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Abstract. We show that there is an infinite set S of natural numbers with the

property that 1 + [, 7 is square-free for every finite subset R C S.
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1. Introduction.

1.1. Diophantine s-tuples. In the third century, Diophantus of Alexandria studied
sets S of positive rational numbers with the property that 1 + mmn is the square of a
rational number for all m, n € S, m # n. One example he found was the set

(133 17 105
= 116°16 4 16 |-

In the 17th century, Fermat considered Diophantus’ problem, but he was mainly
interested in sets that contain only natural numbers. A set of this type is called a
Diophantine s-tuple if it has s elements. Fermat found the first Diophantine quadruple:

Sy = {1.,3,8,120}.

Euler showed that Fermat’s set can be extended to a larger set of rational numbers with
Diophantus’ property, namely,

S, = {1, 3.8, 120, 17480 }

8288641

On the other hand, Baker and Davenport [1] showed that Fermat’s set Sy cannot
be extended to include a fifth natural number. Dujella [3] has shown that there are no
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Diophantine sextuples and that there are at most finitely many Diophantine quintuples;
it is unknown whether any such quintuples exist.

1.2. Generalizations. The notion of a Diophantine s-tuple is easily generalized
by replacing the set of square numbers with an arbitrary set of natural numbers.

DEFINITION 1. For a given set A C N, we say that S C N is A-Diophantine if
14+mne Aforallm,ne S, m+#n.

With this terminology, a Diophantine s-tuple is simply an N>-Diophantine set with
s elements, where N is the set of square numbers. The result of Dujella asserts that
#S < 5 for every N2-Diophantine set S and #S = 5 holds for at most finitely many
such sets S.

One can also consider the following stronger condition on a set S € N:

DEFINITION 2. Given A € N, we say that S € N is strongly A-Diophantine if 1 +
[1,cx 1 € Afor every finite subset R € S.

It is easy to check that the set
S, =1{2,3,6,26,90, 336, 476, 3926}

has the property that 1 +mmn is a prime number for all m, n € Sp, m # n. In other
words, S, is P-Diophantine, where P is the set of prime numbers. The set S, is not
strongly P-Diophantine, but such sets do exist and are easily found by computer (e.g.,
Sy =1{1,2,6,96}). It is natural to ask whether there exists a P-Diophantine set with
infinitely many elements, and we conjecture that this is the case. In Section 3, we show
that a well-known and widely believed conjecture of Dickson implies the existence of
a strongly P-Diophantine set of infinite cardinality.

1.3. Statement of the main result. In this note, we focus on a variant of
Diophantus’ problem with square-free numbers rather than square numbers. Our aim
is to prove the existence of a strongly .A-Diophantine set of infinite cardinality, where
A is the set of square-free natural numbers.

THEOREM 1. There is an infinite set S € N with the property that 1 + [, n is
square-free for every finite subset R € S. Moreover, for x > 3, we have

#{n<x : ne S} > loglogux. (1)

2. Construction. In what follows, the letter p always denotes a prime number. For
a positive integer, w(n) denotes the number of distinct prime divisors of n. For positive
functions f and g, the notation f <« g means that the inequality f < ¢g holds with
some absolute constant ¢ > 0.

Our principal tool is the following technical lemma, which is a consequence of the
more general result (Lemma 2) of Luca and Shparlinski [4]:
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LEMMA 1. For any real number y > 2, let K = ]_[pgyp. Let {Ay, ..., A} be a set of
positive integers with the property that the products

Pr=[J4 @cu={,...s)
jeT
are pairwise distinct and put

FX)= [] (Prkx+1)ez[x].
T<{,..,s)

Finally, let A be the product of the distinct primes p > y that divide the product

[ 1P - Pzl
T2l s) (2)
Ti+Th

Then,
s o(A) 25y
#{n < x : F(n) is square-free} > x <1 — —) — e 22 25/ My,
y y

where M = 1 + Py K.

