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An addition of polymers can significantly reduce drag in wall-bounded turbulent flows,
such as pipes or channels. This phenomenon is accompanied by a noticeable modification
of the mean-velocity profile. Starting from the premise that polymers reduce vortex
stretching, we derive a theoretical prediction for the mean-velocity profile. After assessing
this prediction by numerical experiments of turbulence with reduced vortex stretching, we
show that the theory successfully describes experimental measurements of drag reduction
in pipe flow.
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1. Introduction

Turbulence rapidly drains energy from a fluid flow. Therefore, in many applications — such
as aviation, naval and road transport and industrial processes — a significant portion of
supplied energy is lost to undesired and difficult-to-control turbulent motion. Minimising
turbulent drag is thus a key strategy for improving energetic efficiency. A spectacular
example of turbulent drag reduction is an effect first experimentally studied by B.A. Toms
in the 1940s (Toms 1949, 1977). Adding a small amount of polymers to a turbulent pipe
or channel flow can reduce the turbulent drag enormously, leading thereby to important
savings of energy.

Despite the large number of investigations dedicated to the subject (see reviews of
older contributions in Lumley 1973 and Virk 1975 and more recent work in Procaccia,
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L’vov & Benzi 2008, White & Mungal 2008; Xi 2019 and Dubief, Terrapon & Hof
2023), the precise effect remains obscure. It is realised that the polymers interact with
turbulent velocity fluctuations in a certain way, which allows us to reduce the overall
energy dissipation and the momentum flux from the fluid towards the wall. Early efforts
of De Gennes and Lumley pointed to possible mechanisms associated with the elastic
properties of polymers (De Gennes 1986; Tabor & De Gennes 1986) or the modification
of the effective viscosity (Lumley 1973), an idea further explored, for instance, in L’vov
et al. (2004) and Ryskin (1987b). More recent studies have focused on spatio-temporal
intermittency, or hibernating states associated with events of reduced drag reduction
(Graham 2004; Xi & Graham 2012; Whalley et al. 2017). Despite significant progress,
none of these theories is entirely satisfactory or predictive.

Even though the precise mechanism behind turbulent drag reduction by polymers is
unknown, the continued research efforts during eight decades have yielded a wealth of
insights. Indeed, several key features of dilute polymer-containing flows near boundaries
are now well established, and here we highlight some of these features.

Polymer-laden flows are visco-elastic, which adds to the difficulty of normal, viscous
flows. Due to their elastic nature, the polymers need an extensional flow to get stretched. If
the typical time scale of the flow is too large, the polymers will relax to their equilibrium
coiled state. The dimensionless number which compares the elastic time scale with the
flow time scale is called the Weissenberg number Wi. At low Weissenberg numbers,
polymers have minimal influence on the flow.

As Wi increases beyond the coil-stretch transition (De Gennes 1974; Watanabe & Gotoh
2010), the drag reduction becomes more significant, reaching, for large enough values of
Wi, an upper limit associated with a flow configuration known as the maximum drag
reduction (MDR) state (Virk, Mickley & Smith 1970; Virk 1975). Notably, there appears
to be a functional relationship between Wi and the extent of drag reduction in parallel
shear flows (Owolabi, Dennis & Poole 2017). For large values of the drag reduction,
and up to the MDR state, the mean-velocity profile in the near-wall region transitions
from the logarithmic profile — characteristic of turbulent flow in Newtonian fluids — to a
steeper profile. Historically, this profile was approximated using an alternative logarithmic
expression (Virk 1975). However, more precise measurements have shown that the profile
deviates from a logarithmic form (White, Dubief & Klewicki 2012), exhibiting a convex
shape in log-linear representation (Ptasinski et al. 2001; Owolabi et al. 2017).

