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Local Convergence and Stability of Tight
Bridge-addable Classes

G. Chapuy and G. Perarnau

Abstract. A class of graphs is bridge-addable if given a graph G in the class, any graph obtained by
adding an edge between two connected components of G is also in the class. he authors recently
proved a conjecture of McDiarmid, Steger, andWelsh stating that if G is bridge-addable and Gn is a
uniform n-vertex graph from G, then Gn is connected with probability at least (1 + on(1))e−1/2 . he
constant e−1/2 is best possible, since it is reached for the class of all forests.

In this paper, we prove a form of uniqueness in this statement: if G is a bridge-addable class and
the random graph Gn is connected with probability close to e−1/2 , then Gn is asymptotically close to
a uniform n-vertex random forest in a local sense. For example, if the probability converges to e−1/2 ,
then Gn converges in the sense of Benjamini–Schramm to the uniformly inûnite random forest F∞.
his result is reminiscent of so-called “stability results” in extremal graph theory, the diòerence being
that here the stable extremum is not a graph but a graph class.

1 Introduction and Main Results

In this paper, all graphs are simple. A graph is labeled if its vertex set is of the form
{1, . . . , n} for some n ≥ 1. An unlabeled graph is an equivalence class of labeled graphs
by relabeling. Unless otherwisementioned, graphs in this paper are labeled. A class of
(labeled) graphs G is bridge-addable if given a graph G in the class and an edge e of G
whose endpoints belong to two distinct connected components, G∪{e} is also in the
class. Examples of bridge-addable classes include planar graphs, graphs that admit a
perfect matching, forests, and H-free graphs where H is any 2-edge connected graph
(seemany more examples in [ABMR12,CP15]).

McDiarmid, Steger, and Welsh [MSW06] conjectured that every bridge-addable
class of graphs with n vertices contains at least a proportion (1 + on(1))e−1/2 of con-
nected graphs. his has recently been proved by the authors. In the next statement
and later,we denote byGn the set of graphs inGwith n vertices, and byGn a uniformly
random element of Gn .

heorem A (CP15, heorem 2) For every є > 0, there exists n0 such that for every

bridge-addable class G and every n ≥ n0, we have

Pr(Gn is connected) ≥ (1 − є)e−1/2 .
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IfG is the class of all forests, thenheoremA is asymptotically tight, since, as shown
in [Rén59], if Fn is a uniformly random forest on n vertices, then as n tends to inûnity,

(1.1) Pr(Fn is connected)Ð→ e
−1/2 .

he aim of this paper is to show that any bridge-addable class of graphs that comes
close to achieving the constant e−1/2 is “close” to a uniformly random forest in a local
sense.

Deûnition 1.1 For any ζ > 0, we say that a bridge-addable class of graphs G is
ζ-tight with respect to connectivity (or simply ζ-tight) if there exists n0 such that for
every n ≥ n0, we have

Pr(Gn is connected) ≤ (1 + ζ)e−1/2 ,

where we recall that Gn is chosen uniformly at random from Gn .

If H is a graph, we let ∣H∣ be its number of vertices. We denote by U the set of
unlabeled, unrooted trees and by T the set of unlabeled, rooted trees, i.e., trees with a
marked vertex called the root. For every unrooted treeU ∈ U, we denote byAutu(U)
the number of automorphisms of U , and for every rooted tree T ∈ T, we denote
by Autr(T) the number of automorphisms of T that ûx its root. Moreover, given k

unrooted trees U1 , . . . ,Uk in U, we denote by Autu(U1 , . . . ,Uk) the number of auto-
morphisms of the forest formed by disjoint copies of U1 , . . . ,Uk .

Given a graph H, we let Small(H) denote the graph formed by all the components
of H that are not the largest one (in case of a tie, we say that the largest component
of the graph is the one with the largest vertex label among all candidates). In what
follows, we will always see Small(H) as an unlabeled graph. Given a graph G and
a rooted tree T ∈ T, we let αG(T) be the number of pendant copies of the tree T

in G. More precisely, αG(T) is the number of vertices v of G having the following
property: there is at least one cut-edge e incident to v, and if we remove the cut-edge
that separates v from the largest possible component, the vertex v lies in a component
of the graph that is a tree, rooted at v, which is isomorphic to T . he following is
classical, and the proof is omitted.

heorem B Let Fn be a uniformly random forest with n vertices. hen for any ûxed

unlabeled unrooted forest f we have

(1.2) Pr(Small(Fn) ≡ f) Ð→ p∞(f) ∶= e−1/2 e−∣f∣

Autu(f)
, as n →∞,

where ≡ denotes unlabeled graph isomorphism and p∞ is a probability distribution on

the set of unlabeled unrooted forests.

For any ûxed rooted tree T ∈ T, we have

(1.3)
αFn(T)

n

(p)Ð→ a∞(T) ∶= e−∣T ∣

Autr(T) , as n →∞,

where (p) indicates convergence in probability and a∞ is a probability measure on T.
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Our main result states that if G is bridge-addable and Gn satisûes an approximate
version of (1.1), then it also satisûes an approximate version of (1.2) and (1.3).

heorem 1.2 (Main result) For every є, η > 0, there exist ζ > 0 and n0 such that for

every ζ-tight bridge-addable class G and every n ≥ n0, the following hold.

(i) For every unlabeled unrooted forest f ,

∣Pr(Small(Gn) ≡ f) − p∞(f)∣ < є.

(ii) If T is the set of unlabeled rooted trees, then

Pr(∀T ∈ T ∶ ∣ α
Gn(T)
n

− a∞(T)∣ < η) > 1 − є.

Remark 1.3 heorem 1.2, can be viewed both as a uniqueness result (since it states
that in the limit, and through the lens of local observables, the class of forests is the
only one to reach the optimum value e−1/2) and as a stability result (since it also states
that the only classes than come close to the extremal value e−1/2 are close to forests,
again through local observables of random graphs). Here we use the terminology
“stability result” on purpose, by analogy with the ûeld of extremal graph theory.

Our main result suggests that the question of stability of extremal graph classes,
with respect to appropriate graph limit topologies (here, local convergence) should
be further examined.

A bridge-addable class G is tight if it is ζ-tight for any ζ > 0; that is to say, as n tends
to inûnity,

Pr(Gn is connected)Ð→ e
−1/2 .

heorem 1.2 has the following consequence for tight bridge-addable classes.

Corollary 1.4 Let G be a tight bridge-addable class of graphs. hen

Small(Gn)
(d)Ð→ p∞ .

and, for any unlabelled rooted tree T ∈ T,
αGn(T)

n

(p)Ð→ a∞(T).

Let Vn be a uniformly random vertex in Gn . hen for a given T ∈ T, conditionally
to Gn , the quantity αGn(T)/n is the probability that there is a copy of T hanging
from Vn . Readers familiar with the Benjamini–Schramm (BS) convergence of rooted
graphs will note the similarity with this notion (see [BS01,Lov12]).

It easily follows from a similar statement for random trees proved in [Ald98] that
if Fn is a uniformly random forest on n vertices rooted at a uniformly random vertex
Vn , then

(Fn ,Vn)Ð→ (F∞ ,V∞),
in distribution in the BS-sense, where (F∞ ,V∞) is the “uniformly random inûnite
rooted forest” (which we could also have called “uniformly random inûnite rooted
tree”, since it is almost surely a tree). Namely, (F∞ ,V∞) can be constructed as follows.
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Consider a semi-inûnite path, starting at a vertex V∞, and identify each vertex of this
path with the root of an independent Galton–Watson tree with oòspring distribution
Poisson(1). In our context, passing from pendant trees to balls is an easy task, and
one can deduce the following from Corollary 1.4.

Corollary 1.5 Let G be a tight bridge-addable graph class, let Gn be a uniformly ran-

dom graph from Gn and let Vn be a uniformly random vertex of Gn . hen (Gn ,Vn)
converges to (F∞ ,V∞) in distribution in the Benjamini–Schramm sense.

Remark 1.6 Our main theorem asserts that ζ-tight bridge-addable classes are “lo-
cally similar” to random forests in some precise sense. However, they can be very
diòerent from other perspectives. For example, consider the class G of graphs deûned
as follows. Gn is the smallest bridge-addable class containing the graph on {1, . . . , n}
inwhich all edges between vertices in {1, . . . , ⌊n2/3⌋} are present and all other vertices
are isolated. hen G = ⋃n≥1 Gn is a bridge-addable class, and it is easy to see that it is
tight (see AppendixA for more details). However, a uniformly random element of Gn

is very diòerent from a random forest. In particular, almost all edges of Gn belong to
a clique of size ⌊n2/3⌋.

Remark 1.7 Our results do not imply that random graphs from tight bride-addable
classes look like random forests in a “global” sense. Following the lines of the example
ofRemark 1.6, letGn be the smallest bridge-addable class on {1, . . . , n} containing the
graph where the vertices in {1, . . . , ⌊n2/3⌋} induce a path and all the other ones are
isolated. hen G = ⋃n≥1 Gn is a tight bridge-addable class. Nevertheless, the diameter
of the random graph Gn is at least ⌊n2/3⌋, while the diameter of the largest tree in
a uniformly random n-vertex forest is of order

√
n. Moreover, when renormalized

by a scaling factor of n−2/3, Gn converges for the Gromov–Hausdorò topology to a
real interval and not to the CRT (Continuum Random Tree, see [Ald93]). However,
it may be true in general that typical distances in tight bridge-addable classes are of
order

√
n. We leave this question open.

We conclude this list of results with a simpler statement that does not require the
full strength of our main theorems (it is a relatively easy consequence of the results
of [CP15], and we will prove it in Section 2).

heorem 1.8 Let G be a tight bridge-addable class and let Gn be a uniformly random

graph from Gn . hen for any k ≥ 0, we have

Pr(Gn has k + 1 connected components)Ð→ e
−1/2 2−k

k!
.

In other words, the number of connected components of Gn converges in distribution to

1 + Poisson(1/2).

Structure of the paper he proof of our main result roughly follows that of heo-
rem A, which we proved in [CP15]. Very loosely speaking, we show that for a class
to be ζ-tight, some form of tightness has to occur in each intermediate inequality
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proved in [CP15]. As the length of the present paper shows, there is, however, quite
an important amount of work to be done to achieve this goal.

We start in Section 2 by proving elementary results about the number of compo-
nents (including heorem 1.8), andwe introduce some notions thatwill play a crucial
role in the rest of the proof. Importantly, in § 2.2, we introduce the partitioning of the
space that underlies our technique of local double-counting from [CP15]. In partic-
ular, we deûne the notion of “box” that we use in order to partition each graph class
according to the local structure of the graphs it contains.

Sections 3 and 4 occupy the most important part of the paper. In Section 3, we
prove an analogue of heorem 1.2 under the assumption that all elements of G are
forests. his is done in several steps. In § 3.1 we deûne the notion of “good boxes”
and prove that most of the mass in tight bridge-addable graph classes is localized
inside good boxes. hese good boxes have the property that they locally realize the
extremal value of the optimization problem introduced in [CP15]. his optimization
problem expresses some ratios inherited from a double-counting strategy in terms of
parameters that record the local structure of the graphs. In § 3.2we study the stability
of this problem and deduce that for good boxes, all parameters have to be close to
the unique extremum value (closely related to the quantities a∞ and p∞ appearing in
heorem 1.2). In § 3.3 we use these facts to prove a version of our main result when
the graph Gn has one or two components. In 3.4 we use an induction on the number
of components to conclude the proof, in the case of forests.

In Section 4, we address the case of general bridge-addable graph classes. In § 4.1
weprove that ζ-tightbridge-addable classes tend tohavemany removable edges (edges
that when deleted from a graph in the class, give rise to a graph in the class), and in
§ 4.2 we use this property and the results of Section 3 to conclude the proof ofheo-
rem 1.2. We conclude with the proof of Corollary 1.5. Finally, Appendix A gives more
details about the example in Remark 1.6.

2 First Results and Set-up for the Proof

In this section, we obtain our ûrst results and introduce important notions and nota-
tion used in the whole paper. In § 2.1 we study the number of connected components
and we prove heorem 1.8. In § 2.2, we deûne the partitioning of the space that un-
derlies our technique of local double-counting. Finally in 2.3,we give a few details for
the use of quantiûers in the rest of the paper.

2.1 Number of Components in Bridge-addable Graph Classes

hroughout the rest of the paper, for a bridge-addable class of graphs G and for i ≥ 1,
we denote by G(i)

n the set of n-vertex graphs in G having i connected components. An
elegant double-counting argument going back to [MSW06] asserts that for all i ≥ 1,
and n ≥ 1, we have

(2.1) i ⋅ ∣G(i+1)
n ∣ ≤ ∣G(i)

n ∣.

hemain achievement of [CP15] was to improve this bound by a factor of 1
2 , asymp-

totically.
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Lemma C (CP15, Proposition 5) For every η and every m, if G is a bridge-addable

class and n is large enough, we have for every i ≤ m,

i∣G(i+1)
n ∣ ≤ ( 1

2
+ η) ∣G(i)

n ∣.(2.2)

he following lemma provides a converse inequality to (2.2) for ζ-tight classes. It
directly implies heorem 1.8.

Lemma 2.1 For every η and every m there exists ζ such that for every ζ-tight bridge-

addable class G and provided n is large enough, we have for every i ≤ m,

( 1
2
− η) ∣G(i)

n ∣ ≤ i∣G(i+1)
n ∣ ≤ ( 1

2
+ η) ∣G(i)

n ∣.

Proof he second inequality is precisely Lemma C.
To prove the ûrst inequality,we proceed by contradiction. Fix η andm and assume

that for every ζ > 0, there exist a ζ-tight bridge-addable class G, a large enough n∗,
and an i∗ ≤ m such that

i∗∣G(i∗+1)
n∗ ∣ ≤ ( 1

2
− η) ∣G(i∗)

n∗ ∣.

