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Abstract

We are concerned with the existence of solutions of

-Apw = f(x, u) + h(x) in«, u=0ondQ,

where Ap is the p-Laplacian, p € (1, oo), and Ci is a bounded smooth domain in K".
For h(x) = 0 and f(x, u) satisfying proper asymptotic spectral conditions, existence

of a unique positive solution is obtained by invoking the sub-supersolution technique and
the spectral method. For h(x) ^ 0, with assumptions on asymptotic behavior of f{x, u) as
u -»• ±oo, an existence result is also proved.

1. Introduction

In this paper we investigate the existence of solutions for the Dirichlet problem of the
following quasilinear elliptic equation:

- Apu = f(x,u) + h{x) in ft, u=0ondQ, (1.1)

where £2 is a bounded domain in W with smooth boundary 3£2, p e (1, oo), Apu =
div(|VM|p~2Vw) is the p-Laplacian, h(x) e L°° and / is to be specified below.

For p ^ 2, operator Ap has appeared in a variety of physical fields. For example,
applications of Ap have been seen in fluid dynamics. The shear stress f and the
velocity gradient V« of the fluid are related in the manner that i{x) = r(x)\ Vu\p~2Vu,
where p = 2 (respectively, p < 2, p > 2) if the fluid is Newtonian (respectively,
pseudoplastic, dilatant). Consequently the equation governing the motion of the fluid
involves the p-Laplacian. The p-Laplacian also appears in the study of flow through
porous media (p = 3/2), nonlinear elasticity {p > 2) and glaciology (p e (1, 4/3]).
We refer to Diaz [8] and Lions [14] for more background material and applications. For
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/ homogeneous in u, that is, f(x, u) = f(x)u" (a > 0), existence and nonexistence
results were obtained by many authors, see for example Azorero and Alonso [2],
Diaz [8], Guedda and Veron [10], Lions [14], Otani [15] and Szulkin [19]. Variational
methods were employed extensively when trying to find positive solutions. If /+(x) =
max(/(x),0) ^ 0, eigenvalue problem — Apu = Xf(x)\u\p~2u with homogeneous
Dirichlet condition has been proved to possess a unique simple positive eigenvalue
with positive eigenfunction. See Anane [1], Azorero and Alonso [2], and Otani and
Teshima [16]. For the case where f(x, •) is of order up~l but nonhomogeneous in u,
Del Pino, Elgueta and Manasevich [6] studied the existence of solutions of (1.1) with
h = 0 for the one dimensional case, Boccardo, Drdtbek and Kucera [3] considered
the higher dimensional case with h ^ 0. While for p = 2, problem (1.1) has been
studied extensively, see for example Brezis and Oswald [4], Costa and Goncalves [5],
Kazdan and Kramer [12] and references therein.

The objective of this paper is to extend some of the known results for the special
case p = 2 to the general quasilinear case. In particular, we will obtain the following
result:

With/j(x) = 0 , i f / (x ,0 = /0),liminf,_>0+/(O/f~1 = ao . l imsup^ /O) / ; " - 1

= ax, and

0 < floo < ^i < a0, (*)

where k\ is the smallest positive eigenvalue of — Apu = X\u\p~2u with homogeneous
Dirichlet condition, then problem (1.1) has a positive solution. Moreover, the solution
is unique and condition (*) is necessary if f(t)/tp~x is strictly decreasing. The method
we employ follows the sub-supersolution procedure utilized in [5]. The construction of
a sub-supersolution pair is made feasible by establishing some properties for indefinite
eigenvalue problem for the /7-Laplacian, which are of independent interest and extend
the known results of Hess and Kato [11] for second order elliptic operators. For
h(x) # 0 we decompose f(x,u) into

f(x, u) = a+(x)Wr2u+ - a-(x)\ur2u- + /,(x, u),

with f\{x,u) as the lower order term in u, and use topological degree theory to
establish an existence result. We note that, due to the set-up of our problem, more
general existence results are actually obtained.