In this study, we focus on the role of vortex-stretching reduction in drag reduction. The
importance of vortex stretching has been mentioned in numerous studies over the years. As
early as the works of Gadd (1968) and Landahl (1973), vortex-stretching suppression was
identified as a significant factor. Subsequent studies (Sureshkumar, Beris & Handler 1997,
Yarin 1997) expanded on this idea, while experiments demonstrated that material-line
stretching was reduced in polymer-laden flows (Liberzon et al. 2005). Recent numerical
simulations confirm that polymers attenuate vortex stretching (ur Rehman et al. 2022), and
experiments have shown that this attenuation is central to the mechanism of polymer drag
reduction (Warwaruk & Ghaemi 2024).

Polymers reduce vortex stretching due to two key effects. First, it has been shown that
rod-like passive particles or fibres align with the vorticity vector in turbulent flow (Pumir &
Wilkinson 2011; Ni, Ouellette & Voth 2014), and this is expected to hold true for polymers
as well. Second, the presence of polymers significantly increases the extensional viscosity
(Metzner & Metzner 1970; Hinch 1977; Lindner, Vermant & Bonn 2003). From these
two observations — the alignment of polymers with vorticity and the increased extensional
viscosity — it follows that polymers attenuate vortex stretching. This attenuation reduces
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drag since vortex stretching is one specific part of the nonlinear term, responsible for
generating drag (Li et al. 2019).

The idea that drag reduction is linked to increased extensional viscosity is not new.
Most theoretical studies acknowledge that this increase is a principal effect of polymers
on visco-elastic flow. In purely extensional flows, this increase can be interpreted as an
effective viscosity enhancement (Ryskin 1987a). When flows are not purely extensional,
modifying the effective viscosity inhomogeneously provides a coarse model for the
influence of polymers in wall-bounded flow, albeit without accounting for the difference
between extensional and shear stresses. This approach underpins Lumley’s theory (Lumley
1973), which can be refined using local energy balances and dimensional arguments to
estimate viscosity changes (L’vov et al. 2004; Procaccia et al. 2008). However, firstly, this
does not explain observations in homogeneous shear flow (Robert ef al. 2010; Benzi &
Ching 2018) where the viscosity should be statistically homogeneous and, secondly,
turbulence is far from purely extensional. Incorporating a separate treatment of the two
different stresses into the Navier—Stokes equations remains challenging. Only recently has
progress been made on this for the case of two-dimensional flows (Oliveira 2024; see also
Poole 2023).

The role of elasticity in polymer-laden turbulence is still a debated subject. At moderate
and high Reynolds numbers it is the fully stretched polymers which are responsible for
the drag reduction (Serafini et al. 2022), thereby suggesting that elastic effects are not
necessary to explain drag reduction beyond the coil-stretch transition. However, around
the MDR state, in particular at low Reynolds numbers, elastic instabilities might play an
important role in maintaining a marginally unstable turbulent state (Choueiri, Lopez &
Hof 2018; Dubief ef al. 2023). We will come back to this point in the conclusion section.
For the moment, we will ignore the effects of elasticity and consider flows beyond the
coil-stretch transition.

In the present investigation, we avoid the complexities associated with altering the
system’s viscosity or modifying the viscous stress tensor. Instead, we focus directly on the
vortex-stretching mechanism at the level of the governing equations. This approach neither
relies on purely phenomenological arguments nor involves detailed simulations of visco-
elastic turbulence. The strength of our method is its ability to isolate a specific aspect of
polymer—turbulence interaction for specific analysis. Such an approach necessarily omits
certain features of the interaction (such as elastic instabilities (Samanta et al. 2013) and the
effect of the weight distribution of the polymers (Brandfellner et al. 2024; Serafini et al.
2025), etc.), but it will prove valuable since it allows us to derive an analytical prediction
of the inertial velocity profile. We will then compare this prediction with specifically
designed numerical experiments, before comparing it with laboratory experiments of
polymer-laden turbulent pipe flow.

