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A VARIANT ON THE NOTION OF A DIOPHANTINE s-TUPLE
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Morelia, Michoacán, México
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Abstract. We show that there is an infinite set S of natural numbers with the
property that 1 + ∏

n∈R n is square-free for every finite subset R ⊆ S.
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1. Introduction.

1.1. Diophantine s-tuples. In the third century, Diophantus of Alexandria studied
sets S of positive rational numbers with the property that 1 + mn is the square of a
rational number for all m, n ∈ S, m �= n. One example he found was the set

Sd =
{

1
16

,
33
16

,
17
4

,
105
16

}
.

In the 17th century, Fermat considered Diophantus’ problem, but he was mainly
interested in sets that contain only natural numbers. A set of this type is called a
Diophantine s-tuple if it has s elements. Fermat found the first Diophantine quadruple:

Sf = {1, 3, 8, 120}.
Euler showed that Fermat’s set can be extended to a larger set of rational numbers with
Diophantus’ property, namely,

Se =
{

1, 3, 8, 120,
777480
8288641

}
.

On the other hand, Baker and Davenport [1] showed that Fermat’s set Sf cannot
be extended to include a fifth natural number. Dujella [3] has shown that there are no
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Diophantine sextuples and that there are at most finitely many Diophantine quintuples;
it is unknown whether any such quintuples exist.

1.2. Generalizations. The notion of a Diophantine s-tuple is easily generalized
by replacing the set of square numbers with an arbitrary set of natural numbers.

DEFINITION 1. For a given set A ⊆ �, we say that S ⊆ � is A-Diophantine if
1 + mn ∈ A for all m, n ∈ S, m �= n.

With this terminology, a Diophantine s-tuple is simply an �2-Diophantine set with
s elements, where �2 is the set of square numbers. The result of Dujella asserts that
#S � 5 for every �2-Diophantine set S and #S = 5 holds for at most finitely many
such sets S.

One can also consider the following stronger condition on a set S ⊆ �:

DEFINITION 2. Given A ⊆ �, we say that S ⊆ � is strongly A-Diophantine if 1 +∏
n∈R n ∈ A for every finite subset R ⊆ S.

It is easy to check that the set

Sp = {2, 3, 6, 26, 90, 336, 476, 3926}

has the property that 1 + mn is a prime number for all m, n ∈ Sp, m �= n. In other
words, Sp is P-Diophantine, where P is the set of prime numbers. The set Sp is not
strongly P-Diophantine, but such sets do exist and are easily found by computer (e.g.,
S∗

p = {1, 2, 6, 96}). It is natural to ask whether there exists a P-Diophantine set with
infinitely many elements, and we conjecture that this is the case. In Section 3, we show
that a well-known and widely believed conjecture of Dickson implies the existence of
a strongly P-Diophantine set of infinite cardinality.

1.3. Statement of the main result. In this note, we focus on a variant of
Diophantus’ problem with square-free numbers rather than square numbers. Our aim
is to prove the existence of a strongly A-Diophantine set of infinite cardinality, where
A is the set of square-free natural numbers.

THEOREM 1. There is an infinite set S ⊆ � with the property that 1 + ∏
n∈R n is

square-free for every finite subset R ⊆ S. Moreover, for x � 3, we have

#{n � x : n ∈ S} �
√

log log x. (1)

2. Construction. In what follows, the letter p always denotes a prime number. For
a positive integer, ω(n) denotes the number of distinct prime divisors of n. For positive
functions f and g, the notation f � g means that the inequality f � c g holds with
some absolute constant c > 0.

Our principal tool is the following technical lemma, which is a consequence of the
more general result (Lemma 2) of Luca and Shparlinski [4]:
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LEMMA 1. For any real number y � 2, let K = ∏
p�y p. Let {A1, . . . , As} be a set of

positive integers with the property that the products

PT =
∏
j∈T

Aj (T ⊆ U = {1, . . . , s})

are pairwise distinct and put

F(X) =
∏

T ⊆{1,...,s}
(PT KX + 1) ∈ �[X ].

Finally, let � be the product of the distinct primes p > y that divide the product
∏

|PT1 − PT2 |.
T1,T2⊆{1,...,s}

T1 �=T2

(2)

Then,

#{n � x : F(n) is square-free} � x
(

1 − 2s

y

)ω(�)

− 2s ω(�) − 2sx
y

− 2s
√

Mx,

where M = 1 + PUK.