The rest of the paper is organized as follows. In Section 2, we introduce the needed
notations and prove several lemmas which provide the foundation for the construction
of a sub-supersolution pair as well as for utilization of topological degree theory.
In Section 3, the sub-supersolution pair is constructed and the existence of positive
solution of (1.1) is obtained. Finally, Section 4 studies the case h(x) ^ 0.
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2. Preliminaries

In this section we present some notations and results needed in the sequel. For the
special case p = 2, these results are well known, cf. Hess and Kato [11].

Let £2 be a smooth bounded domain in W. We denote Apu = div(|V«|p~2VM)
for u in Wip(Q) with p e (1, oo). By Theorems 2.2.1 and 2.2.3 of Lions [14], the
problem

- Apu = f{x) in ft, w = Oon9£2, (2.1)

has a unique solution u e WQ'P(Q) for any / e Lq (1/p + \/q = 1). Regularity
theorems (see Tolksdorf [20, page 806] and Di Benedetto [7]) further show that if
/ e L°°(£2), then u e C1+a(£2) for some 0 < a < 1. By uniqueness of the solution
of (2.1), the inverse of — Ap exists and is henceforth denoted by R : L°° ->• L°°. We
first have

LEMMA 2.1. R is compact, continuous and strictly positive, that is, for / > 0, / ^ 0,
Rf >0.
PROOF. Compactness follows from the fact that C1+a(?2) is embedded in L°°(fi)
compactly and densely.

Let uk = /?(/*), fk -> /o in L°°. By compactness, for some u0 e L°° D W0'''(fi),
Uk -*• «o in ^°°, and uk —> «0 in Wo

llP(£2) weakly. For this /0, there exists a M s L°°
such that u = Rifo)- It then follows from uk = Rifk) and u = /?(/o) that

, fi) := [i\Vuk\
p~2Vuk - \Vu\p-2Vu)Viuk - u)

= j'(/* - /o)(«* ~ «)•
Note that for any vectors a and fe,

|fl - fcl" < c • {(\a\"-2a - \b\»-2b) • ia - b))"1 • {\a\p + \b\")x-"\

where t = min[p, 2} (see Lindqvist [13], Appendix). Thus by Holder's inequality we
conclude

I|V«* - VM||£ < c • Uiuk, u))1'2 • ( U V H J ; + | |Vt^) 1 -" 2 .

Consequently uk —> u in WQ'P(SI). Thus u = u0, and this implies continuity of R.
Let u = Rf, then —Apu = / . Multiplying this equation by u~ := u+ — u and

integrating show that u~ = 0 on the set (/(*) ^ 0) and u~ — const, on the set
(/(•*) = 0). We conclude from continuity of u~ that «~ = 0, that is, u > 0. It then
follows from Lemma 2 of Otani and Teshima [16] that u > 0. This concludes the
proof.
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REMARK 2.1. The above proof actually implies that, if fk -> f0 in Lq (- + - = 1),

and uk := R(fk) -* (some) M0 e ^ ' " ( f i ) weakly in WQ-P(Q), then w0 =

From now on we denote r = n/pif p < n,andr = 1 if p > /z. Letw(x) € Lr+C(Q)
for some £ > 0, m+(x) — max(wr(x), 0) ^ 0. Then the following is well known (see
Anane [1], Azorero and Alonso [2], and Otani and Teshima [16]):

PROPOSITION 2.2. The eigenvalue problem

- Apu = Xm{x)\u\p~2 inQ., u = 0 on dQ (2.2)

has a unique positive eigenvalue \\{m) which is simple and has an associated positive
eigenfunction <p e WQP(Q,). X^m) is characterized by the following variational
formula

= inf I /|V«T : f m\u\" = 1, u e W0'"(£m . (2.3)

Moreover, ifm e L°°, then d<p/dv < 0 on 3S2, where v denotes the outward normal
ofdQ.

Next we use the variational characteristic of Xt {m) to establish

LEMMA 2.3. Let Ai (m) be as given in Proposition 2.2 and m(x) e L°°(Q). Then

(i) A-i is decreasing in m, that is, m.\ > m2 with m\ ^ 0 implies that
kx{m2).

