RESIDUE RINGS OF SEMI-PRIMARY
HEREDITARY RINGS*

ABRAHAM ZAKS

Introduction: Throughout this paper we assume that all rings contain
an identity. We say that R is a semi-primary ring if its (Jacobson) radical
N is nilpotent, and R/N is an Artinian ring. We say that R admits a splitting,
and we write R=A+B if A is a subring of R, if B is a two-sided ideal in R,
and if ANB=0.

It has been shown in [1] that for a semi-primary ring R /-g/.dim R
=7.gl.dim R=1+1.proj. dim N. This common value is denoted by g/-dim R.

It has been shown in [2] that if R is a semi-primary hereditary ring, and I is
a two-sided ideal in R, then gl-dim R[] < oo .

We prove that if R is a semi-primary ring and g/-dim R/N?< oo , then R is
a residue ring of a semi-primary hereditary ring. This is a generalization of a
similar result in [3]. The crucial step is a splitting theorem that we prove for
a semi-primary ring R, for which eNe=0 for any primitive idempotent e€ R.
This splitting theorem seems also useful in studying certain types of semi-
primary subrings of a simple ring.

The author wishes to thank Professors M. Auslander, E.E. Lazerson, and M.I.
Rosen for their helpful remarks and suggestions in the preparation of this

paper.
§1. A Splitting Theorem.

t
For the rest of this section, let R= 3} Re, be a complete decomposition for

u=1
the semi-primary ring R, i.e. e,......e, are primitive orthogonal idempotents
(e.g. [4, pp 53-57]). Furthermore, assume ¢,Ne,=0 for v=1, ...... , t.  When
writing e;, e;...... we always assume 1 =<4, /,...... < ¢, unless otherwise stated.
Since for any e,, ¢;Ne; is the radical of e;Re;, and e;Re;/e;Ne; is a division
ring, we have:
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LeEmMA 1:  e;Re; ts a division ring for i=1, ...... ,t. Every element e;re;e R
induces a homomorphism (by right multiplication) of Re; into Re;, and vice versa. In
particular, if Re; is isomorphic to Re;, then eNe,+ 0 iff e,Ne;+0 for any k, 1 <k<t.
Thus:

LemmA 2:  Let Re; be isomorphic to Re;, then e;Ne;=0 .
One easily verifies that this is equivalent to:

Lemma 2%:  Every non-zero homomorphism between isomorphic components is an
isomorphism.

Let Iy be 12 e;Re; where (i, j) ranges over all pairs such that Re; and Re; are
isomorphic tg Re;, for some fixed i,, Let R0=H0mR(%‘. Rek,Xk‘,Rek), where &
ranges over all indices such that Re, is isomorphic to Re;,. Let R=
HomR(iéBi, :ngi), where B;=Re;, for i=1, ...... , s, and s is the number of
components in the complete decomposition for R which are isomorphic to Re;,.
Finally, let I';=te; Re;,),-the s x s matrix algebra over the division ring e; Re;,.
With these notations we have:

Lemma 3:  The subring I'y of R is a simple ring.

Proof: It is clear that R, and R, are isomorphic. It is also clear that I"y(I";)
is anti-isomorphic to Ry(R;). Thus I'y and I', are isomorphic.

Let I' be 12 ¢;Re;, where (i, j) ranges over all pairs such that Re; is isomor-
phic to Re;. ’ Since on I we have a natural splitting, into subsums taken over
any fixed isomorphism class of components, it follows from Lemma 3 that:

ProposiTiON 1:  The subring I" of R is a semi-simple ring.
t
The underlying additive group of R admits a decomposition R= ZleiRe,-.
i,j=
Let R,= 2} e;Re; where (i, j) ranges over all pairs such that Re; is not isomor-
nJ

phic to Re;, We have R=I'+R;, and it is clear that R,cN. Our next step
is to show that R,=N. We will be done once we show that R, is a two-sided

. .
ideal in R. Since r= >} e;re; for any e R, and since R, is closed under addi-
2R

1, 1=

tion, it suffices to show that e;,7e;= R,, implies e;7e;sex R, and eve;ve;< R, for all
1<i,j,k, 1<t and r,s,vER. But e¢;re;se, R, only if Re; is isomorphic to Re,
whence by Lemma 2* this element induces an isomorphism of Re; onto Re;,
and this is impossible since e;re;,eR,cN. A similar argument shows that

evere;ER, .
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This proves:

THEOREM 1. THE SprLITTING THEOREM: Let R be a semi-primary
ring, and let R=ué=}1Reu be a complete decomposition for R. If e;Ne;=0 for i=1,...
.o, t, then R admits a splitting R=I'+N . l”'=i2. e;Re; where (i, j) ranges over all pairs
such that Re; is isomorphic to Re;. N=3) eiRe,,-J where (i, j) ranges over all pairs such
that Re; is not isomorphic to Re;. v

With the assumptions and notations of Theorem 1, using Lemma 1 one
can easily prove that the center of R is a direct product of fields. The
center of R is a field only if 0 and 1 are the unique central idempotents in R.
One can also show that if R=7",+N is another splitting for R, then there exists
an invertible element s in R such that the automorphism » — srs~* takes I" onto
;.