Let i0 ≥ m be an integer that we will choose later. By Lemma C, if n is large enough,
(2.2) holds with η = ζ for any i ≤ i0. Also, since G is ζ-tight, provided that n∗ is large
enough, we have

∣G(1)
n∗ ∣

∣Gn∗ ∣
≤ (1 + ζ)e−1/2 .(2.3)

Noting f i(x) ∶= ∑ j>i
x

j

j! , we can now bound the inverse of the probability that Gn∗ is
connected, as follows

∣Gn∗ ∣
∣G(1)

n∗ ∣
≤

i
∗−1

∑
i=1

∣G(i)
n∗ ∣

∣G(1)
n∗ ∣

+
i0

∑
i=i∗

∣G(i)
n∗ ∣

∣G(1)
n∗ ∣

+ ∑
i≥i0+1

∣G(i)
n∗ ∣

∣G(1)
n∗ ∣

≤
i
∗−1

∑
i=1

1
i!
( 1
2
+ ζ)

i

+
i0

∑
i=i∗

1
i!
( 1
2
+ ζ)

i 1
2 − η
1
2 + ζ

+ f i0(1),

where for the last term we used the bound (2.1). hus,
∣Gn∗ ∣
∣G(1)

n∗ ∣
≤ e 1

2+ζ − f i0(1/2 + ζ)

+ (
1
2 − η
1
2 + ζ

− 1)( f i∗−1(1/2 + ζ) − f i0(1/2 + ζ)) + f i0(1)

≤ e 1
2+ζ − η + ζ

1/2 + ζ
⋅ f i∗−1(1/2) + f i0(1)

≤ e1/2 + (eζ − 1)e1/2 − η fm(1/2) + f i0(1).

We now choose ζ small enough with respect to η and m such that η

2 fm(1/2) ≥
(eζ − 1 + 2ζ)e1/2, and we choose i0 large enough with respect to m, in such a way
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that η2 fm(1/2) ≥ f i0(1). hese choices ûx the value n∗ as above, and we ûnally get the
bound

∣G(1)
n∗ ∣

∣Gn∗ ∣
≥ (1 − 2ζ)−1

e
−1/2 ≥ (1 + 2ζ)e−1/2 .

However, since n∗ is arbitrarily large, we obtain a contradiction with (2.3). ∎

2.2 Partitioning the Graph Class into Highly Structured Subclasses

We now introduce a partitioning ofGn in terms of some local statistics,which requires
the following set-up modeled on [CP15, proof of Prop. 4].
For ℓ ≥ 1, we let T≤ℓ (resp. U≤ℓ) denote the set of rooted (resp. unrooted) trees of

order at most ℓ. An important role will be played by the two sets

Uє ∶= U≤⌈є−1⌉ and T∗ ∶= T≤k∗

where the two constants є and k∗, whose value may vary along the course of the pa-
per, will in ûne be chosen very small and very large, respectively. We will use the
elements ofUє and T∗ as “test graphs” tomeasure the shape of small components and
the statistics of pendant subtrees in Gn .
For ℓ ≥ 1,wewrite Eℓ = {0, . . . , n− 1}T≤ℓ . For α ∈ Ek∗ andw ≥ 1 (width),we deûne

the box [α]w ⊂ Ek∗ and its q-neighborhood [α]wq as the parallelepipeds

[α]w ∶= {α′ ∈ Ek∗ ∶ ∀T ∈ T∗ , α(T) ≤ α′(T) < α(T) +w},
[α]wq ∶= {α′ ∈ Ek∗ ∶ ∀T ∈ T∗ , α(T) − q ≤ α′(T) < α(T) +w + q}.

Note that here, and elsewhere in the paper, we slightly abuse notation by using both
the letter α to denote an element of Eℓ and the notation αG to denote the function
αG ∶ T → Eℓ that counts the number of pendant trees of a given shape in the graph G.

If Sn denotes a set of graphs (where the letter S could carry other decorations), we
let Sn ,[α]w be the set of graphs G in Sn such that (αG(T))T∈T∗ ∈ [α]w , and we use the
same notation with [α]wq .
Also, for every forest {U1 , . . . ,Uk}, we denote by Sn

{U1 , . . . ,Uk} the set of graphs G

in Sn such that Small(G) is isomorphic to {U1 , . . .Uk}. While we denote a forest by
{U1 , . . . ,Uk}, one should understand it as an unordered multiset of unrooted trees.
We use the notation SU

n for S
{U}
n , where U ∈ U.

2.3 Notation and Quantifiers in the Proof

Each statement in Sections 3 and 4 involves several variables, and the relative de-
pendency between them plays a subtle role in the proof. We have carefully made all
quantiûers explicit in all the statements. However, the reader can use the following
inequalities to clarify the hierarchy of (small) parameters used in Sections 3 and 4:

(2.4)
1
n
≪ ζ ≪ 1

w
≪ 1

k∗
≪ ξ ≪ є = 1

q
≪ γ ≪ ρ ≪ ν

ν ≪ ϑ≪ η≪ θ1 ≪ ⋅ ⋅ ⋅≪ θk , δ ≪ 1/ℓ, 1/k, 1/u ≤ 1,

where the notation a ≪ b ≤ 1 has to be read as: in each statement involving both
variables a and b, there exists a non-decreasing function f ∶ (0, 1] → (0, 1] such that
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the statement holds for every 0 < a ≤ b ≤ 1 such that a ≤ f (b). For example, the order
in which the quantiûers appear in the statement of Lemma 2.1 above correspond to
the notation

1
n
≪ ζ ≪ η,

1
m

.

Note that 1/n is the le�most quantity appearing in (2.4). Indeed, throughout thepaper,
n will be taken arbitrarily large with respect to all the other constants.
For the proof, we will use the notation a = b ± µ to denote that b − µ ≤ a ≤ b + µ.

2.4 Evaluation of Generating Functions of Trees and Forests

In this subsection we recall two classical evaluations of generating functions of trees
and forests that we will use several times in our proofs. Let T(z) = ∑n≥1

tn

n! z
n be the

exponential generating function of rooted labelled trees by the number of vertices, so
tn = nn−1. Let F(z) = ∑n≥0

fn

n! z
n be the exponential generating function of unrooted

labelled forests by the number of vertices, by convention f0 = 1.

Lemma 2.2 BothT(z) and F(z) have radius of convergence e−1, and both are ûnite at

their main singularity z = e−1, where we have T(e−1) = 1 and F(e−1) = e1/2. Moreover,

for z in a slit neighbourhood of e−1, we have

T(z) = 1 + O(
√

1 − ze).(2.5)

he proof is a classical exercise in analytic combinatorics.

3 Theorem 1.2 for Bridge-addable Classes of Forests

Balister, Bollobás, andGerke [BBG08, Lemma 2.1] proposed an elegant argument that
reduces the proof of heorem A to the case where all graphs in G are forests. As we
will see in the next section, their idea can be adapted to the present context. We will
therefore start by proving heorem 1.2 for classes G composed of forests.

hroughout the rest of Section 3, we will assume that all graphs in G are forests.

3.1 Good and Bad Boxes

hemain concern of [CP15]was to obtain a version of the double-counting argument
of Section 2.1 that is local in the sense that it relates cardinalities of graphs correspond-
ing to ûxed boxes.

In order to select a collection of boxes, we will focus on the graphs in Gn that have
either one or two connected components. We will use the notation An ∶= G

(1)
n and

Bn ∶= G
(2)
n .

Given є and k∗, [CP15, Lemma 17] asserts that there exist integers K and w (in-
dependent of G and of n) and a set of K disjoint boxes of width w in Ek∗ , denoted
{[β i]w , 1 ≤ i ≤ K}, such that if q = qє ∶= ⌈є−1⌉ and if n is large enough, then the
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q-neighbourhoods of boxes form a partition of Ek∗ ,
K

⊎
i=1

[β i]wq = Ek∗ ,(3.1)

where ⊎ denotes disjoint union, such that for each U ∈ Uє , we have
K

∑
i=1

∣BU

n ,[β i]w ∣ ≥ (1 − є)∣BU
n ∣.(3.2)

Note that from (3.1), the boxes [β i]w are 2q-apart from each other, and yet (3.2) en-
sures that they capture a proportion at least (1− є) of the setBU

n for each U ∈ Uє . We
now ûx such a set of boxes ([β i]w)1≤i≤K , and we will use them throughout Section 3,
keeping in mind that K = K(є, k∗) and w = w(є, k∗) depend on є and k∗ but neither
on G nor on n.

In this paper, one of the main tasks consists in showing that the global estimates
obtained in [CP15], such as Lemma C, can be “lowered” down to boxes for ζ-tight
classes. his is not true for every box in Ek∗ , but it will be for certain boxes that
contain most of the graphs in the class. For every γ and every є, we say that a box
[α]w is (γ, є)-good (or simply good) if the two following conditions hold.
(i) ∣Bn ,[α]w ∣ ≥ ( 1

2 − γ) ⋅ ∣An ,[α]w
q
∣,

(ii) ∑U/∈Uє
∣BU

n ,[α]w ∣ < γ∣Bn ,[α]w ∣.
Note that property (i) is a local version of the ûrst inequality of Lemma 2.1 for i = 1,
while property (ii) ensures that the number of graphs in sets that we do not control,
is small.

We are interested in the boxes among the [β i]w that are (γ, є)-good:
Goodγ ,є ∶= { i ∈ {1, . . . ,K} ∶ [β i]w is (γ, є)-good} .

An important step in the proof ofheorem 1.2 is the following result.

Lemma 3.1 For every γ and every η, if є < є0(γ, η) and if k∗ ≥ k0(є), then there

exists ζ such that for every ζ-tight bridge-addable class G and every large enough n, we

have

∑i∉Goodγ ,є ∣An ,[β i]wq ∣
∣An ∣

< η,

∑i∉Goodγ ,є ∣Bn ,[β i]w ∣
∣Bn ∣

< η.

Proof Let є > 0 (to be ûxed later). Up to setting k∗ and n large enough, we can use
[CP15, Equation (16)] for each 1 ≤ i ≤ K,

∑
U∈Uє

∣BU

n ,[β i]w ∣ ≤
1
2
⋅ ∣An ,[β i]wq ∣(1 + 3є) ≤ ( 1

2
+ 2є) ⋅ ∣An ,[β i]wq ∣.

Moreover, provided that n is large enough, we have ([CP15, (Equation (17)])

∑
U/∈Uє

∣BU
n ∣ ≤ 2є∣An ∣.(3.3)
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From the last two inequalities, we have

∑
i∈Goodγ ,є

∣Bn ,[β i]w ∣ ≤ 2є∣An ∣ + ( 1
2
+ 2є) ∑

i∈Goodγ ,є

∣An ,[β i]wq .(3.4)

Let S and T be the sets of indices i /∈ Goodγ ,є such that [β i]w violates (i) and (ii)
respectively. Using (3.3), we have

∑
i∈T

∣Bn ,[β i]w ∣ ≤∑
i∈T

1
γ
∑

U/∈Uє

∣BU

n ,[β i]w ∣ ≤
1
γ
∑

U/∈Uє

∣BU
n ∣ ≤

2є
γ
∣An ∣.

From the previous equation, it follows that

∑
i/∈Goodγ ,є

∣Bn ,[β i]w ∣ ≤∑
i∈S

∣Bn ,[β i]w ∣ +∑
i∈T

∣Bn ,[β i]wq ∣(3.5)

≤ ( 1
2
− γ) ∑

i∉Goodγ ,є

∣An ,[β i]wq ∣ +
2є
γ
∣An ∣.

Using (3.4) and (3.5), we get

(γ + 2є) ∑
i∉Goodγ ,є

∣An ,[β i]wq ∣

≤ (γ + 2є) ∑
i∉Goodγ ,є

∣An ,[β i]wq ∣ + ∑
i∉Goodγ ,є

∣Bn ,[β i]w ∣

+ ∑
i∈Goodγ ,є

∣Bn ,[β i]w ∣ −
K

∑
i=1

∣Bn ,[β i]w ∣

≤ (γ + 2є) ∑
i∉Goodγ ,є

∣An ,[β i]wq ∣ + ( 1
2
− γ) ∑

i∉Goodγ ,є

∣An ,[β i]wq ∣

+ ( 1
2
+ 2є) ∑

i∈Goodγ ,є

∣An ,[β i]wq ∣ +
4є
γ
∣An ∣ −

K

∑
i=1

∣Bn ,[β i]w ∣.

he last inequality can be simpliûed as

(γ + 2є) ∑
i∉Goodγ ,є

∣An ,[β i]wq ∣(3.6)

≤ ( 1
2
+ 2є)

K

∑
i=1

∣An ,[β i]wq ∣ −
K

∑
i=1

∣Bn ,[β i]w ∣ +
4є
γ
∣An ∣

≤ ( 1
2
+ 6є

γ
) ∣An ∣ −

K

∑
i=1

∣Bn ,[β i]w ∣,

where we used that the [β i]wq are disjoint. Using (3.2) and (3.3), we have

K

∑
i=1

∣Bn ,[β i]w ∣ ≥
K

∑
i=1
∑

U∈Uє

∣BU

n ,[β i]w ∣ ≥ (1 − є)(∣Bn ∣ − 2є∣An ∣)

≥ (1 − є)∣Bn ∣ − 2є∣An ∣.

Finally, Lemma 2.1 with i = 1 and η replaced by є, implies that if ζ is small enough, G
is ζ-tight and n is large enough, then the last quantity is larger than (1/2 − 4є)∣An ∣.
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We now choose є0 = ηγ

20 . Going back to (3.6), if є < є0, we get

∑
i∉Goodγ ,є

∣An ,[β i]wq ∣ ≤
10є

γ(γ + 2є) ∣An ∣ ≤
η

2
∣An ∣,(3.7)

which proves the ûrst part of the lemma.
For the second part of the lemma, we use (3.5) and Lemma 2.1 with η replaced by

є to get

∑i∉Goodγ ,є ∣Bn ,[β i]w ∣
∣Bn ∣

≤
( 1

2 − γ)∑i∉Goodγ ,є ∣An ,[β i]wq ∣ +
2є
γ
∣An ∣

( 1
2 − є)∣An ∣

.