2. A law of the wall for turbulence with tamed vortex stretching
2.1. Derivation of the mean profile

To model the influence of reduced vortex stretching, we write the evolution equation of
the fluid vorticity in the form

0w
E+u-Va):(1—/l)w-Vu—/lVPw—i—vAa), 2.1)

where the vorticity @ is the curl of the velocity u, v the kinematic viscosity and P, a
Lagrange multiplier, ensuring V - @ =0 (Wu, David & Bos 2023) A is here a control
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parameter which we will discuss below. A first property of this equation is that the left-
hand side, representing the advection of the vorticity, is not modified. Intuitively, this
represents the fact that the advection of a small fluid volume should be largely independent
(at leading order) of what molecular particles, particles or fibres, the fluid particle contains.
We hypothesise that this is different for the vortex-stretching term, since it is the term
responsible for enstrophy generation, an effect dominated by extensional motion aligned
with the vorticity. Indeed, the extensional stress is dramatically influenced by the presence
of polymers in the flow.

In the case A4 = 0 we retrieve the classical Navier—Stokes vorticity equation. The system
(2.1) for A=1 was introduced in Bos (2021) and Wu & Bos (2021) and studied in
statistically homogeneous flow. In the present investigation we consider (2.1) in wall-
bounded flow as the simplest model for polymer-laden turbulence; we suppress vortex
stretching, partially or completely, by allowing values 0 < A < 1.

Before carrying out numerical experiments, we will first extend the classical arguments
of Prandtl and von Kdrman (von Kdrmén 1930) to our system, in order to anticipate how
the near-wall scaling is modified by the attenuation of vortex stretching. For this, we follow
the same reasoning as von Kédrmén in his 1930 paper, which introduced the logarithmic
law of the wall (or log law).

We focus on fully developed channel flow, with x, y, z the streamwise, wall-normal and
spanwise directions, respectively. All average quantities are stationary and homogeneous
in the streamwise and spanwise directions. The mean-velocity and vorticity fields are

dU (y)
W=Ume  (0)=-= e 22)
respectively. From (2.1) we derive the exact mean vorticity balance 0; (w;)
d(wlv') d> W'y  d’U
0=1—"—+@1-1 . 2.3
o A DT s 2.3)

Neglecting viscous effects as usual in the derivation of the log law, we proceed by
modelling the turbulent fluxes of mean vorticity and momentum, (w’v’) and (u'v’), using
a classical mixing-length model

v , (2.4)
dy
where a can be either the velocity or vorticity. This corresponds to a mixing length / =«y
proportional to the distance to the wall (von Kdrman 1930). In principle, different values
can be used for the constant in the mixing-length estimate for vorticity or velocity (Hinze
1975), but this will not qualitatively change the outcome of this analysis. We obtain, since
d{w;)/dy = —d*U/dy?,

0
(av')y = vT;—CyI), with vr = (ky)?

d’U dU d dU dU
0=k’ ——+ (1 —>— [ YP——). (2.5)
dy? dy dy \" dy dy
Equation (2.5) can be solved, yielding the solution
1yt —1
vtoh=-—— 4y, (2.6)
K r
with
r=2/2-2, 2.7

where quantities are expressed in wall units (UT =U/u;, with u; = (V{(p)h/p)'/?,
y* =yu,/v) with p the density. In the derivation, an integration constant is fixed,
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Figure 1. Plane-Poiseuille flow driven by an imposed pressure gradient in the x-direction. Vortical motion is
amplified in three-dimensional turbulence by vortex stretching. The flow visualisations show iso-surfaces of
the Q-criterion for Q =1 (see main text), coloured by the local streamwise velocity. (a) Traditional channel
flow. (b) Channel flow with reduced vortex stretching (4 =0.35 in (2.1)).

as is customary, by the observation that, in the inertial layer of Newtonian channel flow
turbulence, |(u'v')| & u2 (Pope 2000).