(ii) If mk -> m0 in L°° with m\ ^ 0, then Xt (mk) —> Aj (m0).

PROOF, (i). For u e Wo
lp(n) with//n2|«|p = 1, we have a := /OTIIMC > 1. We

then derive t h a t / | V« |p > a\x(mx), thus A^/n,) <A,(w2).
Suppose A.!(/ni) = A](/n2). Let MJ, M2 be the positive eigenfunctions associated

with A^mi), AI(A7Z2) respectively and set

f up,-uP f
:= / (-A,«,)-!—:^- - / (- Ap t < 2)

up-up

' 2 .
u\

We note that such I(uu u2) is well defined since both dui/dv, du2/dv < Oon 3f2(c/.
Anane [1]). Calculation shows

/ ( M ] , M 2 ) = / Ai(/«i)(wi — m2)(u
p — up).

By choosing u} — u2 < 0 in ft we have /(«i, u2) < 0. It then follows from
Proposition 1 of Anane [ 1 ] that ux = ku 2 for some constant k, a contradiction. Hence

: A,(w2).
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(ii). We first claim that Xi {mk) is bounded. Indeed, let u0 be the positive eigenfunc-
tion associated with A. i (/n0) satisfying / m01 wo Ip = 1. For k sufficiently large, we have
1/2 < fmk\u0\

p < 111. We thus conclude that Xx{mk) < ( / |Vuon/( /w*|Molp) is
bounded.

Now, since / |Vuk\p is bounded, where uk is the positive eigenfunction associated
with Xx{mk) satisfying / m k \ u k \ p = 1, we may assume, taking a subsequence if
necessary, that for some u e WQP(£2), uk ->• u weakly in Wl'p{Sl), uk -> u in Lp if
p < n andinCif p > n,andXi(mk) —• X. It then follows that j mk\uk\

p ->• f mo\u\p.
Since uk satisfies

— A p u k = ]

we let

J(uk, «,) :=

then, as in the proof of Lemma 2.1, we have

II V«t - VI I , | | ; < c • (J(uk, u,))1'2 • {\\Vuk\\
p
p + HVii/lip1-"2,

where t = mm{p, 2}. We then derive that uk is a Cauchy sequence in WQ"P(Q) and
hence uk ->• u in H^^Cfi).

We now claim that A. = X{ (m0). Assume, on the contrary, that X - XY (m0) = s > 0.
Since mk -> w0 in L°°, we have, for k sufficiently large,

f | V M O | P / f mk\u0\
p - Xdmo) < e/4

and

We then obtain that

0 < /" |VMo|p/ J mk\u0\" < A,(mo) + e/4

which contradicts the variational characteristic of A.!(mt). Consequently we have
X = Ai(m0). The proof is complete.

REMARK 2.2. It follows from the above proof that M = u0, which implies that the
positive eigenfunction u is continuous in W j ' ' ' ^ ) as a function of m.

To establish next lemma some definitions are needed.
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DEFINITION 2.1. Let K be a closed convex subset of a Banach space X. Suppose
A : K -*• X* is bounded.

(i) A is called a pseudomonotone operator if it satisfies the following condition:
if xk —> x weakly in X and lim s u p ^ ^ (A(xk), xk — x) < 0, then

{A(x),x -y) <\imm£(A{xk),xk-y)

for all y G X.
(ii) A is coercive if {A{x),x)l\\x\\x -> oo as ||JC||^ -> oo.

The following lemma is standard and can be found in, for example, Lions [14].

LEMMA 2.4. Assume that A is pseudomonotone and coercive, X is a reflexive Banach
space and K is a closed convex subset of X. Then, for any f e X*, there exists an
x e K such that for all y € K,

(A(x) -f,y-x)>0.

Now we are ready to introduce

LEMMA 2.5. Let X e (0, X, (m». Then for any h e Wu, h>0inQ, and h # 0, there
exists a nonnegative solution u e WQ'P(Q) of

- Apu = Xm(x)\u\p~2u + h(x) inQ, u = 0ondQ. (2.4)

If, in addition, m, h e L°°, then u > 0 in Q, du/dv < 0 on dQ and u is unique.