By (3.7), we conclude

∑i∉Goodγ ,є ∣Bn ,[β i]w ∣
∣Bn ∣

≤
( 1

2 − γ) η2 ∣An ∣ + 2є
γ
∣An ∣

( 1
2 − є)∣An ∣

≤ η. ∎

3.2 Stability of the Extremum for the Optimization Problem

he goal of this subsection is to estimate the ratio between ∣BU

n ,[α]w ∣ and ∣An ,[α]w
q
∣,

when [α]w is a good box and U ∈ Uє .
In order to do that, we will need to return to the original “optimization prob-

lem” introduced in [CP15]. Namely, we will study certain functionals of the ratios
∣BU

n ,[α]w ∣/∣An ,[α]w
q
∣, or more precisely of the variables (zUn ,α)U∈Uє

, deûned by (3.8). We
will proceed as follows. Lemma 3.2 gives the “constraints” of the optimization problem
by showing that the variables zUn ,α have to be close to a certain domain D; Lemma 3.3
shows that if [α]w is good, then the “objective function” of the optimization problem
has to be close to its optimal value given these constraints (which was proved to be
1
2 in [CP15]). hen Lemma 3.4 proves a form of uniqueness of the extremum. From
these three lemmas we deduce the main results of this subsection: if [α]w is good,
then (zUn ,α)U∈Uє

is close to p∞(U) for each unrooted treeU of bounded size (Propo-
sition 3.5), and if [α]w is good, then α(T)/n is close to a∞(T) for each rooted tree T
of bounded size (Proposition 3.6)
Apart from the proof of Lemma 3.1 already given, the proofs of Lemmas 3.2–3.4

are the part of this paper that rely themost on [CP15]. Indeed, we will refer to several
technical statements therein in our proofs. his will no longer be the case in the next
sections.
Following [CP15], given є (hence Uє), we deûne a Uє-admissible decomposition of

T as an increasing sequence T = (Ti)i≤ℓ of labeled trees

T1 ⊂ ⋅ ⋅ ⋅ ⊂ Tℓ = T ,

for some ℓ ≥ 1 called the length, such thatT1 ∈ Uє , and, for each 2 ≤ i ≤ ℓ, Ti is obtained
by joining Ti−1 by an edge e i to some tree U i ∈ Uє . he weight of T with respect to
z = (zU)U∈Uє

∈ (R+)Uє is deûned as ω(T, z) = ∏ℓ

i=1 z
U i , where U i = Ti ∖ Ti−1 as an

unrooted tree (here we use the convention T0 = ∅). he maximum weight of T with
respect to z, denoted by ω(T , z), is deûned as the maximum of ω(T, z) over all the
Uє-admissible decompositions T of T .
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We now use ω(T , z) to deûne the following partition functions:

Y(z) ∶= ∑
T∈T

ω(T , z)
Autr(T) , Y

u(z) ∶= ∑
U∈U

ω(U , z)
Autu(U) ,

YT∗(z) ∶= ∑
T∈T∗

ω(T , z)
Autr(T) , Y

u

Uє
(z) ∶= ∑

U∈Uє

ω(U , z)
Autu(U) ,

Y≤k(z) ∶= ∑
T∈T≤k

ω(T , z)
Autr(T) , Ỹ

u

Uє
(z) ∶= ∑

U∈Uє

zU

Autu(U) .

Furthermore, we deûne the domain of convergence of Y(z) as follows:

D ∶= {z ∈ (R+)Uє ,Y(z) <∞} .

It is important to note that there is an implicit dependence of ω(T , z) on є (via Uє-
admissible decompositions). Hence, all the partition functions deûned above (and
their respective domains) also depend on є. In order to keep the notation light, we do
not make this dependence explicit.

Let j ∶= (1)U∈Uє
be the all-one vector of length ∣Uє ∣. Given a choice of n, to each

α ∈ Ek∗ we assign a vector zn ,α = (zUn ,α)U∈Uє
∈ (R+)Uє , where

z
U
n ,α ∶= Autu(U)

∣BU

n ,[α]w ∣
∣An ,[α]w

q
∣ ( 1 − ∣U ∣

n
) ,(3.8)

where q = ⌈є−1⌉ as before and w = w(є, k∗) is chosen as in Section 3.1.

Lemma 3.2 For every ξ and every є, if k∗ ≥ k0(є, ξ) and n is large enough, then for

every α ∈ Ek∗ we have that zn ,α − ξj ∈ D.

Proof For the sake of contradiction, assume that there exist ξ and є such that for
every k0 there exists k ≥ k0 such that for every large enough n there exists αn ,k ∈ Ek

with
zn ,αn ,k − ξj ∉ D.

For a given k ≥ k0, let zk be a limit point of the sequence (zn ,αn ,k)n≥1. Since D is
closed downwards ([CP15, Lemma 13]), then zk − ξ

2 j ∉ D.
Moreover, by [CP15, Corollary 12], we have Y≤k(zk) ≤ 1. As in [CP15, Lemma 16],

this implies that any limit point z∞ of (zk)k≥k0 satisûes z∞ ∈ D. his is a contradiction
to the fact that zk − ξ

2 j ∉ D for every k ≥ k0. ∎

he following lemma shows that if [α]w is (γ, є)-good, then the evaluation of Yu

in a point close to zn ,α is close to 1
2 (which was shown in [CP15] to be themaximum

of Yu on D).

Lemma 3.3 For every ρ, every є and every ℓ such that ℓ < 1/є, if γ ≤ γ0(ρ, ℓ),
ξ ≤ ξ0(ρ, є, ℓ), k∗ ≥ k0(є, ξ) and n is large enough, then for every box [α]w , which is

(γ, є)-good the following holds for ẑ ∶= zn ,α − ξj: we have ẑ ∈ D,

Y
u (̂z) > 1

2
− ρ,
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and for every U ∈ U≤ℓ , we have

∣ω(U , ẑ) − ẑ
U ∣ ≤ ρ.

Proof Let γ0 ∶= ρ

4ℓ! and ξ0 ∶= ρ

2∣Uє ∣ℓ! . Consider α ∈ Ek∗ such that the box [α]w is
(γ, є)-good. Using properties (i) and (ii) of good boxes, and (3.8), we have

Ỹ
u

Uє
(zn ,α) = ∑

U∈Uє

zUn ,α

Autu(U) = 1
∣An ,[α]w

q
∣ ∑
U∈Uє

∣BU

n ,[α]w ∣( 1 − ∣U ∣
n

)

≥ 1
∣An ,[α]w

q
∣ ∣Bn ,[α]w ∣(1 − γ)( 1 − ∣U ∣

n
)

≥ ( 1
2
− γ)(1 − γ)( 1 − 1

єn
)

≥ 1
2
− 2γ,

provided that n is large enough. Now, since Ỹu

Uє
(̂z) is a ûnite sum, we have

Ỹ
u

Uє
(̂z) ≥ Ỹ

u

Uє
(zn ,α) − ξ∣Uє ∣.

Together with the previous inequality and the choice of γ0 and ξ0, this implies

Ỹ
u

Uє
(̂z) ≥ 1

2
− (ξ∣Uє ∣ + 2γ) ≥ 1

2
− ρ

ℓ!
.(3.9)

By deûnition of maximum weight, for every U ∈ Uє we have ω(U , z) ≥ zU , which
directly implies Yu

Uє
(z) ≥ Ỹu

Uє
(z). We thus conclude the ûrst part of the lemma:

Y
u (̂z) ≥ Y

u

Uє
(̂z) ≥ Ỹ

u

Uє
(̂z) ≥ 1

2
− ρ

ℓ!
> 1

2
− ρ.

Observe that this is true even if ẑ /∈ D, since the LHS is then inûnite.
By Lemma 3.2, we can choose k0 = k0(є, ξ) such that if k∗ ≥ k0 and n is large

enough, we have ẑ ∈ D. he choice of k∗ and n is suitable for all vectors in Ek∗ . hen
[CP15, Lemma 14] implies that Yu

Uє
(̂z) ≤ Yu (̂z) ≤ 1

2 . Together with (3.9), for every
U ∈ Uє , we have

ρ

ℓ!
≥ ∣Yu

Uє
(̂z) − Ỹ

u

Uє
(̂z)∣ = ∣ ∑

U ′∈Uє

ω(U ′ , ẑ) − ẑU
′

Autu(U ′) ∣ ≥ ∣ω(U , ẑ) − ẑU ∣
Autu(U) ,

where the last inequality follows, since ω(U ′ , ẑ) ≥ ẑU
′
for each tree U ′ ∈ Uє . Since

Autu(U) ≤ ℓ!, it follows that ∣ω(U , ẑ) − ẑU ∣ ≤ ρ ∎

he next lemma states that if z belongs to D and Yu(z) is close to 1
2 , then ω(T , z)

is close to e−∣T ∣ for every T with bounded size.

Lemma 3.4 For every ν and every ℓ, if ρ ≤ ρ0(ν, ℓ), then for every є, every z ∈ D
that satisûes Yu(z) > 1

2 − ρ, and every T ∈ T≤ℓ , we have

∣ω(T , z) − e−∣T ∣∣ < ν.
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Proof Let Y e(z) be the partition function of trees rooted at an edge,where each tree
is weighted by its maximal weight. As noted in [CP15], a classical trick known as the
dissymmetry theorem [BLL98] implies that

Y
e(z) = Y(z) − Y

u(z).

Together with the hypothesis of the lemma and the fact that y − 1/2 ≤ y2/2 for all
y ∈ R, this implies

Y
e(z) = Y(z) − Y

u(z) ≤ Y(z) − 1/2 + ρ ≤ 1
2
(Y(z))2 + ρ.

For every pair of vertex rooted trees T1 , T2 ∈ T, let f (T1 , T2) be the edge-rooted tree
obtained by adding an edge (the root) connecting the roots of T1 and T2. We have the
following supermultiplicativity property:

ω( f (T1 , T2), z) − ω(T1 , z)ω(T2 , z) ≥ 0.

Also observe that the number of automorphisms of f (T1 , T2) that ûx the rooted edge
(as an ordered edge!), is precisely Autr(T1)Autr(T2). hus, for any pair R1 , R2 ∈ T,
we have

ρ ≥ Y
e(z) − 1

2
(Y(z))2 = ∑

T1 ,T2∈T

ω( f (T1 , T2), z) − ω(T1 , z)ω(T2 , z)
Autr(T1)Autr(T2)

(3.10)

≥ ω( f (R1 , R2), z) − ω(R1 , z)ω(R2 , z)
∣R1∣!∣R2∣!

.

Let ● be the tree composed of a single vertex and deûne x = x(z) ∶= ω(●, z) = z● ∈ R+.
Observe that since z ∈ D, we have x ≤ 1 (otherwise Y(z) = ∞ since ω(T , z) ≥ x ∣T ∣).
Using (3.10) with R2 = ●, for every T ∈ T,

ω( f (T , ●), z) ≤ x ⋅ ω(T , z) + ρ ⋅ ∣T ∣!,

and induction on ∣T ∣ implies that for every T ∈ T we have

x
∣T ∣ ≤ ω(T , z) ≤ x

∣T ∣ + ∣T ∣!ρ ≤ (x + (ρ∣T ∣!)
1
∣T∣ ) ∣T ∣

.

Note that if ∣T ∣ ≤ ℓ, then (ρ∣T ∣!)
1
∣T∣ ≤ c(ℓ)ρ 1

ℓ , for some c(ℓ) > 0. Consider x =
(x ∣U ∣)U∈Uє

and xρ = ((x+c(ℓ)ρ 1
ℓ )∣U ∣)U∈Uє

. By the deûnition of x, note that ω(T , x) =
x ∣T ∣; therefore, ω(T , x) ≤ ω(T , z), and since z ∈ D, by [CP15, Lemma 14], we have

Y
u(x) ≤ Y

u(z) ≤ 1
2
.

his implies x ≤ e−1 (otherwise Yu(x) would not converge). Similarly ω(T , xρ) =
(x + c(ℓ)ρ 1

ℓ )∣T ∣, and using the hypothesis of the lemma, we have

1
2
− ρ ≤ Y

u(z) ≤ Y
u(xρ).

By equation (2.5), this implies that x + c(ℓ)ρ 1
ℓ ≥ e−1 −O(

√
c(ℓ)ρ1/ℓ). Given ν and ℓ,

we cannow set ρ0(ν, ℓ) small enough such that for ρ ≤ ρ0(ν, ℓ)we have x > e−1(1−y),
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with y = min{ νe
ℓ

ℓ
, 1}, and ρ ≤ ν

ℓ! . We then have, for every T ∈ T≤ℓ ,

e
−∣T ∣ − ν ≤ e−∣T ∣(1 − y∣T ∣) ≤ e−∣T ∣(1 − y)∣T ∣ < x

∣T ∣≤ω(T , z)
≤ x

∣T ∣ + ρ ⋅ ∣T ∣! ≤ e−∣T ∣ + ν,

where we used that (1 − y)ℓ is convex for y ∈ [0, 1]. ∎

Finally, we can prove estimates for the ratios between ∣BU

n ,[α]w ∣ and ∣An ,[α]w
q
∣ for

good boxes [α]w and unrooted trees U with bounded size.

Proposition 3.5 For every ϑ, every є, and every ℓ such that ℓ < 1/є, if γ ≤ γ0(ϑ, ℓ),
k∗ ≥ k0(ϑ, є, ℓ) and n is large enough, then for every box [α]w that is (γ, є)-good and
every U ∈ U≤ℓ ,

∣
∣BU

n ,[α]w ∣
∣An ,[α]w

q
∣ −

e−∣U ∣

Autu(U) ∣ < ϑ.

Proof Let us ûrst ûx the constants thatwewill need in the proof. For ν ∶= ϑ/4,we let
ρ0 = ρ0(ν, ℓ) be the value obtained from Lemma 3.4. For ρ ∶= min{ρ0 , ν},we let γ0 =
γ0(ρ, ℓ), ξ0 = ξ0(ρ, є, ℓ) be the values obtained fromLemma 3.3. For ξ ∶= min{ξ0 , ν},
we let k0 = k0(є, ξ)(= k0(ϑ, є, ℓ)) be the value obtained from Lemma 3.3. Now ûx
k∗ ≥ k0 and consider n large enough. Note that once k∗ and n are chosen, the space
Ek∗ is well determined.

Let ẑ = zn ,α − ξj as before. For a given U ∈ U≤ℓ , we observe

∣zUn ,α − ẑ
U ∣ ≤ ξ ≤ ϑ/4.

By Lemma 3.3, if [α]w is (γ, є)-good, we have

∣̂zU − ω(U , ẑ)∣ ≤ ρ ≤ ϑ/4.

he same lemma also implies that ẑ ∈ D and that Yu (̂z) > 1
2 − ρ. hus, ẑ satisûes the

hypothesis of Lemma 3.4, which implies

∣ω(U , ẑ) − e−∣U ∣∣ < ν = ϑ/4.