According to this phenomenological analysis we thus find a power-law scaling with an
exponent 4/(2— 1) for 0 <A< 1. For A=0 we find as a special case the logarithmic
profile. Indeed, in the limit I" | 0, we find that

1
lim Ut (y")=—In(y") + U, (2.8)
I'—0 K

The general A-dependent mean-velocity profile (2.6) is the main analytical prediction
which we will compare first with direct numerical simulations of (2.1) and subsequently
with experimental results from literature on polymer turbulence.

2.2. Numerical experiments of turbulence with reduced vortex stretching

To assess our predictions, we carry out Direct Numerical Simulations (DNS) of (2.1) in
plane channel flow. The walls are separated by a width 24, the width of the domain is 7h
and the length 2 4. Boundary conditions are no slip at the wall and periodic in the stream-
wise and spanwise directions. The code is based on a classical Fourier—Chebyshev formu-
lation with a resolution of Ny =256, N, =192, N, = 192 grid points. Further details can
be found in Appendix A. Computations are carried out for R, =395 at a constant mass-
flow rate. Simulations are run until a statistically steady state is obtained for the Navier—
Stokes case A = 0, as measured by observing the wall shear stress. Starting from this steady
state, A is varied in the range 4 € [0, 0.5] with steps of §4=0.05. For simulations with
A< 0.35 turbulent steady states are observed, while for A > 0.4 the flows relaminarise.

In figure 1 we show flow visualisations using the Q-criterion (Hunt, Wray & Moin 1988)
for Q = Ap/2 =1. Comparing the Navier—Stokes case (a) with the case 4 =0.35 (), it
is observed that, in the second case, the vortex intensity has reduced dramatically. Indeed,
the vortex-stretching term is responsible for enstrophy production, and reducing it leads to
the intuitive effect of less vortical activity.

In figure 2(a) we show mean-velocity profiles for the turbulent cases, determined by
averaging during the statistically steady state. Also shown is our prediction, where x = 0.4
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Figure 2. Comparison of analytical predictions with our DNS results. (a) Mean-velocity profiles in log—linear
representation. The values of UJ are for A € [0, 0.35]: 5.1; 5.9; 6.6; 7.8; 8.3; 9.8; 9.9; 10.3. (b) The gener-
alised indicator function & = (y 1)1 =¥/ @=Dqu+(y+)/dy™*, (2.10) for the different velocity profiles in ().

and the only adjustable parameter is the velocity offset U(;r (A1), which is fitted to obtain a
best fit in the region where the generalised indicator function (see below) is in the vicinity
of 1/k. Even though the Reynolds number is rather small, the predicted profiles describe
the data well. The relation between the values U(;L (A) and 4 is approximately linear

Uy" (D) = Uy (0) + by, 2.9)

with U (0) =5.2+0.2 and by = 15.8 £ 1.
In order to assess our predictions independently from the virtual origin Up(1), we
introduce a generalised indicator function

L _pdU®G)
=Yy —dy )
where I" = 1/(2 — A). For the value A = 0 this simplifies to the commonly used indicator
function to verify the existence of a logarithmic profile (e.g. White et al. 2012; Laadhari
2019). For A # 0, this function should allow us to identify the power-law behaviour (2.6)
by a plateau of value 1/« independently of the adjustable parameters other than the value
of A, which is fixed for each simulation.

Even though the Reynolds number is too low to have a substantial inertial profile,
figure 2(b) shows that all 7 simulations coincide near the value 1/« ~2.5 around y* =
100, supporting the idea that « plays a central role, irrespective of the amount of vortex
stretching that is suppressed in the governing equations.

FU, y] (2.10)

3. Drag reduction and vortex stretching

3.1. Similarities between the modified Navier—Stokes equations and visco-elastic
turbulence

The extended von Kdrmédn phenomenology appears to capture the behaviour of (2.1),
elucidating how reduced vortex stretching modifies the mean-velocity profile. The next
question is: How relevant is (2.1) for modelling polymer turbulence?