PROOF. We first prove the existence part. We introduce an operator A = A\ + A2

from W*-P(Q) to (W^p(^))' by

(AM, V) = (AiU, v) + (A2u, v)
r

IP-2= [ |VM|"-2VMVU - X [ m\u uv.

Obviously A is bounded. Next we verify that A is pseudomonotone and coercive.
Indeed, for some a e (0, 1), aX{(m) = X, we have, for u e Wo

llP(J2),

I \Vu\" = (1 - or) I \Vu\p +a I \Vu\p

> ( 1 - a ) f \Vu\p + aX{{m) I m\u\p

= ( l - a ) f \Vu\p +X Im\u\p.
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Hence we deduce that

which implies coerciveness of A.
Note that Ax is pseudomonotone since it is monotone (see Lions [14]) while A2 is

continuous. Thus A = A j + A2 is pseudomonotone.
Now we apply Lemma 2.4 to the sets X = K = WQP(Q) to conclude the existence

of a solution u to (2.4).
To prove nonnegativity of the solution u, we proceed as follows. Since u e

WQP(Q), we have u~ e W^iQ) (see Gilbarg and Trudinger [9]). Multiplying (2.4)
by u~ and integrating by parts, we obtain

- f | V K - | ' + A. I m\u-\p = f hu~. (2.5)

Since A. < A, (m), the left-hand side of (2.5) is negative if M" f£ 0 while the right-hand
side is nonnegative, a contradiction. We thus conclude that u~ = 0, that is, u > 0.

Now, assume m,h e L°°. We write (2.4) as

- A P M + km-\u\"-2u = km+\u\p-2u + h(x).

u > 0 in Q. and du/dv < 0 on 9£2 then follow from Lemma 4 of Otani and Te-
shima [16].

Next, suppose v > 0 is another solution. As in the proof of Lemma 2.3, we let

f up - vp f up - v"

/<«, v) = J (-Apu)—^ j
I{u, v) is well defined since du/dv, dv/dv < 0 on 312. If u ^ v, then

Again Proposition 1 of Anane [1] implies that u = lev for some constant k. We thus
conclude that u = v. This completes the proof.

For general problem

- Apu = f(x,u) in ft, M=0on3ft , (2.6)

we introduce

DEFINITION 2.2. A function ii e Wl-p(Q) is said to be a supersolution of (2.6) if

I \Vii\p-2VuV<p > J f{x, u)<p

for all <p € C~(ft), <p > 0. Subsolution is defined accordingly.
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3. Existence results

To obtain the existence of a positive solution of

- Apu = f(x,u) in £2, u = 0ondS2, (3.1)

we employ sub-supersolution technique, following Costa and Goncalves [5] in prin-
ciple. We postulate the following conditions on f(x, u) throughout this section.

(HI) / satisfies the Caratheodory condition, that is, / is measurable with respect
to x for all u e K and continuous with respect to u for almost all x € SI. Assume
further that for some e > 0, and for any K > 0,

sup \f(x,u)\eLr+£. (3.2)
0<u<K

(H2) The asymptotic limits

ao(x) = lim inf —, aoo(;c) = hm sup — (3.3)

exist uniformly for a.e. x € Q. Moreover, they satisfy that ax e L°°, a^ # 0, and
either oo > ao(x) > c0 > 0 or ao(x) = oo, and

A.,(ao) < 1 <A.1(a00). (3-4)

REMARK 3.1. For the case ao(x) = +00, we take Xi(a0) = 0 in (3.4). If a0, a^,
are constants, then (3.4) is equivalent to 0 < a^ < A-i (1) < <z0, a condition used
frequently for the case p = 2, see for example Brezis and Oswald [4] and references
therein.

We first construct a pair of sub-supersolution.

THEOREM 3.1. Assume (HI) and (H2) hold. Then there exists a positive supersolution
u e WQ"(Q.) of (3.1) such that du/dv <0on 3J2.