Proof of Theorem 1. For every real number t, we write exp2(t) = exp(et), and we
put

f (t) = exp2(16t2) and g(t) = log f (t + 1/4) = e16t2+8t+1. (3)

To prove the theorem, we construct an infinite sequence A1, A2, A3, . . . of distinct
positive integers such that for every integer s � 1 the following properties hold:

(i) the products PT = ∏
j∈T Aj with T ⊆ {1, . . . , s} are pairwise distinct;

(ii) the bound Aj � f (j) holds for each j = 1, . . . , s;
(iii) the number 1 + PT is square-free for every subset T ⊆ {1, . . . , s}.

Assuming this has been done, we put S = {Aj : j � 1}. Then, for every finite
subset R ⊆ S, we have 1 + ∏

n∈R n = 1 + PT , where T = {j : Aj ∈ R}; hence, this
number is square-free. As the construction in the following text produces a set S with
A1 = 2, it suffices to establish the lower bound (1) for all sufficiently large values of x.
For such x, we let s be determined by the inequalities

f (s) = exp2(16s2) < x � exp2(16(s + 1)2).

Then,

#{n � x : n ∈ S} � #{A1, . . . , As} = s �
√

log log x

as required.
Turning now to our construction, let A1 = 2, and note that (i) − (iii) hold with

s = 1. Proceeding by induction, we suppose that A1, . . . , As have been defined and
satisfy (i) − (iii) for some integer s � 1. We find a new integer As+1 �= Aj for j = 1, . . . , s
such that the longer sequence A1, . . . , As+1 satisfies:
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(iv) the products PT ′ = ∏
j∈T ′ Aj with T ′ ⊆ {1, . . . , s + 1} are pairwise distinct;

(v) the bound Aj � f (j) holds for each j = 1, . . . , s + 1;
(vi) the number 1 + PT ′ is square-free for every subset T ′ ⊆ {1, . . . , s + 1}.

To this end, we now define

y = g(s) and K =
∏
p�y

p.

Using the upper bound K � e2y (see [5, Chapter I.1.2, Theorem 4]), we have

K � e2g(s). (4)

From (ii), we derive the bound

PS =
s∏

j=1

Aj � f (s)s.

Put M = 1 + PSK . Using the previous bound together with (4), we see that

M � 2PSK � 2f (s)se2g(s). (5)

Now let � be the product of the distinct primes p > y that divide the product (2).
Since

∣∣PT1 − PT2

∣∣ < PS � f (s)s

for each factor in (2), we have the crude bound

� � P 2s+1

S � f (s)s2s+1
.

As � is composed of primes exceeding y, it follows that

ω(�) � log �

log y
� s2s+1 log f (s)

log g(s)
. (6)

Let

F(X) =
∏

T ⊆{1,...,s}
(PT KX + 1) ∈ �[X ].

Using Lemma 1 with x = f (s + 1/4)4 = e4g(s) together with the bounds (5) and (6), we
deduce that

#{n � e4g(s) : F(n) is square-free} � L1 − L2 − L3 − L4, (7)

where

L1 = e4g(s)
(

1 − 2s

g(s)

)s2s+1 log f (s)/ log g(s)

;

L2 = 2s22s+1 log f (s)/ log g(s);

https://doi.org/10.1017/S0017089508004552 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004552


A VARIANT ON THE NOTION OF A DIOPHANTINE s-TUPLE 87

L3 = 2se4g(s)

g(s)
;

L4 = 2s
√

2f (s)se6g(s).

Since log(1 − t) � −2t, if 0 � t � 1/2, and g(s) = e16s2+8s+1 � 2s+1, we have

log
(

L1

e4g(s)

)
= s2s+1 log f (s)

log g(s)
log

(
1 − 2s

g(s)

)
� − s22s+2 log f (s)

g(s) log g(s)
. (8)

In view of the definitions (3), it follows that

s22s+2 log f (s)
g(s) log g(s)

= s22s+2

(16s2 + 8s + 1)e8s+1
� 10−4.

Combining this bound with (8), we deduce that

L1 � 0.8 e4g(s). (9)

Similarly, we have

log L2 � s22s+1 log f (s)
log g(s)

� 10−4 � 4g(s) − log 5

and therefore

L2 � 0.2 e4g(s). (10)

Since g(s) � 5 · 2s, we also have

L3 � 0.2 e4g(s). (11)

Finally, by the definitions (3), we see that

log L4 � s + 1 + 0.5s log f (s) + 3g(s) � 4g(s) − log 5

since

e16s2+8s+1 � s + 1 + 0.5se16s2 + log 5;

therefore,

L4 � 0.2 e4g(s). (12)

Now, inserting the estimates (9)–(12) into (17), it follows that

#{n � e4g(s) : F(n) is square-free} � 0.2 e4g(s) � 22s + 1.