Since (2.1) lacks derivation from a polymer stress constitutive relation (an important
question for future research), its relevance must be inferred by comparing its properties
with those of real flows. Before attempting such comparison, let us discuss certain
similarities between polymer-laden turbulence and (2.1).
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Figure 3. Comparison of analytical predictions with experimental results. (@) Mean-velocity profile in pipe
flow at MDR (Owolabi er al. 2017) compared with our power-law estimate. (b) Fanning friction factor in
Prandtl-von Karman coordinates. Experimental results from smooth pipe measurements at MDR (Virk et al.
1970).

First, the steepened velocity profile in our system qualitatively resembles profiles in
polymer turbulence. Although our approach does not model the coil-stretch transition
(De Gennes 1974), the continuous profile steepening aligns with high drag reduction
regimes (Warholic, Massah & Hanratty 1999).

Second, our system stabilises at a marginally stable state for A= 0.35, with
relaminarisation at higher values. While polymer turbulence also reaches an asymptotic
(MDR) state, the flow does not relaminarise at high Reynolds numbers. It is plausible that
exceeding MDR suppresses vortex stretching to the point of relaminarisation, at which
polymers relax to their coiled equilibrium state. This would cause the flow to revert
to Newtonian-like properties, reintroducing instabilities and turbulence. Local spatio-
temporal relaminarisation could correspond to hibernating turbulent states (Graham 2004;
Xi & Graham 2012).

Third, drag reduction can occur for both elastic and rod-like polymers (Berman 1978;
Paschkewitz et al. 2004; Japper-Jaafar, Escudier & Poole 2009), suggesting that polymer-
induced drag reduction is not purely elastic in origin. Our approach, lacking relaxation
time scales (inherent to elastic effects) is consistent with this observation.

Fourth, simulations of visco-elastic isotropic turbulence and turbulence without vortex
stretching reveal shared features. Simulations employing the finite extensible nonlinear
elastic model with Peterlin’s approximation show that, at high Weissenberg numbers, the
kinetic energy spectrum transitions from a k—>/3 scaling to k3, with k the wavenumber
(Valente et al. 2014, 2016), as also observed in channel flows (Mitishita, Elfring &
Frigaard 2023). This K~ scaling, linked to enstrophy conservation, is similarly observed
in turbulence without vortex stretching (Wu & Bos 2022). Furthermore, advanced
simulations (Watanabe & Gotoh 2013) demonstrate that polymers suppress enstrophy
production, promoting a conservative enstrophy cascade at high Reynolds numbers.

These similarities motivate further scrutiny of the connection between polymer drag
reduction and (2.1). We therefore compare its predictions with experimental results.

3.2. Comparison with experiments of visco-elastic shear flow

We compare our predictions with measures in pipe flow, which is, historically, the most
investigated case. We first compare with the velocity profile in pipe flow at MDR measured
experimentally at the University of Liverpool (Owolabi et al. 2017) in figure 3(a). Fitting
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our prediction (2.6) in the range 100 < y* <250, we obtain I'=1/(2 — 1) =0.349 &+
0.001 and UO+ =3.5+0.13. Agreement at these scales is convincing and clearly superior
to Virk’s approximation.

A larger amount of data are available on the friction factor, which is more easily
measured in experiments. We will here compare with the pioneering compilation of results
by Virk et al. (1970). The friction factor is determined by measuring the pressure drop ép
over a pipe of length L. Introducing the bulk velocity U, (velocity averaged over the pipe
cross-section of radius R) the friction factor is

Ur 2

where u; = +/Rép/(2pL). Experiments are then performed to measure the value of f as
a function of the bulk Reynolds number, R, =2RUj;/v. Results are traditionally plotted,

in Prandtl-von Karman representation, f —1/2 a5 a function of R, f 1/2(= 2«/§Rf).