PROOF. We choose e > 0 small such that Aifaoo + e) > 1. This is possible by
Lemma2.3. By virtue of the definition of a^, we can find a function bs(x) e WXrC\L°°
with bE > 1 in £2 such that

fix, «) < ( ^ + e)u"-1 +bE

for u > 0. Now we consider the following problem

- Apu = (G^ + e)|«|p~2M + bE in S2, u = 0 on dS2. (3.5)

Lemma 2.5 implies that (3.5) has a positive solution ue e WQ'P(Q) with dujdv < 0
on 3S2. We then choose u = M£ to conclude the proof.
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THEOREM 3.2. Under the same conditions, there exists a positive subsolution M e
of (3.1) such thatu < u.

PROOF, (i). For the case ao(x) e L°°, we again choose an e > 0 so small that
a0 — s > 0 and A., (a0 — e) < 1. We further take K > 0 small such that

f(x,u)>(ao~e)up-1

for all 0 < M < K. Let v{ be a positive eigenfunction of the following eigenvalue
problem

2u in £2,

We can further assume that vx < K. It then follows that

since A.i(ao — e) < 1. We thus conclude that v\ is a subsolution of (3.1). Since
dii/dv < 0and3ui/3v < 0 on 3 Q, we can choose a € (0, 1) small such that a vx < u
in £2. Then u = avx is as required.

(ii). For the case ao(x) = +oo, replace in the above proof a0 — e by a large M > 0.
Then the same conclusion can be deduced. The proof is complete.

The next theorem, originally due to Kazdan and Kramer [12] for p = 2, guarantees
the existence of solutions for our problem.

THEOREM 3.3. Let u, u e W^HL00 be a pair of sub-supersolution of (3.1). Ifu < ii,
then (3.1) has a solution u e WQP(Q) such that u < u < u if (HI) is assumed.

REMARK 3.2. The proof we give below follows the same arguments as that of Kazdan
and Kramer [12] and Costa and Goncalves [5] for p = 2, but we require and obtain
weaker regularity. In fact, as indicated by Tolksdorf [20], one cannot expect C2

regularity if p < n and p ^ 2. A different proof for the case p — 1 was given in
Sattinger [17], where it was assumed that /(JC, U) + ku is nondecreasing in u for some
k > 0 .

PROOF. For the given sub-supersolution pair u_ < « in L°°, we define an operator T by

Tu =
u_, if u(x) < u(x);
u, if «(;t) < u(x) < u(
ii, if u(x) > M(X),
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and consider the problem

\Tu\"-2Tu in ft, w = 0on9ft. (3.6)

We first claim that problem (3.1) together with condition u < u < u is equivalent to
problem (3.6).

Obviously, solution u of (3.1) satisfying u<u<u also solves (3.6). On the other
hand, let u be a solution of (3.6) and denote u — u - u. We will show that u < 0.
Since u is a supersolution of (3.1), we have

/ (| V«|"-2VM - \Vu\p~2Vu) V<p

> J (f(x, u) - f(x, Tu) - \Tur2Tu + \ur2u)cp

for all (p 6 WQ'P(S2), (p > 0. If u+ # 0, taking tp = u+ in the above inequality yields

0 > f (\Vu\p-2Vu - |VM|"-2VM) VM+ > 0,

a contradiction. Hence u <u. Analogously we can prove u < u. It then follows that
u_< u < u and consequently u solves (3.1).

Now we consider the solvability of a family of problems

- Apu + \u\p-2u = tifix, Tu) + \Tu\"'2Tu) in ft, M = 0on3ft, (3.7)

for t e [0, 1]. It is easy to verify that solution of (3.7) is a fixed point of the following
operator

RK.iu) := R (tifix, Tu) + \Tu\"-2Tu) - \u\"-2u) ,

where R is the inverse of — Ap defined in Section 2. We claim that RK, is compact
from L°° to L°° for all t e [0, 1]. Indeed we need only to verify that RK, is bounded
since R is compact (see Lemma 2.1). Let v = RK,iu), that is,

-Apv = tif(x, Tu) + \Tu\"-2Tu) - \u\"-2u.