Using the previous three inequalities and (3.8), we conclude

∣
∣BU

n ,[α]w ∣
∣An ,[α]w

q
∣ −

e−∣U ∣

Autu(U) ∣ =
∣zUn ,α( 1 − ∣U ∣

n
)
−1
− e−∣U ∣∣

Autu(U) < ϑ,

provided that n is large enough. In the last inequality we used that zUn ,α ≤ 1 (this can
be obtained using a similar argument as the one used to obtain (2.1)). ∎

Proposition 3.6 For every ϑ, every є, and every ℓ such that ℓ < 1/є, if γ ≤ γ0(ϑ, ℓ),
k∗ ≥ k0(ϑ, є, ℓ), and n is large enough, then for every box [α]w which is (γ, є)-good
and every T ∈ T≤ℓ ,

∣ α(T)
n

− e−∣T ∣

Autr(T) ∣ < ϑ.
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Proof Again, let us start by ûxing the constants that we will need in the proof. For
ν ∶= ϑ/(4∣T≤ℓ ∣), we let ρ0 = ρ0(ν, ℓ) be the value obtained from Lemma 3.4. For
ρ ≤ ρ0, we let γ0 = γ0(ρ, ℓ)(= γ0(ϑ, ℓ)), ξ0 = ξ0(ρ, є, ℓ) be the values obtained from
Lemma 3.3.

Observe that if we ûx T ∈ T≤ℓ , the function ω(T , z) is a piecewise polynomial in
the set of variables {zU ∶ U ∈ Uє} that it is continuous at every point of (R+)Uє . Since
D is bounded, there exists ξ1 such that for every ξ ≤ ξ1 and every z at distance at most
1 from D (in the ℓ∞ norm), we have

∣ω(T , z) − ω(T , z − ξj)∣ < ϑ

4∣T≤ℓ ∣
.

For ξ ∶= min{ξ0 , ξ1}, we let k0 = k0(є, ξ)(= k0(ϑ, є, ℓ)) be the value obtained
from Lemma 3.3. Fix k∗ ≥ k0 and consider n large enough. By Lemma 3.3, if [α]w is
(γ, є)-good and we write ẑ ∶= zn ,α − ξj, we have ẑ ∈ D and Yu (̂z) > 1

2 − ρ. hus, ẑ
satisûes the hypothesis of Lemma 3.4, and we have

∣ω(T , ẑ) − e−∣T ∣∣ < ν = ϑ

4∣T≤ℓ ∣
.

Using the previous inequalities, we obtain

∣ω(T , zn ,α) − e−∣T ∣∣ ≤ ∣ω(T , zn ,α) − ω(T , ẑ)∣ + ∣ω(T , ẑ) − e−∣T ∣∣ < ϑ

2∣T≤ℓ ∣
.

By [CP15, Lemma 11], there exists a constant C that does not depend on n such that

α(T)
n

≥ ω(T , zn ,α)
Autr(T) − C

n
≥ e−∣T ∣

Autr(T) −
2ϑ

3∣T≤ℓ ∣
,(3.11)

where the last inequality holds provided n is large enough. his proves one side of the
inequality in the statement.
By Lemma 2.2, if we let t be large enough with respect to ϑ, we have that

∑
T∈T≤t

e−∣T ∣

Autr(T) > 1 − ϑ

3
.(3.12)

We can assume that ℓ ≥ t, up to increasing the value of k∗ and n.
For the sake of contradiction, suppose that there exists T0 ∈ T≤ℓ such that α(T0)

n
>

e
−∣T0 ∣

Autr(T0) + ϑ. hen, using (3.11), (3.12) and the properties of T0, we get

1 ≥ ∑
T∈T≤ℓ

α(T)
n

≥ ∑
T∈T≤ℓ

e−∣T ∣

Autr(T) −
2ϑ
3
+ ϑ > 1,

thus obtaining a contradiction and concluding the proof of the lemma. ∎
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3.3 Proof of Theorem 1.2 for Classes of Forests: the Case of one or two Connected
Components

For every δ and every ℓ, consider the set of vectors in Eℓ that are δ-close to the distri-
bution a∞ (recall that for T ∈ T, a∞(T) = e

−∣T∣

Autr(T) ); that is,

Ξ(δ, ℓ) = {β ∈ Eℓ ∣
β(T)
n

− a∞(T)∣ < δ, for every T ∈ T≤ℓ} .(3.13)

In what follows, for every set of graphs Sn , every ℓ ≥ 1, and every β ∈ Eℓ , we let Sn ,β

be the set of graphs G in Sn such that αG(T) = β(T) for all T ∈ T≤ℓ .

Proposition 3.7 For every θ1 and every U ∈ U, there exists ζ such that for every

ζ-tight class G of forests and every large enough n, we have

∣ ∣B
U
n ∣

∣Gn ∣
− e−1/2 e−∣U ∣

Autu(U) ∣ < θ1 .

Moreover, for every θ1, every δ, every ℓ and every U ∈ U, there exists ζ such that for

every ζ-tight class G of forests and every large enough n, we have

∣
∑β∈Ξ(δ ,ℓ) ∥BU

n ,β ∣
∣BU

n ∣
− 1 ∣ < θ1 .

Proof We start byûxing the constantsneeded in the proof. Forϑ ∶= θ1/8 and ℓ = ∣U ∣,
we let γ0 = γ0(ϑ, ℓ) be the constant obtained from Proposition 3.5. Fix γ ≤ γ0. For
η ∶= θ 1

4 , we let є0 = є0(γ, η) be the constant obtained from Lemma 3.1. For є ∶=
min{є0 , 1/ℓ, θ1/8}, we let k0(ϑ, є, ℓ) be themaximum of the constants obtained from
Lemma 3.1 and Proposition 3.5. Fix k∗ ≥ k0. Let ζ be the minimum between the
constant obtained from Lemma 3.1 and θ1/8. Let n be large enoughwith respect to all
the previous parameters.

Now that є and k∗ are ûxed, we consider as before the family Uє ⊂ U of unrooted
trees of order at most ⌈є−1⌉ and the family T∗ ⊂ T of all rooted trees of order at most
k∗. We also let w and K, and the collection of boxes {[β i]w , 1 ≤ i ≤ K} be deûned
(relatively to the values of є and k∗) as in Section 3.1. We recall that these boxes sat-
isfy (3.2), and using (3.1), we note that∑K

i=1 ∣An ,[β i]wq ∣ = ∣An ∣.
We can write

∣ ∣B
U
n ∣

∣Gn ∣
− e−1/2 e−∣U ∣

Autu(U) ∣ ≤ ∣
K

∑
i=1

∣BU

n ,[β i]w ∣
∣Gn ∣

− e−1/2 e−∣U ∣

Autu(U) ∣ + є

≤ ∣ ∑
i∉Goodγ ,є

∣BU

n ,[β i]w ∣
∣Gn ∣

+ 1
∣Gn ∣

∑
i∈Goodγ ,є

∣BU

n ,[β i]w ∣

− e−1/2 e−∣U ∣

Autu(U) ∣ +
θ1

8
.

By Proposition 3.5, for every i ∈ Goodγ ,є and every U ∈ U≤ℓ , we have

∣ ∣cBU

n ,[β i]w ∣ −
e−∣U ∣

Autu(U) ⋅ ∣An ,[β i]wq ∣∣ ≤
θ1

8
.
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By Lemma 3.1, we have

∑
i∉Goodγ ,є

∣BU

n ,[β i]w ∣
∣Gn ∣

≤ ∑
i∉Goodγ ,є

∣Bn ,[β i]w ∣
∣Bn ∣

≤ η = θ1

4
.

Let M be the number of boxes [β i]w that are non-empty. Clearly,M ≤ ∣Gn ∣. herefore,

∣ ∣B
U
n ∣

∣Gn ∣
− e−1/2 e−∣U ∣

Autu(U) ∣

≤ θ1

4
+ θ1M

8∣Gn ∣

+ ∣ e−∣U ∣

Autu(U)∣Gn ∣
( ∑

i∈Goodγ ,є

∣An ,[β i]wq ∣) − e
−1/2 e−∣U ∣

Autu(U) ∣ +
θ1

8

≤ θ1

2
+ ∣ ∣An ∣

∣Gn ∣
(
∑i∈Goodγ ,є ∣An ,[β i]wq ∣

∣An ∣
) − e−1/2∣ e−∣U ∣

Autu(U) .

Again, by Lemma 3.1 and using that∑K

i=1 ∣An ,[β i]wq ∣ = ∣An ∣, we have

∣
∑i∈Goodγ ,є ∣An ,[β i]wq ∣

∣An ∣
− 1∣ =

∑i∉Goodγ ,є ∣An ,[β i]wq ∣
∣An ∣

≤ η = θ1

4
.

SinceG is a ζ-tight bridge-addable class, by deûnition, usingheoremA and provided
that n is large enough, we obtain

(1 − ζ)e−1/2 ≤ ∣An ∣
∣Gn ∣

≤ (1 + ζ)e−1/2 .

Since ζ ≤ θ1/8, we obtain

∣ ∣B
U
n ∣

∣Gn ∣
− e−1/2 e−∣U ∣

Autu(U) ∣ ≤
θ1

2
+ (( 1 + θ1

8
)( 1 + θ1

4
) − 1) e−1/2 e−∣U ∣

Autu(U)

≤ θ1

2
+ θ1

2
⋅ e−1/2 e−∣U ∣

Autu(U) ≤ θ1 .

his concludes the proof of the ûrst part of the proposition.
For the second part, let us proceed by contradiction. Suppose that there exist θ, δ,

ℓ, and U ∈ U such that for every ζ there exists ζ-tight class G and a large enough n

with

∣
∑β∈Ξ(δ ,ℓ) ∣BU

n ,β ∣
∣BU

n ∣
− 1 ∣ > θ ,

or equivalently,

∑β∉Ξ(δ ,ℓ) ∣BU

n ,β ∣
∣BU

n ∣
> θ .(3.14)

Note that by the ûrst part of the proposition with θ1 small enough, we have that
∣BU

n ∣/∣Gn ∣ is arbitrarily close to e−1/2e−∣U ∣/Autu(U), for ζ small and n large enough.
hus, there exists a uniform constant c(U) > 0 such that ∣BU

n ∣/∣Bn ∣ ≥ c(U), and (3.14)
is well-deûned.
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Let η = θc(U) and letϑ = δ/2. As in the ûrst part of the proposition,we can choose
γ, є, k∗, ζ, and n, such that Lemma 3.1 and Proposition 3.6 can be applied. We skip the
details of this setting. We will again consider the set of boxes {[β i]w ∶ 1 ≤ i ≤ K} of
Ek∗ ûxed in Section 3.1. For every α ∈ Ek∗ , we consider its canonical projection π(α)
onto Eℓ obtained by selecting the ûrst ∣Eℓ ∣ coordinates of α.

Claim Let α ∈ [β i]w , for some i ∈ Goodγ ,є . hen π(α) ∈ Ξ(δ, ℓ).

Proof of the Claim By Proposition 3.6 and since [β i]w is (γ, є)-good, for every T ∈
T≤ℓ we have

∣ β i(T)
n

− e−∣T ∣

Autr(T) ∣ < ϑ.

Since α ∈ [β i]w , for every T ∈ T≤k∗ , we have ∣β i(T) − α(T)∣ ≤ w. he choice of w
does not depend on n, and thus, ∣ β i(T)

n
− α(T)

n
∣ ≤ δ

3 , if n large enough. Since ℓ ≤ k∗,
for every T ∈ T≤ℓ , we have

∣ α(T)
n

− e−∣T ∣

Autr(T) ∣ < ϑ + δ
3
< δ.

We conclude that π(α) ∈ Ξ(δ, ℓ), which proves the claim. ∎

As a direct corollary of the claim, we get

∑β∉Ξ(δ ,ℓ) ∣BU

n ,β ∣
∣BU

n ∣
≤
∑i∉Goodγ ,є ∣BU

n ,[β i]w ∣
∣BU

n ∣
.

By Lemma 3.1, it follows that

∑β∉Ξ(δ ,ℓ) ∣BU

n ,β ∣
∣BU

n ∣
≤ ∣Bn ∣

∣BU
n ∣
⋅
∑i∉Goodγ ,є ∣BU

n ,[β i]w ∣
∣Bn ∣

≤ ∣Bn ∣
∣BU

n ∣
⋅ η ≤ θ ,

where we have used ∣BU

n ,[β i]w ∣ ≤ ∣Bn ,[β i]w ∣, giving a contradiction with (3.14). ∎

3.4 Proof of Theorem 1.2 for Classes of Forests

We now prove themain result of this section,heorem 3.8,which is equivalent to our
main theorem for bridge-addable classes of forests.

We say that an edge e in a graph G ∈ G is removable if the graph G′ = G ∖ e is
in G. For a subclass H ⊆ G and a rooted tree T ∈ T, we deûne p(H, T) to be the
probability that given a uniformly random graph H ∈ H, and a uniformly random
pendant copy of T in H, the graph H′ obtained by deleting the edge that connects
the pendant copy of T to the rest of the graph belongs to G (and not only to H). We
slightly abuse notation by writing p(G , T) for p({G}, T), for eachG ∈ G. Also, in the
cases where p(G , T) is not well deûned (that is, if G has no pendant copy of T), we
interpret the probability as 1.

Recall the deûnition of Ξ(δ, ℓ) given in (3.13), and recall from Section 2.2 that
we use the notation {U1 ,U2 , . . . ,Uk} to denote the forest formed by a multiset of k
unrooted trees.
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heorem 3.8 For every k ≥ 1, every θk , and everyU1 , . . . ,Uk ∈ U, there exists ζ such

that for every ζ-tight class G of forests and every large enough n, we have

∣ ∣G
k+1,{U1 , . . . ,Uk}
n ∣

∣Gn ∣
− e−1/2 e−∑

k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
∣ < θk .

Moreover, for every k, every ℓ, every θk , every δ, and every U1 , . . . ,Uk ∈ U, there exists
ζ such that for every ζ-tight class G of forests, and every large enough n, we have

∣
∑β∈Ξ(δ ,ℓ) ∣G

k+1,{U1 , . . . ,Uk}
n ,β ∣

∣Gk+1,{U1 , . . . ,Uk}
n ∣

− 1 ∣ < θk .