We determine the bulk velocity by integrating the velocity profile over the pipe cross-
section, yielding, after a change of variables r =R —y and y* = ((R —r)/R)R;, the
relation

R; +
1= g /O (1 - %) Ut(yHdy™. (3.2)

We now use expression (2.6) for A # 0, to obtain

r
/2 _ _
2<[R,,f1 /ﬁ] 1)/r (I' +3) u§
V21T +1)(I" +2) V2

We show this expression in figure 3(b). Fitting the data we find I" = 0.348 4+ 0.003 and
U(;r =15.6 £ 0.4. Also shown are the Newtonian expression f*I/2 (x) =4log(x) — 0.4 and
Virk’s relation f~1/2(x) = 19 log(x) — 32.4.

What we can say is that, for large values of the Reynolds number, the agreement between
experiments of the friction factor and our theory is at least as good as using Virk’s log law,
with the difference that our fit is based on a theoretical expression for the velocity profile
(2.6), valid for both Newtonian and visco-elastic flow, whereas Virk’s expression is an
empirical fit to the MDR data. For the velocity profile for the scales 100 < y™ < 250 the
agreement with our theory is clearly superior (figure 3a).

It is remarkable that we obtain, within error bars, exactly the same value for I" in
figures 3(a) and 3(b). This supports the validity of (2.6) to describe the mean profile at
MDR. The slightly different value of Uy is not surprising since we obtain the estimate for
U}, by integrating over the full pipe cross-section, although the power law does not hold
for y™ near the wall and the centre. Another nice feature is that (3.3) holds also for the
Newtonian case, when the value I = 0 is used.

A question we have not addressed is the link between the Weissenberg number and the
vortex-stretching parameter A. At present, we have no direct physical relation between A
and Wi derived from a visco-elastic constitutive relation. In order to obtain a tentative
link, we compare the results of our system with the compilation of Owolabi et al. (2017),
who showed that the amount of drag reduction in different pipes and channels could be
linked by a close-to-universal relation to Wi. The drag reduction, for a fixed mass-flow

1019 A32-8

= (3.3)



https://doi.org/10.1017/jfm.2025.10611

https://doi.org/10.1017/jfm.2025.10611 Published online by Cambridge University Press

Journal of Fluid Mechanics

DR(%)
£

Exp. Liverpool  ©
Current DNS —=— -
Theory

0 1 2 3 4 5 6
Wi

Figure 4. Drag reduction as a function of the Weissenberg number. Comparison of experimental results of
Owolabi et al. (2017) with our analytical predictions and numerical results for DNS with reduced vortex
stretching. For the comparison we use a linear relation, Wi — Wi. = 104 between the reduction of vortex
stretching A and Wi. The horizontal dashed line represents the MDR value (DR = 64 %) corresponding to the
fit to the experimental results in Owolabi ef al. (2017).

rate, is defined as

Uz

DR=|1-[2% ,
.0

(3.4)

where ugo) is the friction velocity for the reference case. In figure 4 we show the

experimental data points for the interval 0 < Wi < 6. We compare with the results of our
DNS for different values of A. To attempt a comparison and in the absence of a physical
model, we try to compare the data using the linear relation

Wi — Wi. =aa, (3.5)

which is the simplest possible non-trivial relation, taking into account that the suppression
of vortex stretching should increase with the Weissenberg number, at least for values
between the coil-stretch transition (at the critical Weissenberg number Wi.) and MDR.
We use the value Wi, = 0.5 and the value a = 10, which seem to give a good qualitative
agreement.

