
O(Re-1). This induced mean velocity is thus forced by the outer flow.

Grimshaw [12] showed that for a slowly varying wave approaching a critical
layer, the induced mean flow is given by

potit = a{At + Xv2A), (5.15)
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where
A oc (Re)"1 (5.16)

and v is the wavenumber. Therefore as t —<• oo,

u~-\v*At. (5.17)
Po

Using (3.21) and (3.29), we then find that as t -* oo

u oc -a{Re)~1ty~4

= - a (Re ) 2 / 3 ry - 4 . (5.18)

This expression agrees with the induced mean flow (5.14) far from the critical
layer.

To find the mean velocity induced by viscous effects in the critical layer, the
expression (5.10) for u^ is asymptotically evaluated for Y fixed and r large. For
Y fixed and r —• oo, it can be found by integrating (5.10) by parts that

(5.19)

The Reynolds stress at Y = — oo is exponentially small and the Reynolds stress
at V = oo is given by (5.13). Hence for Y fixed and T —> oo,

(5.20)

The mean flow induced by the action of viscosity in the critical layer is negative
and grows as y/f. The expansion (5.1) then remains valid until r = O(Re~x e~2)
(i.e. t = O(Re~2/3 e~2)). For times greater than this, the effect of the nonlinear,
convective terms in the governing equations (2.5) and (2.6) must be considered
in the critical layer. Viscosity acts to reduce the rate of temporal increase of the
induced mean flow and hence delay the time at which nonlinear effects become
important. However, viscosity cannot fully arrest the growth of the horizontal
velocity and stop nonlinear effects from becoming important. The critical layer
acts as a source of vorticity, which diffuses into the outer flow. The net result after
a long time is that the outer flow has a term of O(e2(Re)2/3y/r) (= O(e2y/Rey/t))
subtracted from it.

We see from (5.20) that the acceleration of the mean flow has moved the
critical level towards the incoming wave. Grimshaw [13] showed that for a slowly
varying wave in a fluid where nonlinearity dominates, the mean flow induced by
the passage of the wavefront is given by

u = aA, (5.21)

Using (3.21), this becomes
u = -£/U(y), (5.22)
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as we are considering the steady solution. The induced mean flow in an inviscid
fluid is thus negative for y > 0 for the shear profiles U{y) under consideration.
So both nonlinearity and viscosity dominated critical layers result in the critical
level being moved towards the incoming wave. The negative sign of the induced
mean flow near the critical level when nonlinearity dominates over viscosity was
also found in the numerical work of Dunkerton and Fritts [9] and Fritts and
Dunkerton [10j. In their work, e\/Re was O(103) to O(104), when the Reynolds
number is based on molecular viscosity. Even if the Reynolds number is based
on eddy viscosity, ey/Re was still O(102) to O(103).

Brown, Rosen and Maslowe [3] discussed the interaction of an internal gravity
wave with a critical layer when the undisturbed velocity profile is U(y) = tanhy.
The equations used were similar to (2.5) and (2.6), except that the Richard-
son number was taken to be \ and the Prandtl number 1, as in this case, the
equations have an exact solution. Furthermore, the critical layer solution was de-
veloped for a steady outer solution. The expressions they found for the induced
mean flow were similar to (5.10) and (5.14). The major difference was that for
r fixed and \Y\ -* oo, they found u2 = O(T- |Y| - 2 ) , rather than u2 = O(r|y|"4)
as found in (5.14).

Grimshaw [12] considered a slowly varying wave packet propagating towards
a critical level. The equations used to describe the motion were obtained by the
method of multiple scales by Grimshaw [11]. This slowly varying approximation
corresponds to the large Richardson number approximation used here. In the
critical layer, it was assumed that nonlinearity dominated over viscosity. It was
found that the horizontal velocity (and the wave action density) increased as
the critical level was approached, then rapidly decreased to zero in the critical
layer. For non-zero viscosity, the wave packet was found to induce a permanent
acceleration of the mean flow. This induced mean flow is that due to the wave-
front and is not the induced mean velocity (5.20), which is due to the diffusion
of vorticity from the critical layer.
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