For p > n, L°° boundedness follows from the Sobolev embedding theorem since
v € Wo"(n). For p < n, since for some M > 0, M > \\u\\oo, \\u\\oo, then by (HI),
the norm of f(x, Tu) in Lr+e is independent of u, thus Theorem 1 of Serrin [18]
implies that IMIoo 5 M\, where Mi is independent of u and t € [0, 1]. For p = n,
Theorem 2 of Serrin [18] implies the same.

The above analysis also shows that there exists a constant Mo > 0, such that for
all t € [0, 1], RK, has no fixed points outside the ball B := BMts in L°°, where BMo is
centered at the origin with radius Mo. Thus we conclude

deg(/ - RKt ,B,0) = deg(/ - RK0, B, 0).
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If / — tRK0 has a zero point u0, then -Apw0 = —f~1|Molp~2"o- Multiplying both
sides of the equation by w0 and integrating by parts we obtain

0 < f |Vuol" = -tp-x j \uo\" < 0,

which implies u0 = 0 if t ^ 0. This shows that / — t RK0 is homotopic to / . It then
follows that

deg(/ - RKU 5,0) = deg(/ - RK0, B,0) = 1,

that is, there exists a solution to u e B of (3.7) with t = 1. Consequently we obtain a
solution M of (3.1) with M < u < u. This ends the proof.

Now, combining Theorems 3.1, 3.2 and 3.3 we have

THEOREM 3.4. Assume that (HI) and (H2) hold. Then there exists a positive solution
u e WQ-P(Q) n L°°(f2) of (3.1). If, in addition, f(x,t)/t"-' is decreasing for
t e (0, oo), then the solution is unique in L

PROOF. We need only verify the uniqueness part.
Let v > 0 be another solution. Proposition 1 of [1] is not readily applicable here

since we do not know whether dv/dn < 0 on dQ or not. Instead we adapt a device
due to Lindqvist [13]. Let

uE = u + e, ve = v + s,

for e > 0, and choose test function (uP — U£)/H£~' for equation (3.1), and (up
E —

vP)/vj!~l for (3.1) with u replaced by v, respectively. Multiplying (3.1) and the cor-
responding equation for v by the test functions and subtracting the resultant equations,
we obtain

Ve

It is apparent that, by our assumption,

Then the same arguments as that in the proof of Lemma 1 of [13] imply that u = kv
for some k > 0. It is easy to see that k = 1, that is, u = v. The proof is complete.

Finally we state a theorem which says that, in essence, (H2) is necessary.
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THEOREM 3.5. Assume that, for all x e £2, / (x , t)/tp~l is strictly decreasing for
t 6 (0, oo) and a0 e L°°. If (3.1) has a positive solution u, then

PROOF. By monotonicity of / (x , t)/tp~l, we have

««>(•*) < fix, t)/tp~l < ao(x)

for all t > 0, x G £2. Define m{x) by

( f{x,u{x))/u{xy-\ ifxefi;
m(x) = {

| ao(x), if x e 3S2,

where M(X) is a positive solution of (3.1). Then a<>o(x) < m(x) < ao(x), hence
m(x) e L°°, m+ ^ 0. Since a positive solution u of (3.1) also solves

-Apu = m(x)\u\p-2u inn, u = 0ondQ,

we derive that A((w) = 1 from simplicity of positive eigenfunction. Lemma 2.3
further shows that

This completes the proof.

4. Nonhomogeneous case

In this section we will deal with the nonhomogeneous problem, that is, h{x)
in (1.1). We assume that / satisfies (HI) and

J->±OO \s\P~2S

Thus we can decompose f(x,u) into

f(x, u) = a+(x)\ur2u+ - a_(x)\u\p-2u-

where

Iim m a X | " ^ / l ( j : ' M ) = 0.

We also assume a±(x) ^ 0 so that k](a±) are well defined. We further restrict
ourselves to the case where

> I- (4-2)
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REMARK 4.1. We note that in the case where a± are positive constants, (4.2) is equi-
valent to a± < Xi(l). Moreover, in the case a±{x) < Xi(l) with strict inequalities
on subregions in Q with positive measure, a condition routinely used in the literature,
(4.2) holds. Indeed, (4.2) is slightly more general than that. It is conceivable that
a± > Ai(l) in some subregions of £2 but (4.2) remains true.