The splitting theorem enables us to view N as a I'—I" bimodule. Define
QUI',N)= EON(”, where N®=J" and N‘”=N<"—1>(I>§N. Letting #, ® ...... ® n;Qnt
R.ve . @0 =1, R...... QRN R......Q7n" and extending ® distributively, (I, N)
becomes a ring (identifying N (”IQ@F, F@N @ and N for i =0). Letting f(n,
®......® mg)=mny......on;, and extending f linearly, f is a ring epimorphism from

m—1 X . .
I',N) onto R. If for some m, N™=0 then M= _EIN‘” is a nilpotent two-sided
ideal and 2(I", N)/M is semi-simple. Thus 2(I', N) is a semi-primary ring with
radical M. Furthermore, M=Q(I, N)@N, and since N is I'-projective, M is

(I, N)-projective. By [1], this implies that 2(I", N) is an hereditary ring.

If E, ... , Ex are primitive idempotents in R, then (E,, ...... ,E.) is an R-

connected sequence of length k if E;NE,,, = 0 for i=0, ......, k—1. Itis obvious
that N™ =0 if there are no R-connected sequences of length m.
2. Applications. We first deal with the case g/.dim R/N?<oo. Thus let
R be a semi-primary ring and gl/-dim R/N*<o . Let R=R|N?, N=N|N=.
With the notations of section 1 we have that I?zu‘éll?éu is a complete decom-
position for R, where ¢, is the canonical image of e, in R for i=1,...... ,t. Bya
result in [3] concerning semi-primary rings for which the square of the radical
is zero, we conclude that R-connected sequences are bounded in length. This
implies:

LEmMMA 4:  R-connected sequences are bounded in length.

Proof:  We show that if ¢;Ne; # 0 then there exists an R-connected sequence
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of the form (e, ...... ) €5). If (¢;, ¢,) is R-connected we are done.  Otherwise,
e;Ne;eN? and there readily follows the existence of a primitive idempotent ¢
such that e;Ne,Ne; 0. If (¢;, &, ¢;) is R-connected we are done. Otherwise,
either ¢;Ne,N? or ¢;Ne,=N?. Let ¢;Ne,cN? then we can find a primitive
idempotent ¢, such that 0 + ¢;Ne,Ne,Ne;eN*. Since N is nilpotent, this proce-
dure must end and the result follows.

In particular, we must have ¢;Ne;=0 for i=1, ...... , ¢, thus by Theorem 1,
R=I'+N. The ring Q(I', N) as constructed at the end of § 1 is a semi-primary
hereditary ring in this case. Combining this with the result in [2] concerning
residue rings of semi-primary hereditary rings we have:

THEOREM 2. Let R be a semi-primary ring, then the following are equivalent :
(a) R is a residue ring of a semi-primary hereditary ring.

(b) Al residue rings of R have finite global dimension.

(c) gl-dim RIN*< oo.

Remark that under each of these equivalent conditions eNe=0 for any primitive
idempotent e R .

In particular, if R is a semi-primary hereditary ring, its center is a direct
product of fields. The center of Ris a field only if 0 and 1 are the unique
central idempotents in R.

For the rest, let D be a division ring and let D, denote the »nXx#n matrix

algebra over D. Let R be a semi-primary subring of D,, such that R= i_lRei

is a complete decomposition for 2.  Without loss of generality we may assume
that e; is the matrix whose (e, )" component is (e;),3=0;.9:5 for all 7, e, g=1,...
...n.  We can (naturally) identify e;D,e; with D, and e;Re; with a subring of
D, for i=1, ...... ,n. In particular ¢;Ne;=0 for i=1, ...... , n, and by Theorem 1
R=I"+N. We want to show now that Q(,N) is a semi-primary
hereditary ring. This follows from the fact that any element ¢;7e;= R induces
an isomorphism from D,e; onto D,e;, Thus in particular e¢;7e; + 0 and e,se; 0
imply egsere; 0, or e;Ne; 0 and ¢;Ne, + 0 imply e;Ne;Ne, + 0. Since N is
nilpotent this implies that R-connected sequences are bounded in length.
Thus we proved:

THEOREM 3. Let R be a semi-primary subring of D,, containing n orthogonal
idempotents, then gl-dim R|I<< oo for any two-sided ideal I in R.

Let R be a semi-primary subring of D,. Let C(R) be the subset of D,
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consisting of elements Ve D,, for which Vr=rV for all e R. Set C(D,,) to be the
center of D,. One can show that C(R)=C(D,,) implies that (a) 0 and 1 are the
unique central idempotents in R and (b) R contains » orthogonal idempotents.
If D is a field one easily verifies that (a) and (b) imply C(R)=C(D,,) .
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