To compare with the theory, we integrate the mean-velocity profile (2.6) over half of the
channel to get an estimate of the bulk velocity

h
Ug
Ub=7 U(y)dy
0
(hur>r_l
Ur v
= -1 Up(D), 3.6
P, T +u:Up(D) (3.6)

yielding an implicit equation for u, for fixed Uj, which can be numerically solved, using
(2.9). The resulting values of u, are used to compute the drag reduction, shown in figure 4.
The tendency is the same as the DNS and the experiments. Quantitative disagreement with
the DNS can be attributed to the assumption of using (2.6) over the complete channel,
ignoring deviations near the wall and centre of the domain. Using this relation between
A and Wi, we find that the value I' =0.349 we obtained in figure 3 corresponds to
Wiypr = 5.6, which is not inconsistent with the results in Owolabi ef al. (2017).
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4. Conclusion and future issues

The complexity of polymer-laden turbulence is rooted in the multi-scale interaction of
turbulence with polymer molecules (Koide & Goto 2024) combined with the presence
of walls, introducing both scale and position dependences. While advanced numerical
experiments now provide access to detailed flow quantities in realistic geometries (Serafini
et al. 2022), progress in understanding requires drastic simplifications of the flow physics
to isolate specific features — an approach we have adopted.

Introducing the new system of governing equations (2.1) for the investigation of drag
reduction by polymers opens several avenues for exploration. A first and important one
is the assessment of the assumption that strong extensional viscosity primarily acts to
damp the term w - Vu in the vorticity dynamics. Such an assessment could start from
the framework introduced in Oliveira (2024). Further comparisons should investigate the
implications of (2.1) for the detailed inhomogeneous and anisotropic turbulence statistics
(Escudier, Nickson & Poole 2009).

Perhaps even more intriguingly, investigating the self-sustaining mechanism of wall
turbulence (De Angelis et al. 2002; Waleffe 1997) and the linear and nonlinear instability
properties of shear flows with reduced vortex stretching, could provide theoretical insights
into the nature of the MDR state. While at low Reynolds numbers certain results indicate
that elastic instabilities might determine the precise asymptotic value of MDR (Dubief
et al. (2023) and references therein), this question is not settled at high Reynolds numbers.
The MDR asymptote at higher Reynolds numbers might be determined by a subcritical
transition (Morozov & van Saarloos 2005, 2007), and as such, its precise value is certainly
not easy or impossible to determine by simple analytical reasoning.

In this context, an interesting observation in our study is that we observe laminarisation
at relatively large values of the Reynolds number for sufficiently high values of A4, in
the absence of elastic effects. Let us imagine what elastic effects would add in such a
relaminarised state in an actual visco-elastic fluid. There, polymers would relax back to
their equilibrium state, which would have two direct influences: first, the relaxation could
reintroduce kinetic energy into the flow when the polymer stress changes sign, as observed
in isotropic visco-elastic turbulence (Nguyen et al. 2016; Valente, Da Silva & Pinho 2014)
at small scales and high Weissenberg number, or in low Reynolds number shear flows due
to elastic instabilities Choueiri et al. (2018). This energy flux could possibly perturb the
relaminarised state. Second, after relaxation, the extensional viscosity would recover its
Newtonian value and the flow would become unstable again. Both effects would contribute
to sustaining a marginally unstable state, which would act as a visco-elastic fluid at the
MDR asymptote.

These arguments support the ideas that, firstly, (extensionally) viscous effects are the
main actor in reaching the MDR state. Secondly, that elastic effects are essential to
maintain a turbulent state once the MDR asymptote is reached. A more sophisticated
model than (2.1) is needed to assess this reasoning and the development of such a model
is left for further research.
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Appendix A. Numerical method

We carry out simulations of plane-Poiseuille flow. The half-width of the channel is denoted
h, the computational domain has dimensions of L, x Ly X L, =2mwh x 2h X wh and
employs Ny x Ny x N; =256 x 192 x 192 grid points. Uniform grids are applied in the
streamwise and spanwise directions, while a non-uniform grid is used in the wall-normal
(y) direction, defined by y; = cos(j/Ny) for j =0, 1, ..., N,. Note that in the numerical
method y =0 is the centreline of the channel. The initial mean-velocity profile is set
as U(y)=Q@F/4( — yz). By maintaining a constant mass-flow rate F =2, the flow
achieves a Reynolds number of R, = hu./v =395, with v the kinematic viscosity and
ur = +/7y/p the friction velocity. Here, t,, represents wall shear stress and p denotes
density.