We first investigate the homogeneous case.

LEMMA 4.1. The problem

- Apu = a+(x)\u\p-2u+- a-.(x)\u\"-2u- inQ, u = 0 on dQ (4.3)

has only trivial solution.

PROOF. Let u be a solution. Multiplying both sides of (4.3) by u+ and integrating
yield that

j \Vu+\» = j a+{x)\u+\".

On the other hand, for any u e W^P(Q) with / a+(x)\u\p ^ 0,

j |V«|" >kx[a+) I a+(x)\u\' > ja+(x)\u\»,

by (4.2). It then follows that u+ = 0. Similarly we derive that u~ = 0. Thus u = 0.
The lemma is proved.

Now we define, for r\ > 0,

F{r,, v) = f(x, 1

and

J, v) = v - R (F(IJ, v) +

which maps L°° into itself.

REMARK 4.2. We note that if <!>(?;, v) = 0 for some r, > 0, then r,v is a solution
of (1.1).

LEMMA 4.2. There exist r,0 > 0, M > 0 such that for any r) > rj0 ond ||u||oo > M, we
4>(77, u) 9̂  0.
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PROOF. Assume, on the contrary, that there exist two sequences {r)k} and {vk} such
that r)k -»• oo, llutlloo -> oo, and <S>(r)k, vk) = 0, that is,

D e n o t e ^ = vt/WvkW^.

-Apuk =

-Apvk = F(r]k,

We then obtain

(F(r)k, Vk)+h/r)p
k~

a+\uk\»-2ut - a-\u

Vk) + h/r,r

K II 0 0

2uk +

1

4~X\\v
uk)+h

We thus derive that / | Vuk\
p is bounded. Hence for some u0 e WQ'P(£1), there exists a

subsequence of {uk}, still denoted by {uk}, such that « t -> M0 weakly in Wj^C^) and
strongly in Lp. It follows from compactness of R that uk - * M0 in L°° and ||uolloo = 1-
Combining with continuity of R we conclude that

-Apu0 = a+(x)\u0r
2u+ - a_(*)l«olp~2«o •

Lemma 4.1 then implies that «0 = 0, which is impossible. Thus <$>(ri, v) ^ 0 for r)
and ||u||oo sufficiently large. The proof of this lemma is complete.

Let BM denote the ball in L°° with radius M and centered at the origin. It follows
from Lemma 4.2 that deg(<J>(/j, v), BM, 0) is well defined for rj > r]0. Moreover we
have

LEMMA 4.3. deg(4>(?j, v), BM, 0) ^ 0,for r) > r)0.

PROOF. We observe that, by Lemma 4.2

¥(f, IJ, v) := v - R (a+\v\"-2v+ - a.\v\"-2
V- + fi{x^v) + h

tP
\ r)P~l

defines a homotopy for t e [0, 1]. We then have

deg(*(l, t), v), Bu, 0) = deg(*(0, rj, v), BM, 0).

On the other hand, since

R(a+\v\p-2v+ - a_\v\"-2v-)

is an odd operator, the Borsuk Theorem implies that

deg(4>(>7, v), BM, 0) = deg(*(0, ij, v), BM, 0) ? 0.

This ends the proof of the lemma.
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We now state our existence result

THEOREM 4.1. Assume that (4.1) and (4.2) hold with fi(x,0) = 0. Then for any
h e L°°, h ^ 0, problem (1.1) has a nontrivial solution.

PROOF. The existence follows from Lemma 4.3, while h ^ 0 implies that the solution
cannot be trivial.

REMARK 4.3. In the paper by Boccardo, Dr&bek and Kucera [3], existence results are
obtained for the case (in essence) a± = Xi(l).

REMARK 4.4. We note that, if - Apu is replaced by - Apu + b(x)\u\p~2u with b(x) e
L°°, b(x) > 0 a.e. in Q, the same proofs can be carried through and the same results
of this paper remain valid.
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