Proof of Theorem 3.8, Part 1 We prove the ûrst statement of the theorem by induc-
tion. Proposition 3.7 proves the case k = 1. Assume that the statement is true for k − 1
and let us show it for k. Fix U1 , . . . ,Uk ∈ U and let u = max ∣U i ∣.

We consider the following total orderon the subsetsof {1, . . . , n}; for everyV1 ,V2 ⊆
{1, . . . , n}, we have V1 < V2 if ∣V1∣ < ∣V2∣ or ∣V1∣ = ∣V2∣ and V1 precedes V2 in lexico-
graphical order.

Let m(U1 , . . . ,Uk) be the number of graphs isomorphic to Uk among U1 , . . . ,Uk .
Observe that

Autu(U1 , . . . ,Uk) = m(U1 , . . . ,Uk)Autu(Uk)Autu(U1 , . . . ,Uk−1).(3.15)

For every subset of verticesW ⊂ {1, . . . , n},weuseG[W] todenote the graph induced
by W in G. For every unlabeled graph U , the notation G[W] ≡ U not only denotes
graph isomorphism, but also that W induces amaximal connected component in G.

Given disjoint sets V1 , . . . ,Vk−1 ⊂ {1, . . . , n}, consider the graph class

H(V1 , . . . ,Vk−1) =

{G[{1, . . . , n} ∖
k−1
⋃
i=1

Vi] ∶ G ∈ Gn ,G[V1] ≡ U1 , . . . ,G[Vk−1] ≡ Uk−1} .

In order to avoid considering the same tuplemultiple times,we deûne the set of (k−1)-
tuples of disjoint subsets as follows,

(3.16) V = {(V1 , . . . ,Vk−1),Vi ⊂ {1, . . . , n} disjoint; if U i ≡ U j then Vi < Vj} .

We writeH = ⋃(V1 , . . . ,Vk−1)∈VH(V1 , . . . ,Vk−1).
Since Gn is a bridge-addable class on {1, . . . , n},we have thatH(V1 , . . . ,Vk−1) (for

every (V1 , . . . ,Vk−1) ∈ V) is also a bridge-addable class on {1, . . . , n} ∖⋃k−1
i=1 Vi . It is

worth stressing here that ∣{1, . . . , n}∖⋃k−1
i=1 Vi ∣ ≥ n−(k−1)u is large enough (provided

n is large enough), and thus, our previous results can be applied to these classes of
graphs.
Consider the graphs in Gn with k + 1 components such that the k smallest ones are

isomorphic toU1 , . . . ,Uk andwhere one component isomorphic toUk is marked. By
counting these graphs in two ways, for n large enough, we have

m(U1 , . . . ,Uk)∣Gk+1,{U1 , . . . ,Uk}
n ∣ = ∑

(V1 , . . . ,Vk−1)∈V
∣H2,Uk(V1 , . . . ,Vk−1)∣.

582

https://doi.org/10.4153/S0008414X18000020 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000020


Local Convergence and Stability of Tight Bridge-addable Classes

herefore,

(3.17)
∣Gk+1,{U1 , . . . ,Uk}

n ∣
∣Gn ∣

= 1
m(U1 , . . . ,Uk)

∑
(V1 , . . . ,Vk−1)∈V

( ∣H2,Uk(V1 , . . . ,Vk−1)∣
∣H(V1 , . . . ,Vk−1)∣

⋅ ∣H(V1 , . . . ,Vk−1)∣
∣H(1)(V1 , . . . ,Vk−1)∣

⋅ ∣H
(1)(V1 , . . . ,Vk−1)∣

∣Gn ∣
) .

hus, it suõces to estimate the three ratios in the sum above.
Let θ1 ∶= θ k

8 and θk−1 ∶= θ k

8 . Let ζ1 be the constant obtained from Proposition 3.7
with θ1 andU = Uk . Let ζ2 be the constant obtained by inductionwith k− 1, θk−1 and
U1 , . . . ,Uk−1. We set ζ0 ∶= min{ζ1 , ζ2 , θ k

20 , k
−2}.

Let us ûrst show that most of graphs in H are in classes H(V1 , . . . ,Vk−1) that are
close to being tight. Let V0 ⊂ V be the set of (k − 1)-tuples such thatH(V1 , . . . ,Vk−1)
satisûes

Pr(H ∈H(V1 , . . . ,Vk−1) connected) ≥ (1 + ζ0)e−1/2 ,

and let H0 = ⋃(V1 , . . . ,Vk−1)∈V0 H(V1 , . . . ,Vk−1).

Claim here exists ζ3 such that if G is ζ3-tight and n is large enough, we have
∣H0∣ ≤ ζ0∣H∣.

Proof of the Claim For any (k − 1)-tuple of trees (W1 ,W2 , . . . ,Wk−1), we deûne

J(W1 , . . . ,Wk−1;V1 , . . . ,Vk−1) =

{G[{1, . . . , n} ∖
k−1
⋃
i=1

Vi] ∶ G ∈ Gn ,G[V1] ≡W1 , . . . ,G[Vk−1] ≡Wk−1} .

As in (3.16) to avoid problems of multiplicity, we deûne the following subsets that
generalize V,

V(W1 , . . . ,Wk−1) =
{(V1 , . . . ,Vk−1),Vi ⊂ {1, . . . , n} disjoint; ifWi ≡Wj then Vi < Vj} .

We stress here that for any non-empty class J(W1 , . . . ,Wk−1;V1 , . . . ,Vk−1) such
thatH(V1 , . . . ,Vk−1) is non-empty,we have ∣Wi ∣ ≤ u for every 1 ≤ i ≤ k− 1. As before,
we note that J(W1 , . . . ,Wk−1;V1 , . . . ,Vk−1) is bridge-addable. We will write

J(W1 , . . . ,Wk−1) = ⋃
(V1 , . . . ,Vk−1)∈V(W1 , . . . ,Wk−1)

J(W1 , . . . ,Wk−1;V1 , . . . ,Vk−1),

J = ⋃
{W1 , . . . ,Wk−1}

J(W1 , . . . ,Wk−1),

where the union is taken over multisets of trees {W1 , . . . ,Wk−1} and where for each
multiset, an arbitrary ordered tuple (W1 , . . . ,Wk−1) is chosen. hus, J can be under-
stood as the set of graphs in Gn with at least k components where exactly k − 1 of the
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non-largest ones aremarked. In particular,

∣J∣ =∑
j≥0

(k + j − 1
k − 1

)∣G(k+ j)
n ∣.(3.18)

Let η = ζ3
0 and let m be such that ∑ℓ≥m−k

1
ℓ! ≤ η and m ≥ k. By Lemma 2.1 there

exists ζ4 such that if G is ζ4-tight and n is large enough, for every 1 ≤ i ≤ m, we have

∣G(i)
n ∣

∣Gn ∣
=

( 1
2 ± ζ3

0)i−1

(i − 1)! .

Moreover, using the previous bound and (2.1), if i > m,

∣G(i)
n ∣

∣Gn ∣
≤

( 1
2 + ζ3

0)m

(i − 1)! .

herefore, from (3.18), we obtain

∣J∣ =
( 1

2 ± ζ3
0)k−1

(k − 1)! (
m−k

∑
j=0

( 1
2 ± ζ3

0) j

j!
± ( 1

2
+ ζ

3
0)

m−k+1
∑

j>m−k

1
j!
) ∣Gn ∣(3.19)

=
( 1

2 ± ζ3
0)k−1

(k − 1)!
(e(1/2±ζ

3
0) ± 2η) ∣Gn

= ( 1 ± ζ2
0

10
) e1/2∣G(k)

n ∣,

since ζ0 ≤ k−2 and ζ0 is a small constant.
Now we set ζ3 ∶= min{ ζ

2
0

10(uu)k , ζ4}. Fix W1 , . . . ,Wk−1. Since J(W1 , . . . ,Wk−1) is
a disjoint union of bridge-addable classes (J(W1 , . . . ,Wk−1;V1 , . . . ,Vk−1), for each
(V1 , . . . ,Vk−1)) of graphs with n − ∑k−1

j=1 ∣Wj ∣ ≥ n − (k − 1)u vertices, if n is large
enough, by heorem A applied to each class J(W1 , . . . ,Wk−1;V1 , . . . ,Vk−1), we have

∣J(W1 , . . . ,Wk−1)∣ ≤ (1 + ζ3)e1/2∣Gk ,{W1 , . . . ,Wk−1}
n ∣(3.20)

≤ ( 1 + ζ2
0

10(uu)k
) e1/2∣Gk ,{W1 , . . . ,Wk−1}

n ∣.

Since there are at most (uu)k multisets of unrooted trees {W1 , . . . ,Wk} of order at
most u, from (3.19) and (3.20), we have that for everyW1 , . . . ,Wk−1,

∣J(W1 , . . . ,Wk−1)∣ ≥ (1 − ζ
2
0/5)e1/2∣G

k ,{W1 , . . . ,Wk−1}
n ∣.

his holds in particular for H = J(U1 , . . . ,Uk−1), implying

∣Gk ,{U1 , . . . ,Uk−1}
n ∣ ≤ (1 + ζ

2
0/4)e−1/2∣H∣,(3.21)

since ζ0 is a small constant.
For the sake of contradiction assume now that ∣H0∣ ≥ ζ0∣H∣.

584

https://doi.org/10.4153/S0008414X18000020 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000020


Local Convergence and Stability of Tight Bridge-addable Classes

Since H ∖ H0 is a disjoint union of bridge-addable classes on n − ∑k−1
j=1 ∣U j ∣ ≥

n − (k − 1)u vertices, provided that n is large enough, heorem A implies Pr(H ∈
H∖H0 connected) ≥ (1−ζ3)e−1/2. Moreover, bydeûnition ofH0,wehavePr(H ∈H0

connected) ≥ (1 + ζ0)e−1/2. We obtain

∣Gk ,{U1 , . . . ,Uk−1}
n ∣ = Pr(H ∈H connected)∣H∣

= Pr(H ∈H ∖H0 connected)∣H ∖H0∣+Pr(H ∈H0 connected)∣H0∣
≥ ((1 − ζ3)∣H ∖H0∣ + (1 + ζ0)∣H0∣) e−1/2

≥ (1 + ζ
2
0 − ζ3 + ζ0ζ3)e−1/2∣H∣

≥ (1 + ζ
2
0/2)e−1/2∣H∣,

which contradicts (3.21). his concludes the proof of the claim. ∎

We now set ζ ∶= min{ζ0 , ζ3}, where ζ3 is the one given by the previous claim.
Let (V1 , . . . ,Vk−1) ∈ V ∖ V0; that is, the class H(V1 , . . . ,Vk−1) is ζ0-tight (and

thus, also ζ1-tight). By Proposition 3.7 applied to the class H(V1 , . . . ,Vk−1), with the
chosen θ1 and U = Uk , and since the class is ζ1-tight and its elements have at least
n −∑k−1

j=1 ∣Vj ∣ ≥ n − (k − 1)u vertices, we have

∣H2,Uk(V1 , . . . ,Vk−1)∣
∣H(V1 , . . . ,Vk−1)∣

= e−1/2 e−∣Uk ∣

Autu(Uk)
± θk

8
.(3.22)

SinceH(V1 , . . . ,Vk−1) is bridge-addable and since (V1 , . . . ,Vk−1) ∈ V ∖V0, by heo-
rem A and by deûnition of V0,

∣H(V1 , . . . ,Vk−1)∣
∣H(1)(V1 , . . . ,Vk−1)∣

= e1/2(1 ± ζ0).(3.23)

We proceed to bound the contribution of classes indexed by V0. Using the previous
claim again,

∑
(V1 , . . . ,Vk−1)∈V0

∣H(1)(V1 , . . . ,Vk−1)∣(3.24)

≤ ∣H0∣ ≤ ζ0∣H∣
≤ ζ0(1 − ζ0)−1∣H ∖H0∣
≤ 2ζ0 ∑

(V1 , . . . ,Vk−1)∈V∖V0

∣H(1)(V1 , . . . ,Vk−1)∣,

where the last inequality comes from (3.23) and the fact that ζ0 is a small constant.
herefore,

∣Gk ,{U1 , . . . ,Uk−1}
n ∣ = ∑

(V1 , . . . ,Vk−1)∈V
∣H(1)(V1 , . . . ,Vk−1)∣

= (1 ± 2ζ0) ∑
(V1 , . . . ,Vk−1)∈V∖V0

∣H(1)(V1 , . . . ,Vk−1)∣.
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Using the induction hypothesis for k − 1, with the chosen θk−1 and U1 , . . . ,Uk−1, and
since G is ζ2-tight and its elements have at least n −∑k−1

j=1 ∣Vj ∣ ≥ n − (k − 1)u vertices,
it follows that

∑
(V1 , . . . ,Vk−1)∈V∖V0

∣H(1)(V1 , . . . ,Vk−1)∣
∣Gn ∣

(3.25)

= (1 ± 2ζ0)−1 ∣G
k ,{U1 , . . . ,Uk−1}
n ∣

∣Gn ∣

= (1 ± 2ζ0)−1(e−1/2 e−∑
k−1
i=1 ∣U i ∣

Autu(U1 , . . . ,Uk−1)
± θk

8
)

= e−1/2 e−∑
k−1
i=1 ∣U i ∣

Autu(U1 , . . . ,Uk−1)
± θk

4
.

We are now ready to estimate (3.17). We rewrite (3.17) as

∣Gk+1,{U1 , . . . ,Uk}
n ∣

∣Gn ∣
= 1

m(U1 , . . . ,Uk)
(ΣV0 + ΣV∖V0),

where ΣV0 and ΣV∖V0 are the contribution to the sum of the elements indexed by V0
and by V ∖V0, respectively.

To estimate ΣV0 , we note that ∣H(V1 , . . . ,Vk−1)∣ ≤ e∣H(1)(V1 , . . . ,Vk−1)∣, since
the class H(V1 , . . . ,Vk−1) is bridge-addable and using [MSW05, heorem 2.5]. Us-
ing (3.24), we obtain

ΣV0 ≤
eζ0∣H∣
∣Gn ∣

≤ 3ζ0 <
θk

2
.

To estimate ΣV∖V0 , we use (3.22), (3.23), and (3.25) to obtain that

ΣV∖V0 = e−1/2 e−∑
k

i=1 ∣U i ∣

Autu(Uk)Autu(U1 , . . . ,Uk−1)
± θk

2
.