We conduct simulations with different values of A, starting from a fully developed flow
of conventional Navier—Stokes turbulence (1 = 0). The numerical method for conventional
turbulence has been validated in previous studies (Xu, Zhang & Nieuwstadt 1996;
Fang et al. 2011; Chen & Fang 2024). Spatial discretisation is conducted using the
Fourier—Galerkin and Chebyshev—Gauss—Lobatto collocation methods: streamwise and
spanwise directions are expanded using Fourier series, while the wall-normal direction
utilises Lagrange interpolation polynomials at Chebyshev—Gauss—Lobatto collocation
points.

Before explaining the time advancement, let us start by formulating the evolution
equation for the velocity. Equation (A1) of the manuscript is formulated for the evolution
of the vorticity, whereas the numerical method we use is based on the time advancement
of the velocity. We therefore use the Biot—Savart operator to write

5 3
oA tvx (22). (Al)
o1 or

We now write two evolution equations. The first equation corresponds to Navier—Stokes
turbulence

u 2
3—:uxw—VH+vV u,
"Cwew p (A2)
I=—+=.
2 P

The second one corresponds to turbulence without vortex stretching

u - 2
—=A""Vx((u-V)w)—VII +vV-u,
81‘ u-u p (A3)
n=—++-,
2 P
where we used (A1). Adding now the first and the second equation in proportions 4 and

1 — A, we obtain the evolution of the velocity with partially removed vortex stretching

o _ (A_IV  ((u - V)w)) + (1= ) x »)
ot
— VI +vVu, (A4)
_u-u p

Now that we have a velocity-evolution equation we will describe the time advancement in
detail.
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The time-advancement scheme is based on a semi-implicit, three-step backward
differentiation formula (that is, J, = 3) (Moin, Reynolds & Ferziger 1978; Fan & Dong
2022). During each time step, a third-order time-splitting method is employed, including
three substeps that sequentially process the convective, pressure and diffusion terms,
respectively. In the following parts, superscripts s, s + (1/3), s + (2/3) and s + 1 will be
used to denote the advancement from time step s to s 4 1, corresponding to the substeps,
respectively.

In the present work without vortex stretching, the convective term in (A4) is advanced
from s to s + (1/3) using two microsteps, by further introducing an instant s + (1/6). The
first microstep indicates the influence of the term AA™IV x ((u - V)w)), written as

1 — S —
A”HE—ZJZOI aghu ™l ]

" = ¥ [V x (@ Vo)l 4, (A5)
q=0
with no-slip boundary conditions
{y=+1=vy—t1 =wy—11 =0 . (A6)

The second microstep indicates the influence of the term (1 — A)(u X w)

s+% Je—1
- Z Yo [(1 =D x o)1, (A7)

q=0
with additional boundary conditions
1
s+3 Je—1 s— Jo—1
w's =3y aqutT! g

‘ = Z Y [ =D x )77 (A8)

q=0

The calculation of the pressure term in (A4) (from s + (1/3) to s + (2/3)) advances as

u 2
P — _VHS+§’
dr (A9)

2
V.u'ts =0,

for the internal field, with the wall boundary condition for the pressure step modified as

Jo—1 Jo—1
(VH”%) ey = Z Yo (A= D@ x @)’ +v Z Yg (=V x (Vxu'"7)) | - ey,
q=0 q=0

(A10)

where (A10) involves the unit normal vector ey. The coefficients in (AS5), (A7), (A6),
(A8) and (A10) remain consistent with conventional Navier—Stokes turbulence in the case
A=0.

The viscous term, advancing from time step s + (2/3) to s + 1, is
s+%

s+1 _
— V2t (A11)

dt

The coefficients in the semi-implicit scheme «g, o1, a2, Y0, Y1, 2 and y3 are reported in
Karniadakis, Israeli & Orszag (1991).
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