Proof of Theorem 1. For every real number 7, we write exp,(#) = exp(e’), and we
put

f(t)y=exp,(167)  and  g(1) = logf(t + 1/4) = 'O +8:+1, (3)

To prove the theorem, we construct an infinite sequence A, A;, 43, ... of distinct
positive integers such that for every integer s > 1 the following properties hold:
(i) the products Pr = H_/eT A;with T C {1, ..., s} are pairwise distinct;

(7i) the bound 4; < f(j) holds foreachj =1, ...,s;
(iii) the number 1 + Py is square-free for every subset 7 C {1, ..., s}.

Assuming this has been done, we put S ={4; : j > 1}. Then, for every finite
subset R € S, we have 1 +[[,.pn =14 Pr, where 7 = {j : A; € R}; hence, this
number is square-free. As the construction in the following text produces a set S with
A1 = 2, it suffices to establish the lower bound (1) for all sufficiently large values of x.
For such x, we let s be determined by the inequalities

f(5) = exp,y(1657) < x < expy(16(s + 1)%).
Then,
#n<x : neS}>#{A, ..., 4} = 5> /loglogx

as required.
Turning now to our construction, let 4; = 2, and note that (i) — (iif) hold with

s = 1. Proceeding by induction, we suppose that A4, ..., A; have been defined and
satisfy (i) — (7ii) for some integer s > 1. We find a new integer 4,1 # A;forj=1,...,s
such that the longer sequence Ay, ..., Ay, satisfies:
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(iv) the products Pr = [[,c7 4; with 7" € {1, ..., s + 1} are pairwise distinct;
(v) the bound 4; < f(j) holds foreachj=1,...,5s+1;
(vi) the number 1 + P is square-free for every subset 7/ C {1, ...,s+ 1}.

To this end, we now define

y=g(s) and K= l_[p.
Py

Using the upper bound K < e (see [S, Chapter 1.1.2, Theorem 4]), we have
K < e2g(s). (4)

From (ii), we derive the bound

Put M =1+ PsK. Using the previous bound together with (4), we see that
M < 2PsK < 2f(s) eV, %)

Now let A be the product of the distinct primes p > y that divide the product (2).
Since

|P1, — Pr;

< Ps < f(s)
for each factor in (2), we have the crude bound
A < Péﬁl g.f(s)szsﬂ )

As A is composed of primes exceeding y, it follows that

log A - 52T log £ ()
logy = logg(s)

w(A) < (6)

Let

FX)= [] (PrKX+1)ez[x].
T8

Using Lemma 1 with x = f(s + 1/4)* = % together with the bounds (5) and (6), we
deduce that

#{n < e*Y . F(n)issquare-free} > L; — Ly — L3 — Ly, (7)

where

>

95 52t log £(s)/ log g(s)
L1 = €4g(3) <1 — >
g(s)

L = 272 logf()/ logs(s).
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2 e4g(s)
3= >
g(s)

Ly = 25,/2f(s5)*e%8),

Since log(1 — 7) > —21,if 0 < 7 < 1/2, and g(s) = €' 8+ > 25+ we have

o () = “gmer (1 0) > s ©
In view of the definitions (3), it follows that
s2%5+2 log f(s) _ 52242 <104
g(s)logg(s) (1652 + 85 + 1)edst1 ~
Combining this bound with (8), we deduce that
Ly > 0.8¢%, (€
Similarly, we have
log L, < 27 log/(s) < 107* < 4g(s) — log 5
log g(s)
and therefore
Ly < 0.26%9, (10)
Since g(s) > 5 - 2°, we also have
Ly < 0.26%0), (11)
Finally, by the definitions (3), we see that
logLs < s+ 1+ 0.5slogf(s) + 3g(s) < 4g(s) — log5
since
OBl S 414+ 0.55¢' + log5;
therefore,
Ly <0.2%9), (12)
Now, inserting the estimates (9)—(12) into (17), it follows that
#{n < ¥ 1 F(n)is square-free} > 0.2%© > 2% 4 1.
Hence, there is a positive integer n < ¢*© such that F(n) is square-free, and
nK;é? for all subsets 77, 7; of {1, ..., s}. (13)

o
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Put 4;,; = nK for any such » and note that