Using the previous two estimates and (3.15), we get

∣Gk+1,{U1 , . . . ,Uk}
n ∣

∣Gn ∣
= 1

m(U1 , . . . ,Uk)
⋅ e−1/2 e−∑

k

i=1 ∣U i ∣

Autu(Uk)Autu(U1 , . . . ,Uk−1)
± θk

= e−1/2 e−∑
k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
± θk . ∎

Proof of Theorem 3.8, Part 2 We use induction on k. For k = 1, the statement we
want to prove is directly given by Proposition 3.7. Assume now that the statement is
true for k − 1.

Set θ̂k ∶= e−1/2 e
−ku

(ku)! θk . By the induction hypothesis, for ℓ, θk−1 ∶= θ̂ k

8 , δk−1 ∶= 2δ,
and U1 , . . . ,Uk−1, there exists ζk−1 such that if n is large enough, we have

∑β∉Ξ(δk−1 ,ℓ) ∣G
k ,{U1 , . . . ,Uk−1}
n ,β ∣

∣Gk ,{U1 , . . . ,Uk−1}
n ∣

< θ̂k

8
.

Since the ûrst part of the theorem for k is already proved, we use it to estimate the
ratio between G

k+1,{U1 , . . . ,Uk}
n and Gk ,{U1 , . . . ,Uk−1}

n . For the ûrst one we use the ûrst part

586

https://doi.org/10.4153/S0008414X18000020 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000020


Local Convergence and Stability of Tight Bridge-addable Classes

of the theorem for k with θk ∶= θ̂ k

8 and U1 , . . . ,Uk and the corresponding ζ′
k
. For

the second one we use, as before, the ûrst part of the theorem for k − 1 with θk−1 and
U1 , . . . ,Uk−1 and the corresponding ζk−1. Set ζ ∶= min{ζk−1 , ζ′k} and let n be large
enough.

Using (3.15), it follows that

∣Gk+1,{U1 , . . . ,Uk}
n ∣

∣Gk ,{U1 , . . . ,Uk−1}
n ∣

=
e−1/2 e

−∑k
i=1 ∣U i ∣

Autu(U1 , . . . ,Uk) ± θ̂k/8

e−1/2 e
−∑k−1

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk−1) ± θ̂k/8
(3.26)

= e−∣Uk ∣

m(U1 , . . . ,Uk−1)Autu(Uk)
( 1 ± θk

3
) .

Let T1 , . . . , Ts be all the possible rooted versions of the unrooted tree Uk . Observe
that ∣Ti ∣ = ∣Uk ∣ and that

s

∑
i=1

1
Autr(Ti)

= ∣Uk ∣
Autu(Uk)

.(3.27)

Recall the deûnition of p(H, T) given at the beginning of Section 3.4. We per-
form an exact double-counting argument between the graphs in G

k ,{U1 , . . . ,Uk−1}
n and in

G
k+1,{U1 , . . . ,Uk}
n using p(G , Ti) with G ∈ Gk ,{U1 , . . . ,Uk−1}

n , similar to the one used in Sec-
tion 2.1. In one direction, for any such graphG,we have exactly∑s

i=1 α
G(Ti)p(G , Ti)

ways to construct a graph G′ ∈ Gk+1,{U1 , . . . ,Uk}
n by removing an edge. In the other di-

rection, there are exactly m(U1 , . . . ,Uk)∣Uk ∣(n−∑k

i=1 ∣U j ∣) ways to obtain a graph in
G

k ,{U1 , . . . ,Uk−1}
n from one in G

k+1,{U1 , . . . ,Uk}
n by adding an edge. herefore, we have

(3.28) ∑
G∈Gk ,{U1 , . . . ,Uk−1}

n

s

∑
i=1
α

G(Ti)p(G , Ti) =

m(U1 , . . . ,Uk)∣Uk ∣(n −
k

∑
i=1

∣U j ∣) ∣Gk+1,{U1 , . . . ,Uk}
n ∣.

Using (3.26) and (3.27), it follows that

∑
G∈Gk ,{U1 , . . . ,Uk−1}

n

∑s

i=1 α
G(Ti)p(G , Ti)

n∣Gk ,{U1 , . . . ,Uk−1}
n ∣

=
m(U1 , . . . ,Uk)∣Uk ∣(n −∑k

i=1 ∣U j ∣)∣Gk+1,{U1 , . . . ,Uk}
n ∣

n∣Gk ,{U1 , . . . ,Uk−1}
n ∣

=
n −∑k

i=1 ∣U j ∣
n

⋅ ∣Uk ∣e−∣Uk ∣

Autu(Uk)
( 1 ± θk

3
)

=
s

∑
i=1

e−∣Ti ∣

Autr(Ti)
( 1 ± θk

2
) ,

provided that n is large enough.
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Since for every G ∈ Gn ,∑s

i=1 α
G(Ti)p(G , Ti) ≤ n, it follows that

∑β∈Ξ(δk−1 ,ℓ)(∑
s

i=1 β(Ti)p(Gk ,{U1 , . . . ,Uk−1}
n ,β , Ti)) ⋅ ∣Gk ,{U1 , . . . ,Uk−1}

n ,β ∣

n∣Gk ,{U1 , . . . ,Uk−1}
n ∣

(3.29)

=
∑

G∈Gk ,{U1 , . . . ,Uk−1}
n

∑s

i=1 α
G(Ti)p(G , Ti)

n∣Gk ,{U1 , . . . ,Uk−1}
n ∣

±
∑β∉Ξ(δk−1 ,ℓ) ∣G

k ,{U1 , . . . ,Uk−1}
n ,β ∣

∣Gk ,{U1 , . . . ,Uk−1}
n ∣

=
s

∑
i=1

e−∣Ti ∣

Autr(Ti)
( 1 ± 5θk

8
) .

IfG′ is obtained fromG by removing an edge that creates a component isomorphic to
Uk , then ∣αG(T)−αG

′(T)∣ ≤ ∣Uk ∣ ≤ u for every T ∈ T. herefore, ifG ∈ Gk ,{U1 , . . . ,Uk−1}
n ,α

for some β ∈ Ξ(δk−1 , ℓ), thenG′ ∈ Gk+1,{U1 , . . . ,Uk}
n is such that αG

′ ∈ Ξ(δ, ℓ) (recall that
δk−1 = δ/2), provided that n is large enough. We thus obtain a local version of (3.28)

∑
β∈Ξ(δk−1 ,ℓ)

(
s

∑
i=1
β(Ti)p(Gk ,{U1 , . . . ,Uk−1}

n ,β , Ti)) ⋅ ∣Gk ,{U1 , . . . ,Uk−1}
n ,α ∣ ≤

m(U1 , . . . ,Uk)∣Uk ∣(n −
k

∑
i=1

∣U j ∣) ∑
β∈Ξ(δ ,ℓ)

∣Gk+1,{U1 , . . . ,Uk}
n ,β ∣.

Using (3.29), the last inequality, and (3.26), it follows that

s

∑
i=1

e−∣Ti ∣

Autr(Ti)
( 1 − 5θk

8
)

≤ 1

n∣Gk ,{U1 , . . . ,Uk−1}
n ∣

∑
β∈Ξ(δk−1 ,ℓ)

(
s

∑
i=1
β(Ti)p(Gk ,{U1 , . . . ,Uk−1}

n ,β , Ti))

× ∣Gk ,{U1 , . . . ,Uk−1}
n ,β ∣

≤ e−∣Uk ∣

Autu(Uk)∣Gk+1,{U1 , . . . ,Uk}
n ∣

× ∑
β∈Ξ(δ ,ℓ)

(n −∑k

i=1 ∣U j ∣)∣Uk ∣
n

∣Gk+1,{U1 , . . . ,Uk}
n ,β ∣( 1 + θk

3
)

≤ ∣Uk ∣e−∣Uk ∣

Autu(Uk)
⋅
∑β∈Ξ(δ ,ℓ) ∣G

k+1,{U1 , . . . ,Uk}
n ,β ∣

∣Gk+1,{U1 , . . . ,Uk}
n ∣

( 1 + θk

3
)

=
s

∑
i=1

e−∣Ti ∣

Autr(Ti)
⋅
∑β∈Ξ(δ ,ℓ) ∣G

k+1,{U1 , . . . ,Uk}
n ,β ∣

∣Gk+1,{U1 , . . . ,Uk}
n ∣

( 1 + θk

3
) ,
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where we used (3.27) for the last equality. We conclude,

∑β∈Ξ(δ ,ℓ) ∣G
k+1,{U1 , . . . ,Uk}
n ,β ∣

∣Gk+1,{U1 , . . . ,Uk}
n ∣

≥ 1 − θk ,

which ûnishes the proof of the theorem. ∎

4 From Classes of Forests to Classes of Graphs

In this section we extend our results from bridge-addable classes of forests to general
bridge-addable classes. In §4.1 we prove that graphs in ζ-tight bridge-addable classes
tend to havemany removable edges, and in§ 4.2 we use this property and the results
of Section 3 to conclude the proof of heorem 1.2. We conclude with the proof of
Corollary 1.5.

4.1 Removable Edges in Tight Bridge-addable Classes of Graphs

A 2-block of a graph G is a maximal 2-edge-connected graph (we assume that the
graph composed of a single vertex is also 2-edge-connected). Every graph admits a
unique decomposition into 2-blocks, joined by edges in a tree-like fashion.
For a graph class Gn , we can consider the coarsest partition

Gn =⊎
i

H
[i]
n .

into subclasses H[1]
n ,H[2]

n , . . . , such that every two graphs in the same subclass have
the same 2-blocks. By construction, if Gn is bridge-addable, then every subclass H[i]

n

is also bridge-addable.
For each such subclass H, we assume that we have chosen, arbitrarily and once

and for all, a spanning tree for each 2-block of the graphs inH. We denote by FH the
class of forests obtained by replacing each 2-block with the corresponding spanning
tree in each graph in H. his is well deûned, since, by construction, graphs in the
same subclass have the same 2-blocks. Moreover, the class FH is also bridge-addable
and the component structure (number and size) of each graph H ∈H is preserved in
the corresponding forest FH ∈ FH. his construction was introduced in [BBG08], to
which we refer the reader for more details.

he next lemma states that most graphs in a ζ-tight belong to subclasses H[i]
n that

are themselves close to be tight.

Lemma 4.1 For every ζ0 > 0, there exists ζ > 0 such that if n is large enough, for any

bridge-addable class G that is ζ-tight, the following is true. Let H
[1]
n ,H[2]

n , . . . be the

partition of Gn in bridge-addable subclasses deûned above and let Sn(ζ0) be the set of
values i such that

Pr(Hn ∈H[i]
n connected) ≤ (1 + ζ0)e−1/2 ,
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where Hn ∈H[i]
n denotes a uniformly random graph in H

[i]
n . hen we have

∣ ⊎
i∈Sn(ζ0)

H
[i]
n ∣ ≥ (1 − ζ0)∣Gn ∣.(4.1)

Proof he proof is direct by an averaging argument similar to the claim inside the
proof ofheorem 3.8. ∎

A vertex v in Gn is connected to the bulk of Gn through a cut-edge if there is a
cut-edge e incident to v such a�er removing e, the newly created component not
containing v has size at least 3n/4. Note that for each v ∈ {1, . . . , n} there is at most
one edge e with this property. he connected component containing v a�er removing
e is called a pendant graph. he edge e can a priori be removable or not, and if it is,
we say that v is connected to the bulk of Gn through a removable cut-edge.

Lemma 4.2 For every θ, there exist ζ and ℓ such that provided that n is large enough,

for every ζ-tight bridge-addable class G, we have that if Gn is a graph chosen uniformly

at random in Gn , andVn is a vertex chosen uniformly at random in Gn ,with probability

at least 1 − θ, Vn is connected to the bulk of Gn through a removable cut-edge, and the

corresponding pendant graph has order at most ℓ.

Proof We ûrst prove the lemma for bridge-addable classes of forests and then we
transfer it to general bridge-addable classes of graphs.
Assume that Gn is composed of forests. We ûrst show that there exists ℓ such that

if Gn is a graph chosen uniformly at random from Gn , then with probability at least
(1 − θ/4), we have that p(Gn , T) ≥ 1 − θ/4 for every T ∈ T≤ℓ . hen we will prove that
with probability at least 1 − θ,most of the pendant trees in Gn have size at most ℓ.
From Lemma 2.2, we can choose ℓ large enough such that

min{ ∑
T∈T≤ℓ

e−∣T ∣

Autr(T) , e
−1/2

ℓ

∑
k=0

∑
{U1 , . . . ,Uk}∈U≤ℓ

e−∑
k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
} ≥ 1 − θ

10
.

Let T ∈ T≤ℓ be a given rooted tree; we now show that p(Gn , T) ≥ 1 − θ/4. Let λ be
the size of the equivalence class of the root of T (the number of vertices where T can
be re-rooted giving rise to a rooted tree isomorphic to T). For every k ≤ ℓ and every
U1 , . . . ,Uk of order at most ℓ such that Uk is the unrooted version of T , we will write
the ratio between ∣Gk+1,{U1 , . . . ,Uk}

n ∣ and ∣Gn ∣ in two ways. We select ζ small enough and
n large enough, such that we can apply heorem 3.8 for every k ≤ ℓ, for θk = θ̃ (to be
ûxed later) and for every U1 , . . . ,Uk of size at most ℓ. If G is ζ-tight, we obtain

∣Gk+1,{U1 , . . . ,Uk}
n ∣

∣Gn ∣
= e−1/2 e−∑

k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
± θ̃ .