Hence, there is a positive integer n � e4g(s) such that F(n) is square-free, and

nK �= PT1

PT2

for all subsets T1, T2 of {1, . . . , s}. (13)
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Put As+1 = nK for any such n and note that

As+1 �= Aj = P{j}
P∅

(j = 1, . . . , s).

It remains to show that the sequence A1, . . . , As+1 satisfies (iv) − (vi). Since the
products PT ′ = ∏

j∈T ′ Aj with T ′ ⊆ {1, . . . , s + 1} all have the form PT or PT As+1

for a subset T ⊆ {1, . . . , s}, namely, T = T ′ \ {s + 1}, the property (iv) is an immediate
consequence of (i) and (13). Taking (ii) into account, property (v) is a consequence of
the following bound:

As+1 = nK � e4g(s)e2g(s) = exp
(
6 e16s2+8s+1) � exp

(
e16s2+32s+16) = f (s + 1).

Finally, property (vi) follows from (iii) and the fact that for every subset T ⊆ {1, . . . , s},
the number 1 + PT As+1 = 1 + PT Kn is square-free since it divides the square-free
number F(n). �

3. Remarks. LetA be the set of square-free natural numbers and letS be strongly
A-Diophantine as in Theorem 1. It would be interesting either to improve the lower
bound (1) on #(S ∩ [1, x]) or to find a construction of such a set that yields a somewhat
comparable upper bound for this quantity.

Suppose that A1 < · · · < As are the first s elements in a strongly A-Diophantine
set S. For a fixed subset R ⊆ {1, . . . , s}, the expectation that a random integer n
has the property that n

∏
j∈R Aj + 1 is square-free is cR · 6/π2 � 6/π2, where cR =∏

p |∏j∈R Aj
(1 − p−2)−2. If we assume that these events are independent as R varies,

then the probability that these numbers are simultaneously square-free for all subsets
R ⊆ {1, . . . , s} exceeds (6/π2)2s

. Therefore, writing x = (s + 1)(π2/6)2s
, it is reasonable

to expect that the interval [1, x] contains at least s + 1 numbers n with this property
if s is large; in particular, at least one of them is not in the set {A1, . . . , As}. Since
s ∼ c log log x, where c = 1/ log 2, this heuristic argument suggests that there exists a
strongly A-Diophantine set S for which #(S ∩ [1, x]) 
 log log x as x → ∞.

Here we give some numerical examples. The finite set

S = {1, 2, 5, 6, 9, 21, 42, 101, 330, 5738, 71190, 206083605}
is strongly A-Diophantine. Based on the heuristic argument, we expect that the next
integer that can be added to this set, assuming it exists, must be quite large (if A1 <

A2 < · · · are the elements of S, then the number of digits in the decimal representation
of Aj should grow as an exponential function of j). The set

S = {1, 2, 5, 6, 9, 10, 14, 18, 21, 30, 33, 42, 45, 50, 64, 65, 77, 81, 82, 92, 100}
is A-Diophantine (but not strongly so). This set was produced by using a greedy
algorithm and can be extended to include 1, 229 numbers below 108.

Let B be the set of natural numbers that are not square-free. Terr [6] has shown that
for any integer k, there exists an infinite set S such that k + mn ∈ B for all m, n ∈ S,
m �= n. In particular, there exists a B-Diophantine set with infinitely many elements.

Since the set P of prime numbers is contained in the set A of square-free numbers,
in view of Theorem 1 it is natural to ask whether there exists a P-Diophantine set with
infinitely many elements. We expect that the answer to this question is yes, but we do
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not know how to approach it. If the first s elements A1 < · · · < As in S have already
been constructed, then the collection of linear polynomials

fR(X) = X
∏
j∈R

Aj + 1 (∅ �= R ⊆ {1, . . . , s})

satisfies the hypothesis of Dickson’s generalized twin prime conjecture (see [2]); that
is, for every prime p there is an integer n such that p � fR(n) for every R (indeed, one
can take any n that is divisible by p). Then, Dickson’s conjecture asserts that there is
an integer As+1 > As such that fR(As+1) is prime for every R and this integer can be
incorporated into the set S.
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