P
A £ 4= (=1,....9.
Py
It remains to show that the sequence Ai,..., Ay satisfies (iv) — (vi). Since the

products Py = I—[ieT, A; with 7" C {1, ..., s+ 1} all have the form Py or PrA.q
forasubset 7 C {1, ..., s},namely, 7 = 7"\ {s 4 1}, the property (iv) is an immediate
consequence of (¢) and (13). Taking (if) into account, property (v) is a consequence of
the following bound:

A1 =nK < 2480 p280) exp (6 616s2+8x+1) <exp (616.y2+32s+16) =f(s+1).

Finally, property (vi) follows from (iii) and the fact that for every subset 7 C {1, ..., s},
the number 1 + PrA,.; = 1 + PrKn is square-free since it divides the square-free
number F(n). O

3. Remarks. Let A be the set of square-free natural numbers and let S be strongly
A-Diophantine as in Theorem 1. It would be interesting either to improve the lower
bound (1) on #(S N[1, x]) or to find a construction of such a set that yields a somewhat
comparable upper bound for this quantity.

Suppose that 4] < --- < Aj are the first s elements in a strongly .4-Diophantine
set S. For a fixed subset R C {1,..., s}, the expectation that a random integer n
has the property that n[];.r 4; 4 1 is square-free is cg - 6/ > 6/7%, where cg =
lel'[,en A,(l — p~)72. If we assume that these events are independent as R varies,

then the probability that these numbers are simultaneously square-free for all subsets
R C{1,...,s}exceeds (6/%)* . Therefore, writing x = (s 4 1)(7r>/6)* , it is reasonable
to expect that the interval [1, x] contains at least s + 1 numbers » with this property
if s is large; in particular, at least one of them is not in the set {4, ..., 4}. Since
s ~ cloglog x, where ¢ = 1/log?2, this heuristic argument suggests that there exists a
strongly A-Diophantine set S for which #(S N[1, x]) < loglog x as x — oo.

Here we give some numerical examples. The finite set

S$=1{1,2,5,6,9,21,42,101, 330, 5738, 71190, 206083605}

is strongly A-Diophantine. Based on the heuristic argument, we expect that the next
integer that can be added to this set, assuming it exists, must be quite large (if 4| <
Ay < --- are the elements of S, then the number of digits in the decimal representation
of A; should grow as an exponential function of j). The set

S§$=1{1,2,5,6,9,10, 14, 18, 21, 30, 33, 42, 45, 50, 64, 65, 77, 81, 82, 92, 100}

is A-Diophantine (but not strongly so). This set was produced by using a greedy
algorithm and can be extended to include 1, 229 numbers below 108,

Let B be the set of natural numbers that are not square-free. Terr [6] has shown that
for any integer k, there exists an infinite set S such that k +mn € B for all m,n € S,
m # n. In particular, there exists a B-Diophantine set with infinitely many elements.

Since the set P of prime numbers is contained in the set A of square-free numbers,
in view of Theorem 1 it is natural to ask whether there exists a P-Diophantine set with
infinitely many elements. We expect that the answer to this question is yes, but we do
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not know how to approach it. If the first s elements 4| < --- < A, in S have already
been constructed, then the collection of linear polynomials

rO=X[]4+1  @#RC{l,....s)
JER

satisfies the hypothesis of Dickson’s generalized twin prime conjecture (see [2]); that
is, for every prime p there is an integer n such that p { fz(n) for every R (indeed, one
can take any n that is divisible by p). Then, Dickson’s conjecture asserts that there is
an integer Ay > A, such that fr(A4,1) is prime for every R and this integer can be
incorporated into the set S.
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