As before,weperform an exact localdouble-counting argumentwith the diòerence
that now we only count those graphs G′ ∈ G

k+1,{U1 , . . . ,Uk}
n that can be obtained from

G ∈ G
k ,{U1 , . . . ,Uk−1}
n by removing an edge from where a copy of T is pendant. his

can only be done if Uk is the unrooted version of T and if the edge that connects T
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to the rest of G is removable. Moreover, if G′ is obtained from G in such a way, for
every T0 ∈ T≤ℓ , we have ∣αG(T0) − αG

′(T0)∣ ≤ ∣T ∣ ≤ θ̃n

2 . In one direction, given a
graph G ∈ Gk ,{U1 , . . . ,Uk−1}

n there are exactly p(G , T)αG(T) many such ways to obtain a
graph in G

k+1,{U1 , . . . ,Uk}
n , and in the other one, exactly λm(U1 , . . . ,Uk)(n −∑k

j=1 ∣U j ∣)
many. Applying heorem 3.8 twice with θk = θ̃ and δ = θ̃/2, if ζ is small enough and
n is large enough, then if G is ζ-tight, we obtain

∣Gk+1,{U1 , . . . ,Uk}
n ∣

∣Gn ∣

≤ 1
∣Gn ∣

∑
β∈Ξ(δ ,ℓ)

∣Gk+1,{U1 , . . . ,Uk}
n ,β ∣(1 + θ̃)

≤ 1
∣Gn ∣m(U1 , . . . ,Uk)

∑
β∈Ξ(θ̃ ,ℓ)

× ∑
G∈Gk ,{U1 , . . . ,Uk−1}

n ,β

p(G , T)αG(T)
(n −∑k−1

j=1 ∣U j ∣)λ
(1 + θ̃)

= 1
∣Gn ∣m(U1 , . . . ,Uk)

× ∑
β∈Ξ(θ̃ ,ℓ)

∣Gk ,{U1 , . . . ,Uk−1}
n ,β ∣

p(Gk ,{U1 , . . . ,Uk−1}
n ,β , T)β(T)
(n −∑k−1

j=1 ∣U j ∣)λ
(1 + θ̃)

≤ 1
m(U1 , . . . ,Uk)

⋅ ∣G
k ,{U1 , . . . ,Uk−1}
n ∣

∣Gn ∣
⋅ p(G

′
n , T)
λ

( e−∣T ∣

Autr(T) + θ̃)(1 + θ̃)

≤ 1
m(U1 , . . . ,Uk)

(e−1/2 e−∑
k−1
i=1 ∣U i ∣

Autu(U1 , . . . ,Uk−1)
+ θ̃)

× p(G′n , T) e−∣Uk ∣

Autu(Uk)
(1 + 3θ̃)

≤ e−1/2 e−∑
k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
⋅ p(G′n , T)(1 + 5θ̃).

where G′n is the class formed by the union of Gk ,{U1 , . . . ,Uk−1}
n ,β for β ∈ Ξ(δ, ℓ). In the

previous inequalities, we have used that Autu(Uk) = λAutr(T) and (3.27).
Combining these two expressions and since ∣G′n ∣ ≥ (1 − θ̃)∣Gk ,{U1 , . . . ,Uk−1}

n ∣ (by he-
orem 3.8), we obtain that for every rooted tree T ∈ T≤ℓ ,

p(Gk ,{U1 , . . . ,Uk−1}
n , T) ≥ 1 − 8θ̃ .(4.2)

Now we set θ̃ ∶= θℓ−(ℓ
2+1)/10. Applying heorem 3.8 for every k ≤ ℓ, θk = θ̃ and

U1 , . . . ,Uk , and using the deûnition of ℓ, we have that
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ℓ

∑
k=0

∑
U1 , . . . ,Uk∈U≤ℓ

∣Gk+1,{U1 , . . . ,Uk}
n ∣

∣Gn ∣
(4.3)

= e−1/2
ℓ

∑
k=0

∑
U1 , . . . ,Uk∈U≤ℓ

e−∑
k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
− θ̃ℓ(ℓℓ)ℓ

≥ 1 − θ

5
,

By averaging (4.2) over all k and U1 , . . . ,Uk−1 and using the last equation, for every
T ∈ T≤ℓ , we obtain

p(Gn , T) ≥ 1 − θ

4
,(4.4)

which proves the ûrst part.
Let us now show that there aremany removable edges that isolate a tree of size at

most ℓ. Choose Gn uniformly at random from Gn and then choose Vn uniformly at
random from {1, . . . , n}. Let A1 be the event that Vn is connected to the bulk of Gn

through a removable cut-edge and let A2 be the event that the pendant tree rooted at
Vn has order at most ℓ. We want to show that Pr(A1 ∩ A2) ≥ 1 − θ.
Again, by applying heorem 3.8 for every k ≤ ℓ, θk = θ̃ and U1 , . . . ,Uk , and us-

ing (4.3), we obtain

∑
β∈Ξ(δ ,ℓ)

∣Gn ,β ∣ ≥
ℓ

∑
k=0

∑
U1 , . . . ,Uk∈U≤ℓ

∑
β∈Ξ(δ ,ℓ)

∣Gk+1,{U1 , . . . ,Uk}
n ,β ∣

≥
ℓ

∑
k=0

∑
U1 , . . . ,Uk∈U≤ℓ

∣Gk+1,{U1 , . . . ,Uk}
n ∣ − θ̃ℓ(ℓℓ)ℓ

≥ (1 − θ/4)∣Gn ∣.
Moreover, for every β ∈ Ξ(δ, ℓ) and by our choice of ℓ, we have that

∑
T∈T≤ℓ

β(T)
n

≥ ∑
T∈T≤ℓ

e∣T ∣

Autr(T) − δℓ
ℓ ≥ 1 − θ

5
.

It follows that Pr(A2) ≥ 1 − θ/2.
Assume that A2 holds. Let Tn be the pendant tree rooted at Vn and note that Tn ≡

T , for some T ∈ T≤ℓ . By (4.4), the probability that the cut-edge that connects Vn to
the bulk of Gn is removable is p(Gn , T) ≥ 1 − θ/4. hus, Pr(A1 ∣ A2) ≥ 1 − θ/4.

We conclude that

Pr(A1 ∩ A2) = 1 − Pr(A1 ∪ A2) ≥ 1 − (Pr(A2) + Pr(A1 ∣ A2))(4.5)

≥ 1 − 3θ
4
,

which concludes the proof of the theorem when all graphs in G are forests.
In order to extend the result to general classes of graphs, we use the approach in-

troduced in [BBG08]. Let G be a general class of graphs and let H[1]
n ,H[2]

n , . . . be the
partition ofGn into subclasses deûned at the beginning of this section. Given ζ0 (to be
ûxed later), we let Sn = Sn(ζ0) be the set of indices given by Lemma 4.1, andwe ûx an
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index i ∈ Sn . We let H ∶=H
[i]
n be the corresponding subclass of Gn and we let FH be

the corresponding class of forests. We observe thatFH is ζ0-tight and bridge-addable.
Since Lemma 4.2 holds for classes of forests, we can apply it to FH. Note that if

a cut-edge is removable for a forest FH ∈ FH, then the edge does not belong to any
of the 2-blocks of the corresponding graph H ∈ H. his implies that this cut-edge is
also removable for H ∈ H. Moreover, if its removal in FH results in a tree of size at
most ℓ, then its removal in H results in a graph of size at most ℓ. herefore, the result
obtained in (4.5) forFH naturally transfers to the classH, providedwe change “trees”
by “graphs” in what results a�er deleting a removable edge.

Moreover, if we choose ζ0 small enough with respect to θ, then there exists ζ such
that if G is ζ-tight and n is large enough, by (4.1), at least (1 − θ/4)∣Gn ∣ graphs in Gn

are in subclasses H[i]
n with i ∈ Sn . hus, the lemma also holds for general classes of

graphs Gn . ∎

For every class Gn and every t ≥ 1, if Gn is chosen uniformly at random from
Gn and Vn is chosen uniformly at random from {1, . . . , n}, then let q(Gn , t) be the
probability that Vn is connected to the bulk of Gn through a removable cut-edge, and
the corresponding pendant graph is a tree of order at most t. Observe that if G is a
subclass of forests, Lemma 4.2 implies that for every θ, and under some conditions,
there exists ℓ such that q(Gn , ℓ) ≥ 1 − θ. he next lemma shows that the same holds
for general classes of graphs.

Lemma 4.3 For every ϑ, there exist ζ and t such that if G is a ζ-tight bridge-addable

class and n is large enough, then q(Gn , t) ≥ 1 − ϑ.

Proof Given G ∈ Gn and a vertex v ∈ {1, . . . , n} that is connected to the bulk of G
through a cut-edge e,we denote by XG(v) the pendant graph (containing v) obtained
when deleting e from G. Given Gn chosen uniformly at random from Gn and Vn

chosen uniformly at random from {1, . . . , n}, as before,we deûne A1 as the event that
Vn is connected to the bulk of Gn through a removable cut-edge and A2 as the event
that XGn

(Vn) has order at most t. Also, let A3 be the event that XGn
(Vn) is a tree. It

is implicit in the deûnition of A2 and A3 that Vn should be connected to the bulk of
Gn through a cut-edge, so in particular, XGn

(Vn) is well deûned. Note that

q(Gn , t) = Pr(A1 ∩ A2 ∩ A3) = Pr(A1 ∩ A2) − Pr(A1 ∩ A2 ∩ A3)
≥ Pr(A1 ∩ A2) − Pr(A2 ∩ A3),

so we will proceed by bounding the last two probabilities.
We again consider thepartition ofGn into subclassesH[1]

n ,H[2]
n , . . . , deûned above.

Given ζ0 (to be ûxed later), there exists ζ such that for every ζ-tight classG, if n is large
enough, we can consider Sn = Sn(ζ0) to be the set of indices given by Lemma 4.1. We
let H ∶=H

[i]
n be the corresponding subclass of Gn , for some i ∈ Sn , and FH be corre-

sponding class of forests.
By Lemma 4.2 with θ = ϑ/3, if ζ0 is small enough and n and t are large enough,

since H is a ζ0-tight bridge-addable class of graphs with n vertices, then the proba-
bility that a uniformly chosen vertex Wn from a uniformly chosen forest Fn in FH

connects to the bulk of Fn through a removable cut-edge and that XFn
(Wn) is a tree
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of order at most t, is at least 1−ϑ/3. If this is the case, aswe argued before, this edge is
also a removable cut-edge in the graph inH that corresponds to Fn . hus, using (4.1)
and provided that ζ0 is small enough with respect to ϑ,

Pr(A1 ∩ A2) ≥ 1 − ϑ

3
− ζ0 ≥ 1 − ϑ

2
.(4.6)

It remains to obtain an upper bound on Pr(A2∩A3). Using Lemma 4.2 againwith
θ2 = ϑ

7t , and if ζ0 is small enough and n and ℓ are large enough, sinceH is ζ0-tight,
the probability that a uniformly chosen vertexWn from a uniformly chosen forest Fn

in FH is connected to the bulk of Fn through a removable cut-edge, is at least 1 − ϑ
7t .

Using (4.1) again and provided that ζ0 is small enough with respect to ϑ and t, we
obtain

Pr(A1) ≤
ϑ

7t
+ ζ0 ≤

ϑ

6t
.(4.7)

We claim that

Pr(A2 ∩ A3) ≤ tPr(A1).(4.8)

Assuming that (4.8) holds, together with (4.6) and with (4.7), we obtain

q(Gn , t) ≥ 1 − ϑ

2
− ϑ

6
≥ 1 − ϑ.

hus, it only remains to prove (4.8). For this we observe that if A2 ∩ A3 holds,
then XGn

(Vn) contains at least one vertex V ′
n that is not connected to the bulk of Gn

through a cut-edge (since XGn
(Vn) is a well-deûned pendant graph, but it is not a

tree). Moreover, since A2 holds, the graph distance between Vn and V ′
n is less than

t. Conversely, it is easy to see that given any vertex v′, there are at most t vertices v
at distance at less than t from v′ that are connected to the bulk of Gn through a cut-
edge and such that XGn

(v) contains v′. he inequality (4.8) thus follows by double-
counting such pairs of vertices. ∎

4.2 Proof of our Main Results

We ûnally prove our main theorem.

Proof of Theorem 1.2 Let us ûrst prove (i). Wewill ûrst prove that for every k, every
θ and every U1 , . . . ,Uk , and if ζ is small enough and n large enough, then for every
ζ-tight bridge-addable class G, we have

∣ ∣G
k+1,{U1 , . . . ,Uk}
n ∣

∣Gn ∣
− e−1/2 e−∑

k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
∣ < θ .(4.9)

As before, we consider the partition of Gn into subclassesH[1]
n ,H[2]

n , . . . . Given ζ0
(to be ûxed later), there exists ζ such that for every ζ-tight class G, if n is large enough,
we can consider the set Sn = Sn(ζ0) given by Lemma 4.1.

Let H ∶= H
[i]
n for i ∈ Sn and let FH be the corresponding ζ0-tight class of forests.

We can apply heorem 3.8 for the given k, θk = θ

4 , and the given U1 , . . . ,Uk . If ζ0 is
small enough and n is large enough, and since FH is ζ0-tight, (4.9) holds for FH.
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It follows that

∣Gk+1,{U1 , . . . ,Uk}
n ∣ = ∑

j∈Sn

∣(H[ j]
n )k+1,{U1 , . . . ,Uk}∣ ± ζ0∣Gn ∣

= ∑
j∈Sn

∣Fk+1,{U1 , . . . ,Uk}
H

[ j]
n

∣ ± ζ0∣Gn ∣

= (e−1/2 e−∑
k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
± θk) ∑

j∈Sn

∣F
H

[ j]
n

∣ ± ζ0∣Gn ∣

= (e−1/2 e−∑
k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
± θk)(1 ± ζ0)∣Gn ∣ ± ζ0∣Gn ∣

= (e−1/2 e−∑
k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
± θ) ∣Gn ∣,

provided that ζ0 is small enough with respect to θ. his proves (4.9).
To prove the ûrst part of the theorem, let k∗ be large enough such that

e
−1/2

k∗

∑
k=0

∑
{U1 , . . . ,Uk}∈U≤k∗

e−∑
k

i=1 ∣U i ∣

Autu(U1 , . . . ,Uk)
≥ 1 − є

4
.(4.10)

he existence of such a k∗ is, again, guaranteed by Lemma 2.2.
If f is an unrooted unlabeled forest composed of trees U1 , . . . ,Uk , then

Pr(Small(Gn) ≡ f) = ∣Gk+1,{U1 , . . . ,Uk}
n ∣

∣Gn ∣
.

We choose θ ∶= єk
−k

2
∗

∗ /2.
Let f1 be a forest composed of at most k∗ trees of size at most k∗; then (4.9) gives

that ∣Pr(Small(Gn) ≡ f1) − p∞(f1)∣ < є.
Let f2 be a forestwith eithermore than k∗ trees orwhere at least one of the trees has

size larger than k∗. Since p∞ is a probability distribution, by (4.10) we have p∞(f2) ≤
є/4. Since∑f Pr(Small(Gn) ≡ f) = 1, using again (4.9) and (4.10), we have

∣Pr(Small(Gn) ≡ f2) − p∞(f2)∣
≤ Pr(Small(Gn) ≡ f2) + p∞(f2)

≤ 1 −
k∗

∑
k=0

∑
{U1 , . . . ,Uk}∈U≤k∗

∣Gk+1,{U1 , . . . ,Uk}
n ∣

∣Gn ∣
+ p∞(f2)

≤ є/4 + θk
k
2
∗
∗ + є/4 = є.

his concludes the proof of (i).
We next prove the following property, from which (ii) follows directly.

(iii) for every є, η, there exists ζ such that for every ζ-tight bridge-addable class G and

every n large enough, if f is a ûxed unrooted unlabeled forest,

∣Pr(Small(Gn) ≡ f ; ∀T ∈ T ∶ ∣ α
Gn(T)
n

− a∞(T)∣ < η) − p∞(f)∣ < є.
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We ûrst prove that for every θ , η, k, ℓ, andU1 , . . . ,Uk , and provided that ζ is small
enough and n large enough, we have

∑β∈Ξ(η ,ℓ) ∣G
k+1,{U1 , . . . ,Uk}
n ,β ∣

∣Gk+1,{U1 , . . . ,Uk}
n ∣

≥ 1 − θ .(4.11)

Recall the partition of Gn into subclasses H[1]
n ,H[2]

n , . . . . As before, let H ∶= H
[i]
n

for i ∈ Sn and let FH be the corresponding class of forests. Applying the second
part of heorem 3.8 with θk = θ/4 and δ = η/2 to the class FH, we see that if ζ0
is small enough and n large enough, then at least (1 − θ/2)∣Hk+1,{U1 , . . . ,Uk}∣ graphs
G ∈Hk+1,{U1 , . . . ,Uk} satisfy αFG ∈ Ξ(δ, ℓ).

heorem 3.8 also shows that there exists c1 > 0 such that ∣Hk+1,{U1 , . . . ,Uk}∣ ≥ c1∣H∣.
By Lemma 4.3 with ϑ ∶= c1 min{θ/4, δ}, if ζ0 is small enough and n large enough,
there exists t such that with probability at least 1 − ϑ, a random vertex in a random
graph of H is connected via a removable cut-edge, and the corresponding pendant
graph is a tree of order at most t. We can choose t ≥ ℓ. (Note that by doing so, we
only increase the former probability.)

herefore, if Hn is a random graph in Hk+1,{U1 , . . . ,Uk}, with probability at least 1 −
θ/2 − ϑ/c1 > 1 − 3θ/4, for every T ∈ T≤ℓ ,

αHn(T)
n

= e−∣T ∣

Autr(T) ± δ ± ϑ = e−∣T ∣

Autr(T) ± 2δ.

In other words, with probability at least 1 − 3θ/4, we have αHn ∈ Ξ(2δ, ℓ) = Ξ(η, ℓ).
By (i), we have that ∣Gk+1,{U1 , . . . ,Uk}

n ∣ ≥ c2∣Gn ∣ for some constant c2 > 0. herefore,
there are at most ζ0

c2
∣Gk+1,{U1 , . . . ,Uk}

n ∣ graphs in classes H[i]
n that are not ζ0-tight. We

conclude that, provided ζ0 is small enough, the probability that a graph G′
n chosen at

random from G
k+1,{U1 , . . . ,Uk}
n satisûes αG

′
n ∈ Ξ(η, ℓ), is at least 1− 3θ/4− ζ0/c2 > 1− θ.

his proves (4.11).
Let A(k, ν) be the event that for every T ∈ T≤k we have ∣ α

Gn (T)
n

− a∞(T)∣ < ν (we
might write k =∞ where T≤∞ = T).

Since we have already proved (i), we have that for every unrooted unlabeled forest
f with small components U1 , . . . ,Uk ,

Pr(A(∞, η), Small(Gn) ≡ f) ≤ Pr(Small(Gn) ≡ f) ≤ p∞(f) + є.(4.12)

By Lemma 2.2, if k∗ is large enough, then

∑
T∈T≤k∗

e−∣T ∣

Autr(T) > 1 − η
4
.

Let T ′ ∉ T≤k∗ and choose ρ = ηk−k∗
∗ /4. As before, by the properties of k∗ we have

that a∞(T ′) ≤ η/4 and, conditional on A(k∗ , ρ), α
Gn (T′)

n
≤ η/4 + ρk

k∗
∗ = η/2. his

implies that, conditional on A(k∗ , ρ), A(k∗ , η) implies A(∞, η).
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If f is anunrootedunlabeled forestwith small componentsU1 , . . . ,Uk , using (4.11),
we have that for every θ,

P(A(∞, η) ∣ Small(Gn) ≡ f)
≥ P(A(∞, η) ∣ Small(Gn) ≡ f ,A(k∗ , ρ)) ⋅ P(A(k∗ , ρ) ∣ Small(Gn) ≡ f)
≥ P(A(k∗ , η) ∣ Small(Gn) ≡ f ,A(k∗ , ρ)) ⋅ P(A(k∗ , ρ) ∣ Small(Gn) ≡ f)

=
∑β∈Ξ(η ,k∗) ∣G

k+1,{U1 , . . . ,Uk}
n ,β ∣

∑β∈Ξ(ρ ,k∗) ∣G
k+1,{U1 , . . . ,Uk}
n ,β ∣

⋅
∑β∈Ξ(ρ ,k∗) ∣G

k+1,{U1 , . . . ,Uk}
n ,β ∣

∣Gk+1,{U1 , . . . ,Uk}
n ∣

=
∑β∈Ξ(η ,k∗) ∣G

k+1,{U1 , . . . ,Uk}
n ,β ∣

∣Gk+1,{U1 , . . . ,Uk}
n ∣

≥ 1 − θ .

By (i), we can assume that Pr(Small(Gn) ≡ f) ≥ p∞(f) − є/2. Choosing θ ∶= є/2, we
conclude

P(A(∞, η), Small(Gn) ≡ f)
= P(A(∞, η) ∣ Small(Gn) ≡ f)P(Small(Gn) ≡ f)
≥ (1 − θ)(p∞(f) − є/2) ≥ p∞(f) − є.

Together with (4.12), this proves (iii), which directly proves (ii). his concludes the
proof ofheorem 1.2. ∎

Corollary 1.5 is a simple consequence of our theorem. We conclude the paperwith
a detailed proof of it.

Proof of Corollary 1.5 Let G be a graph on {1, . . . , n}, v ∈ {1, . . . , n} and r ≥ 1.
he ball of radius r centred at v, BG ,r(v), is the graph induced in G by all vertices at
distance at most r from v.

he hull of radius r,HG ,r(v), is the union of BG ,r(v)with all the connected compo-
nents ofG ∖BG ,r(v) that are of size smaller than n

3 , but are not components ofG. We
view the hull HG ,r(v) as a graph with a root (the vertex v) and a set, possibly empty,
of exit vertices (the vertices towhich component(s) of size larger than n

3 are attached).
Note that the exit vertices are necessarily at distance r from the root. We extend the
deûnition of hulls to inûnite graphs by replacing the condition “size smaller than n

3 ”
by the condition “ûnite size”.
For k ≥ 0, let Tr ,k be the set of (unlabeled) treeswith amarked root, and k marked

distinct vertices at distance r from the root (exit vertices). For T ∈ Tr ,k and a rooted
graph (G , v), we write HG ,r(v) ≡ T if the hull HG ,r(v) is isomorphic to T as an
unlabeled graph, where the isomorphism preserves the root and the exit vertices (in
particular this implies that HG ,r(v) has k exit vertices). hen it is easy to see from the
deûnition of (F∞ ,V∞) that we have, for any r ≥ 1, k ≥ 0, and T ∈ Tr ,k ,

Pr(HF∞ ,r(V∞) ≡ T) = q∞(T),
where

q∞(T) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
Autpath(T) e

−∣T ∣ if k = 1,

0 if k ≠ 1,
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where Autpath(T) is the number of automorphisms of T preserving the path from the
root to the exit vertex. Moreover, for any r ≥ 1 we have

∑
k≥0

∑
T∈Tr ,k

q∞(T) = 1.(4.13)

Let r ≥ 1 and ûx T ∈ Tr ,1, with root u and exit vertex w. Let T ′ be the element of
T obtained by re-rooting the tree T at w, and let m be the number of copies of the
vertex u in T ′. hen, clearly, there are at least mαG(T ′) vertices v ∈ {1, . . . , n} such
that HG ,r(v) ≡ T . We thus have,

Pr(HG ,r(V) ≡ T) ≥ mαG(T ′)
n

,

whereV is a uniformly random vertex inG. Now letG be a tight bridge-addable graph
class, and, for every n ≥ 1, let Gn be a uniformly random graph in Gn and let Vn be a
uniformly random vertex inGn . By averaging over graphs in Gn and using the second
part of Corollary 1.4, we obtain

lim inf
n

Pr(HGn ,r(Vn) ≡ T) ≥ lim inf
n

E( mαGn(T ′)
n

)(4.14)

≥ ma∞(T ′) = q∞(T),

where for the last equality we used mAutpath(T) = Autr(T ′). Now since the events
HGn ,r(Vn) ≡ T for T ∈ ⋃k≥0 Tr ,k are disjoint, we have

∑
k≥0

∑
T∈Tr ,k

Pr(HGn ,r(Vn) ≡ T) ≤ 1.

From (4.13) and (4.14), we thus get that, for any r, k, and T ∈ Tr ,k , we have

lim
n

Pr(HGn ,r(Vn) ≡ T) = q∞(T).(4.15)

he last equation implies that, for any rooted graph B0 of radius r (where the radius
is the greatest distance from a vertex to the root), we have

lim
n

Pr(BGn ,r(Vn) ≡ B0) = Pr(BF∞ ,r(V∞) ≡ B0) .(4.16)

To see this, note that for every rooted graph B, we have

Pr(BF∞ ,r(V∞) ≡ B) = ∑
k≥0

∑
T∈Tr ,k
T▷B

Pr(HF∞ ,r(V∞) ≡ T) ,

where T ▷ B means that BT ,r(v) ≡ B, where v is the root of T .
It follows from this equality that for any B, any r ≥ 1, and any є, we can choose a

ûnite subset T′ ⊂ ⋃k≥0 Tr ,k such that

∑
T∈T′ ,T▷B

Pr(HF∞ ,r(V∞) ≡ T) ≥ Pr(BF∞ ,r(V∞) ≡ B) − є.
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Using (4.15), it follows that

lim inf
n

Pr(BGn ,r(Vn) ≡ B) ≥ lim inf
n

∑
T∈T′ ,T▷B

Pr(HGn ,r(Vn) ≡ T)

≥ ∑
T∈T′ ,T▷B

Pr(HF∞ ,r(V∞) ≡ T)

≥ Pr(BF∞ ,r(V∞) ≡ B) − є.

Since this is true for any є > 0, we have thus proved

lim inf
n

Pr(BGn ,r(Vn) ≡ B) ≥ Pr(BF∞ ,r(V∞) ≡ B) .(4.17)

It follows that

1 ≥ lim inf
n

∑
B

Pr(BGn ,r(Vn) ≡ B) ≥∑
B

Pr(BF∞ ,r(V∞) ≡ B) = 1,

where the sums are taken over all rooted graphs B of radius r, and using (4.17), equa-
tion (4.16) holds for every B0. his concludes the proof of Corollary 1.5. ∎

A More Details on the Example Given in Remark 1.6

Let F̃n be the class of graphs deûned in Remark 1.6, and write kn ∶= ⌈n2/3⌉. In this
section we prove that F̃n is tight.
For i ≥ k ≥ 1, let ã i ,k be the number of connected graphs on {1, . . . , i} that induce

a clique on {1, . . . , k} and such that contracting this clique gives a tree. hus, the
number of connected graphs in our class F̃n is, by deûnition, equal to ãn ,kn

. Note that
ã i ,k equals to the number of rooted forests on {1, . . . , i} with k components rooted
at 1, 2, . . . k. hus, ( i

k
)a i ,k is the number of rooted forests on {1, . . . , i} with k com-

ponents and no condition on the location of the roots, which is classically equal to
( i−1
i−k

)i i−k . We thus get

ã i ,k = ki
i−k−1 .

Observe that

ã i ,k

ã i+1,k
= i i−k−1

(i + 1)i−k
= 1

i
( 1 − 1

i + 1
)

i−k

.(A.1)

he number gn of all elements in the class F̃n is given by

gn

(n − kn)!
= ∑

i+ j=n
j≥0, i≥kn

ã i ,kn

(i − kn)!
×
f j

j!
,(A.2)

where f j counts unrooted labeled forests, with f0 = 1. In the sum, i is interpreted
as the number of vertices in the connected component containing the clique, and we
have distributed the labeling binomial (n−kn

j
) among factors.

As F(z) = ∑n≥0
fn

n! z
n and by Lemma 2.2, given є we can choose δ small enough

and j0 large enough such that∑ j≤ j0

f j

j! z
j ≥ e1/2(1−є) for any z ≥ e−1−δ. Also, given δ
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and j0, for n large enough, we have from (A.1) that for any i larger than n − j0,

ã i ,kn
/(i − kn)!

ã i+1,kn
/(i + 1 − kn)!

≥ e−1 − δ.

We can now lower bound the sum (A.2) by keeping the contribution of relatively
small values of j. More precisely, for n large enough, we have:

(A.2) ≥ ∑
j≤ j0

ãn− j ,kn

(n − j − kn)!
f j

j!

≥ ãn ,kn

(n − kn)!
∑
j≤ j0

(e−1 − δ) j
f j

j!

≥ ãn ,kn

(n − kn)!
e
1/2(1 − є).

Given ζ, consider є = ζ/2. If n is large enough and F̃n is a uniformly random graph
in F̃n , we thus have

Pr(F̃n is connected) = ãn ,kn

gn

≤ e−1/2(1 − є)−1 ≤ (1 + ζ)e−1/2 .

Since this is true for every ζ, the class F̃ is tight.
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